blob: d57329b69ecd87b5437294a729ce6970ae3a8cfd [file] [log] [blame]
//===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective-C expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
#include "clang/Edit/Rewriters.h"
#include "clang/Edit/Commit.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "llvm/ADT/SmallString.h"
#include "clang/Lex/Preprocessor.h"
using namespace clang;
using namespace sema;
using llvm::makeArrayRef;
ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs,
Expr **strings,
unsigned NumStrings) {
StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings);
// Most ObjC strings are formed out of a single piece. However, we *can*
// have strings formed out of multiple @ strings with multiple pptokens in
// each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one
// StringLiteral for ObjCStringLiteral to hold onto.
StringLiteral *S = Strings[0];
// If we have a multi-part string, merge it all together.
if (NumStrings != 1) {
// Concatenate objc strings.
SmallString<128> StrBuf;
SmallVector<SourceLocation, 8> StrLocs;
for (unsigned i = 0; i != NumStrings; ++i) {
S = Strings[i];
// ObjC strings can't be wide or UTF.
if (!S->isAscii()) {
Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant)
<< S->getSourceRange();
return true;
}
// Append the string.
StrBuf += S->getString();
// Get the locations of the string tokens.
StrLocs.append(S->tokloc_begin(), S->tokloc_end());
}
// Create the aggregate string with the appropriate content and location
// information.
S = StringLiteral::Create(Context, StrBuf,
StringLiteral::Ascii, /*Pascal=*/false,
Context.getPointerType(Context.CharTy),
&StrLocs[0], StrLocs.size());
}
return BuildObjCStringLiteral(AtLocs[0], S);
}
ExprResult Sema::BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S){
// Verify that this composite string is acceptable for ObjC strings.
if (CheckObjCString(S))
return true;
// Initialize the constant string interface lazily. This assumes
// the NSString interface is seen in this translation unit. Note: We
// don't use NSConstantString, since the runtime team considers this
// interface private (even though it appears in the header files).
QualType Ty = Context.getObjCConstantStringInterface();
if (!Ty.isNull()) {
Ty = Context.getObjCObjectPointerType(Ty);
} else if (getLangOpts().NoConstantCFStrings) {
IdentifierInfo *NSIdent=0;
std::string StringClass(getLangOpts().ObjCConstantStringClass);
if (StringClass.empty())
NSIdent = &Context.Idents.get("NSConstantString");
else
NSIdent = &Context.Idents.get(StringClass);
NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
LookupOrdinaryName);
if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
Context.setObjCConstantStringInterface(StrIF);
Ty = Context.getObjCConstantStringInterface();
Ty = Context.getObjCObjectPointerType(Ty);
} else {
// If there is no NSConstantString interface defined then treat this
// as error and recover from it.
Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent
<< S->getSourceRange();
Ty = Context.getObjCIdType();
}
} else {
IdentifierInfo *NSIdent = NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLoc,
LookupOrdinaryName);
if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) {
Context.setObjCConstantStringInterface(StrIF);
Ty = Context.getObjCConstantStringInterface();
Ty = Context.getObjCObjectPointerType(Ty);
} else {
// If there is no NSString interface defined, implicitly declare
// a @class NSString; and use that instead. This is to make sure
// type of an NSString literal is represented correctly, instead of
// being an 'id' type.
Ty = Context.getObjCNSStringType();
if (Ty.isNull()) {
ObjCInterfaceDecl *NSStringIDecl =
ObjCInterfaceDecl::Create (Context,
Context.getTranslationUnitDecl(),
SourceLocation(), NSIdent,
0, SourceLocation());
Ty = Context.getObjCInterfaceType(NSStringIDecl);
Context.setObjCNSStringType(Ty);
}
Ty = Context.getObjCObjectPointerType(Ty);
}
}
return new (Context) ObjCStringLiteral(S, Ty, AtLoc);
}
/// \brief Emits an error if the given method does not exist, or if the return
/// type is not an Objective-C object.
static bool validateBoxingMethod(Sema &S, SourceLocation Loc,
const ObjCInterfaceDecl *Class,
Selector Sel, const ObjCMethodDecl *Method) {
if (!Method) {
// FIXME: Is there a better way to avoid quotes than using getName()?
S.Diag(Loc, diag::err_undeclared_boxing_method) << Sel << Class->getName();
return false;
}
// Make sure the return type is reasonable.
QualType ReturnType = Method->getResultType();
if (!ReturnType->isObjCObjectPointerType()) {
S.Diag(Loc, diag::err_objc_literal_method_sig)
<< Sel;
S.Diag(Method->getLocation(), diag::note_objc_literal_method_return)
<< ReturnType;
return false;
}
return true;
}
/// \brief Retrieve the NSNumber factory method that should be used to create
/// an Objective-C literal for the given type.
static ObjCMethodDecl *getNSNumberFactoryMethod(Sema &S, SourceLocation Loc,
QualType NumberType,
bool isLiteral = false,
SourceRange R = SourceRange()) {
llvm::Optional<NSAPI::NSNumberLiteralMethodKind> Kind
= S.NSAPIObj->getNSNumberFactoryMethodKind(NumberType);
if (!Kind) {
if (isLiteral) {
S.Diag(Loc, diag::err_invalid_nsnumber_type)
<< NumberType << R;
}
return 0;
}
// If we already looked up this method, we're done.
if (S.NSNumberLiteralMethods[*Kind])
return S.NSNumberLiteralMethods[*Kind];
Selector Sel = S.NSAPIObj->getNSNumberLiteralSelector(*Kind,
/*Instance=*/false);
ASTContext &CX = S.Context;
// Look up the NSNumber class, if we haven't done so already. It's cached
// in the Sema instance.
if (!S.NSNumberDecl) {
IdentifierInfo *NSNumberId =
S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSNumber);
NamedDecl *IF = S.LookupSingleName(S.TUScope, NSNumberId,
Loc, Sema::LookupOrdinaryName);
S.NSNumberDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
if (!S.NSNumberDecl) {
if (S.getLangOpts().DebuggerObjCLiteral) {
// Create a stub definition of NSNumber.
S.NSNumberDecl = ObjCInterfaceDecl::Create(CX,
CX.getTranslationUnitDecl(),
SourceLocation(), NSNumberId,
0, SourceLocation());
} else {
// Otherwise, require a declaration of NSNumber.
S.Diag(Loc, diag::err_undeclared_nsnumber);
return 0;
}
} else if (!S.NSNumberDecl->hasDefinition()) {
S.Diag(Loc, diag::err_undeclared_nsnumber);
return 0;
}
// generate the pointer to NSNumber type.
QualType NSNumberObject = CX.getObjCInterfaceType(S.NSNumberDecl);
S.NSNumberPointer = CX.getObjCObjectPointerType(NSNumberObject);
}
// Look for the appropriate method within NSNumber.
ObjCMethodDecl *Method = S.NSNumberDecl->lookupClassMethod(Sel);
if (!Method && S.getLangOpts().DebuggerObjCLiteral) {
// create a stub definition this NSNumber factory method.
TypeSourceInfo *ResultTInfo = 0;
Method = ObjCMethodDecl::Create(CX, SourceLocation(), SourceLocation(), Sel,
S.NSNumberPointer, ResultTInfo,
S.NSNumberDecl,
/*isInstance=*/false, /*isVariadic=*/false,
/*isSynthesized=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false,
ObjCMethodDecl::Required,
/*HasRelatedResultType=*/false);
ParmVarDecl *value = ParmVarDecl::Create(S.Context, Method,
SourceLocation(), SourceLocation(),
&CX.Idents.get("value"),
NumberType, /*TInfo=*/0, SC_None,
SC_None, 0);
Method->setMethodParams(S.Context, value, ArrayRef<SourceLocation>());
}
if (!validateBoxingMethod(S, Loc, S.NSNumberDecl, Sel, Method))
return 0;
// Note: if the parameter type is out-of-line, we'll catch it later in the
// implicit conversion.
S.NSNumberLiteralMethods[*Kind] = Method;
return Method;
}
/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
/// numeric literal expression. Type of the expression will be "NSNumber *".
ExprResult Sema::BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number) {
// Determine the type of the literal.
QualType NumberType = Number->getType();
if (CharacterLiteral *Char = dyn_cast<CharacterLiteral>(Number)) {
// In C, character literals have type 'int'. That's not the type we want
// to use to determine the Objective-c literal kind.
switch (Char->getKind()) {
case CharacterLiteral::Ascii:
NumberType = Context.CharTy;
break;
case CharacterLiteral::Wide:
NumberType = Context.getWCharType();
break;
case CharacterLiteral::UTF16:
NumberType = Context.Char16Ty;
break;
case CharacterLiteral::UTF32:
NumberType = Context.Char32Ty;
break;
}
}
// Look for the appropriate method within NSNumber.
// Construct the literal.
SourceRange NR(Number->getSourceRange());
ObjCMethodDecl *Method = getNSNumberFactoryMethod(*this, AtLoc, NumberType,
true, NR);
if (!Method)
return ExprError();
// Convert the number to the type that the parameter expects.
ParmVarDecl *ParamDecl = Method->param_begin()[0];
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
ParamDecl);
ExprResult ConvertedNumber = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(Number));
if (ConvertedNumber.isInvalid())
return ExprError();
Number = ConvertedNumber.get();
// Use the effective source range of the literal, including the leading '@'.
return MaybeBindToTemporary(
new (Context) ObjCBoxedExpr(Number, NSNumberPointer, Method,
SourceRange(AtLoc, NR.getEnd())));
}
ExprResult Sema::ActOnObjCBoolLiteral(SourceLocation AtLoc,
SourceLocation ValueLoc,
bool Value) {
ExprResult Inner;
if (getLangOpts().CPlusPlus) {
Inner = ActOnCXXBoolLiteral(ValueLoc, Value? tok::kw_true : tok::kw_false);
} else {
// C doesn't actually have a way to represent literal values of type
// _Bool. So, we'll use 0/1 and implicit cast to _Bool.
Inner = ActOnIntegerConstant(ValueLoc, Value? 1 : 0);
Inner = ImpCastExprToType(Inner.get(), Context.BoolTy,
CK_IntegralToBoolean);
}
return BuildObjCNumericLiteral(AtLoc, Inner.get());
}
/// \brief Check that the given expression is a valid element of an Objective-C
/// collection literal.
static ExprResult CheckObjCCollectionLiteralElement(Sema &S, Expr *Element,
QualType T) {
// If the expression is type-dependent, there's nothing for us to do.
if (Element->isTypeDependent())
return Element;
ExprResult Result = S.CheckPlaceholderExpr(Element);
if (Result.isInvalid())
return ExprError();
Element = Result.get();
// In C++, check for an implicit conversion to an Objective-C object pointer
// type.
if (S.getLangOpts().CPlusPlus && Element->getType()->isRecordType()) {
InitializedEntity Entity
= InitializedEntity::InitializeParameter(S.Context, T,
/*Consumed=*/false);
InitializationKind Kind
= InitializationKind::CreateCopy(Element->getLocStart(),
SourceLocation());
InitializationSequence Seq(S, Entity, Kind, &Element, 1);
if (!Seq.Failed())
return Seq.Perform(S, Entity, Kind, MultiExprArg(S, &Element, 1));
}
Expr *OrigElement = Element;
// Perform lvalue-to-rvalue conversion.
Result = S.DefaultLvalueConversion(Element);
if (Result.isInvalid())
return ExprError();
Element = Result.get();
// Make sure that we have an Objective-C pointer type or block.
if (!Element->getType()->isObjCObjectPointerType() &&
!Element->getType()->isBlockPointerType()) {
bool Recovered = false;
// If this is potentially an Objective-C numeric literal, add the '@'.
if (isa<IntegerLiteral>(OrigElement) ||
isa<CharacterLiteral>(OrigElement) ||
isa<FloatingLiteral>(OrigElement) ||
isa<ObjCBoolLiteralExpr>(OrigElement) ||
isa<CXXBoolLiteralExpr>(OrigElement)) {
if (S.NSAPIObj->getNSNumberFactoryMethodKind(OrigElement->getType())) {
int Which = isa<CharacterLiteral>(OrigElement) ? 1
: (isa<CXXBoolLiteralExpr>(OrigElement) ||
isa<ObjCBoolLiteralExpr>(OrigElement)) ? 2
: 3;
S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
<< Which << OrigElement->getSourceRange()
<< FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
Result = S.BuildObjCNumericLiteral(OrigElement->getLocStart(),
OrigElement);
if (Result.isInvalid())
return ExprError();
Element = Result.get();
Recovered = true;
}
}
// If this is potentially an Objective-C string literal, add the '@'.
else if (StringLiteral *String = dyn_cast<StringLiteral>(OrigElement)) {
if (String->isAscii()) {
S.Diag(OrigElement->getLocStart(), diag::err_box_literal_collection)
<< 0 << OrigElement->getSourceRange()
<< FixItHint::CreateInsertion(OrigElement->getLocStart(), "@");
Result = S.BuildObjCStringLiteral(OrigElement->getLocStart(), String);
if (Result.isInvalid())
return ExprError();
Element = Result.get();
Recovered = true;
}
}
if (!Recovered) {
S.Diag(Element->getLocStart(), diag::err_invalid_collection_element)
<< Element->getType();
return ExprError();
}
}
// Make sure that the element has the type that the container factory
// function expects.
return S.PerformCopyInitialization(
InitializedEntity::InitializeParameter(S.Context, T,
/*Consumed=*/false),
Element->getLocStart(), Element);
}
ExprResult Sema::BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) {
if (ValueExpr->isTypeDependent()) {
ObjCBoxedExpr *BoxedExpr =
new (Context) ObjCBoxedExpr(ValueExpr, Context.DependentTy, NULL, SR);
return Owned(BoxedExpr);
}
ObjCMethodDecl *BoxingMethod = NULL;
QualType BoxedType;
// Convert the expression to an RValue, so we can check for pointer types...
ExprResult RValue = DefaultFunctionArrayLvalueConversion(ValueExpr);
if (RValue.isInvalid()) {
return ExprError();
}
ValueExpr = RValue.get();
QualType ValueType(ValueExpr->getType());
if (const PointerType *PT = ValueType->getAs<PointerType>()) {
QualType PointeeType = PT->getPointeeType();
if (Context.hasSameUnqualifiedType(PointeeType, Context.CharTy)) {
if (!NSStringDecl) {
IdentifierInfo *NSStringId =
NSAPIObj->getNSClassId(NSAPI::ClassId_NSString);
NamedDecl *Decl = LookupSingleName(TUScope, NSStringId,
SR.getBegin(), LookupOrdinaryName);
NSStringDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Decl);
if (!NSStringDecl) {
if (getLangOpts().DebuggerObjCLiteral) {
// Support boxed expressions in the debugger w/o NSString declaration.
DeclContext *TU = Context.getTranslationUnitDecl();
NSStringDecl = ObjCInterfaceDecl::Create(Context, TU,
SourceLocation(),
NSStringId,
0, SourceLocation());
} else {
Diag(SR.getBegin(), diag::err_undeclared_nsstring);
return ExprError();
}
} else if (!NSStringDecl->hasDefinition()) {
Diag(SR.getBegin(), diag::err_undeclared_nsstring);
return ExprError();
}
assert(NSStringDecl && "NSStringDecl should not be NULL");
QualType NSStringObject = Context.getObjCInterfaceType(NSStringDecl);
NSStringPointer = Context.getObjCObjectPointerType(NSStringObject);
}
if (!StringWithUTF8StringMethod) {
IdentifierInfo *II = &Context.Idents.get("stringWithUTF8String");
Selector stringWithUTF8String = Context.Selectors.getUnarySelector(II);
// Look for the appropriate method within NSString.
BoxingMethod = NSStringDecl->lookupClassMethod(stringWithUTF8String);
if (!BoxingMethod && getLangOpts().DebuggerObjCLiteral) {
// Debugger needs to work even if NSString hasn't been defined.
TypeSourceInfo *ResultTInfo = 0;
ObjCMethodDecl *M =
ObjCMethodDecl::Create(Context, SourceLocation(), SourceLocation(),
stringWithUTF8String, NSStringPointer,
ResultTInfo, NSStringDecl,
/*isInstance=*/false, /*isVariadic=*/false,
/*isSynthesized=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false,
ObjCMethodDecl::Required,
/*HasRelatedResultType=*/false);
QualType ConstCharType = Context.CharTy.withConst();
ParmVarDecl *value =
ParmVarDecl::Create(Context, M,
SourceLocation(), SourceLocation(),
&Context.Idents.get("value"),
Context.getPointerType(ConstCharType),
/*TInfo=*/0,
SC_None, SC_None, 0);
M->setMethodParams(Context, value, ArrayRef<SourceLocation>());
BoxingMethod = M;
}
if (!validateBoxingMethod(*this, SR.getBegin(), NSStringDecl,
stringWithUTF8String, BoxingMethod))
return ExprError();
StringWithUTF8StringMethod = BoxingMethod;
}
BoxingMethod = StringWithUTF8StringMethod;
BoxedType = NSStringPointer;
}
} else if (ValueType->isBuiltinType()) {
// The other types we support are numeric, char and BOOL/bool. We could also
// provide limited support for structure types, such as NSRange, NSRect, and
// NSSize. See NSValue (NSValueGeometryExtensions) in <Foundation/NSGeometry.h>
// for more details.
// Check for a top-level character literal.
if (const CharacterLiteral *Char =
dyn_cast<CharacterLiteral>(ValueExpr->IgnoreParens())) {
// In C, character literals have type 'int'. That's not the type we want
// to use to determine the Objective-c literal kind.
switch (Char->getKind()) {
case CharacterLiteral::Ascii:
ValueType = Context.CharTy;
break;
case CharacterLiteral::Wide:
ValueType = Context.getWCharType();
break;
case CharacterLiteral::UTF16:
ValueType = Context.Char16Ty;
break;
case CharacterLiteral::UTF32:
ValueType = Context.Char32Ty;
break;
}
}
// FIXME: Do I need to do anything special with BoolTy expressions?
// Look for the appropriate method within NSNumber.
BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(), ValueType);
BoxedType = NSNumberPointer;
} else if (const EnumType *ET = ValueType->getAs<EnumType>()) {
if (!ET->getDecl()->isComplete()) {
Diag(SR.getBegin(), diag::err_objc_incomplete_boxed_expression_type)
<< ValueType << ValueExpr->getSourceRange();
return ExprError();
}
BoxingMethod = getNSNumberFactoryMethod(*this, SR.getBegin(),
ET->getDecl()->getIntegerType());
BoxedType = NSNumberPointer;
}
if (!BoxingMethod) {
Diag(SR.getBegin(), diag::err_objc_illegal_boxed_expression_type)
<< ValueType << ValueExpr->getSourceRange();
return ExprError();
}
// Convert the expression to the type that the parameter requires.
ParmVarDecl *ParamDecl = BoxingMethod->param_begin()[0];
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
ParamDecl);
ExprResult ConvertedValueExpr = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(ValueExpr));
if (ConvertedValueExpr.isInvalid())
return ExprError();
ValueExpr = ConvertedValueExpr.get();
ObjCBoxedExpr *BoxedExpr =
new (Context) ObjCBoxedExpr(ValueExpr, BoxedType,
BoxingMethod, SR);
return MaybeBindToTemporary(BoxedExpr);
}
ExprResult Sema::BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
Expr *IndexExpr,
ObjCMethodDecl *getterMethod,
ObjCMethodDecl *setterMethod) {
// Subscripting is only supported in the non-fragile ABI.
if (LangOpts.ObjCRuntime.isFragile())
return ExprError();
// If the expression is type-dependent, there's nothing for us to do.
assert ((!BaseExpr->isTypeDependent() && !IndexExpr->isTypeDependent()) &&
"base or index cannot have dependent type here");
ExprResult Result = CheckPlaceholderExpr(IndexExpr);
if (Result.isInvalid())
return ExprError();
IndexExpr = Result.get();
// Perform lvalue-to-rvalue conversion.
Result = DefaultLvalueConversion(BaseExpr);
if (Result.isInvalid())
return ExprError();
BaseExpr = Result.get();
return Owned(ObjCSubscriptRefExpr::Create(Context,
BaseExpr,
IndexExpr,
Context.PseudoObjectTy,
getterMethod,
setterMethod, RB));
}
ExprResult Sema::BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements) {
// Look up the NSArray class, if we haven't done so already.
if (!NSArrayDecl) {
NamedDecl *IF = LookupSingleName(TUScope,
NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
SR.getBegin(),
LookupOrdinaryName);
NSArrayDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
if (!NSArrayDecl && getLangOpts().DebuggerObjCLiteral)
NSArrayDecl = ObjCInterfaceDecl::Create (Context,
Context.getTranslationUnitDecl(),
SourceLocation(),
NSAPIObj->getNSClassId(NSAPI::ClassId_NSArray),
0, SourceLocation());
if (!NSArrayDecl) {
Diag(SR.getBegin(), diag::err_undeclared_nsarray);
return ExprError();
}
}
// Find the arrayWithObjects:count: method, if we haven't done so already.
QualType IdT = Context.getObjCIdType();
if (!ArrayWithObjectsMethod) {
Selector
Sel = NSAPIObj->getNSArraySelector(NSAPI::NSArr_arrayWithObjectsCount);
ObjCMethodDecl *Method = NSArrayDecl->lookupClassMethod(Sel);
if (!Method && getLangOpts().DebuggerObjCLiteral) {
TypeSourceInfo *ResultTInfo = 0;
Method = ObjCMethodDecl::Create(Context,
SourceLocation(), SourceLocation(), Sel,
IdT,
ResultTInfo,
Context.getTranslationUnitDecl(),
false /*Instance*/, false/*isVariadic*/,
/*isSynthesized=*/false,
/*isImplicitlyDeclared=*/true, /*isDefined=*/false,
ObjCMethodDecl::Required,
false);
SmallVector<ParmVarDecl *, 2> Params;
ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
SourceLocation(),
SourceLocation(),
&Context.Idents.get("objects"),
Context.getPointerType(IdT),
/*TInfo=*/0, SC_None, SC_None,
0);
Params.push_back(objects);
ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
SourceLocation(),
SourceLocation(),
&Context.Idents.get("cnt"),
Context.UnsignedLongTy,
/*TInfo=*/0, SC_None, SC_None,
0);
Params.push_back(cnt);
Method->setMethodParams(Context, Params, ArrayRef<SourceLocation>());
}
if (!validateBoxingMethod(*this, SR.getBegin(), NSArrayDecl, Sel, Method))
return ExprError();
// Dig out the type that all elements should be converted to.
QualType T = Method->param_begin()[0]->getType();
const PointerType *PtrT = T->getAs<PointerType>();
if (!PtrT ||
!Context.hasSameUnqualifiedType(PtrT->getPointeeType(), IdT)) {
Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
<< Sel;
Diag(Method->param_begin()[0]->getLocation(),
diag::note_objc_literal_method_param)
<< 0 << T
<< Context.getPointerType(IdT.withConst());
return ExprError();
}
// Check that the 'count' parameter is integral.
if (!Method->param_begin()[1]->getType()->isIntegerType()) {
Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
<< Sel;
Diag(Method->param_begin()[1]->getLocation(),
diag::note_objc_literal_method_param)
<< 1
<< Method->param_begin()[1]->getType()
<< "integral";
return ExprError();
}
// We've found a good +arrayWithObjects:count: method. Save it!
ArrayWithObjectsMethod = Method;
}
QualType ObjectsType = ArrayWithObjectsMethod->param_begin()[0]->getType();
QualType RequiredType = ObjectsType->castAs<PointerType>()->getPointeeType();
// Check that each of the elements provided is valid in a collection literal,
// performing conversions as necessary.
Expr **ElementsBuffer = Elements.get();
for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
ExprResult Converted = CheckObjCCollectionLiteralElement(*this,
ElementsBuffer[I],
RequiredType);
if (Converted.isInvalid())
return ExprError();
ElementsBuffer[I] = Converted.get();
}
QualType Ty
= Context.getObjCObjectPointerType(
Context.getObjCInterfaceType(NSArrayDecl));
return MaybeBindToTemporary(
ObjCArrayLiteral::Create(Context,
llvm::makeArrayRef(Elements.get(),
Elements.size()),
Ty, ArrayWithObjectsMethod, SR));
}
ExprResult Sema::BuildObjCDictionaryLiteral(SourceRange SR,
ObjCDictionaryElement *Elements,
unsigned NumElements) {
// Look up the NSDictionary class, if we haven't done so already.
if (!NSDictionaryDecl) {
NamedDecl *IF = LookupSingleName(TUScope,
NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
SR.getBegin(), LookupOrdinaryName);
NSDictionaryDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
if (!NSDictionaryDecl && getLangOpts().DebuggerObjCLiteral)
NSDictionaryDecl = ObjCInterfaceDecl::Create (Context,
Context.getTranslationUnitDecl(),
SourceLocation(),
NSAPIObj->getNSClassId(NSAPI::ClassId_NSDictionary),
0, SourceLocation());
if (!NSDictionaryDecl) {
Diag(SR.getBegin(), diag::err_undeclared_nsdictionary);
return ExprError();
}
}
// Find the dictionaryWithObjects:forKeys:count: method, if we haven't done
// so already.
QualType IdT = Context.getObjCIdType();
if (!DictionaryWithObjectsMethod) {
Selector Sel = NSAPIObj->getNSDictionarySelector(
NSAPI::NSDict_dictionaryWithObjectsForKeysCount);
ObjCMethodDecl *Method = NSDictionaryDecl->lookupClassMethod(Sel);
if (!Method && getLangOpts().DebuggerObjCLiteral) {
Method = ObjCMethodDecl::Create(Context,
SourceLocation(), SourceLocation(), Sel,
IdT,
0 /*TypeSourceInfo */,
Context.getTranslationUnitDecl(),
false /*Instance*/, false/*isVariadic*/,
/*isSynthesized=*/false,
/*isImplicitlyDeclared=*/true, /*isDefined=*/false,
ObjCMethodDecl::Required,
false);
SmallVector<ParmVarDecl *, 3> Params;
ParmVarDecl *objects = ParmVarDecl::Create(Context, Method,
SourceLocation(),
SourceLocation(),
&Context.Idents.get("objects"),
Context.getPointerType(IdT),
/*TInfo=*/0, SC_None, SC_None,
0);
Params.push_back(objects);
ParmVarDecl *keys = ParmVarDecl::Create(Context, Method,
SourceLocation(),
SourceLocation(),
&Context.Idents.get("keys"),
Context.getPointerType(IdT),
/*TInfo=*/0, SC_None, SC_None,
0);
Params.push_back(keys);
ParmVarDecl *cnt = ParmVarDecl::Create(Context, Method,
SourceLocation(),
SourceLocation(),
&Context.Idents.get("cnt"),
Context.UnsignedLongTy,
/*TInfo=*/0, SC_None, SC_None,
0);
Params.push_back(cnt);
Method->setMethodParams(Context, Params, ArrayRef<SourceLocation>());
}
if (!validateBoxingMethod(*this, SR.getBegin(), NSDictionaryDecl, Sel,
Method))
return ExprError();
// Dig out the type that all values should be converted to.
QualType ValueT = Method->param_begin()[0]->getType();
const PointerType *PtrValue = ValueT->getAs<PointerType>();
if (!PtrValue ||
!Context.hasSameUnqualifiedType(PtrValue->getPointeeType(), IdT)) {
Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
<< Sel;
Diag(Method->param_begin()[0]->getLocation(),
diag::note_objc_literal_method_param)
<< 0 << ValueT
<< Context.getPointerType(IdT.withConst());
return ExprError();
}
// Dig out the type that all keys should be converted to.
QualType KeyT = Method->param_begin()[1]->getType();
const PointerType *PtrKey = KeyT->getAs<PointerType>();
if (!PtrKey ||
!Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
IdT)) {
bool err = true;
if (PtrKey) {
if (QIDNSCopying.isNull()) {
// key argument of selector is id<NSCopying>?
if (ObjCProtocolDecl *NSCopyingPDecl =
LookupProtocol(&Context.Idents.get("NSCopying"), SR.getBegin())) {
ObjCProtocolDecl *PQ[] = {NSCopyingPDecl};
QIDNSCopying =
Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
(ObjCProtocolDecl**) PQ,1);
QIDNSCopying = Context.getObjCObjectPointerType(QIDNSCopying);
}
}
if (!QIDNSCopying.isNull())
err = !Context.hasSameUnqualifiedType(PtrKey->getPointeeType(),
QIDNSCopying);
}
if (err) {
Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
<< Sel;
Diag(Method->param_begin()[1]->getLocation(),
diag::note_objc_literal_method_param)
<< 1 << KeyT
<< Context.getPointerType(IdT.withConst());
return ExprError();
}
}
// Check that the 'count' parameter is integral.
QualType CountType = Method->param_begin()[2]->getType();
if (!CountType->isIntegerType()) {
Diag(SR.getBegin(), diag::err_objc_literal_method_sig)
<< Sel;
Diag(Method->param_begin()[2]->getLocation(),
diag::note_objc_literal_method_param)
<< 2 << CountType
<< "integral";
return ExprError();
}
// We've found a good +dictionaryWithObjects:keys:count: method; save it!
DictionaryWithObjectsMethod = Method;
}
QualType ValuesT = DictionaryWithObjectsMethod->param_begin()[0]->getType();
QualType ValueT = ValuesT->castAs<PointerType>()->getPointeeType();
QualType KeysT = DictionaryWithObjectsMethod->param_begin()[1]->getType();
QualType KeyT = KeysT->castAs<PointerType>()->getPointeeType();
// Check that each of the keys and values provided is valid in a collection
// literal, performing conversions as necessary.
bool HasPackExpansions = false;
for (unsigned I = 0, N = NumElements; I != N; ++I) {
// Check the key.
ExprResult Key = CheckObjCCollectionLiteralElement(*this, Elements[I].Key,
KeyT);
if (Key.isInvalid())
return ExprError();
// Check the value.
ExprResult Value
= CheckObjCCollectionLiteralElement(*this, Elements[I].Value, ValueT);
if (Value.isInvalid())
return ExprError();
Elements[I].Key = Key.get();
Elements[I].Value = Value.get();
if (Elements[I].EllipsisLoc.isInvalid())
continue;
if (!Elements[I].Key->containsUnexpandedParameterPack() &&
!Elements[I].Value->containsUnexpandedParameterPack()) {
Diag(Elements[I].EllipsisLoc,
diag::err_pack_expansion_without_parameter_packs)
<< SourceRange(Elements[I].Key->getLocStart(),
Elements[I].Value->getLocEnd());
return ExprError();
}
HasPackExpansions = true;
}
QualType Ty
= Context.getObjCObjectPointerType(
Context.getObjCInterfaceType(NSDictionaryDecl));
return MaybeBindToTemporary(
ObjCDictionaryLiteral::Create(Context,
llvm::makeArrayRef(Elements,
NumElements),
HasPackExpansions,
Ty,
DictionaryWithObjectsMethod, SR));
}
ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc,
TypeSourceInfo *EncodedTypeInfo,
SourceLocation RParenLoc) {
QualType EncodedType = EncodedTypeInfo->getType();
QualType StrTy;
if (EncodedType->isDependentType())
StrTy = Context.DependentTy;
else {
if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled.
!EncodedType->isVoidType()) // void is handled too.
if (RequireCompleteType(AtLoc, EncodedType,
diag::err_incomplete_type_objc_at_encode,
EncodedTypeInfo->getTypeLoc()))
return ExprError();
std::string Str;
Context.getObjCEncodingForType(EncodedType, Str);
// The type of @encode is the same as the type of the corresponding string,
// which is an array type.
StrTy = Context.CharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
StrTy.addConst();
StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1),
ArrayType::Normal, 0);
}
return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc);
}
ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
ParsedType ty,
SourceLocation RParenLoc) {
// FIXME: Preserve type source info ?
TypeSourceInfo *TInfo;
QualType EncodedType = GetTypeFromParser(ty, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(EncodedType,
PP.getLocForEndOfToken(LParenLoc));
return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc);
}
ExprResult Sema::ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LParenLoc, RParenLoc), false, false);
if (!Method)
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LParenLoc, RParenLoc));
if (!Method)
Diag(SelLoc, diag::warn_undeclared_selector) << Sel;
if (!Method ||
Method->getImplementationControl() != ObjCMethodDecl::Optional) {
llvm::DenseMap<Selector, SourceLocation>::iterator Pos
= ReferencedSelectors.find(Sel);
if (Pos == ReferencedSelectors.end())
ReferencedSelectors.insert(std::make_pair(Sel, SelLoc));
}
// In ARC, forbid the user from using @selector for
// retain/release/autorelease/dealloc/retainCount.
if (getLangOpts().ObjCAutoRefCount) {
switch (Sel.getMethodFamily()) {
case OMF_retain:
case OMF_release:
case OMF_autorelease:
case OMF_retainCount:
case OMF_dealloc:
Diag(AtLoc, diag::err_arc_illegal_selector) <<
Sel << SourceRange(LParenLoc, RParenLoc);
break;
case OMF_None:
case OMF_alloc:
case OMF_copy:
case OMF_finalize:
case OMF_init:
case OMF_mutableCopy:
case OMF_new:
case OMF_self:
case OMF_performSelector:
break;
}
}
QualType Ty = Context.getObjCSelType();
return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc);
}
ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation ProtoIdLoc,
SourceLocation RParenLoc) {
ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoIdLoc);
if (!PDecl) {
Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId;
return true;
}
QualType Ty = Context.getObjCProtoType();
if (Ty.isNull())
return true;
Ty = Context.getObjCObjectPointerType(Ty);
return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, ProtoIdLoc, RParenLoc);
}
/// Try to capture an implicit reference to 'self'.
ObjCMethodDecl *Sema::tryCaptureObjCSelf(SourceLocation Loc) {
DeclContext *DC = getFunctionLevelDeclContext();
// If we're not in an ObjC method, error out. Note that, unlike the
// C++ case, we don't require an instance method --- class methods
// still have a 'self', and we really do still need to capture it!
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC);
if (!method)
return 0;
tryCaptureVariable(method->getSelfDecl(), Loc);
return method;
}
static QualType stripObjCInstanceType(ASTContext &Context, QualType T) {
if (T == Context.getObjCInstanceType())
return Context.getObjCIdType();
return T;
}
QualType Sema::getMessageSendResultType(QualType ReceiverType,
ObjCMethodDecl *Method,
bool isClassMessage, bool isSuperMessage) {
assert(Method && "Must have a method");
if (!Method->hasRelatedResultType())
return Method->getSendResultType();
// If a method has a related return type:
// - if the method found is an instance method, but the message send
// was a class message send, T is the declared return type of the method
// found
if (Method->isInstanceMethod() && isClassMessage)
return stripObjCInstanceType(Context, Method->getSendResultType());
// - if the receiver is super, T is a pointer to the class of the
// enclosing method definition
if (isSuperMessage) {
if (ObjCMethodDecl *CurMethod = getCurMethodDecl())
if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface())
return Context.getObjCObjectPointerType(
Context.getObjCInterfaceType(Class));
}
// - if the receiver is the name of a class U, T is a pointer to U
if (ReceiverType->getAs<ObjCInterfaceType>() ||
ReceiverType->isObjCQualifiedInterfaceType())
return Context.getObjCObjectPointerType(ReceiverType);
// - if the receiver is of type Class or qualified Class type,
// T is the declared return type of the method.
if (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType())
return stripObjCInstanceType(Context, Method->getSendResultType());
// - if the receiver is id, qualified id, Class, or qualified Class, T
// is the receiver type, otherwise
// - T is the type of the receiver expression.
return ReceiverType;
}
void Sema::EmitRelatedResultTypeNote(const Expr *E) {
E = E->IgnoreParenImpCasts();
const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E);
if (!MsgSend)
return;
const ObjCMethodDecl *Method = MsgSend->getMethodDecl();
if (!Method)
return;
if (!Method->hasRelatedResultType())
return;
if (Context.hasSameUnqualifiedType(Method->getResultType()
.getNonReferenceType(),
MsgSend->getType()))
return;
if (!Context.hasSameUnqualifiedType(Method->getResultType(),
Context.getObjCInstanceType()))
return;
Diag(Method->getLocation(), diag::note_related_result_type_inferred)
<< Method->isInstanceMethod() << Method->getSelector()
<< MsgSend->getType();
}
bool Sema::CheckMessageArgumentTypes(QualType ReceiverType,
Expr **Args, unsigned NumArgs,
Selector Sel, ObjCMethodDecl *Method,
bool isClassMessage, bool isSuperMessage,
SourceLocation lbrac, SourceLocation rbrac,
QualType &ReturnType, ExprValueKind &VK) {
if (!Method) {
// Apply default argument promotion as for (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
if (Args[i]->isTypeDependent())
continue;
ExprResult Result = DefaultArgumentPromotion(Args[i]);
if (Result.isInvalid())
return true;
Args[i] = Result.take();
}
unsigned DiagID;
if (getLangOpts().ObjCAutoRefCount)
DiagID = diag::err_arc_method_not_found;
else
DiagID = isClassMessage ? diag::warn_class_method_not_found
: diag::warn_inst_method_not_found;
if (!getLangOpts().DebuggerSupport)
Diag(lbrac, DiagID)
<< Sel << isClassMessage << SourceRange(lbrac, rbrac);
// In debuggers, we want to use __unknown_anytype for these
// results so that clients can cast them.
if (getLangOpts().DebuggerSupport) {
ReturnType = Context.UnknownAnyTy;
} else {
ReturnType = Context.getObjCIdType();
}
VK = VK_RValue;
return false;
}
ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage,
isSuperMessage);
VK = Expr::getValueKindForType(Method->getResultType());
unsigned NumNamedArgs = Sel.getNumArgs();
// Method might have more arguments than selector indicates. This is due
// to addition of c-style arguments in method.
if (Method->param_size() > Sel.getNumArgs())
NumNamedArgs = Method->param_size();
// FIXME. This need be cleaned up.
if (NumArgs < NumNamedArgs) {
Diag(lbrac, diag::err_typecheck_call_too_few_args)
<< 2 << NumNamedArgs << NumArgs;
return false;
}
bool IsError = false;
for (unsigned i = 0; i < NumNamedArgs; i++) {
// We can't do any type-checking on a type-dependent argument.
if (Args[i]->isTypeDependent())
continue;
Expr *argExpr = Args[i];
ParmVarDecl *param = Method->param_begin()[i];
assert(argExpr && "CheckMessageArgumentTypes(): missing expression");
// Strip the unbridged-cast placeholder expression off unless it's
// a consumed argument.
if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
!param->hasAttr<CFConsumedAttr>())
argExpr = stripARCUnbridgedCast(argExpr);
if (RequireCompleteType(argExpr->getSourceRange().getBegin(),
param->getType(),
diag::err_call_incomplete_argument, argExpr))
return true;
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
param);
ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr));
if (ArgE.isInvalid())
IsError = true;
else
Args[i] = ArgE.takeAs<Expr>();
}
// Promote additional arguments to variadic methods.
if (Method->isVariadic()) {
for (unsigned i = NumNamedArgs; i < NumArgs; ++i) {
if (Args[i]->isTypeDependent())
continue;
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
0);
IsError |= Arg.isInvalid();
Args[i] = Arg.take();
}
} else {
// Check for extra arguments to non-variadic methods.
if (NumArgs != NumNamedArgs) {
Diag(Args[NumNamedArgs]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< 2 /*method*/ << NumNamedArgs << NumArgs
<< Method->getSourceRange()
<< SourceRange(Args[NumNamedArgs]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
}
}
DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs);
// Do additional checkings on method.
IsError |= CheckObjCMethodCall(Method, lbrac, Args, NumArgs);
return IsError;
}
bool Sema::isSelfExpr(Expr *receiver) {
// 'self' is objc 'self' in an objc method only.
ObjCMethodDecl *method =
dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor());
if (!method) return false;
receiver = receiver->IgnoreParenLValueCasts();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver))
if (DRE->getDecl() == method->getSelfDecl())
return true;
return false;
}
/// LookupMethodInType - Look up a method in an ObjCObjectType.
ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type,
bool isInstance) {
const ObjCObjectType *objType = type->castAs<ObjCObjectType>();
if (ObjCInterfaceDecl *iface = objType->getInterface()) {
// Look it up in the main interface (and categories, etc.)
if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance))
return method;
// Okay, look for "private" methods declared in any
// @implementations we've seen.
if (ObjCMethodDecl *method = iface->lookupPrivateMethod(sel, isInstance))
return method;
}
// Check qualifiers.
for (ObjCObjectType::qual_iterator
i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i)
if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance))
return method;
return 0;
}
/// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier
/// list of a qualified objective pointer type.
ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel,
const ObjCObjectPointerType *OPT,
bool Instance)
{
ObjCMethodDecl *MD = 0;
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I) {
ObjCProtocolDecl *PROTO = (*I);
if ((MD = PROTO->lookupMethod(Sel, Instance))) {
return MD;
}
}
return 0;
}
static void DiagnoseARCUseOfWeakReceiver(Sema &S, Expr *Receiver) {
if (!Receiver)
return;
if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Receiver))
Receiver = OVE->getSourceExpr();
Expr *RExpr = Receiver->IgnoreParenImpCasts();
SourceLocation Loc = RExpr->getLocStart();
QualType T = RExpr->getType();
ObjCPropertyDecl *PDecl = 0;
ObjCMethodDecl *GDecl = 0;
if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(RExpr)) {
RExpr = POE->getSyntacticForm();
if (ObjCPropertyRefExpr *PRE = dyn_cast<ObjCPropertyRefExpr>(RExpr)) {
if (PRE->isImplicitProperty()) {
GDecl = PRE->getImplicitPropertyGetter();
if (GDecl) {
T = GDecl->getResultType();
}
}
else {
PDecl = PRE->getExplicitProperty();
if (PDecl) {
T = PDecl->getType();
}
}
}
}
else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(RExpr)) {
// See if receiver is a method which envokes a synthesized getter
// backing a 'weak' property.
ObjCMethodDecl *Method = ME->getMethodDecl();
if (Method && Method->isSynthesized()) {
Selector Sel = Method->getSelector();
if (Sel.getNumArgs() == 0) {
const DeclContext *Container = Method->getDeclContext();
PDecl =
S.LookupPropertyDecl(cast<ObjCContainerDecl>(Container),
Sel.getIdentifierInfoForSlot(0));
}
if (PDecl)
T = PDecl->getType();
}
}
if (T.getObjCLifetime() == Qualifiers::OCL_Weak) {
S.Diag(Loc, diag::warn_receiver_is_weak)
<< ((!PDecl && !GDecl) ? 0 : (PDecl ? 1 : 2));
if (PDecl)
S.Diag(PDecl->getLocation(), diag::note_property_declare);
else if (GDecl)
S.Diag(GDecl->getLocation(), diag::note_method_declared_at) << GDecl;
return;
}
if (PDecl &&
(PDecl->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)) {
S.Diag(Loc, diag::warn_receiver_is_weak) << 1;
S.Diag(PDecl->getLocation(), diag::note_property_declare);
}
}
/// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an
/// objective C interface. This is a property reference expression.
ExprResult Sema::
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
Expr *BaseExpr, SourceLocation OpLoc,
DeclarationName MemberName,
SourceLocation MemberLoc,
SourceLocation SuperLoc, QualType SuperType,
bool Super) {
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
if (!MemberName.isIdentifier()) {
Diag(MemberLoc, diag::err_invalid_property_name)
<< MemberName << QualType(OPT, 0);
return ExprError();
}
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
SourceRange BaseRange = Super? SourceRange(SuperLoc)
: BaseExpr->getSourceRange();
if (RequireCompleteType(MemberLoc, OPT->getPointeeType(),
diag::err_property_not_found_forward_class,
MemberName, BaseRange))
return ExprError();
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
VK_LValue, OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy,
VK_LValue, OK_ObjCProperty,
MemberLoc, BaseExpr));
}
// Check protocols on qualified interfaces.
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(PD,
Context.PseudoObjectTy,
VK_LValue,
OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(PD,
Context.PseudoObjectTy,
VK_LValue,
OK_ObjCProperty,
MemberLoc,
BaseExpr));
}
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// May be founf in property's qualified list.
if (!Getter)
Getter = LookupMethodInQualifiedType(Sel, OPT, true);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
Getter = IFace->lookupPrivateMethod(Sel);
if (Getter) {
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), Member);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
// May be founf in property's qualified list.
if (!Setter)
Setter = LookupMethodInQualifiedType(SetterSel, OPT, true);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = IFace->lookupPrivateMethod(SetterSel);
}
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
if (Super)
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
Context.PseudoObjectTy,
VK_LValue, OK_ObjCProperty,
MemberLoc,
SuperLoc, SuperType));
else
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
Context.PseudoObjectTy,
VK_LValue, OK_ObjCProperty,
MemberLoc, BaseExpr));
}
// Attempt to correct for typos in property names.
DeclFilterCCC<ObjCPropertyDecl> Validator;
if (TypoCorrection Corrected = CorrectTypo(
DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL,
NULL, Validator, IFace, false, OPT)) {
ObjCPropertyDecl *Property =
Corrected.getCorrectionDeclAs<ObjCPropertyDecl>();
DeclarationName TypoResult = Corrected.getCorrection();
Diag(MemberLoc, diag::err_property_not_found_suggest)
<< MemberName << QualType(OPT, 0) << TypoResult
<< FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString());
Diag(Property->getLocation(), diag::note_previous_decl)
<< Property->getDeclName();
return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc,
TypoResult, MemberLoc,
SuperLoc, SuperType, Super);
}
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *Ivar =
IFace->lookupInstanceVariable(Member, ClassDeclared)) {
QualType T = Ivar->getType();
if (const ObjCObjectPointerType * OBJPT =
T->getAsObjCInterfacePointerType()) {
if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(),
diag::err_property_not_as_forward_class,
MemberName, BaseExpr))
return ExprError();
}
Diag(MemberLoc,
diag::err_ivar_access_using_property_syntax_suggest)
<< MemberName << QualType(OPT, 0) << Ivar->getDeclName()
<< FixItHint::CreateReplacement(OpLoc, "->");
return ExprError();
}
Diag(MemberLoc, diag::err_property_not_found)
<< MemberName << QualType(OPT, 0);
if (Setter)
Diag(Setter->getLocation(), diag::note_getter_unavailable)
<< MemberName << BaseExpr->getSourceRange();
return ExprError();
}
ExprResult Sema::
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc) {
IdentifierInfo *receiverNamePtr = &receiverName;
ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr,
receiverNameLoc);
bool IsSuper = false;
if (IFace == 0) {
// If the "receiver" is 'super' in a method, handle it as an expression-like
// property reference.
if (receiverNamePtr->isStr("super")) {
IsSuper = true;
if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf(receiverNameLoc)) {
if (CurMethod->isInstanceMethod()) {
QualType T =
Context.getObjCInterfaceType(CurMethod->getClassInterface());
T = Context.getObjCObjectPointerType(T);
return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(),
/*BaseExpr*/0,
SourceLocation()/*OpLoc*/,
&propertyName,
propertyNameLoc,
receiverNameLoc, T, true);
}
// Otherwise, if this is a class method, try dispatching to our
// superclass.
IFace = CurMethod->getClassInterface()->getSuperClass();
}
}
if (IFace == 0) {
Diag(receiverNameLoc, diag::err_expected_ident_or_lparen);
return ExprError();
}
}
// Search for a declared property first.
Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName);
ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Getter = ImpDecl->getClassMethod(Sel);
if (Getter) {
// FIXME: refactor/share with ActOnMemberReference().
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, propertyNameLoc))
return ExprError();
}
// Look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &propertyName);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation())
Setter = ImpDecl->getClassMethod(SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryClassMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc))
return ExprError();
if (Getter || Setter) {
if (IsSuper)
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
Context.PseudoObjectTy,
VK_LValue, OK_ObjCProperty,
propertyNameLoc,
receiverNameLoc,
Context.getObjCInterfaceType(IFace)));
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
Context.PseudoObjectTy,
VK_LValue, OK_ObjCProperty,
propertyNameLoc,
receiverNameLoc, IFace));
}
return ExprError(Diag(propertyNameLoc, diag::err_property_not_found)
<< &propertyName << Context.getObjCInterfaceType(IFace));
}
namespace {
class ObjCInterfaceOrSuperCCC : public CorrectionCandidateCallback {
public:
ObjCInterfaceOrSuperCCC(ObjCMethodDecl *Method) {
// Determine whether "super" is acceptable in the current context.
if (Method && Method->getClassInterface())
WantObjCSuper = Method->getClassInterface()->getSuperClass();
}
virtual bool ValidateCandidate(const TypoCorrection &candidate) {
return candidate.getCorrectionDeclAs<ObjCInterfaceDecl>() ||
candidate.isKeyword("super");
}
};
}
Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S,
IdentifierInfo *Name,
SourceLocation NameLoc,
bool IsSuper,
bool HasTrailingDot,
ParsedType &ReceiverType) {
ReceiverType = ParsedType();
// If the identifier is "super" and there is no trailing dot, we're
// messaging super. If the identifier is "super" and there is a
// trailing dot, it's an instance message.
if (IsSuper && S->isInObjcMethodScope())
return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage;
LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
LookupName(Result, S);
switch (Result.getResultKind()) {
case LookupResult::NotFound:
// Normal name lookup didn't find anything. If we're in an
// Objective-C method, look for ivars. If we find one, we're done!
// FIXME: This is a hack. Ivar lookup should be part of normal
// lookup.
if (ObjCMethodDecl *Method = getCurMethodDecl()) {
if (!Method->getClassInterface()) {
// Fall back: let the parser try to parse it as an instance message.
return ObjCInstanceMessage;
}
ObjCInterfaceDecl *ClassDeclared;
if (Method->getClassInterface()->lookupInstanceVariable(Name,
ClassDeclared))
return ObjCInstanceMessage;
}
// Break out; we'll perform typo correction below.
break;
case LookupResult::NotFoundInCurrentInstantiation:
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
case LookupResult::Ambiguous:
Result.suppressDiagnostics();
return ObjCInstanceMessage;
case LookupResult::Found: {
// If the identifier is a class or not, and there is a trailing dot,
// it's an instance message.
if (HasTrailingDot)
return ObjCInstanceMessage;
// We found something. If it's a type, then we have a class
// message. Otherwise, it's an instance message.
NamedDecl *ND = Result.getFoundDecl();
QualType T;
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND))
T = Context.getObjCInterfaceType(Class);
else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND))
T = Context.getTypeDeclType(Type);
else
return ObjCInstanceMessage;
// We have a class message, and T is the type we're
// messaging. Build source-location information for it.
TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
ReceiverType = CreateParsedType(T, TSInfo);
return ObjCClassMessage;
}
}
ObjCInterfaceOrSuperCCC Validator(getCurMethodDecl());
if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
Result.getLookupKind(), S, NULL,
Validator)) {
if (Corrected.isKeyword()) {
// If we've found the keyword "super" (the only keyword that would be
// returned by CorrectTypo), this is a send to super.
Diag(NameLoc, diag::err_unknown_receiver_suggest)
<< Name << Corrected.getCorrection()
<< FixItHint::CreateReplacement(SourceRange(NameLoc), "super");
return ObjCSuperMessage;
} else if (ObjCInterfaceDecl *Class =
Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
// If we found a declaration, correct when it refers to an Objective-C
// class.
Diag(NameLoc, diag::err_unknown_receiver_suggest)
<< Name << Corrected.getCorrection()
<< FixItHint::CreateReplacement(SourceRange(NameLoc),
Class->getNameAsString());
Diag(Class->getLocation(), diag::note_previous_decl)
<< Corrected.getCorrection();
QualType T = Context.getObjCInterfaceType(Class);
TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc);
ReceiverType = CreateParsedType(T, TSInfo);
return ObjCClassMessage;
}
}
// Fall back: let the parser try to parse it as an instance message.
return ObjCInstanceMessage;
}
ExprResult Sema::ActOnSuperMessage(Scope *S,
SourceLocation SuperLoc,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args) {
// Determine whether we are inside a method or not.
ObjCMethodDecl *Method = tryCaptureObjCSelf(SuperLoc);
if (!Method) {
Diag(SuperLoc, diag::err_invalid_receiver_to_message_super);
return ExprError();
}
ObjCInterfaceDecl *Class = Method->getClassInterface();
if (!Class) {
Diag(SuperLoc, diag::error_no_super_class_message)
<< Method->getDeclName();
return ExprError();
}
ObjCInterfaceDecl *Super = Class->getSuperClass();
if (!Super) {
// The current class does not have a superclass.
Diag(SuperLoc, diag::error_root_class_cannot_use_super)
<< Class->getIdentifier();
return ExprError();
}
// We are in a method whose class has a superclass, so 'super'
// is acting as a keyword.
if (Method->isInstanceMethod()) {
if (Sel.getMethodFamily() == OMF_dealloc)
ObjCShouldCallSuperDealloc = false;
if (Sel.getMethodFamily() == OMF_finalize)
ObjCShouldCallSuperFinalize = false;
// Since we are in an instance method, this is an instance
// message to the superclass instance.
QualType SuperTy = Context.getObjCInterfaceType(Super);
SuperTy = Context.getObjCObjectPointerType(SuperTy);
return BuildInstanceMessage(0, SuperTy, SuperLoc,
Sel, /*Method=*/0,
LBracLoc, SelectorLocs, RBracLoc, move(Args));
}
// Since we are in a class method, this is a class message to
// the superclass.
return BuildClassMessage(/*ReceiverTypeInfo=*/0,
Context.getObjCInterfaceType(Super),
SuperLoc, Sel, /*Method=*/0,
LBracLoc, SelectorLocs, RBracLoc, move(Args));
}
ExprResult Sema::BuildClassMessageImplicit(QualType ReceiverType,
bool isSuperReceiver,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args) {
TypeSourceInfo *receiverTypeInfo = 0;
if (!ReceiverType.isNull())
receiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType);
return BuildClassMessage(receiverTypeInfo, ReceiverType,
/*SuperLoc=*/isSuperReceiver ? Loc : SourceLocation(),
Sel, Method, Loc, Loc, Loc, Args,
/*isImplicit=*/true);
}
static void applyCocoaAPICheck(Sema &S, const ObjCMessageExpr *Msg,
unsigned DiagID,
bool (*refactor)(const ObjCMessageExpr *,
const NSAPI &, edit::Commit &)) {
SourceLocation MsgLoc = Msg->getExprLoc();
if (S.Diags.getDiagnosticLevel(DiagID, MsgLoc) == DiagnosticsEngine::Ignored)
return;
SourceManager &SM = S.SourceMgr;
edit::Commit ECommit(SM, S.LangOpts);
if (refactor(Msg,*S.NSAPIObj, ECommit)) {
DiagnosticBuilder Builder = S.Diag(MsgLoc, DiagID)
<< Msg->getSelector() << Msg->getSourceRange();
// FIXME: Don't emit diagnostic at all if fixits are non-commitable.
if (!ECommit.isCommitable())
return;
for (edit::Commit::edit_iterator
I = ECommit.edit_begin(), E = ECommit.edit_end(); I != E; ++I) {
const edit::Commit::Edit &Edit = *I;
switch (Edit.Kind) {
case edit::Commit::Act_Insert:
Builder.AddFixItHint(FixItHint::CreateInsertion(Edit.OrigLoc,
Edit.Text,
Edit.BeforePrev));
break;
case edit::Commit::Act_InsertFromRange:
Builder.AddFixItHint(
FixItHint::CreateInsertionFromRange(Edit.OrigLoc,
Edit.getInsertFromRange(SM),
Edit.BeforePrev));
break;
case edit::Commit::Act_Remove:
Builder.AddFixItHint(FixItHint::CreateRemoval(Edit.getFileRange(SM)));
break;
}
}
}
}
static void checkCocoaAPI(Sema &S, const ObjCMessageExpr *Msg) {
applyCocoaAPICheck(S, Msg, diag::warn_objc_redundant_literal_use,
edit::rewriteObjCRedundantCallWithLiteral);
}
/// \brief Build an Objective-C class message expression.
///
/// This routine takes care of both normal class messages and
/// class messages to the superclass.
///
/// \param ReceiverTypeInfo Type source information that describes the
/// receiver of this message. This may be NULL, in which case we are
/// sending to the superclass and \p SuperLoc must be a valid source
/// location.
/// \param ReceiverType The type of the object receiving the
/// message. When \p ReceiverTypeInfo is non-NULL, this is the same
/// type as that refers to. For a superclass send, this is the type of
/// the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this class message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBracLoc The location of the closing square bracket ']'.
///
/// \param ArgsIn The message arguments.
ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg ArgsIn,
bool isImplicit) {
SourceLocation Loc = SuperLoc.isValid()? SuperLoc
: ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin();
if (LBracLoc.isInvalid()) {
Diag(Loc, diag::err_missing_open_square_message_send)
<< FixItHint::CreateInsertion(Loc, "[");
LBracLoc = Loc;
}
if (ReceiverType->isDependentType()) {
// If the receiver type is dependent, we can't type-check anything
// at this point. Build a dependent expression.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
assert(SuperLoc.isInvalid() && "Message to super with dependent type");
return Owned(ObjCMessageExpr::Create(Context, ReceiverType,
VK_RValue, LBracLoc, ReceiverTypeInfo,
Sel, SelectorLocs, /*Method=*/0,
makeArrayRef(Args, NumArgs),RBracLoc,
isImplicit));
}
// Find the class to which we are sending this message.
ObjCInterfaceDecl *Class = 0;
const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>();
if (!ClassType || !(Class = ClassType->getInterface())) {
Diag(Loc, diag::err_invalid_receiver_class_message)
<< ReceiverType;
return ExprError();
}
assert(Class && "We don't know which class we're messaging?");
// objc++ diagnoses during typename annotation.
if (!getLangOpts().CPlusPlus)
(void)DiagnoseUseOfDecl(Class, Loc);
// Find the method we are messaging.
if (!Method) {
SourceRange TypeRange
= SuperLoc.isValid()? SourceRange(SuperLoc)
: ReceiverTypeInfo->getTypeLoc().getSourceRange();
if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class),
(getLangOpts().ObjCAutoRefCount
? diag::err_arc_receiver_forward_class
: diag::warn_receiver_forward_class),
TypeRange)) {
// A forward class used in messaging is treated as a 'Class'
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc));
if (Method && !getLangOpts().ObjCAutoRefCount)
Diag(Method->getLocation(), diag::note_method_sent_forward_class)
<< Method->getDeclName();
}
if (!Method)
Method = Class->lookupClassMethod(Sel);
// If we have an implementation in scope, check "private" methods.
if (!Method)
Method = Class->lookupPrivateClassMethod(Sel);
if (Method && DiagnoseUseOfDecl(Method, Loc))
return ExprError();
}
// Check the argument types and determine the result type.
QualType ReturnType;
ExprValueKind VK = VK_RValue;
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true,
SuperLoc.isValid(), LBracLoc, RBracLoc,
ReturnType, VK))
return ExprError();
if (Method && !Method->getResultType()->isVoidType() &&
RequireCompleteType(LBracLoc, Method->getResultType(),
diag::err_illegal_message_expr_incomplete_type))
return ExprError();
// Construct the appropriate ObjCMessageExpr.
ObjCMessageExpr *Result;
if (SuperLoc.isValid())
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
SuperLoc, /*IsInstanceSuper=*/false,
ReceiverType, Sel, SelectorLocs,
Method, makeArrayRef(Args, NumArgs),
RBracLoc, isImplicit);
else {
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
ReceiverTypeInfo, Sel, SelectorLocs,
Method, makeArrayRef(Args, NumArgs),
RBracLoc, isImplicit);
if (!isImplicit)
checkCocoaAPI(*this, Result);
}
return MaybeBindToTemporary(Result);
}
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
ExprResult Sema::ActOnClassMessage(Scope *S,
ParsedType Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args) {
TypeSourceInfo *ReceiverTypeInfo;
QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo);
if (ReceiverType.isNull())
return ExprError();
if (!ReceiverTypeInfo)
ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc);
return BuildClassMessage(ReceiverTypeInfo, ReceiverType,
/*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
LBracLoc, SelectorLocs, RBracLoc, move(Args));
}
ExprResult Sema::BuildInstanceMessageImplicit(Expr *Receiver,
QualType ReceiverType,
SourceLocation Loc,
Selector Sel,
ObjCMethodDecl *Method,
MultiExprArg Args) {
return BuildInstanceMessage(Receiver, ReceiverType,
/*SuperLoc=*/!Receiver ? Loc : SourceLocation(),
Sel, Method, Loc, Loc, Loc, Args,
/*isImplicit=*/true);
}
/// \brief Build an Objective-C instance message expression.
///
/// This routine takes care of both normal instance messages and
/// instance messages to the superclass instance.
///
/// \param Receiver The expression that computes the object that will
/// receive this message. This may be empty, in which case we are
/// sending to the superclass instance and \p SuperLoc must be a valid
/// source location.
///
/// \param ReceiverType The (static) type of the object receiving the
/// message. When a \p Receiver expression is provided, this is the
/// same type as that expression. For a superclass instance send, this
/// is a pointer to the type of the superclass.
///
/// \param SuperLoc The location of the "super" keyword in a
/// superclass instance message.
///
/// \param Sel The selector to which the message is being sent.
///
/// \param Method The method that this instance message is invoking, if
/// already known.
///
/// \param LBracLoc The location of the opening square bracket ']'.
///
/// \param RBracLoc The location of the closing square bracket ']'.
///
/// \param ArgsIn The message arguments.
ExprResult Sema::BuildInstanceMessage(Expr *Receiver,
QualType ReceiverType,
SourceLocation SuperLoc,
Selector Sel,
ObjCMethodDecl *Method,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg ArgsIn,
bool isImplicit) {
// The location of the receiver.
SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart();
if (LBracLoc.isInvalid()) {
Diag(Loc, diag::err_missing_open_square_message_send)
<< FixItHint::CreateInsertion(Loc, "[");
LBracLoc = Loc;
}
// If we have a receiver expression, perform appropriate promotions
// and determine receiver type.
if (Receiver) {
if (Receiver->hasPlaceholderType()) {
ExprResult Result;
if (Receiver->getType() == Context.UnknownAnyTy)
Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType());
else
Result = CheckPlaceholderExpr(Receiver);
if (Result.isInvalid()) return ExprError();
Receiver = Result.take();
}
if (Receiver->isTypeDependent()) {
// If the receiver is type-dependent, we can't type-check anything
// at this point. Build a dependent expression.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
assert(SuperLoc.isInvalid() && "Message to super with dependent type");
return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy,
VK_RValue, LBracLoc, Receiver, Sel,
SelectorLocs, /*Method=*/0,
makeArrayRef(Args, NumArgs),
RBracLoc, isImplicit));
}
// If necessary, apply function/array conversion to the receiver.
// C99 6.7.5.3p[7,8].
ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver);
if (Result.isInvalid())
return ExprError();
Receiver = Result.take();
ReceiverType = Receiver->getType();
}
if (!Method) {
// Handle messages to id.
bool receiverIsId = ReceiverType->isObjCIdType();
if (receiverIsId || ReceiverType->isBlockPointerType() ||
(Receiver && Context.isObjCNSObjectType(Receiver->getType()))) {
Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
receiverIsId);
if (!Method)
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc,RBracLoc),
receiverIsId);
} else if (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType()) {
// Handle messages to Class.
// We allow sending a message to a qualified Class ("Class<foo>"), which
// is ok as long as one of the protocols implements the selector (if not, warn).
if (const ObjCObjectPointerType *QClassTy
= ReceiverType->getAsObjCQualifiedClassType()) {
// Search protocols for class methods.
Method = LookupMethodInQualifiedType(Sel, QClassTy, false);
if (!Method) {
Method = LookupMethodInQualifiedType(Sel, QClassTy, true);
// warn if instance method found for a Class message.
if (Method) {
Diag(Loc, diag::warn_instance_method_on_class_found)
<< Method->getSelector() << Sel;
Diag(Method->getLocation(), diag::note_method_declared_at)
<< Method->getDeclName();
}
}
} else {
if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) {
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) {
// First check the public methods in the class interface.
Method = ClassDecl->lookupClassMethod(Sel);
if (!Method)
Method = ClassDecl->lookupPrivateClassMethod(Sel);
}
if (Method && DiagnoseUseOfDecl(Method, Loc))
return ExprError();
}
if (!Method) {
// If not messaging 'self', look for any factory method named 'Sel'.
if (!Receiver || !isSelfExpr(Receiver)) {
Method = LookupFactoryMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
true);
if (!Method) {
// If no class (factory) method was found, check if an _instance_
// method of the same name exists in the root class only.
Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc),
true);
if (Method)
if (const ObjCInterfaceDecl *ID =
dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) {
if (ID->getSuperClass())
Diag(Loc, diag::warn_root_inst_method_not_found)
<< Sel << SourceRange(LBracLoc, RBracLoc);
}
}
}
}
}
} else {
ObjCInterfaceDecl* ClassDecl = 0;
// We allow sending a message to a qualified ID ("id<foo>"), which is ok as
// long as one of the protocols implements the selector (if not, warn).
// And as long as message is not deprecated/unavailable (warn if it is).
if (const ObjCObjectPointerType *QIdTy
= ReceiverType->getAsObjCQualifiedIdType()) {
// Search protocols for instance methods.
Method = LookupMethodInQualifiedType(Sel, QIdTy, true);
if (!Method)
Method = LookupMethodInQualifiedType(Sel, QIdTy, false);
if (Method && DiagnoseUseOfDecl(Method, Loc))
return ExprError();
} else if (const ObjCObjectPointerType *OCIType
= ReceiverType->getAsObjCInterfacePointerType()) {
// We allow sending a message to a pointer to an interface (an object).
ClassDecl = OCIType->getInterfaceDecl();
// Try to complete the type. Under ARC, this is a hard error from which
// we don't try to recover.
const ObjCInterfaceDecl *forwardClass = 0;
if (RequireCompleteType(Loc, OCIType->getPointeeType(),
getLangOpts().ObjCAutoRefCount
? diag::err_arc_receiver_forward_instance
: diag::warn_receiver_forward_instance,
Receiver? Receiver->getSourceRange()
: SourceRange(SuperLoc))) {
if (getLangOpts().ObjCAutoRefCount)
return ExprError();
forwardClass = OCIType->getInterfaceDecl();
Diag(Receiver ? Receiver->getLocStart()
: SuperLoc, diag::note_receiver_is_id);
Method = 0;
} else {
Method = ClassDecl->lookupInstanceMethod(Sel);
}
if (!Method)
// Search protocol qualifiers.
Method = LookupMethodInQualifiedType(Sel, OCIType, true);
if (!Method) {
// If we have implementations in scope, check "private" methods.
Method = ClassDecl->lookupPrivateMethod(Sel);
if (!Method && getLangOpts().ObjCAutoRefCount) {
Diag(Loc, diag::err_arc_may_not_respond)
<< OCIType->getPointeeType() << Sel;
return ExprError();
}
if (!Method && (!Receiver || !isSelfExpr(Receiver))) {
// If we still haven't found a method, look in the global pool. This
// behavior isn't very desirable, however we need it for GCC
// compatibility. FIXME: should we deviate??
if (OCIType->qual_empty()) {
Method = LookupInstanceMethodInGlobalPool(Sel,
SourceRange(LBracLoc, RBracLoc));
if (Method && !forwardClass)
Diag(Loc, diag::warn_maynot_respond)
<< OCIType->getInterfaceDecl()->getIdentifier() << Sel;
}
}
}
if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass))
return ExprError();
} else if (!getLangOpts().ObjCAutoRefCount &&
!Context.getObjCIdType().isNull() &&
(ReceiverType->isPointerType() ||
ReceiverType->isIntegerType())) {
// Implicitly convert integers and pointers to 'id' but emit a warning.
// But not in ARC.
Diag(Loc, diag::warn_bad_receiver_type)
<< ReceiverType
<< Receiver->getSourceRange();
if (ReceiverType->isPointerType())
Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
CK_CPointerToObjCPointerCast).take();
else {
// TODO: specialized warning on null receivers?
bool IsNull = Receiver->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
CastKind Kind = IsNull ? CK_NullToPointer : CK_IntegralToPointer;
Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(),
Kind).take();
}
ReceiverType = Receiver->getType();
} else {
ExprResult ReceiverRes;
if (getLangOpts().CPlusPlus)
ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver);
if (ReceiverRes.isUsable()) {
Receiver = ReceiverRes.take();
return BuildInstanceMessage(Receiver,
ReceiverType,
SuperLoc,
Sel,
Method,
LBracLoc,
SelectorLocs,
RBracLoc,
move(ArgsIn));
} else {
// Reject other random receiver types (e.g. structs).
Diag(Loc, diag::err_bad_receiver_type)
<< ReceiverType << Receiver->getSourceRange();
return ExprError();
}
}
}
}
// Check the message arguments.
unsigned NumArgs = ArgsIn.size();
Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release());
QualType ReturnType;
ExprValueKind VK = VK_RValue;
bool ClassMessage = (ReceiverType->isObjCClassType() ||
ReceiverType->isObjCQualifiedClassType());
if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method,
ClassMessage, SuperLoc.isValid(),
LBracLoc, RBracLoc, ReturnType, VK))
return ExprError();
if (Method && !Method->getResultType()->isVoidType() &&
RequireCompleteType(LBracLoc, Method->getResultType(),
diag::err_illegal_message_expr_incomplete_type))
return ExprError();
SourceLocation SelLoc = SelectorLocs.front();
// In ARC, forbid the user from sending messages to
// retain/release/autorelease/dealloc/retainCount explicitly.
if (getLangOpts().ObjCAutoRefCount) {
ObjCMethodFamily family =
(Method ? Method->getMethodFamily() : Sel.getMethodFamily());
switch (family) {
case OMF_init:
if (Method)
checkInitMethod(Method, ReceiverType);
case OMF_None:
case OMF_alloc:
case OMF_copy:
case OMF_finalize:
case OMF_mutableCopy:
case OMF_new:
case OMF_self:
break;
case OMF_dealloc:
case OMF_retain:
case OMF_release:
case OMF_autorelease:
case OMF_retainCount:
Diag(Loc, diag::err_arc_illegal_explicit_message)
<< Sel << SelLoc;
break;
case OMF_performSelector:
if (Method && NumArgs >= 1) {
if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) {
Selector ArgSel = SelExp->getSelector();
ObjCMethodDecl *SelMethod =
LookupInstanceMethodInGlobalPool(ArgSel,
SelExp->getSourceRange());
if (!SelMethod)
SelMethod =
LookupFactoryMethodInGlobalPool(ArgSel,
SelExp->getSourceRange());
if (SelMethod) {
ObjCMethodFamily SelFamily = SelMethod->getMethodFamily();
switch (SelFamily) {
case OMF_alloc:
case OMF_copy:
case OMF_mutableCopy:
case OMF_new:
case OMF_self:
case OMF_init:
// Issue error, unless ns_returns_not_retained.
if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
// selector names a +1 method
Diag(SelLoc,
diag::err_arc_perform_selector_retains);
Diag(SelMethod->getLocation(), diag::note_method_declared_at)
<< SelMethod->getDeclName();
}
break;
default:
// +0 call. OK. unless ns_returns_retained.
if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) {
// selector names a +1 method
Diag(SelLoc,
diag::err_arc_perform_selector_retains);
Diag(SelMethod->getLocation(), diag::note_method_declared_at)
<< SelMethod->getDeclName();
}
break;
}
}
} else {
// error (may leak).
Diag(SelLoc, diag::warn_arc_perform_selector_leaks);
Diag(Args[0]->getExprLoc(), diag::note_used_here);
}
}
break;
}
}
// Construct the appropriate ObjCMessageExpr instance.
ObjCMessageExpr *Result;
if (SuperLoc.isValid())
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
SuperLoc, /*IsInstanceSuper=*/true,
ReceiverType, Sel, SelectorLocs, Method,
makeArrayRef(Args, NumArgs), RBracLoc,
isImplicit);
else {
Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc,
Receiver, Sel, SelectorLocs, Method,
makeArrayRef(Args, NumArgs), RBracLoc,
isImplicit);
if (!isImplicit)
checkCocoaAPI(*this, Result);
}
if (getLangOpts().ObjCAutoRefCount) {
DiagnoseARCUseOfWeakReceiver(*this, Receiver);
// In ARC, annotate delegate init calls.
if (Result->getMethodFamily() == OMF_init &&
(SuperLoc.isValid() || isSelfExpr(Receiver))) {
// Only consider init calls *directly* in init implementations,
// not within blocks.
ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext);
if (method && method->getMethodFamily() == OMF_init) {
// The implicit assignment to self means we also don't want to
// consume the result.
Result->setDelegateInitCall(true);
return Owned(Result);
}
}
// In ARC, check for message sends which are likely to introduce
// retain cycles.
checkRetainCycles(Result);
}
return MaybeBindToTemporary(Result);
}
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from Sel.getNumArgs().
ExprResult Sema::ActOnInstanceMessage(Scope *S,
Expr *Receiver,
Selector Sel,
SourceLocation LBracLoc,
ArrayRef<SourceLocation> SelectorLocs,
SourceLocation RBracLoc,
MultiExprArg Args) {
if (!Receiver)
return ExprError();
return BuildInstanceMessage(Receiver, Receiver->getType(),
/*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0,
LBracLoc, SelectorLocs, RBracLoc, move(Args));
}
enum ARCConversionTypeClass {
/// int, void, struct A
ACTC_none,
/// id, void (^)()
ACTC_retainable,
/// id*, id***, void (^*)(),
ACTC_indirectRetainable,
/// void* might be a normal C type, or it might a CF type.
ACTC_voidPtr,
/// struct A*
ACTC_coreFoundation
};
static bool isAnyRetainable(ARCConversionTypeClass ACTC) {
return (ACTC == ACTC_retainable ||
ACTC == ACTC_coreFoundation ||
ACTC == ACTC_voidPtr);
}
static bool isAnyCLike(ARCConversionTypeClass ACTC) {
return ACTC == ACTC_none ||
ACTC == ACTC_voidPtr ||
ACTC == ACTC_coreFoundation;
}
static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) {
bool isIndirect = false;
// Ignore an outermost reference type.
if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
type = ref->getPointeeType();
isIndirect = true;
}
// Drill through pointers and arrays recursively.
while (true) {
if (const PointerType *ptr = type->getAs<PointerType>()) {
type = ptr->getPointeeType();
// The first level of pointer may be the innermost pointer on a CF type.
if (!isIndirect) {
if (type->isVoidType()) return ACTC_voidPtr;
if (type->isRecordType()) return ACTC_coreFoundation;
}
} else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) {
type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0);
} else {
break;
}
isIndirect = true;
}
if (isIndirect) {
if (type->isObjCARCBridgableType())
return ACTC_indirectRetainable;
return ACTC_none;
}
if (type->isObjCARCBridgableType())
return ACTC_retainable;
return ACTC_none;
}
namespace {
/// A result from the cast checker.
enum ACCResult {
/// Cannot be casted.
ACC_invalid,
/// Can be safely retained or not retained.
ACC_bottom,
/// Can be casted at +0.
ACC_plusZero,
/// Can be casted at +1.
ACC_plusOne
};
ACCResult merge(ACCResult left, ACCResult right) {
if (left == right) return left;
if (left == ACC_bottom) return right;
if (right == ACC_bottom) return left;
return ACC_invalid;
}
/// A checker which white-lists certain expressions whose conversion
/// to or from retainable type would otherwise be forbidden in ARC.
class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> {
typedef StmtVisitor<ARCCastChecker, ACCResult> super;
ASTContext &Context;
ARCConversionTypeClass SourceClass;
ARCConversionTypeClass TargetClass;
bool Diagnose;
static bool isCFType(QualType type) {
// Someday this can use ns_bridged. For now, it has to do this.
return type->isCARCBridgableType();
}
public:
ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source,
ARCConversionTypeClass target, bool diagnose)
: Context(Context), SourceClass(source), TargetClass(target),
Diagnose(diagnose) {}
using super::Visit;
ACCResult Visit(Expr *e) {
return super::Visit(e->IgnoreParens());
}
ACCResult VisitStmt(Stmt *s) {
return ACC_invalid;
}
/// Null pointer constants can be casted however you please.
ACCResult VisitExpr(Expr *e) {
if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
return ACC_bottom;
return ACC_invalid;
}
/// Objective-C string literals can be safely casted.
ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) {
// If we're casting to any retainable type, go ahead. Global
// strings are immune to retains, so this is bottom.
if (isAnyRetainable(TargetClass)) return ACC_bottom;
return ACC_invalid;
}
/// Look through certain implicit and explicit casts.
ACCResult VisitCastExpr(CastExpr *e) {
switch (e->getCastKind()) {
case CK_NullToPointer:
return ACC_bottom;
case CK_NoOp:
case CK_LValueToRValue:
case CK_BitCast:
case CK_CPointerToObjCPointerCast:
case CK_BlockPointerToObjCPointerCast:
case CK_AnyPointerToBlockPointerCast:
return Visit(e->getSubExpr());
default:
return ACC_invalid;
}
}
/// Look through unary extension.
ACCResult VisitUnaryExtension(UnaryOperator *e) {
return Visit(e->getSubExpr());
}
/// Ignore the LHS of a comma operator.
ACCResult VisitBinComma(BinaryOperator *e) {
return Visit(e->getRHS());
}
/// Conditional operators are okay if both sides are okay.
ACCResult VisitConditionalOperator(ConditionalOperator *e) {
ACCResult left = Visit(e->getTrueExpr());
if (left == ACC_invalid) return ACC_invalid;
return merge(left, Visit(e->getFalseExpr()));
}
/// Look through pseudo-objects.
ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) {
// If we're getting here, we should always have a result.
return Visit(e->getResultExpr());
}
/// Statement expressions are okay if their result expression is okay.
ACCResult VisitStmtExpr(StmtExpr *e) {
return Visit(e->getSubStmt()->body_back());
}
/// Some declaration references are okay.
ACCResult VisitDeclRefExpr(DeclRefExpr *e) {
// References to global constants from system headers are okay.
// These are things like 'kCFStringTransformToLatin'. They are
// can also be assumed to be immune to retains.
VarDecl *var = dyn_cast<VarDecl>(e->getDecl());
if (isAnyRetainable(TargetClass) &&
isAnyRetainable(SourceClass) &&
var &&
var->getStorageClass() == SC_Extern &&
var->getType().isConstQualified() &&
Context.getSourceManager().isInSystemHeader(var->getLocation())) {
return ACC_bottom;
}
// Nothing else.
return ACC_invalid;
}
/// Some calls are okay.
ACCResult VisitCallExpr(CallExpr *e) {
if (FunctionDecl *fn = e->getDirectCallee())
if (ACCResult result = checkCallToFunction(fn))
return result;
return super::VisitCallExpr(e);
}
ACCResult checkCallToFunction(FunctionDecl *fn) {
// Require a CF*Ref return type.
if (!isCFType(fn->getResultType()))
return ACC_invalid;
if (!isAnyRetainable(TargetClass))
return ACC_invalid;
// Honor an explicit 'not retained' attribute.
if (fn->hasAttr<CFReturnsNotRetainedAttr>())
return ACC_plusZero;
// Honor an explicit 'retained' attribute, except that for
// now we're not going to permit implicit handling of +1 results,
// because it's a bit frightening.
if (fn->hasAttr<CFReturnsRetainedAttr>())
return Diagnose ? ACC_plusOne
: ACC_invalid; // ACC_plusOne if we start accepting this
// Recognize this specific builtin function, which is used by CFSTR.
unsigned builtinID = fn->getBuiltinID();
if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
return ACC_bottom;
// Otherwise, don't do anything implicit with an unaudited function.
if (!fn->hasAttr<CFAuditedTransferAttr>())
return ACC_invalid;
// Otherwise, it's +0 unless it follows the create convention.
if (ento::coreFoundation::followsCreateRule(fn))
return Diagnose ? ACC_plusOne
: ACC_invalid; // ACC_plusOne if we start accepting this
return ACC_plusZero;
}
ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) {
return checkCallToMethod(e->getMethodDecl());
}
ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) {
ObjCMethodDecl *method;
if (e->isExplicitProperty())
method = e->getExplicitProperty()->getGetterMethodDecl();
else
method = e->getImplicitPropertyGetter();
return checkCallToMethod(method);
}
ACCResult checkCallToMethod(ObjCMethodDecl *method) {
if (!method) return ACC_invalid;
// Check for message sends to functions returning CF types. We
// just obey the Cocoa conventions with these, even though the
// return type is CF.
if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType()))
return ACC_invalid;
// If the method is explicitly marked not-retained, it's +0.
if (method->hasAttr<CFReturnsNotRetainedAttr>())
return ACC_plusZero;
// If the method is explicitly marked as returning retained, or its
// selector follows a +1 Cocoa convention, treat it as +1.
if (method->hasAttr<CFReturnsRetainedAttr>())
return ACC_plusOne;
switch (method->getSelector().getMethodFamily()) {
case OMF_alloc:
case OMF_copy:
case OMF_mutableCopy:
case OMF_new:
return ACC_plusOne;
default:
// Otherwise, treat it as +0.
return ACC_plusZero;
}
}
};
}
bool Sema::isKnownName(StringRef name) {
if (name.empty())
return false;
LookupResult R(*this, &Context.Idents.get(name), SourceLocation(),
Sema::LookupOrdinaryName);
return LookupName(R, TUScope, false);
}
static void addFixitForObjCARCConversion(Sema &S,
DiagnosticBuilder &DiagB,
Sema::CheckedConversionKind CCK,
SourceLocation afterLParen,
QualType castType,
Expr *castExpr,
const char *bridgeKeyword,
const char *CFBridgeName) {
// We handle C-style and implicit casts here.
switch (CCK) {
case Sema::CCK_ImplicitConversion:
case Sema::CCK_CStyleCast:
break;
case Sema::CCK_FunctionalCast:
case Sema::CCK_OtherCast:
return;
}
if (CFBridgeName) {
Expr *castedE = castExpr;
if (CStyleCastExpr *CCE = dyn_cast<CStyleCastExpr>(castedE))
castedE = CCE->getSubExpr();
castedE = castedE->IgnoreImpCasts();
SourceRange range = castedE->getSourceRange();
SmallString<32> BridgeCall;
SourceManager &SM = S.getSourceManager();
char PrevChar = *SM.getCharacterData(range.getBegin().getLocWithOffset(-1));
if (Lexer::isIdentifierBodyChar(PrevChar, S.getLangOpts()))
BridgeCall += ' ';
BridgeCall += CFBridgeName;
if (isa<ParenExpr>(castedE)) {
DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
BridgeCall));
} else {
BridgeCall += '(';
DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
BridgeCall));
DiagB.AddFixItHint(FixItHint::CreateInsertion(
S.PP.getLocForEndOfToken(range.getEnd()),
")"));
}
return;
}
if (CCK == Sema::CCK_CStyleCast) {
DiagB.AddFixItHint(FixItHint::CreateInsertion(afterLParen, bridgeKeyword));
} else {
std::string castCode = "(";
castCode += bridgeKeyword;
castCode += castType.getAsString();
castCode += ")";
Expr *castedE = castExpr->IgnoreImpCasts();
SourceRange range = castedE->getSourceRange();
if (isa<ParenExpr>(castedE)) {
DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
castCode));
} else {
castCode += "(";
DiagB.AddFixItHint(FixItHint::CreateInsertion(range.getBegin(),
castCode));
DiagB.AddFixItHint(FixItHint::CreateInsertion(
S.PP.getLocForEndOfToken(range.getEnd()),
")"));
}
}
}
static void
diagnoseObjCARCConversion(Sema &S, SourceRange castRange,
QualType castType, ARCConversionTypeClass castACTC,
Expr *castExpr, ARCConversionTypeClass exprACTC,
Sema::CheckedConversionKind CCK) {
SourceLocation loc =
(castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc());
if (S.makeUnavailableInSystemHeader(loc,
"converts between Objective-C and C pointers in -fobjc-arc"))
return;
QualType castExprType = castExpr->getType();
unsigned srcKind = 0;
switch (exprACTC) {
case ACTC_none:
case ACTC_coreFoundation:
case ACTC_voidPtr:
srcKind = (castExprType->isPointerType() ? 1 : 0);
break;
case ACTC_retainable:
srcKind = (castExprType->isBlockPointerType() ? 2 : 3);
break;
case ACTC_indirectRetainable:
srcKind = 4;
break;
}
// Check whether this could be fixed with a bridge cast.
SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin());
SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc;
// Bridge from an ARC type to a CF type.
if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) {
S.Diag(loc, diag::err_arc_cast_requires_bridge)
<< unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
<< 2 // of C pointer type
<< castExprType
<< unsigned(castType->isBlockPointerType()) // to ObjC|block type
<< castType
<< castRange
<< castExpr->getSourceRange();
bool br = S.isKnownName("CFBridgingRelease");
ACCResult CreateRule =
ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
if (CreateRule != ACC_plusOne)
{
DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge);
addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
castType, castExpr, "__bridge ", 0);
}
if (CreateRule != ACC_plusZero)
{
DiagnosticBuilder DiagB = S.Diag(br ? castExpr->getExprLoc() : noteLoc,
diag::note_arc_bridge_transfer)
<< castExprType << br;
addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
castType, castExpr, "__bridge_transfer ",
br ? "CFBridgingRelease" : 0);
}
return;
}
// Bridge from a CF type to an ARC type.
if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) {
bool br = S.isKnownName("CFBridgingRetain");
S.Diag(loc, diag::err_arc_cast_requires_bridge)
<< unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit
<< unsigned(castExprType->isBlockPointerType()) // of ObjC|block type
<< castExprType
<< 2 // to C pointer type
<< castType
<< castRange
<< castExpr->getSourceRange();
ACCResult CreateRule =
ARCCastChecker(S.Context, exprACTC, castACTC, true).Visit(castExpr);
assert(CreateRule != ACC_bottom && "This cast should already be accepted.");
if (CreateRule != ACC_plusOne)
{
DiagnosticBuilder DiagB = S.Diag(noteLoc, diag::note_arc_bridge);
addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
castType, castExpr, "__bridge ", 0);
}
if (CreateRule != ACC_plusZero)
{
DiagnosticBuilder DiagB = S.Diag(br ? castExpr->getExprLoc() : noteLoc,
diag::note_arc_bridge_retained)
<< castType << br;
addFixitForObjCARCConversion(S, DiagB, CCK, afterLParen,
castType, castExpr, "__bridge_retained ",
br ? "CFBridgingRetain" : 0);
}
return;
}
S.Diag(loc, diag::err_arc_mismatched_cast)
<< (CCK != Sema::CCK_ImplicitConversion)
<< srcKind << castExprType << castType
<< castRange << castExpr->getSourceRange();
}
Sema::ARCConversionResult
Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType,
Expr *&castExpr, CheckedConversionKind CCK) {
QualType castExprType = castExpr->getType();
// For the purposes of the classification, we assume reference types
// will bind to temporaries.
QualType effCastType = castType;
if (const ReferenceType *ref = castType->getAs<ReferenceType>())
effCastType = ref->getPointeeType();
ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType);
ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType);
if (exprACTC == castACTC) {
// check for viablity and report error if casting an rvalue to a
// life-time qualifier.
if ((castACTC == ACTC_retainable) &&
(CCK == CCK_CStyleCast || CCK == CCK_OtherCast) &&
(castType != castExprType)) {
const Type *DT = castType.getTypePtr();
QualType QDT = castType;
// We desugar some types but not others. We ignore those
// that cannot happen in a cast; i.e. auto, and those which
// should not be de-sugared; i.e typedef.
if (const ParenType *PT = dyn_cast<ParenType>(DT))
QDT = PT->desugar();
else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT))
QDT = TP->desugar();
else if (const AttributedType *AT = dyn_cast<AttributedType>(DT))
QDT = AT->desugar();
if (QDT != castType &&
QDT.getObjCLifetime() != Qualifiers::OCL_None) {
SourceLocation loc =
(castRange.isValid() ? castRange.getBegin()
: castExpr->getExprLoc());
Diag(loc, diag::err_arc_nolifetime_behavior);
}
}
return ACR_okay;
}
if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay;
// Allow all of these types to be cast to integer types (but not
// vice-versa).
if (castACTC == ACTC_none && castType->isIntegralType(Context))
return ACR_okay;
// Allow casts between pointers to lifetime types (e.g., __strong id*)
// and pointers to void (e.g., cv void *). Casting from void* to lifetime*
// must be explicit.
if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr)
return ACR_okay;
if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr &&
CCK != CCK_ImplicitConversion)
return ACR_okay;
switch (ARCCastChecker(Context, exprACTC, castACTC, false).Visit(castExpr)) {
// For invalid casts, fall through.
case ACC_invalid:
break;
// Do nothing for both bottom and +0.
case ACC_bottom:
case ACC_plusZero:
return ACR_okay;
// If the result is +1, consume it here.
case ACC_plusOne:
castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(),
CK_ARCConsumeObject, castExpr,
0, VK_RValue);
ExprNeedsCleanups = true;
return ACR_okay;
}
// If this is a non-implicit cast from id or block type to a
// CoreFoundation type, delay complaining in case the cast is used
// in an acceptable context.
if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) &&
CCK != CCK_ImplicitConversion)
return ACR_unbridged;
diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
castExpr, exprACTC, CCK);
return ACR_okay;
}
/// Given that we saw an expression with the ARCUnbridgedCastTy
/// placeholder type, complain bitterly.
void Sema::diagnoseARCUnbridgedCast(Expr *e) {
// We expect the spurious ImplicitCastExpr to already have been stripped.
assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
CastExpr *realCast = cast<CastExpr>(e->IgnoreParens());
SourceRange castRange;
QualType castType;
CheckedConversionKind CCK;
if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) {
castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc());
castType = cast->getTypeAsWritten();
CCK = CCK_CStyleCast;
} else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) {
castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange();
castType = cast->getTypeAsWritten();
CCK = CCK_OtherCast;
} else {
castType = cast->getType();
CCK = CCK_ImplicitConversion;
}
ARCConversionTypeClass castACTC =
classifyTypeForARCConversion(castType.getNonReferenceType());
Expr *castExpr = realCast->getSubExpr();
assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable);
diagnoseObjCARCConversion(*this, castRange, castType, castACTC,
castExpr, ACTC_retainable, CCK);
}
/// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast
/// type, remove the placeholder cast.
Expr *Sema::stripARCUnbridgedCast(Expr *e) {
assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) {
Expr *sub = stripARCUnbridgedCast(pe->getSubExpr());
return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub);
} else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) {
assert(uo->getOpcode() == UO_Extension);
Expr *sub = stripARCUnbridgedCast(uo->getSubExpr());
return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(),
sub->getValueKind(), sub->getObjectKind(),
uo->getOperatorLoc());
} else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) {
assert(!gse->isResultDependent());
unsigned n = gse->getNumAssocs();
SmallVector<Expr*, 4> subExprs(n);
SmallVector<TypeSourceInfo*, 4> subTypes(n);
for (unsigned i = 0; i != n; ++i) {
subTypes[i] = gse->getAssocTypeSourceInfo(i);
Expr *sub = gse->getAssocExpr(i);
if (i == gse->getResultIndex())
sub = stripARCUnbridgedCast(sub);
subExprs[i] = sub;
}
return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(),
gse->getControllingExpr(),
subTypes.data(), subExprs.data(),
n, gse->getDefaultLoc(),
gse->getRParenLoc(),
gse->containsUnexpandedParameterPack(),
gse->getResultIndex());
} else {
assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!");
return cast<ImplicitCastExpr>(e)->getSubExpr();
}
}
bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType,
QualType exprType) {
QualType canCastType =
Context.getCanonicalType(castType).getUnqualifiedType();
QualType canExprType =
Context.getCanonicalType(exprType).getUnqualifiedType();
if (isa<ObjCObjectPointerType>(canCastType) &&
castType.getObjCLifetime() == Qualifiers::OCL_Weak &&
canExprType->isObjCObjectPointerType()) {
if (const ObjCObjectPointerType *ObjT =
canExprType->getAs<ObjCObjectPointerType>())
if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable())
return false;
}
return true;
}
/// Look for an ObjCReclaimReturnedObject cast and destroy it.
static Expr *maybeUndoReclaimObject(Expr *e) {
// For now, we just undo operands that are *immediately* reclaim
// expressions, which prevents the vast majority of potential
// problems here. To catch them all, we'd need to rebuild arbitrary
// value-propagating subexpressions --- we can't reliably rebuild
// in-place because of expression sharing.
if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
if (ice->getCastKind() == CK_ARCReclaimReturnedObject)
return ice->getSubExpr();
return e;
}
ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
TypeSourceInfo *TSInfo,
Expr *SubExpr) {
ExprResult SubResult = UsualUnaryConversions(SubExpr);
if (SubResult.isInvalid()) return ExprError();
SubExpr = SubResult.take();
QualType T = TSInfo->getType();
QualType FromType = SubExpr->getType();
CastKind CK;
bool MustConsume = false;
if (T->isDependentType() || SubExpr->isTypeDependent()) {
// Okay: we'll build a dependent expression type.
CK = CK_Dependent;
} else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) {
// Casting CF -> id
CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast
: CK_CPointerToObjCPointerCast);
switch (Kind) {
case OBC_Bridge:
break;
case OBC_BridgeRetained: {
bool br = isKnownName("CFBridgingRelease");
Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
<< 2
<< FromType
<< (T->isBlockPointerType()? 1 : 0)
<< T
<< SubExpr->getSourceRange()
<< Kind;
Diag(BridgeKeywordLoc, diag::note_arc_bridge)
<< FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge");
Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer)
<< FromType << br
<< FixItHint::CreateReplacement(BridgeKeywordLoc,
br ? "CFBridgingRelease "
: "__bridge_transfer ");
Kind = OBC_Bridge;
break;
}
case OBC_BridgeTransfer:
// We must consume the Objective-C object produced by the cast.
MustConsume = true;
break;
}
} else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) {
// Okay: id -> CF
CK = CK_BitCast;
switch (Kind) {
case OBC_Bridge:
// Reclaiming a value that's going to be __bridge-casted to CF
// is very dangerous, so we don't do it.
SubExpr = maybeUndoReclaimObject(SubExpr);
break;
case OBC_BridgeRetained:
// Produce the object before casting it.
SubExpr = ImplicitCastExpr::Create(Context, FromType,
CK_ARCProduceObject,
SubExpr, 0, VK_RValue);
break;
case OBC_BridgeTransfer: {
bool br = isKnownName("CFBridgingRetain");
Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind)
<< (FromType->isBlockPointerType()? 1 : 0)
<< FromType
<< 2
<< T
<< SubExpr->getSourceRange()
<< Kind;
Diag(BridgeKeywordLoc, diag::note_arc_bridge)
<< FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge ");
Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained)
<< T << br
<< FixItHint::CreateReplacement(BridgeKeywordLoc,
br ? "CFBridgingRetain " : "__bridge_retained");
Kind = OBC_Bridge;
break;
}
}
} else {
Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible)
<< FromType << T << Kind
<< SubExpr->getSourceRange()
<< TSInfo->getTypeLoc().getSourceRange();
return ExprError();
}
Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK,
BridgeKeywordLoc,
TSInfo, SubExpr);
if (MustConsume) {
ExprNeedsCleanups = true;
Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result,
0, VK_RValue);
}
return Result;
}
ExprResult Sema::ActOnObjCBridgedCast(Scope *S,
SourceLocation LParenLoc,
ObjCBridgeCastKind Kind,
SourceLocation BridgeKeywordLoc,
ParsedType Type,
SourceLocation RParenLoc,
Expr *SubExpr) {
TypeSourceInfo *TSInfo = 0;
QualType T = GetTypeFromParser(Type, &TSInfo);
if (!TSInfo)
TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc);
return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo,
SubExpr);
}