blob: 1feca6d25c1366ba9bd61e03c3d55a8e26132ee9 [file] [log] [blame]
//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective-C expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "Lookup.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprObjC.h"
#include "llvm/ADT/SmallString.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
Sema::ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
ExprTy **strings,
unsigned NumStrings) {
StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);
// Most ObjC strings are formed out of a single piece. However, we *can*
// have strings formed out of multiple @ strings with multiple pptokens in
// each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
// StringLiteral for ObjCStringLiteral to hold onto.
StringLiteral *S = Strings[0];
// If we have a multi-part string, merge it all together.
if (NumStrings != 1) {
// Concatenate objc strings.
llvm::SmallString<128> StrBuf;
llvm::SmallVector<SourceLocation, 8> StrLocs;
for (unsigned i = 0; i != NumStrings; ++i) {
S = Strings[i];
// ObjC strings can't be wide.
if (S->isWide()) {
Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
<< S->getSourceRange();
return true;
}
// Get the string data.
StrBuf.append(S->getStrData(), S->getStrData()+S->getByteLength());
// Get the locations of the string tokens.
StrLocs.append(S->tokloc_begin(), S->tokloc_end());
// Free the temporary string.
S->Destroy(Context);
}
// Create the aggregate string with the appropriate content and location
// information.
S = StringLiteral::Create(Context, &StrBuf[0], StrBuf.size(), false,
Context.getPointerType(Context.CharTy),
&StrLocs[0], StrLocs.size());
}
// Verify that this composite string is acceptable for ObjC strings.
if (CheckObjCString(S))
return true;
// Initialize the constant string interface lazily. This assumes
// the NSString interface is seen in this translation unit. Note: We
// don't use NSConstantString, since the runtime team considers this
// interface private (even though it appears in the header files).
QualType Ty = Context.getObjCConstantStringInterface();
if (!Ty.isNull()) {
Ty = Context.getObjCObjectPointerType(Ty);
} else {
IdentifierInfo *NSIdent = &Context.Idents.get("NSString");
NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0],
LookupOrdinaryName);
if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
Context.setObjCConstantStringInterface(StrIF);
Ty = Context.getObjCConstantStringInterface();
Ty = Context.getObjCObjectPointerType(Ty);
} else {
// If there is no NSString interface defined then treat constant
// strings as untyped objects and let the runtime figure it out later.
Ty = Context.getObjCIdType();
}
}
return new (Context) ObjCStringLiteral(S, Ty, AtLocs[0]);
}
Expr *Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
TypeSourceInfo *EncodedTypeInfo,
SourceLocation RParenLoc) {
QualType EncodedType = EncodedTypeInfo->getType();
QualType StrTy;
if (EncodedType->isDependentType())
StrTy = Context.DependentTy;
else {
std::string Str;
Context.getObjCEncodingForType(EncodedType, Str);
// The type of @encode is the same as the type of the corresponding string,
// which is an array type.
StrTy = Context.CharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
StrTy.addConst();
StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
ArrayType::Normal, 0);
}
return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
}
Sema::ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
TypeTy *ty,
SourceLocation RParenLoc) {
// FIXME: Preserve type source info ?
TypeSourceInfo *TInfo;
QualType EncodedType = GetTypeFromParser(ty, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
PP.getLocForEndOfToken(LParenLoc));
return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
}
Sema::ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LParenLoc, RParenLoc), false);
if (!Method)
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LParenLoc, RParenLoc));
if (!Method)
Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
QualType Ty = Context.getObjCSelType();
return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
}
Sema::ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc);
if (!PDecl) {
Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
return true;
}
QualType Ty = Context.getObjCProtoType();
if (Ty.isNull())
return true;
Ty = Context.getObjCObjectPointerType(Ty);
return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc);
}
bool Sema::CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs,
Selector Sel, ObjCMethodDecl *Method,
bool isClassMessage,
SourceLocation lbrac, SourceLocation rbrac,
QualType &ReturnType) {
if (!Method) {
// Apply default argument promotion as for (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++)
DefaultArgumentPromotion(Args[i]);
unsigned DiagID = isClassMessage ? diag::warn_class_method_not_found :
diag::warn_inst_method_not_found;
Diag(lbrac, DiagID)
<< Sel << isClassMessage << SourceRange(lbrac, rbrac);
ReturnType = Context.getObjCIdType();
return false;
}
ReturnType = Method->getResultType();
unsigned NumNamedArgs = Sel.getNumArgs();
// Method might have more arguments than selector indicates. This is due
// to addition of c-style arguments in method.
if (Method->param_size() > Sel.getNumArgs())
NumNamedArgs = Method->param_size();
// FIXME. This need be cleaned up.
if (NumArgs < NumNamedArgs) {
Diag(lbrac, diag::err_typecheck_call_too_few_args) << 2
<< NumNamedArgs << NumArgs;
return false;
}
bool IsError = false;
for (unsigned i = 0; i < NumNamedArgs; i++) {
Expr *argExpr = Args[i];
assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
QualType lhsType = Method->param_begin()[i]->getType();
QualType rhsType = argExpr->getType();
// If necessary, apply function/array conversion. C99 6.7.5.3p[7,8].
if (lhsType->isArrayType())
lhsType = Context.getArrayDecayedType(lhsType);
else if (lhsType->isFunctionType())
lhsType = Context.getPointerType(lhsType);
AssignConvertType Result =
CheckSingleAssignmentConstraints(lhsType, argExpr);
if (Result == Incompatible && !getLangOptions().CPlusPlus &&
CheckTransparentUnionArgumentConstraints(lhsType, argExpr)
== Sema::Compatible)
Result = Compatible;
if (Args[i] != argExpr) // The expression was converted.
Args[i] = argExpr; // Make sure we store the converted expression.
IsError |=
DiagnoseAssignmentResult(Result, argExpr->getLocStart(), lhsType, rhsType,
argExpr, AA_Sending);
}
// Promote additional arguments to variadic methods.
if (Method->isVariadic()) {
for (unsigned i = NumNamedArgs; i < NumArgs; ++i)
IsError |= DefaultVariadicArgumentPromotion(Args[i], VariadicMethod);
} else {
// Check for extra arguments to non-variadic methods.
if (NumArgs != NumNamedArgs) {
Diag(Args[NumNamedArgs]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 2 /*method*/ << NumNamedArgs << NumArgs
<< Method->getSourceRange()
<< SourceRange(Args[NumNamedArgs]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
}
}
return IsError;
}
bool Sema::isSelfExpr(Expr *RExpr) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(RExpr))
if (DRE->getDecl()->getIdentifier() == &Context.Idents.get("self"))
return true;
return false;
}
// Helper method for ActOnClassMethod/ActOnInstanceMethod.
// Will search "local" class/category implementations for a method decl.
// If failed, then we search in class's root for an instance method.
// Returns 0 if no method is found.
ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel,
ObjCInterfaceDecl *ClassDecl) {
ObjCMethodDecl *Method = 0;
// lookup in class and all superclasses
while (ClassDecl && !Method) {
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Method = ImpDecl->getClassMethod(Sel);
// Look through local category implementations associated with the class.
if (!Method)
Method = ClassDecl->getCategoryClassMethod(Sel);
// Before we give up, check if the selector is an instance method.
// But only in the root. This matches gcc's behaviour and what the
// runtime expects.
if (!Method && !ClassDecl->getSuperClass()) {
Method = ClassDecl->lookupInstanceMethod(Sel);
// Look through local category implementations associated
// with the root class.
if (!Method)
Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
}
ClassDecl = ClassDecl->getSuperClass();
}
return Method;
}
ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel,
ObjCInterfaceDecl *ClassDecl) {
ObjCMethodDecl *Method = 0;
while (ClassDecl && !Method) {
// If we have implementations in scope, check "private" methods.
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Method = ImpDecl->getInstanceMethod(Sel);
// Look through local category implementations associated with the class.
if (!Method)
Method = ClassDecl->getCategoryInstanceMethod(Sel);
ClassDecl = ClassDecl->getSuperClass();
}
return Method;
}
/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
/// objective C interface. This is a property reference expression.
Action::OwningExprResult Sema::
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr, DeclarationName MemberName,
SourceLocation MemberLoc) {
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType ResTy = PD->getType();
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
ResTy = Getter->getResultType();
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
MemberLoc, BaseExpr));
}
// Check protocols on qualified interfaces.
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
Getter = IFace->lookupPrivateInstanceMethod(Sel);
// Look through local category implementations associated with the class.
if (!Getter)
Getter = IFace->getCategoryInstanceMethod(Sel);
if (Getter) {
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), Member);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = IFace->lookupPrivateInstanceMethod(SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryInstanceMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter) {
QualType PType;
PType = Getter->getResultType();
return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(Getter, PType,
Setter, MemberLoc, BaseExpr));
}
// Attempt to correct for typos in property names.
LookupResult Res(*this, MemberName, MemberLoc, LookupOrdinaryName);
if (CorrectTypo(Res, 0, 0, IFace, false, CTC_NoKeywords, OPT) &&
Res.getAsSingle<ObjCPropertyDecl>()) {
DeclarationName TypoResult = Res.getLookupName();
Diag(MemberLoc, diag::err_property_not_found_suggest)
<< MemberName << QualType(OPT, 0) << TypoResult
<< FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString());
ObjCPropertyDecl *Property = Res.getAsSingle<ObjCPropertyDecl>();
Diag(Property->getLocation(), diag::note_previous_decl)
<< Property->getDeclName();
return HandleExprPropertyRefExpr(OPT, BaseExpr, TypoResult, MemberLoc);
}
Diag(MemberLoc, diag::err_property_not_found)
<< MemberName << QualType(OPT, 0);
if (Setter && !Getter)
Diag(Setter->getLocation(), diag::note_getter_unavailable)
<< MemberName << BaseExpr->getSourceRange();
return ExprError();
}
Action::OwningExprResult Sema::
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc) {
IdentifierInfo *receiverNamePtr = &receiverName;
ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
receiverNameLoc);
if (IFace == 0) {
// If the "receiver" is 'super' in a method, handle it as an expression-like
// property reference.
if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
if (receiverNamePtr->isStr("super")) {
if (CurMethod->isInstanceMethod()) {
QualType T =
Context.getObjCInterfaceType(CurMethod->getClassInterface());
T = Context.getObjCObjectPointerType(T);
Expr *SuperExpr = new (Context) ObjCSuperExpr(receiverNameLoc, T);
return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
SuperExpr, &propertyName,
propertyNameLoc);
}
// Otherwise, if this is a class method, try dispatching to our
// superclass.
IFace = CurMethod->getClassInterface()->getSuperClass();
}
if (IFace == 0) {
Diag(receiverNameLoc, diag::err_expected_ident_or_lparen);
return ExprError();
}
}
// Search for a declared property first.
Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Getter = ImpDecl->getClassMethod(Sel);
if (Getter) {
// FIXME: refactor/share with ActOnMemberReference().
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
return ExprError();
}
// Look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &propertyName);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Setter = ImpDecl->getClassMethod(SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryClassMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
if (Getter)
PType = Getter->getResultType();
else {
for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
E = Setter->param_end(); PI != E; ++PI)
PType = (*PI)->getType();
}
return Owned(new (Context) ObjCImplicitSetterGetterRefExpr(
Getter, PType, Setter,
propertyNameLoc, IFace, receiverNameLoc));
}
return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
<< &propertyName << Context.getObjCInterfaceType(IFace));
}
Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
IdentifierInfo *&Name,
SourceLocation NameLoc,
bool IsSuper,
bool HasTrailingDot) {
// If the identifier is "super" and there is no trailing dot, we're
// messaging super.
if (IsSuper && !HasTrailingDot && S->isInObjcMethodScope())
return ObjCSuperMessage;
LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
LookupName(Result, S);
switch (Result.getResultKind()) {
case LookupResult::NotFound:
// Normal name lookup didn't find anything. If we're in an
// Objective-C method, look for ivars. If we find one, we're done!
// FIXME: This is a hack. Ivar lookup should be part of normal lookup.
if (ObjCMethodDecl *Method = getCurMethodDecl()) {
ObjCInterfaceDecl *ClassDeclared;
if (Method->getClassInterface()->lookupInstanceVariable(Name,
ClassDeclared))
return ObjCInstanceMessage;
}
// Break out; we'll perform typo correction below.
break;
case LookupResult::NotFoundInCurrentInstantiation:
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
case LookupResult::Ambiguous:
Result.suppressDiagnostics();
return ObjCInstanceMessage;
case LookupResult::Found: {
// We found something. If it's a type, then we have a class
// message. Otherwise, it's an instance message.
NamedDecl *ND = Result.getFoundDecl();
if (isa<ObjCInterfaceDecl>(ND) || isa<TypeDecl>(ND) ||
isa<UnresolvedUsingTypenameDecl>(ND))
return ObjCClassMessage;
return ObjCInstanceMessage;
}
}
// Determine our typo-correction context.
CorrectTypoContext CTC = CTC_Expression;
if (ObjCMethodDecl *Method = getCurMethodDecl())
if (Method->getClassInterface() &&
Method->getClassInterface()->getSuperClass())
CTC = CTC_ObjCMessageReceiver;
if (DeclarationName Corrected = CorrectTypo(Result, S, 0, 0, false, CTC)) {
if (Result.isSingleResult()) {
// If we found a declaration, correct when it refers to an Objective-C
// class.
NamedDecl *ND = Result.getFoundDecl();
if (isa<ObjCInterfaceDecl>(ND)) {
Diag(NameLoc, diag::err_unknown_receiver_suggest)
<< Name << Result.getLookupName()
<< FixItHint::CreateReplacement(SourceRange(NameLoc),
ND->getNameAsString());
Diag(ND->getLocation(), diag::note_previous_decl)
<< Corrected;
Name = ND->getIdentifier();
return ObjCClassMessage;
}
} else if (Result.empty() && Corrected.getAsIdentifierInfo() &&
Corrected.getAsIdentifierInfo()->isStr("super")) {
// If we've found the keyword "super", this is a send to super.
Diag(NameLoc, diag::err_unknown_receiver_suggest)
<< Name << Corrected
<< FixItHint::CreateReplacement(SourceRange(NameLoc), "super");
Name = Corrected.getAsIdentifierInfo();
return ObjCSuperMessage;
}
}
// Fall back: let the parser try to parse it as an instance message.
return ObjCInstanceMessage;
}
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
Sema::ExprResult Sema::
ActOnClassMessage(Scope *S, IdentifierInfo *receiverName, Selector Sel,
SourceLocation lbrac, SourceLocation receiverLoc,
SourceLocation selectorLoc, SourceLocation rbrac,
ExprTy **Args, unsigned NumArgs) {
assert(receiverName && "missing receiver class name");
Expr **ArgExprs = reinterpret_cast<Expr **>(Args);
ObjCInterfaceDecl *ClassDecl = 0;
bool isSuper = false;
// Special case a message to super, which can be either a class message or an
// instance message, depending on what CurMethodDecl is.
if (receiverName->isStr("super")) {
if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) {
ObjCInterfaceDecl *OID = CurMethod->getClassInterface();
if (!OID)
return Diag(lbrac, diag::error_no_super_class_message)
<< CurMethod->getDeclName();
ClassDecl = OID->getSuperClass();
if (ClassDecl == 0)
return Diag(lbrac, diag::error_no_super_class) << OID->getDeclName();
if (CurMethod->isInstanceMethod()) {
QualType superTy = Context.getObjCInterfaceType(ClassDecl);
superTy = Context.getObjCObjectPointerType(superTy);
ExprResult ReceiverExpr = new (Context) ObjCSuperExpr(SourceLocation(),
superTy);
// We are really in an instance method, redirect.
return ActOnInstanceMessage(ReceiverExpr.get(), Sel, lbrac,
selectorLoc, rbrac, Args, NumArgs);
}
// Otherwise, if this is a class method, try dispatching to our
// superclass, which is in ClassDecl.
isSuper = true;
}
}
if (ClassDecl == 0)
ClassDecl = getObjCInterfaceDecl(receiverName, receiverLoc, true);
// The following code allows for the following GCC-ism:
//
// typedef XCElementDisplayRect XCElementGraphicsRect;
//
// @implementation XCRASlice
// - whatever { // Note that XCElementGraphicsRect is a typedef name.
// _sGraphicsDelegate =[[XCElementGraphicsRect alloc] init];
// }
//
// If necessary, the following lookup could move to getObjCInterfaceDecl().
if (!ClassDecl) {
NamedDecl *IDecl
= LookupSingleName(TUScope, receiverName, receiverLoc,
LookupOrdinaryName);
if (TypedefDecl *OCTD = dyn_cast_or_null<TypedefDecl>(IDecl))
if (const ObjCInterfaceType *OCIT
= OCTD->getUnderlyingType()->getAs<ObjCInterfaceType>())
ClassDecl = OCIT->getDecl();
if (!ClassDecl) {
// Give a better error message for invalid use of super.
if (receiverName->isStr("super"))
Diag(receiverLoc, diag::err_invalid_receiver_to_message_super);
else
Diag(receiverLoc, diag::err_invalid_receiver_to_message);
return true;
}
}
assert(ClassDecl && "missing interface declaration");
ObjCMethodDecl *Method = 0;
QualType returnType;
if (ClassDecl->isForwardDecl()) {
// A forward class used in messaging is tread as a 'Class'
Diag(lbrac, diag::warn_receiver_forward_class) << ClassDecl->getDeclName();
Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(lbrac,rbrac));
if (Method)
Diag(Method->getLocation(), diag::note_method_sent_forward_class)
<< Method->getDeclName();
}
if (!Method)
Method = ClassDecl->lookupClassMethod(Sel);
// If we have an implementation in scope, check "private" methods.
if (!Method)
Method = LookupPrivateClassMethod(Sel, ClassDecl);
if (Method && DiagnoseUseOfDecl(Method, receiverLoc))
return true;
if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, true,
lbrac, rbrac, returnType))
return true;
returnType = returnType.getNonReferenceType();
// FIXME: need to do a better job handling 'super' usage within a class. For
// now, we simply pass the "super" identifier through (which isn't consistent
// with instance methods.
if (isSuper)
return new (Context) ObjCMessageExpr(Context, receiverName, receiverLoc,
Sel, returnType, Method, lbrac, rbrac,
ArgExprs, NumArgs);
// If we have the ObjCInterfaceDecl* for the class that is receiving the
// message, use that to construct the ObjCMessageExpr. Otherwise pass on the
// IdentifierInfo* for the class.
return new (Context) ObjCMessageExpr(Context, ClassDecl, receiverLoc,
Sel, returnType, Method, lbrac, rbrac,
ArgExprs, NumArgs);
}
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
Sema::ExprResult Sema::ActOnInstanceMessage(ExprTy *receiver, Selector Sel,
SourceLocation lbrac,
SourceLocation receiverLoc,
SourceLocation rbrac,
ExprTy **Args, unsigned NumArgs) {
assert(receiver && "missing receiver expression");
Expr **ArgExprs = reinterpret_cast<Expr **>(Args);
Expr *RExpr = static_cast<Expr *>(receiver);
// If necessary, apply function/array conversion to the receiver.
// C99 6.7.5.3p[7,8].
DefaultFunctionArrayLvalueConversion(RExpr);
QualType returnType;
QualType ReceiverCType =
Context.getCanonicalType(RExpr->getType()).getUnqualifiedType();
// Handle messages to id.
if (ReceiverCType->isObjCIdType() || ReceiverCType->isBlockPointerType() ||
Context.isObjCNSObjectType(RExpr->getType())) {
ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(
Sel, SourceRange(lbrac,rbrac));
if (!Method)
Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(lbrac, rbrac));
if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false,
lbrac, rbrac, returnType))
return true;
returnType = returnType.getNonReferenceType();
return new (Context) ObjCMessageExpr(Context, RExpr, Sel, returnType,
Method, lbrac, rbrac,
ArgExprs, NumArgs);
}
// Handle messages to Class.
if (ReceiverCType->isObjCClassType() ||
ReceiverCType->isObjCQualifiedClassType()) {
ObjCMethodDecl *Method = 0;
if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
// First check the public methods in the class interface.
Method = ClassDecl->lookupClassMethod(Sel);
if (!Method)
Method = LookupPrivateClassMethod(Sel, ClassDecl);
// FIXME: if we still haven't found a method, we need to look in
// protocols (if we have qualifiers).
}
if (Method && DiagnoseUseOfDecl(Method, receiverLoc))
return true;
}
if (!Method) {
// If not messaging 'self', look for any factory method named 'Sel'.
if (!isSelfExpr(RExpr)) {
Method = LookupFactoryMethodInGlobalPool(Sel, SourceRange(lbrac,rbrac));
if (!Method) {
// If no class (factory) method was found, check if an _instance_
// method of the same name exists in the root class only.
Method = LookupInstanceMethodInGlobalPool(
Sel, SourceRange(lbrac,rbrac));
if (Method)
if (const ObjCInterfaceDecl *ID =
dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
if (ID->getSuperClass())
Diag(lbrac, diag::warn_root_inst_method_not_found)
<< Sel << SourceRange(lbrac, rbrac);
}
}
}
}
if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false,
lbrac, rbrac, returnType))
return true;
returnType = returnType.getNonReferenceType();
return new (Context) ObjCMessageExpr(Context, RExpr, Sel, returnType,
Method, lbrac, rbrac,
ArgExprs, NumArgs);
}
ObjCMethodDecl *Method = 0;
ObjCInterfaceDecl* ClassDecl = 0;
// We allow sending a message to a qualified ID ("id<foo>"), which is ok as
// long as one of the protocols implements the selector (if not, warn).
if (const ObjCObjectPointerType *QIdTy =
ReceiverCType->getAsObjCQualifiedIdType()) {
// Search protocols for instance methods.
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
ObjCProtocolDecl *PDecl = *I;
if (PDecl && (Method = PDecl->lookupInstanceMethod(Sel)))
break;
// Since we aren't supporting "Class<foo>", look for a class method.
if (PDecl && (Method = PDecl->lookupClassMethod(Sel)))
break;
}
} else if (const ObjCObjectPointerType *OCIType =
ReceiverCType->getAsObjCInterfacePointerType()) {
// We allow sending a message to a pointer to an interface (an object).
ClassDecl = OCIType->getInterfaceDecl();
// FIXME: consider using LookupInstanceMethodInGlobalPool, since it will be
// faster than the following method (which can do *many* linear searches).
// The idea is to add class info to InstanceMethodPool.
Method = ClassDecl->lookupInstanceMethod(Sel);
if (!Method) {
// Search protocol qualifiers.
for (ObjCObjectPointerType::qual_iterator QI = OCIType->qual_begin(),
E = OCIType->qual_end(); QI != E; ++QI) {
if ((Method = (*QI)->lookupInstanceMethod(Sel)))
break;
}
}
if (!Method) {
// If we have implementations in scope, check "private" methods.
Method = LookupPrivateInstanceMethod(Sel, ClassDecl);
if (!Method && !isSelfExpr(RExpr)) {
// If we still haven't found a method, look in the global pool. This
// behavior isn't very desirable, however we need it for GCC
// compatibility. FIXME: should we deviate??
if (OCIType->qual_empty()) {
Method = LookupInstanceMethodInGlobalPool(
Sel, SourceRange(lbrac,rbrac));
if (Method && !OCIType->getInterfaceDecl()->isForwardDecl())
Diag(lbrac, diag::warn_maynot_respond)
<< OCIType->getInterfaceDecl()->getIdentifier() << Sel;
}
}
}
if (Method && DiagnoseUseOfDecl(Method, receiverLoc))
return true;
} else if (!Context.getObjCIdType().isNull() &&
(ReceiverCType->isPointerType() ||
(ReceiverCType->isIntegerType() &&
ReceiverCType->isScalarType()))) {
// Implicitly convert integers and pointers to 'id' but emit a warning.
Diag(lbrac, diag::warn_bad_receiver_type)
<< RExpr->getType() << RExpr->getSourceRange();
if (ReceiverCType->isPointerType())
ImpCastExprToType(RExpr, Context.getObjCIdType(), CastExpr::CK_BitCast);
else
ImpCastExprToType(RExpr, Context.getObjCIdType(),
CastExpr::CK_IntegralToPointer);
} else {
// Reject other random receiver types (e.g. structs).
Diag(lbrac, diag::err_bad_receiver_type)
<< RExpr->getType() << RExpr->getSourceRange();
return true;
}
if (Method)
DiagnoseSentinelCalls(Method, receiverLoc, ArgExprs, NumArgs);
if (CheckMessageArgumentTypes(ArgExprs, NumArgs, Sel, Method, false,
lbrac, rbrac, returnType))
return true;
returnType = returnType.getNonReferenceType();
return new (Context) ObjCMessageExpr(Context, RExpr, Sel, returnType, Method,
lbrac, rbrac, ArgExprs, NumArgs);
}