blob: ef3664ef4314d08a976a24955b1addbc462be73b [file] [log] [blame]
//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a meta-engine for path-sensitive dataflow analysis that
// is built on GREngine, but provides the boilerplate to execute transfer
// functions and build the ExplodedGraph at the expression level.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
#include "llvm/Support/Streams.h"
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
GRExprEngine::StateTy
GRExprEngine::SetValue(StateTy St, Expr* S, const RValue& V) {
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
bool isBlkExpr = false;
if (S == CurrentStmt) {
isBlkExpr = getCFG().isBlkExpr(S);
if (!isBlkExpr)
return St;
}
return StateMgr.SetValue(St, S, isBlkExpr, V);
}
const GRExprEngine::StateTy::BufferTy&
GRExprEngine::SetValue(StateTy St, Expr* S, const RValue::BufferTy& RB,
StateTy::BufferTy& RetBuf) {
assert (RetBuf.empty());
for (RValue::BufferTy::const_iterator I=RB.begin(), E=RB.end(); I!=E; ++I)
RetBuf.push_back(SetValue(St, S, *I));
return RetBuf;
}
GRExprEngine::StateTy
GRExprEngine::SetValue(StateTy St, const LValue& LV, const RValue& V) {
if (LV.isUnknown())
return St;
if (!StateCleaned) {
St = RemoveDeadBindings(CurrentStmt, St);
StateCleaned = true;
}
return StateMgr.SetValue(St, LV, V);
}
void GRExprEngine::ProcessBranch(Expr* Condition, Stmt* Term,
BranchNodeBuilder& builder) {
// Remove old bindings for subexpressions.
StateTy PrevState = StateMgr.RemoveSubExprBindings(builder.getState());
// Check for NULL conditions; e.g. "for(;;)"
if (!Condition) {
builder.markInfeasible(false);
// Get the current block counter.
GRBlockCounter BC = builder.getBlockCounter();
unsigned BlockID = builder.getTargetBlock(true)->getBlockID();
unsigned NumVisited = BC.getNumVisited(BlockID);
if (NumVisited < 1) builder.generateNode(PrevState, true);
else builder.markInfeasible(true);
return;
}
RValue V = GetValue(PrevState, Condition);
switch (V.getBaseKind()) {
default:
break;
case RValue::UnknownKind:
builder.generateNode(PrevState, true);
builder.generateNode(PrevState, false);
return;
case RValue::UninitializedKind: {
NodeTy* N = builder.generateNode(PrevState, true);
if (N) {
N->markAsSink();
UninitBranches.insert(N);
}
builder.markInfeasible(false);
return;
}
}
// Get the current block counter.
GRBlockCounter BC = builder.getBlockCounter();
unsigned BlockID = builder.getTargetBlock(true)->getBlockID();
unsigned NumVisited = BC.getNumVisited(BlockID);
if (isa<nonlval::ConcreteInt>(V) ||
BC.getNumVisited(builder.getTargetBlock(true)->getBlockID()) < 1) {
// Process the true branch.
bool isFeasible = true;
StateTy St = Assume(PrevState, V, true, isFeasible);
if (isFeasible)
builder.generateNode(St, true);
else
builder.markInfeasible(true);
}
else
builder.markInfeasible(true);
BlockID = builder.getTargetBlock(false)->getBlockID();
NumVisited = BC.getNumVisited(BlockID);
if (isa<nonlval::ConcreteInt>(V) ||
BC.getNumVisited(builder.getTargetBlock(false)->getBlockID()) < 1) {
// Process the false branch.
bool isFeasible = false;
StateTy St = Assume(PrevState, V, false, isFeasible);
if (isFeasible)
builder.generateNode(St, false);
else
builder.markInfeasible(false);
}
else
builder.markInfeasible(false);
}
/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a computed goto jump.
void GRExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) {
StateTy St = builder.getState();
LValue V = cast<LValue>(GetValue(St, builder.getTarget()));
// Three possibilities:
//
// (1) We know the computed label.
// (2) The label is NULL (or some other constant), or Uninitialized.
// (3) We have no clue about the label. Dispatch to all targets.
//
typedef IndirectGotoNodeBuilder::iterator iterator;
if (isa<lval::GotoLabel>(V)) {
LabelStmt* L = cast<lval::GotoLabel>(V).getLabel();
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
if (I.getLabel() == L) {
builder.generateNode(I, St);
return;
}
}
assert (false && "No block with label.");
return;
}
if (isa<lval::ConcreteInt>(V) || isa<UninitializedVal>(V)) {
// Dispatch to the first target and mark it as a sink.
NodeTy* N = builder.generateNode(builder.begin(), St, true);
UninitBranches.insert(N);
return;
}
// This is really a catch-all. We don't support symbolics yet.
assert (isa<UnknownVal>(V));
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
builder.generateNode(I, St);
}
/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor
/// nodes by processing the 'effects' of a switch statement.
void GRExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) {
typedef SwitchNodeBuilder::iterator iterator;
StateTy St = builder.getState();
Expr* CondE = builder.getCondition();
NonLValue CondV = cast<NonLValue>(GetValue(St, CondE));
if (isa<UninitializedVal>(CondV)) {
NodeTy* N = builder.generateDefaultCaseNode(St, true);
UninitBranches.insert(N);
return;
}
StateTy DefaultSt = St;
// While most of this can be assumed (such as the signedness), having it
// just computed makes sure everything makes the same assumptions end-to-end.
unsigned bits = getContext().getTypeSize(CondE->getType(),
CondE->getExprLoc());
APSInt V1(bits, false);
APSInt V2 = V1;
for (iterator I=builder.begin(), E=builder.end(); I!=E; ++I) {
CaseStmt* Case = cast<CaseStmt>(I.getCase());
// Evaluate the case.
if (!Case->getLHS()->isIntegerConstantExpr(V1, getContext(), 0, true)) {
assert (false && "Case condition must evaluate to an integer constant.");
return;
}
// Get the RHS of the case, if it exists.
if (Expr* E = Case->getRHS()) {
if (!E->isIntegerConstantExpr(V2, getContext(), 0, true)) {
assert (false &&
"Case condition (RHS) must evaluate to an integer constant.");
return ;
}
assert (V1 <= V2);
}
else V2 = V1;
// FIXME: Eventually we should replace the logic below with a range
// comparison, rather than concretize the values within the range.
// This should be easy once we have "ranges" for NonLValues.
do {
nonlval::ConcreteInt CaseVal(ValMgr.getValue(V1));
NonLValue Res = EvalBinaryOp(BinaryOperator::EQ, CondV, CaseVal);
// Now "assume" that the case matches.
bool isFeasible = false;
StateTy StNew = Assume(St, Res, true, isFeasible);
if (isFeasible) {
builder.generateCaseStmtNode(I, StNew);
// If CondV evaluates to a constant, then we know that this
// is the *only* case that we can take, so stop evaluating the
// others.
if (isa<nonlval::ConcreteInt>(CondV))
return;
}
// Now "assume" that the case doesn't match. Add this state
// to the default state (if it is feasible).
StNew = Assume(DefaultSt, Res, false, isFeasible);
if (isFeasible)
DefaultSt = StNew;
// Concretize the next value in the range.
++V1;
} while (V1 < V2);
}
// If we reach here, than we know that the default branch is
// possible.
builder.generateDefaultCaseNode(DefaultSt);
}
void GRExprEngine::VisitLogicalExpr(BinaryOperator* B, NodeTy* Pred,
NodeSet& Dst) {
bool hasR2;
StateTy PrevState = Pred->getState();
RValue R1 = GetValue(PrevState, B->getLHS());
RValue R2 = GetValue(PrevState, B->getRHS(), hasR2);
if (hasR2) {
if (isa<UninitializedVal>(R2) || isa<UnknownVal>(R2)) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, R2));
return;
}
}
else if (isa<UninitializedVal>(R1) || isa<UnknownVal>(R1)) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, R1));
return;
}
// R1 is an expression that can evaluate to either 'true' or 'false'.
if (B->getOpcode() == BinaryOperator::LAnd) {
// hasR2 == 'false' means that LHS evaluated to 'false' and that
// we short-circuited, leading to a value of '0' for the '&&' expression.
if (hasR2 == false) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(0U, B)));
return;
}
}
else {
assert (B->getOpcode() == BinaryOperator::LOr);
// hasR2 == 'false' means that the LHS evaluate to 'true' and that
// we short-circuited, leading to a value of '1' for the '||' expression.
if (hasR2 == false) {
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(1U, B)));
return;
}
}
// If we reach here we did not short-circuit. Assume R2 == true and
// R2 == false.
bool isFeasible;
StateTy St = Assume(PrevState, R2, true, isFeasible);
if (isFeasible)
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(1U, B)));
St = Assume(PrevState, R2, false, isFeasible);
if (isFeasible)
Nodify(Dst, B, Pred, SetValue(PrevState, B, GetRValueConstant(0U, B)));
}
void GRExprEngine::ProcessStmt(Stmt* S, StmtNodeBuilder& builder) {
Builder = &builder;
StmtEntryNode = builder.getLastNode();
CurrentStmt = S;
NodeSet Dst;
StateCleaned = false;
Visit(S, StmtEntryNode, Dst);
// If no nodes were generated, generate a new node that has all the
// dead mappings removed.
if (Dst.size() == 1 && *Dst.begin() == StmtEntryNode) {
StateTy St = RemoveDeadBindings(S, StmtEntryNode->getState());
builder.generateNode(S, St, StmtEntryNode);
}
CurrentStmt = NULL;
StmtEntryNode = NULL;
Builder = NULL;
}
GRExprEngine::NodeTy*
GRExprEngine::Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred, StateTy St) {
// If the state hasn't changed, don't generate a new node.
if (St == Pred->getState())
return NULL;
NodeTy* N = Builder->generateNode(S, St, Pred);
Dst.Add(N);
return N;
}
void GRExprEngine::Nodify(NodeSet& Dst, Stmt* S, NodeTy* Pred,
const StateTy::BufferTy& SB) {
for (StateTy::BufferTy::const_iterator I=SB.begin(), E=SB.end(); I!=E; ++I)
Nodify(Dst, S, Pred, *I);
}
void GRExprEngine::VisitDeclRefExpr(DeclRefExpr* D, NodeTy* Pred, NodeSet& Dst){
if (D != CurrentStmt) {
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
return;
}
// If we are here, we are loading the value of the decl and binding
// it to the block-level expression.
StateTy St = Pred->getState();
Nodify(Dst, D, Pred, SetValue(St, D, GetValue(St, D)));
}
void GRExprEngine::VisitCall(CallExpr* CE, NodeTy* Pred,
CallExpr::arg_iterator I, CallExpr::arg_iterator E,
NodeSet& Dst) {
if (I != E) {
NodeSet DstTmp;
Visit(*I, Pred, DstTmp);
++I;
for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI!=DE; ++DI)
VisitCall(CE, *DI, I, E, Dst);
return;
}
// If we reach here we have processed all of the arguments. Evaluate
// the callee expression.
NodeSet DstTmp;
Visit(CE->getCallee(), Pred, DstTmp);
// Finally, evaluate the function call.
for (NodeSet::iterator DI=DstTmp.begin(), DE=DstTmp.end(); DI!=DE; ++DI) {
StateTy St = (*DI)->getState();
LValue L = GetLValue(St, CE->getCallee());
// Check for uninitialized control-flow.
if (isa<UninitializedVal>(L)) {
NodeTy* N = Builder->generateNode(CE, St, *DI);
N->markAsSink();
UninitBranches.insert(N);
continue;
}
// Note: EvalCall must handle the case where the callee is "UnknownVal."
Nodify(Dst, CE, *DI, EvalCall(CE, (*DI)->getState()));
}
}
void GRExprEngine::VisitCast(Expr* CastE, Expr* E, NodeTy* Pred, NodeSet& Dst) {
NodeSet S1;
Visit(E, Pred, S1);
QualType T = CastE->getType();
// Check for redundant casts or casting to "void"
if (T->isVoidType() ||
E->getType() == T ||
(T->isPointerType() && E->getType()->isFunctionType())) {
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1)
Dst.Add(*I1);
return;
}
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N = *I1;
StateTy St = N->getState();
const RValue& V = GetValue(St, E);
Nodify(Dst, CastE, N, SetValue(St, CastE, EvalCast(ValMgr, V, CastE)));
}
}
void GRExprEngine::VisitDeclStmt(DeclStmt* DS, GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
StateTy St = Pred->getState();
for (const ScopedDecl* D = DS->getDecl(); D; D = D->getNextDeclarator())
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
// FIXME: Add support for local arrays.
if (VD->getType()->isArrayType())
continue;
const Expr* E = VD->getInit();
St = SetValue(St, lval::DeclVal(VD),
E ? GetValue(St, E) : UninitializedVal());
}
Nodify(Dst, DS, Pred, St);
if (Dst.empty())
Dst.Add(Pred);
}
void GRExprEngine::VisitGuardedExpr(Expr* S, Expr* LHS, Expr* RHS,
NodeTy* Pred, NodeSet& Dst) {
StateTy St = Pred->getState();
RValue R = GetValue(St, LHS);
if (isa<UnknownVal>(R)) R = GetValue(St, RHS);
Nodify(Dst, S, Pred, SetValue(St, S, R));
}
/// VisitSizeOfAlignOfTypeExpr - Transfer function for sizeof(type).
void GRExprEngine::VisitSizeOfAlignOfTypeExpr(SizeOfAlignOfTypeExpr* S,
NodeTy* Pred,
NodeSet& Dst) {
// 6.5.3.4 sizeof: "The result type is an integer."
QualType T = S->getArgumentType();
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
SourceLocation L = S->getExprLoc();
uint64_t size = getContext().getTypeSize(T, L) / 8;
Nodify(Dst, S, Pred,
SetValue(Pred->getState(), S,
NonLValue::GetValue(ValMgr, size, S->getType(), L)));
}
void GRExprEngine::VisitUnaryOperator(UnaryOperator* U,
GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
NodeSet S1;
UnaryOperator::Opcode Op = U->getOpcode();
// FIXME: This is a hack so that for '*' and '&' we don't recurse
// on visiting the subexpression if it is a DeclRefExpr. We should
// probably just handle AddrOf and Deref in their own methods to make
// this cleaner.
if ((Op == UnaryOperator::Deref || Op == UnaryOperator::AddrOf) &&
isa<DeclRefExpr>(U->getSubExpr()))
S1.Add(Pred);
else
Visit(U->getSubExpr(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
StateTy St = N1->getState();
// Handle ++ and -- (both pre- and post-increment).
if (U->isIncrementDecrementOp()) {
const LValue& L1 = GetLValue(St, U->getSubExpr());
RValue R1 = GetValue(St, L1);
BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
: BinaryOperator::Sub;
RValue Result = EvalBinaryOp(Op, R1, GetRValueConstant(1U, U));
if (U->isPostfix())
Nodify(Dst, U, N1, SetValue(SetValue(St, U, R1), L1, Result));
else
Nodify(Dst, U, N1, SetValue(SetValue(St, U, Result), L1, Result));
continue;
}
// Handle all other unary operators.
switch (U->getOpcode()) {
case UnaryOperator::Minus: {
const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, EvalMinus(ValMgr, U, R1)));
break;
}
case UnaryOperator::Not: {
const NonLValue& R1 = cast<NonLValue>(GetValue(St, U->getSubExpr()));
Nodify(Dst, U, N1, SetValue(St, U, EvalComplement(ValMgr, R1)));
break;
}
case UnaryOperator::LNot: {
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
//
// Note: technically we do "E == 0", but this is the same in the
// transfer functions as "0 == E".
RValue V1 = GetValue(St, U->getSubExpr());
if (isa<LValue>(V1)) {
const LValue& L1 = cast<LValue>(V1);
lval::ConcreteInt V2(ValMgr.getZeroWithPtrWidth());
Nodify(Dst, U, N1,
SetValue(St, U, EvalBinaryOp(BinaryOperator::EQ,
L1, V2)));
}
else {
const NonLValue& R1 = cast<NonLValue>(V1);
nonlval::ConcreteInt V2(ValMgr.getZeroWithPtrWidth());
Nodify(Dst, U, N1,
SetValue(St, U, EvalBinaryOp(BinaryOperator::EQ,
R1, V2)));
}
break;
}
case UnaryOperator::SizeOf: {
// 6.5.3.4 sizeof: "The result type is an integer."
QualType T = U->getSubExpr()->getType();
// FIXME: Add support for VLAs.
if (!T.getTypePtr()->isConstantSizeType())
return;
SourceLocation L = U->getExprLoc();
uint64_t size = getContext().getTypeSize(T, L) / 8;
Nodify(Dst, U, N1,
SetValue(St, U, NonLValue::GetValue(ValMgr, size,
U->getType(), L)));
break;
}
case UnaryOperator::AddrOf: {
const LValue& L1 = GetLValue(St, U->getSubExpr());
Nodify(Dst, U, N1, SetValue(St, U, L1));
break;
}
case UnaryOperator::Deref: {
// FIXME: Stop when dereferencing an uninitialized value.
// FIXME: Bifurcate when dereferencing a symbolic with no constraints?
const RValue& V = GetValue(St, U->getSubExpr());
const LValue& L1 = cast<LValue>(V);
if (isa<UninitializedVal>(L1)) {
NodeTy* N = Builder->generateNode(U, St, N1);
if (N) {
N->markAsSink();
UninitDeref.insert(N);
}
return;
}
// After a dereference, one of two possible situations arise:
// (1) A crash, because the pointer was NULL.
// (2) The pointer is not NULL, and the dereference works.
//
// We add these assumptions.
bool isFeasibleNotNull;
// "Assume" that the pointer is Not-NULL.
StateTy StNotNull = Assume(St, L1, true, isFeasibleNotNull);
if (isFeasibleNotNull) {
QualType T = U->getType();
Nodify(Dst, U, N1, SetValue(StNotNull, U,
GetValue(StNotNull, L1, &T)));
}
if (V.isUnknown())
return;
bool isFeasibleNull;
// "Assume" that the pointer is NULL.
StateTy StNull = Assume(St, L1, false, isFeasibleNull);
if (isFeasibleNull) {
// We don't use "Nodify" here because the node will be a sink
// and we have no intention of processing it later.
NodeTy* NullNode = Builder->generateNode(U, StNull, N1);
if (NullNode) {
NullNode->markAsSink();
if (isFeasibleNotNull)
ImplicitNullDeref.insert(NullNode);
else
ExplicitNullDeref.insert(NullNode);
}
}
break;
}
default: ;
assert (false && "Not implemented.");
}
}
}
void GRExprEngine::VisitAssignmentLHS(Expr* E, GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
if (isa<DeclRefExpr>(E)) {
Dst.Add(Pred);
return;
}
if (UnaryOperator* U = dyn_cast<UnaryOperator>(E)) {
if (U->getOpcode() == UnaryOperator::Deref) {
Visit(U->getSubExpr(), Pred, Dst);
return;
}
}
Visit(E, Pred, Dst);
}
void GRExprEngine::VisitBinaryOperator(BinaryOperator* B,
GRExprEngine::NodeTy* Pred,
GRExprEngine::NodeSet& Dst) {
NodeSet S1;
if (B->isAssignmentOp())
VisitAssignmentLHS(B->getLHS(), Pred, S1);
else
Visit(B->getLHS(), Pred, S1);
for (NodeSet::iterator I1=S1.begin(), E1=S1.end(); I1 != E1; ++I1) {
NodeTy* N1 = *I1;
// When getting the value for the LHS, check if we are in an assignment.
// In such cases, we want to (initially) treat the LHS as an LValue,
// so we use GetLValue instead of GetValue so that DeclRefExpr's are
// evaluated to LValueDecl's instead of to an NonLValue.
const RValue& V1 =
B->isAssignmentOp() ? GetLValue(N1->getState(), B->getLHS())
: GetValue(N1->getState(), B->getLHS());
NodeSet S2;
Visit(B->getRHS(), N1, S2);
for (NodeSet::iterator I2=S2.begin(), E2=S2.end(); I2 != E2; ++I2) {
NodeTy* N2 = *I2;
StateTy St = N2->getState();
const RValue& V2 = GetValue(St, B->getRHS());
BinaryOperator::Opcode Op = B->getOpcode();
if (Op <= BinaryOperator::Or) {
if (isa<UnknownVal>(V1) || isa<UninitializedVal>(V1)) {
Nodify(Dst, B, N2, SetValue(St, B, V1));
continue;
}
Nodify(Dst, B, N2, SetValue(St, B, EvalBinaryOp(Op, V1, V2)));
continue;
}
switch (Op) {
case BinaryOperator::Assign: {
const LValue& L1 = cast<LValue>(V1);
if (isa<UninitializedVal>(L1))
HandleUninitializedStore(B, N2);
else
Nodify(Dst, B, N2, SetValue(SetValue(St, B, V2), L1, V2));
break;
}
default: { // Compound assignment operators.
assert (B->isCompoundAssignmentOp());
const LValue& L1 = cast<LValue>(V1);
if (isa<UninitializedVal>(L1)) {
HandleUninitializedStore(B, N2);
break;
}
if (isa<UninitializedVal>(V2)) {
Nodify(Dst, B, N2, SetValue(SetValue(St, B, V2), L1, V2));
break;
}
RValue Result = cast<NonLValue>(UnknownVal());
if (Op >= BinaryOperator::AndAssign)
((int&) Op) -= (BinaryOperator::AndAssign - BinaryOperator::And);
else
((int&) Op) -= BinaryOperator::MulAssign;
if (B->getType()->isPointerType()) { // Perform pointer arithmetic.
const NonLValue& R2 = cast<NonLValue>(V2);
Result = EvalBinaryOp(Op, L1, R2);
}
else if (isa<LValue>(V2)) {
const LValue& L2 = cast<LValue>(V2);
if (B->getRHS()->getType()->isPointerType()) {
// LValue comparison.
Result = EvalBinaryOp(Op, L1, L2);
}
else {
QualType T1 = B->getLHS()->getType();
QualType T2 = B->getRHS()->getType();
// An operation between two variables of a non-lvalue type.
Result =
EvalBinaryOp(Op,
cast<NonLValue>(GetValue(N1->getState(), L1, &T1)),
cast<NonLValue>(GetValue(N2->getState(), L2, &T2)));
}
}
else { // Any other operation between two Non-LValues.
QualType T = B->getLHS()->getType();
const NonLValue& R1 = cast<NonLValue>(GetValue(N1->getState(),
L1, &T));
const NonLValue& R2 = cast<NonLValue>(V2);
Result = EvalBinaryOp(Op, R1, R2);
}
Nodify(Dst, B, N2, SetValue(SetValue(St, B, Result), L1, Result));
break;
}
}
}
}
}
void GRExprEngine::HandleUninitializedStore(Stmt* S, NodeTy* Pred) {
NodeTy* N = Builder->generateNode(S, Pred->getState(), Pred);
N->markAsSink();
UninitStores.insert(N);
}
void GRExprEngine::Visit(Stmt* S, NodeTy* Pred, NodeSet& Dst) {
// FIXME: add metadata to the CFG so that we can disable
// this check when we KNOW that there is no block-level subexpression.
// The motivation is that this check requires a hashtable lookup.
if (S != CurrentStmt && getCFG().isBlkExpr(S)) {
Dst.Add(Pred);
return;
}
switch (S->getStmtClass()) {
default:
// Cases we intentionally have "default" handle:
// AddrLabelExpr
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
break;
case Stmt::BinaryOperatorClass: {
BinaryOperator* B = cast<BinaryOperator>(S);
if (B->isLogicalOp()) {
VisitLogicalExpr(B, Pred, Dst);
break;
}
else if (B->getOpcode() == BinaryOperator::Comma) {
StateTy St = Pred->getState();
Nodify(Dst, B, Pred, SetValue(St, B, GetValue(St, B->getRHS())));
break;
}
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
}
case Stmt::CallExprClass: {
CallExpr* C = cast<CallExpr>(S);
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst);
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
// While explicitly creating a node+state for visiting a CharacterLiteral
// seems wasteful, it also solves a bunch of problems when handling
// the ?, &&, and ||.
case Stmt::CharacterLiteralClass: {
CharacterLiteral* C = cast<CharacterLiteral>(S);
StateTy St = Pred->getState();
NonLValue X = NonLValue::GetValue(ValMgr, C->getValue(), C->getType(),
C->getLoc());
Nodify(Dst, C, Pred, SetValue(St, C, X));
break;
}
case Stmt::ChooseExprClass: { // __builtin_choose_expr
ChooseExpr* C = cast<ChooseExpr>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::CompoundAssignOperatorClass:
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
break;
case Stmt::ConditionalOperatorClass: { // '?' operator
ConditionalOperator* C = cast<ConditionalOperator>(S);
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
break;
}
case Stmt::DeclRefExprClass:
VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst);
break;
case Stmt::DeclStmtClass:
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
break;
// While explicitly creating a node+state for visiting an IntegerLiteral
// seems wasteful, it also solves a bunch of problems when handling
// the ?, &&, and ||.
case Stmt::IntegerLiteralClass: {
StateTy St = Pred->getState();
IntegerLiteral* I = cast<IntegerLiteral>(S);
NonLValue X = NonLValue::GetValue(ValMgr, I);
Nodify(Dst, I, Pred, SetValue(St, I, X));
break;
}
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
VisitCast(C, C->getSubExpr(), Pred, Dst);
break;
}
case Stmt::ParenExprClass:
Visit(cast<ParenExpr>(S)->getSubExpr(), Pred, Dst);
break;
case Stmt::SizeOfAlignOfTypeExprClass:
VisitSizeOfAlignOfTypeExpr(cast<SizeOfAlignOfTypeExpr>(S), Pred, Dst);
break;
case Stmt::StmtExprClass: {
StmtExpr* SE = cast<StmtExpr>(S);
StateTy St = Pred->getState();
Expr* LastExpr = cast<Expr>(*SE->getSubStmt()->body_rbegin());
Nodify(Dst, SE, Pred, SetValue(St, SE, GetValue(St, LastExpr)));
break;
}
case Stmt::ReturnStmtClass: {
if (Expr* R = cast<ReturnStmt>(S)->getRetValue())
Visit(R, Pred, Dst);
else
Dst.Add(Pred);
break;
}
case Stmt::UnaryOperatorClass:
VisitUnaryOperator(cast<UnaryOperator>(S), Pred, Dst);
break;
}
}
//===----------------------------------------------------------------------===//
// "Assume" logic.
//===----------------------------------------------------------------------===//
GRExprEngine::StateTy GRExprEngine::Assume(StateTy St, LValue Cond,
bool Assumption,
bool& isFeasible) {
assert (!isa<UninitializedVal>(Cond));
if (isa<UnknownVal>(Cond)) {
isFeasible = true;
return St;
}
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this LValue.");
return St;
case lval::SymbolValKind:
if (Assumption)
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
ValMgr.getZeroWithPtrWidth(), isFeasible);
else
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
ValMgr.getZeroWithPtrWidth(), isFeasible);
case lval::DeclValKind:
isFeasible = Assumption;
return St;
case lval::ConcreteIntKind: {
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
GRExprEngine::StateTy GRExprEngine::Assume(StateTy St, NonLValue Cond,
bool Assumption,
bool& isFeasible) {
assert (!isa<UninitializedVal>(Cond));
if (isa<UnknownVal>(Cond)) {
isFeasible = true;
return St;
}
switch (Cond.getSubKind()) {
default:
assert (false && "'Assume' not implemented for this NonLValue.");
return St;
case nonlval::SymbolValKind: {
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
SymbolID sym = SV.getSymbol();
if (Assumption)
return AssumeSymNE(St, sym, ValMgr.getValue(0, SymMgr.getType(sym)),
isFeasible);
else
return AssumeSymEQ(St, sym, ValMgr.getValue(0, SymMgr.getType(sym)),
isFeasible);
}
case nonlval::SymIntConstraintValKind:
return
AssumeSymInt(St, Assumption,
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
isFeasible);
case nonlval::ConcreteIntKind: {
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
isFeasible = b ? Assumption : !Assumption;
return St;
}
}
}
GRExprEngine::StateTy
GRExprEngine::AssumeSymNE(StateTy St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St.getSymVal(sym)) {
isFeasible = *X != V;
return St;
}
// Second, determine if sym != V.
if (St.isNotEqual(sym, V)) {
isFeasible = true;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is != V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddNE(St, sym, V);
}
GRExprEngine::StateTy
GRExprEngine::AssumeSymEQ(StateTy St, SymbolID sym,
const llvm::APSInt& V, bool& isFeasible) {
// First, determine if sym == X, where X != V.
if (const llvm::APSInt* X = St.getSymVal(sym)) {
isFeasible = *X == V;
return St;
}
// Second, determine if sym != V.
if (St.isNotEqual(sym, V)) {
isFeasible = false;
return St;
}
// If we reach here, sym is not a constant and we don't know if it is == V.
// Make that assumption.
isFeasible = true;
return StateMgr.AddEQ(St, sym, V);
}
GRExprEngine::StateTy
GRExprEngine::AssumeSymInt(StateTy St, bool Assumption,
const SymIntConstraint& C, bool& isFeasible) {
switch (C.getOpcode()) {
default:
// No logic yet for other operators.
return St;
case BinaryOperator::EQ:
if (Assumption)
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
case BinaryOperator::NE:
if (Assumption)
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
else
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
}
}
//===----------------------------------------------------------------------===//
// Visualization.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static GRExprEngine* GraphPrintCheckerState;
namespace llvm {
template<>
struct VISIBILITY_HIDDEN DOTGraphTraits<GRExprEngine::NodeTy*> :
public DefaultDOTGraphTraits {
static void PrintVarBindings(std::ostream& Out, GRExprEngine::StateTy St) {
Out << "Variables:\\l";
bool isFirst = true;
for (GRExprEngine::StateTy::vb_iterator I=St.vb_begin(),
E=St.vb_end(); I!=E;++I) {
if (isFirst)
isFirst = false;
else
Out << "\\l";
Out << ' ' << I.getKey()->getName() << " : ";
I.getData().print(Out);
}
}
static void PrintSubExprBindings(std::ostream& Out, GRExprEngine::StateTy St){
bool isFirst = true;
for (GRExprEngine::StateTy::seb_iterator I=St.seb_begin(), E=St.seb_end();
I != E;++I) {
if (isFirst) {
Out << "\\l\\lSub-Expressions:\\l";
isFirst = false;
}
else
Out << "\\l";
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
}
static void PrintBlkExprBindings(std::ostream& Out, GRExprEngine::StateTy St){
bool isFirst = true;
for (GRExprEngine::StateTy::beb_iterator I=St.beb_begin(), E=St.beb_end();
I != E; ++I) {
if (isFirst) {
Out << "\\l\\lBlock-level Expressions:\\l";
isFirst = false;
}
else
Out << "\\l";
Out << " (" << (void*) I.getKey() << ") ";
I.getKey()->printPretty(Out);
Out << " : ";
I.getData().print(Out);
}
}
static void PrintEQ(std::ostream& Out, GRExprEngine::StateTy St) {
ValueState::ConstantEqTy CE = St.getImpl()->ConstantEq;
if (CE.isEmpty())
return;
Out << "\\l\\|'==' constraints:";
for (ValueState::ConstantEqTy::iterator I=CE.begin(), E=CE.end(); I!=E;++I)
Out << "\\l $" << I.getKey() << " : " << I.getData()->toString();
}
static void PrintNE(std::ostream& Out, GRExprEngine::StateTy St) {
ValueState::ConstantNotEqTy NE = St.getImpl()->ConstantNotEq;
if (NE.isEmpty())
return;
Out << "\\l\\|'!=' constraints:";
for (ValueState::ConstantNotEqTy::iterator I=NE.begin(), EI=NE.end();
I != EI; ++I){
Out << "\\l $" << I.getKey() << " : ";
bool isFirst = true;
ValueState::IntSetTy::iterator J=I.getData().begin(),
EJ=I.getData().end();
for ( ; J != EJ; ++J) {
if (isFirst) isFirst = false;
else Out << ", ";
Out << (*J)->toString();
}
}
}
static std::string getNodeAttributes(const GRExprEngine::NodeTy* N, void*) {
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
GraphPrintCheckerState->isExplicitNullDeref(N) ||
GraphPrintCheckerState->isUninitDeref(N) ||
GraphPrintCheckerState->isUninitStore(N) ||
GraphPrintCheckerState->isUninitControlFlow(N))
return "color=\"red\",style=\"filled\"";
return "";
}
static std::string getNodeLabel(const GRExprEngine::NodeTy* N, void*) {
std::ostringstream Out;
// Program Location.
ProgramPoint Loc = N->getLocation();
switch (Loc.getKind()) {
case ProgramPoint::BlockEntranceKind:
Out << "Block Entrance: B"
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
break;
case ProgramPoint::BlockExitKind:
assert (false);
break;
case ProgramPoint::PostStmtKind: {
const PostStmt& L = cast<PostStmt>(Loc);
Out << L.getStmt()->getStmtClassName() << ':'
<< (void*) L.getStmt() << ' ';
L.getStmt()->printPretty(Out);
if (GraphPrintCheckerState->isImplicitNullDeref(N)) {
Out << "\\|Implicit-Null Dereference.\\l";
}
else if (GraphPrintCheckerState->isExplicitNullDeref(N)) {
Out << "\\|Explicit-Null Dereference.\\l";
}
else if (GraphPrintCheckerState->isUninitDeref(N)) {
Out << "\\|Dereference of uninitialied value.\\l";
}
else if (GraphPrintCheckerState->isUninitStore(N)) {
Out << "\\|Store to Uninitialized LValue.";
}
break;
}
default: {
const BlockEdge& E = cast<BlockEdge>(Loc);
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
<< E.getDst()->getBlockID() << ')';
if (Stmt* T = E.getSrc()->getTerminator()) {
Out << "\\|Terminator: ";
E.getSrc()->printTerminator(Out);
if (isa<SwitchStmt>(T)) {
Stmt* Label = E.getDst()->getLabel();
if (Label) {
if (CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
Out << "\\lcase ";
C->getLHS()->printPretty(Out);
if (Stmt* RHS = C->getRHS()) {
Out << " .. ";
RHS->printPretty(Out);
}
Out << ":";
}
else {
assert (isa<DefaultStmt>(Label));
Out << "\\ldefault:";
}
}
else
Out << "\\l(implicit) default:";
}
else if (isa<IndirectGotoStmt>(T)) {
// FIXME
}
else {
Out << "\\lCondition: ";
if (*E.getSrc()->succ_begin() == E.getDst())
Out << "true";
else
Out << "false";
}
Out << "\\l";
}
if (GraphPrintCheckerState->isUninitControlFlow(N)) {
Out << "\\|Control-flow based on\\lUninitialized value.\\l";
}
}
}
Out << "\\|StateID: " << (void*) N->getState().getImpl() << "\\|";
N->getState().printDOT(Out);
Out << "\\l";
return Out.str();
}
};
} // end llvm namespace
#endif
void GRExprEngine::ViewGraph() {
#ifndef NDEBUG
GraphPrintCheckerState = this;
llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
GraphPrintCheckerState = NULL;
#endif
}