blob: fd0399ae5359f659ad62fbf846c7088c3e083aa2 [file] [log] [blame]
//===-- GRExprEngine.h - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "ValueState.h"
#include "clang/Analysis/PathSensitive/GRCoreEngine.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
#include "GRSimpleVals.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ASTContext.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Basic/Diagnostic.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
#include <functional>
#ifndef NDEBUG
#include "llvm/Support/GraphWriter.h"
#include <sstream>
#endif
namespace clang {
class GRExprEngine {
public:
typedef ValueStateManager::StateTy StateTy;
typedef ExplodedGraph<GRExprEngine> GraphTy;
typedef GraphTy::NodeTy NodeTy;
// Builders.
typedef GRStmtNodeBuilder<GRExprEngine> StmtNodeBuilder;
typedef GRBranchNodeBuilder<GRExprEngine> BranchNodeBuilder;
typedef GRIndirectGotoNodeBuilder<GRExprEngine> IndirectGotoNodeBuilder;
typedef GRSwitchNodeBuilder<GRExprEngine> SwitchNodeBuilder;
class NodeSet {
typedef llvm::SmallVector<NodeTy*,3> ImplTy;
ImplTy Impl;
public:
NodeSet() {}
NodeSet(NodeTy* N) { assert (N && !N->isSink()); Impl.push_back(N); }
void Add(NodeTy* N) { if (N && !N->isSink()) Impl.push_back(N); }
typedef ImplTy::iterator iterator;
typedef ImplTy::const_iterator const_iterator;
unsigned size() const { return Impl.size(); }
bool empty() const { return Impl.empty(); }
iterator begin() { return Impl.begin(); }
iterator end() { return Impl.end(); }
const_iterator begin() const { return Impl.begin(); }
const_iterator end() const { return Impl.end(); }
};
protected:
/// G - the simulation graph.
GraphTy& G;
/// Liveness - live-variables information the ValueDecl* and block-level
/// Expr* in the CFG. Used to prune out dead state.
LiveVariables Liveness;
/// Builder - The current GRStmtNodeBuilder which is used when building the
/// nodes for a given statement.
StmtNodeBuilder* Builder;
/// StateMgr - Object that manages the data for all created states.
ValueStateManager StateMgr;
/// ValueMgr - Object that manages the data for all created RValues.
ValueManager& ValMgr;
/// TF - Object that represents a bundle of transfer functions
/// for manipulating and creating RValues.
GRTransferFuncs* TF;
/// SymMgr - Object that manages the symbol information.
SymbolManager& SymMgr;
/// StmtEntryNode - The immediate predecessor node.
NodeTy* StmtEntryNode;
/// CurrentStmt - The current block-level statement.
Stmt* CurrentStmt;
/// UninitBranches - Nodes in the ExplodedGraph that result from
/// taking a branch based on an uninitialized value.
typedef llvm::SmallPtrSet<NodeTy*,5> UninitBranchesTy;
UninitBranchesTy UninitBranches;
/// ImplicitNullDeref - Nodes in the ExplodedGraph that result from
/// taking a dereference on a symbolic pointer that may be NULL.
typedef llvm::SmallPtrSet<NodeTy*,5> NullDerefTy;
NullDerefTy ImplicitNullDeref;
NullDerefTy ExplicitNullDeref;
bool StateCleaned;
public:
GRExprEngine(GraphTy& g) :
G(g), Liveness(G.getCFG(), G.getFunctionDecl()),
Builder(NULL),
StateMgr(G.getContext(), G.getAllocator()),
ValMgr(StateMgr.getValueManager()),
TF(NULL), // FIXME.
SymMgr(StateMgr.getSymbolManager()),
StmtEntryNode(NULL), CurrentStmt(NULL) {
// Compute liveness information.
Liveness.runOnCFG(G.getCFG());
Liveness.runOnAllBlocks(G.getCFG(), NULL, true);
}
/// getContext - Return the ASTContext associated with this analysis.
ASTContext& getContext() const { return G.getContext(); }
/// getCFG - Returns the CFG associated with this analysis.
CFG& getCFG() { return G.getCFG(); }
/// setTransferFunctions
void setTransferFunctions(GRTransferFuncs* tf) { TF = tf; }
void setTransferFunctions(GRTransferFuncs& tf) { TF = &tf; }
/// getInitialState - Return the initial state used for the root vertex
/// in the ExplodedGraph.
StateTy getInitialState() {
StateTy St = StateMgr.getInitialState();
// Iterate the parameters.
FunctionDecl& F = G.getFunctionDecl();
for (FunctionDecl::param_iterator I=F.param_begin(), E=F.param_end();
I!=E; ++I)
St = SetValue(St, lval::DeclVal(*I), RValue::GetSymbolValue(SymMgr, *I));
return St;
}
bool isUninitControlFlow(const NodeTy* N) const {
return N->isSink() && UninitBranches.count(const_cast<NodeTy*>(N)) != 0;
}
bool isImplicitNullDeref(const NodeTy* N) const {
return N->isSink() && ImplicitNullDeref.count(const_cast<NodeTy*>(N)) != 0;
}
bool isExplicitNullDeref(const NodeTy* N) const {
return N->isSink() && ExplicitNullDeref.count(const_cast<NodeTy*>(N)) != 0;
}
typedef NullDerefTy::iterator null_iterator;
null_iterator null_begin() { return ExplicitNullDeref.begin(); }
null_iterator null_end() { return ExplicitNullDeref.end(); }
/// ProcessStmt - Called by GRCoreEngine. Used to generate new successor
/// nodes by processing the 'effects' of a block-level statement.
void ProcessStmt(Stmt* S, StmtNodeBuilder& builder);
/// ProcessBranch - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a branch condition.
void ProcessBranch(Expr* Condition, Stmt* Term, BranchNodeBuilder& builder);
/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void ProcessIndirectGoto(IndirectGotoNodeBuilder& builder);
/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void ProcessSwitch(SwitchNodeBuilder& builder);
/// RemoveDeadBindings - Return a new state that is the same as 'St' except
/// that all subexpression mappings are removed and that any
/// block-level expressions that are not live at 'S' also have their
/// mappings removed.
inline StateTy RemoveDeadBindings(Stmt* S, StateTy St) {
return StateMgr.RemoveDeadBindings(St, S, Liveness);
}
StateTy SetValue(StateTy St, Expr* S, const RValue& V);
StateTy SetValue(StateTy St, const Expr* S, const RValue& V) {
return SetValue(St, const_cast<Expr*>(S), V);
}
/// SetValue - This version of SetValue is used to batch process a set
/// of different possible RValues and return a set of different states.
const StateTy::BufferTy& SetValue(StateTy St, Expr* S,
const RValue::BufferTy& V,
StateTy::BufferTy& RetBuf);
StateTy SetValue(StateTy St, const LValue& LV, const RValue& V);
inline RValue GetValue(const StateTy& St, Expr* S) {
return StateMgr.GetValue(St, S);
}
inline RValue GetValue(const StateTy& St, Expr* S, bool& hasVal) {
return StateMgr.GetValue(St, S, &hasVal);
}
inline RValue GetValue(const StateTy& St, const Expr* S) {
return GetValue(St, const_cast<Expr*>(S));
}
inline RValue GetValue(const StateTy& St, const LValue& LV,
QualType* T = NULL) {
return StateMgr.GetValue(St, LV, T);
}
inline LValue GetLValue(const StateTy& St, Expr* S) {
return StateMgr.GetLValue(St, S);
}
inline NonLValue GetRValueConstant(uint64_t X, Expr* E) {
return NonLValue::GetValue(ValMgr, X, E->getType(), E->getLocStart());
}
/// Assume - Create new state by assuming that a given expression
/// is true or false.
inline StateTy Assume(StateTy St, RValue Cond, bool Assumption,
bool& isFeasible) {
if (isa<LValue>(Cond))
return Assume(St, cast<LValue>(Cond), Assumption, isFeasible);
else
return Assume(St, cast<NonLValue>(Cond), Assumption, isFeasible);
}
StateTy Assume(StateTy St, LValue Cond, bool Assumption, bool& isFeasible);
StateTy Assume(StateTy St, NonLValue Cond, bool Assumption, bool& isFeasible);
StateTy AssumeSymNE(StateTy St, SymbolID sym, const llvm::APSInt& V,
bool& isFeasible);
StateTy AssumeSymEQ(StateTy St, SymbolID sym, const llvm::APSInt& V,
bool& isFeasible);
StateTy AssumeSymInt(StateTy St, bool Assumption, const SymIntConstraint& C,
bool& isFeasible);
NodeTy* Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St);
/// Nodify - This version of Nodify is used to batch process a set of states.
/// The states are not guaranteed to be unique.
void Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, const StateTy::BufferTy& SB);
/// Visit - Transfer function logic for all statements. Dispatches to
/// other functions that handle specific kinds of statements.
void Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst);
/// VisitBinaryOperator - Transfer function logic for binary operators.
void VisitBinaryOperator(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
void VisitAssignmentLHS(Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitCast - Transfer function logic for all casts (implicit and explicit).
void VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclRefExpr - Transfer function logic for DeclRefExprs.
void VisitDeclRefExpr(DeclRefExpr* DR, NodeTy* Pred, NodeSet& Dst);
/// VisitDeclStmt - Transfer function logic for DeclStmts.
void VisitDeclStmt(DeclStmt* DS, NodeTy* Pred, NodeSet& Dst);
/// VisitGuardedExpr - Transfer function logic for ?, __builtin_choose
void VisitGuardedExpr(Expr* S, Expr* LHS, Expr* RHS,
NodeTy* Pred, NodeSet& Dst);
/// VisitLogicalExpr - Transfer function logic for '&&', '||'
void VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred, NodeSet& Dst);
/// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type).
void VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* S, NodeTy* Pred,
NodeSet& Dst);
/// VisitUnaryOperator - Transfer function logic for unary operators.
void VisitUnaryOperator(UnaryOperator* B, NodeTy* Pred, NodeSet& Dst);
inline RValue EvalCast(ValueManager& ValMgr, RValue R, Expr* CastExpr) {
return TF->EvalCast(ValMgr, R, CastExpr);
}
inline NonLValue EvalMinus(ValueManager& ValMgr, UnaryOperator* U,
NonLValue X) {
return TF->EvalMinus(ValMgr, U, X);
}
inline NonLValue EvalComplement(ValueManager& ValMgr, NonLValue X) {
return TF->EvalComplement(ValMgr, X);
}
inline NonLValue EvalBinaryOp(ValueManager& ValMgr, BinaryOperator::Opcode Op,
NonLValue LHS, NonLValue RHS) {
return TF->EvalBinaryOp(ValMgr, Op, LHS, RHS);
}
inline RValue EvalBinaryOp(ValueManager& ValMgr, BinaryOperator::Opcode Op,
LValue LHS, LValue RHS) {
return TF->EvalBinaryOp(ValMgr, Op, LHS, RHS);
}
};
} // end clang namespace