blob: 3a341561f88678cb16061e5342a4b5265d538a7f [file] [log] [blame]
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/AnalysisBasedWarnings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Designator.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Template.h"
using namespace clang;
using namespace sema;
/// \brief Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// If IgnoreDeprecated is set to true, this should not warn about deprecated
/// decls.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
///
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
bool UnknownObjCClass) {
if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
// If there were any diagnostics suppressed by template argument deduction,
// emit them now.
llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
if (Pos != SuppressedDiagnostics.end()) {
llvm::SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
Diag(Suppressed[I].first, Suppressed[I].second);
// Clear out the list of suppressed diagnostics, so that we don't emit
// them again for this specialization. However, we don't remove this
// entry from the table, because we want to avoid ever emitting these
// diagnostics again.
Suppressed.clear();
}
}
// See if the decl is deprecated.
if (const DeprecatedAttr *DA = D->getAttr<DeprecatedAttr>())
EmitDeprecationWarning(D, DA->getMessage(), Loc, UnknownObjCClass);
// See if the decl is unavailable
if (const UnavailableAttr *UA = D->getAttr<UnavailableAttr>()) {
if (UA->getMessage().empty()) {
if (!UnknownObjCClass)
Diag(Loc, diag::err_unavailable) << D->getDeclName();
else
Diag(Loc, diag::warn_unavailable_fwdclass_message)
<< D->getDeclName();
}
else
Diag(Loc, diag::err_unavailable_message)
<< D->getDeclName() << UA->getMessage();
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
}
// See if this is a deleted function.
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isDeleted()) {
Diag(Loc, diag::err_deleted_function_use);
Diag(D->getLocation(), diag::note_unavailable_here) << true;
return true;
}
}
// Warn if this is used but marked unused.
if (D->hasAttr<UnusedAttr>())
Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
return false;
}
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
/// (and other functions in future), which have been declared with sentinel
/// attribute. It warns if call does not have the sentinel argument.
///
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs) {
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
// FIXME: In C++0x, if any of the arguments are parameter pack
// expansions, we can't check for the sentinel now.
int sentinelPos = attr->getSentinel();
int nullPos = attr->getNullPos();
// FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
// base class. Then we won't be needing two versions of the same code.
unsigned int i = 0;
bool warnNotEnoughArgs = false;
int isMethod = 0;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = MD->param_end();
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
isMethod = 1;
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = FD->param_end();
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
} else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
// block or function pointer call.
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? Ty->getAs<PointerType>()->getPointeeType()->getAs<FunctionType>()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned k;
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
}
if (Ty->isBlockPointerType())
isMethod = 2;
} else
return;
} else
return;
if (warnNotEnoughArgs) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
int sentinel = i;
while (sentinelPos > 0 && i < NumArgs-1) {
--sentinelPos;
++i;
}
if (sentinelPos > 0) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
while (i < NumArgs-1) {
++i;
++sentinel;
}
Expr *sentinelExpr = Args[sentinel];
if (!sentinelExpr) return;
if (sentinelExpr->isTypeDependent()) return;
if (sentinelExpr->isValueDependent()) return;
// nullptr_t is always treated as null.
if (sentinelExpr->getType()->isNullPtrType()) return;
if (sentinelExpr->getType()->isAnyPointerType() &&
sentinelExpr->IgnoreParenCasts()->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull))
return;
// Unfortunately, __null has type 'int'.
if (isa<GNUNullExpr>(sentinelExpr)) return;
Diag(Loc, diag::warn_missing_sentinel) << isMethod;
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
}
SourceRange Sema::getExprRange(ExprTy *E) const {
Expr *Ex = (Expr *)E;
return Ex? Ex->getSourceRange() : SourceRange();
}
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
if (Ty->isFunctionType())
ImpCastExprToType(E, Context.getPointerType(Ty),
CK_FunctionToPointerDecay);
else if (Ty->isArrayType()) {
// In C90 mode, arrays only promote to pointers if the array expression is
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
// type 'array of type' is converted to an expression that has type 'pointer
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
// that has type 'array of type' ...". The relevant change is "an lvalue"
// (C90) to "an expression" (C99).
//
// C++ 4.2p1:
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
CK_ArrayToPointerDecay);
}
}
void Sema::DefaultLvalueConversion(Expr *&E) {
// C++ [conv.lval]p1:
// A glvalue of a non-function, non-array type T can be
// converted to a prvalue.
if (!E->isGLValue()) return;
QualType T = E->getType();
assert(!T.isNull() && "r-value conversion on typeless expression?");
// Create a load out of an ObjCProperty l-value, if necessary.
if (E->getObjectKind() == OK_ObjCProperty) {
ConvertPropertyForRValue(E);
if (!E->isGLValue())
return;
}
// We don't want to throw lvalue-to-rvalue casts on top of
// expressions of certain types in C++.
if (getLangOptions().CPlusPlus &&
(E->getType() == Context.OverloadTy ||
T->isDependentType() ||
T->isRecordType()))
return;
// The C standard is actually really unclear on this point, and
// DR106 tells us what the result should be but not why. It's
// generally best to say that void types just doesn't undergo
// lvalue-to-rvalue at all. Note that expressions of unqualified
// 'void' type are never l-values, but qualified void can be.
if (T->isVoidType())
return;
// C++ [conv.lval]p1:
// [...] If T is a non-class type, the type of the prvalue is the
// cv-unqualified version of T. Otherwise, the type of the
// rvalue is T.
//
// C99 6.3.2.1p2:
// If the lvalue has qualified type, the value has the unqualified
// version of the type of the lvalue; otherwise, the value has the
// type of the lvalue.
if (T.hasQualifiers())
T = T.getUnqualifiedType();
E = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
E, 0, VK_RValue);
}
void Sema::DefaultFunctionArrayLvalueConversion(Expr *&E) {
DefaultFunctionArrayConversion(E);
DefaultLvalueConversion(E);
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&E) {
// First, convert to an r-value.
DefaultFunctionArrayLvalueConversion(E);
QualType Ty = E->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
// Try to perform integral promotions if the object has a theoretically
// promotable type.
if (Ty->isIntegralOrUnscopedEnumerationType()) {
// C99 6.3.1.1p2:
//
// The following may be used in an expression wherever an int or
// unsigned int may be used:
// - an object or expression with an integer type whose integer
// conversion rank is less than or equal to the rank of int
// and unsigned int.
// - A bit-field of type _Bool, int, signed int, or unsigned int.
//
// If an int can represent all values of the original type, the
// value is converted to an int; otherwise, it is converted to an
// unsigned int. These are called the integer promotions. All
// other types are unchanged by the integer promotions.
QualType PTy = Context.isPromotableBitField(E);
if (!PTy.isNull()) {
ImpCastExprToType(E, PTy, CK_IntegralCast);
return E;
}
if (Ty->isPromotableIntegerType()) {
QualType PT = Context.getPromotedIntegerType(Ty);
ImpCastExprToType(E, PT, CK_IntegralCast);
return E;
}
}
return E;
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
UsualUnaryConversions(Expr);
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (Ty->isSpecificBuiltinType(BuiltinType::Float))
return ImpCastExprToType(Expr, Context.DoubleTy, CK_FloatingCast);
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will warn if the resulting type is not a POD type, and rejects ObjC
/// interfaces passed by value. This returns true if the argument type is
/// completely illegal.
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT,
FunctionDecl *FDecl) {
DefaultArgumentPromotion(Expr);
// __builtin_va_start takes the second argument as a "varargs" argument, but
// it doesn't actually do anything with it. It doesn't need to be non-pod
// etc.
if (FDecl && FDecl->getBuiltinID() == Builtin::BI__builtin_va_start)
return false;
if (Expr->getType()->isObjCObjectType() &&
DiagRuntimeBehavior(Expr->getLocStart(),
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
<< Expr->getType() << CT))
return true;
if (!Expr->getType()->isPODType() &&
DiagRuntimeBehavior(Expr->getLocStart(),
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< Expr->getType() << CT))
return true;
return false;
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
bool isCompAssign) {
if (!isCompAssign)
UsualUnaryConversions(lhsExpr);
UsualUnaryConversions(rhsExpr);
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhs =
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
QualType rhs =
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// Apply unary and bitfield promotions to the LHS's type.
QualType lhs_unpromoted = lhs;
if (lhs->isPromotableIntegerType())
lhs = Context.getPromotedIntegerType(lhs);
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(lhsExpr);
if (!LHSBitfieldPromoteTy.isNull())
lhs = LHSBitfieldPromoteTy;
if (lhs != lhs_unpromoted && !isCompAssign)
ImpCastExprToType(lhsExpr, lhs, CK_IntegralCast);
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
bool LHSComplexFloat = lhs->isComplexType();
bool RHSComplexFloat = rhs->isComplexType();
if (LHSComplexFloat || RHSComplexFloat) {
// if we have an integer operand, the result is the complex type.
if (!RHSComplexFloat && !rhs->isRealFloatingType()) {
if (rhs->isIntegerType()) {
QualType fp = cast<ComplexType>(lhs)->getElementType();
ImpCastExprToType(rhsExpr, fp, CK_IntegralToFloating);
ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
} else {
assert(rhs->isComplexIntegerType());
ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexToFloatingComplex);
}
return lhs;
}
if (!LHSComplexFloat && !lhs->isRealFloatingType()) {
if (!isCompAssign) {
// int -> float -> _Complex float
if (lhs->isIntegerType()) {
QualType fp = cast<ComplexType>(rhs)->getElementType();
ImpCastExprToType(lhsExpr, fp, CK_IntegralToFloating);
ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
} else {
assert(lhs->isComplexIntegerType());
ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexToFloatingComplex);
}
}
return rhs;
}
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
int order = Context.getFloatingTypeOrder(lhs, rhs);
// If both are complex, just cast to the more precise type.
if (LHSComplexFloat && RHSComplexFloat) {
if (order > 0) {
// _Complex float -> _Complex double
ImpCastExprToType(rhsExpr, lhs, CK_FloatingComplexCast);
return lhs;
} else if (order < 0) {
// _Complex float -> _Complex double
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_FloatingComplexCast);
return rhs;
}
return lhs;
}
// If just the LHS is complex, the RHS needs to be converted,
// and the LHS might need to be promoted.
if (LHSComplexFloat) {
if (order > 0) { // LHS is wider
// float -> _Complex double
QualType fp = cast<ComplexType>(lhs)->getElementType();
ImpCastExprToType(rhsExpr, fp, CK_FloatingCast);
ImpCastExprToType(rhsExpr, lhs, CK_FloatingRealToComplex);
return lhs;
}
// RHS is at least as wide. Find its corresponding complex type.
QualType result = (order == 0 ? lhs : Context.getComplexType(rhs));
// double -> _Complex double
ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
// _Complex float -> _Complex double
if (!isCompAssign && order < 0)
ImpCastExprToType(lhsExpr, result, CK_FloatingComplexCast);
return result;
}
// Just the RHS is complex, so the LHS needs to be converted
// and the RHS might need to be promoted.
assert(RHSComplexFloat);
if (order < 0) { // RHS is wider
// float -> _Complex double
if (!isCompAssign) {
QualType fp = cast<ComplexType>(rhs)->getElementType();
ImpCastExprToType(lhsExpr, fp, CK_FloatingCast);
ImpCastExprToType(lhsExpr, rhs, CK_FloatingRealToComplex);
}
return rhs;
}
// LHS is at least as wide. Find its corresponding complex type.
QualType result = (order == 0 ? rhs : Context.getComplexType(lhs));
// double -> _Complex double
if (!isCompAssign)
ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
// _Complex float -> _Complex double
if (order > 0)
ImpCastExprToType(rhsExpr, result, CK_FloatingComplexCast);
return result;
}
// Now handle "real" floating types (i.e. float, double, long double).
bool LHSFloat = lhs->isRealFloatingType();
bool RHSFloat = rhs->isRealFloatingType();
if (LHSFloat || RHSFloat) {
// If we have two real floating types, convert the smaller operand
// to the bigger result.
if (LHSFloat && RHSFloat) {
int order = Context.getFloatingTypeOrder(lhs, rhs);
if (order > 0) {
ImpCastExprToType(rhsExpr, lhs, CK_FloatingCast);
return lhs;
}
assert(order < 0 && "illegal float comparison");
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_FloatingCast);
return rhs;
}
// If we have an integer operand, the result is the real floating type.
if (LHSFloat) {
if (rhs->isIntegerType()) {
// Convert rhs to the lhs floating point type.
ImpCastExprToType(rhsExpr, lhs, CK_IntegralToFloating);
return lhs;
}
// Convert both sides to the appropriate complex float.
assert(rhs->isComplexIntegerType());
QualType result = Context.getComplexType(lhs);
// _Complex int -> _Complex float
ImpCastExprToType(rhsExpr, result, CK_IntegralComplexToFloatingComplex);
// float -> _Complex float
if (!isCompAssign)
ImpCastExprToType(lhsExpr, result, CK_FloatingRealToComplex);
return result;
}
assert(RHSFloat);
if (lhs->isIntegerType()) {
// Convert lhs to the rhs floating point type.
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_IntegralToFloating);
return rhs;
}
// Convert both sides to the appropriate complex float.
assert(lhs->isComplexIntegerType());
QualType result = Context.getComplexType(rhs);
// _Complex int -> _Complex float
if (!isCompAssign)
ImpCastExprToType(lhsExpr, result, CK_IntegralComplexToFloatingComplex);
// float -> _Complex float
ImpCastExprToType(rhsExpr, result, CK_FloatingRealToComplex);
return result;
}
// Handle GCC complex int extension.
// FIXME: if the operands are (int, _Complex long), we currently
// don't promote the complex. Also, signedness?
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
if (lhsComplexInt && rhsComplexInt) {
int order = Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
rhsComplexInt->getElementType());
assert(order && "inequal types with equal element ordering");
if (order > 0) {
// _Complex int -> _Complex long
ImpCastExprToType(rhsExpr, lhs, CK_IntegralComplexCast);
return lhs;
}
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_IntegralComplexCast);
return rhs;
} else if (lhsComplexInt) {
// int -> _Complex int
ImpCastExprToType(rhsExpr, lhs, CK_IntegralRealToComplex);
return lhs;
} else if (rhsComplexInt) {
// int -> _Complex int
if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_IntegralRealToComplex);
return rhs;
}
// Finally, we have two differing integer types.
// The rules for this case are in C99 6.3.1.8
int compare = Context.getIntegerTypeOrder(lhs, rhs);
bool lhsSigned = lhs->hasSignedIntegerRepresentation(),
rhsSigned = rhs->hasSignedIntegerRepresentation();
if (lhsSigned == rhsSigned) {
// Same signedness; use the higher-ranked type
if (compare >= 0) {
ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
return lhs;
} else if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
return rhs;
} else if (compare != (lhsSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
if (rhsSigned) {
ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
return lhs;
} else if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
return rhs;
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
if (lhsSigned) {
ImpCastExprToType(rhsExpr, lhs, CK_IntegralCast);
return lhs;
} else if (!isCompAssign)
ImpCastExprToType(lhsExpr, rhs, CK_IntegralCast);
return rhs;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
QualType result =
Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
ImpCastExprToType(rhsExpr, result, CK_IntegralCast);
if (!isCompAssign)
ImpCastExprToType(lhsExpr, result, CK_IntegralCast);
return result;
}
}
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
ExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
assert(NumStringToks && "Must have at least one string!");
StringLiteralParser Literal(StringToks, NumStringToks, PP);
if (Literal.hadError)
return ExprError();
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
QualType StrTy = Context.CharTy;
if (Literal.AnyWide) StrTy = Context.getWCharType();
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
StrTy.addConst();
// Get an array type for the string, according to C99 6.4.5. This includes
// the nul terminator character as well as the string length for pascal
// strings.
StrTy = Context.getConstantArrayType(StrTy,
llvm::APInt(32, Literal.GetNumStringChars()+1),
ArrayType::Normal, 0);
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return Owned(StringLiteral::Create(Context, Literal.GetString(),
Literal.GetStringLength(),
Literal.AnyWide, StrTy,
&StringTokLocs[0],
StringTokLocs.size()));
}
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
/// variables defined outside the block) or false if this is not needed (e.g.
/// for values inside the block or for globals).
///
/// This also keeps the 'hasBlockDeclRefExprs' in the BlockScopeInfo records
/// up-to-date.
///
static bool ShouldSnapshotBlockValueReference(Sema &S, BlockScopeInfo *CurBlock,
ValueDecl *VD) {
// If the value is defined inside the block, we couldn't snapshot it even if
// we wanted to.
if (CurBlock->TheDecl == VD->getDeclContext())
return false;
// If this is an enum constant or function, it is constant, don't snapshot.
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
return false;
// If this is a reference to an extern, static, or global variable, no need to
// snapshot it.
// FIXME: What about 'const' variables in C++?
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
if (!Var->hasLocalStorage())
return false;
// Blocks that have these can't be constant.
CurBlock->hasBlockDeclRefExprs = true;
// If we have nested blocks, the decl may be declared in an outer block (in
// which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
// be defined outside all of the current blocks (in which case the blocks do
// all get the bit). Walk the nesting chain.
for (unsigned I = S.FunctionScopes.size() - 1; I; --I) {
BlockScopeInfo *NextBlock = dyn_cast<BlockScopeInfo>(S.FunctionScopes[I]);
if (!NextBlock)
continue;
// If we found the defining block for the variable, don't mark the block as
// having a reference outside it.
if (NextBlock->TheDecl == VD->getDeclContext())
break;
// Otherwise, the DeclRef from the inner block causes the outer one to need
// a snapshot as well.
NextBlock->hasBlockDeclRefExprs = true;
}
return true;
}
ExprResult
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
SourceLocation Loc, const CXXScopeSpec *SS) {
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
}
/// BuildDeclRefExpr - Build a DeclRefExpr.
ExprResult
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty,
ExprValueKind VK,
const DeclarationNameInfo &NameInfo,
const CXXScopeSpec *SS) {
if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
Diag(NameInfo.getLoc(),
diag::err_auto_variable_cannot_appear_in_own_initializer)
<< D->getDeclName();
return ExprError();
}
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (isa<NonTypeTemplateParmDecl>(VD)) {
// Non-type template parameters can be referenced anywhere they are
// visible.
Ty = Ty.getNonLValueExprType(Context);
} else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
Diag(NameInfo.getLoc(),
diag::err_reference_to_local_var_in_enclosing_function)
<< D->getIdentifier() << FD->getDeclName();
Diag(D->getLocation(), diag::note_local_variable_declared_here)
<< D->getIdentifier();
return ExprError();
}
}
// This ridiculousness brought to you by 'extern void x;' and the
// GNU compiler collection.
} else if (!getLangOptions().CPlusPlus && !Ty.hasQualifiers() &&
Ty->isVoidType()) {
VK = VK_RValue;
}
}
MarkDeclarationReferenced(NameInfo.getLoc(), D);
Expr *E = DeclRefExpr::Create(Context,
SS? (NestedNameSpecifier *)SS->getScopeRep() : 0,
SS? SS->getRange() : SourceRange(),
D, NameInfo, Ty, VK);
// Just in case we're building an illegal pointer-to-member.
if (isa<FieldDecl>(D) && cast<FieldDecl>(D)->getBitWidth())
E->setObjectKind(OK_BitField);
return Owned(E);
}
static ExprResult
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
const CXXScopeSpec &SS, FieldDecl *Field,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo);
ExprResult
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
const CXXScopeSpec &SS,
IndirectFieldDecl *IndirectField,
Expr *BaseObjectExpr,
SourceLocation OpLoc) {
// Build the expression that refers to the base object, from
// which we will build a sequence of member references to each
// of the anonymous union objects and, eventually, the field we
// found via name lookup.
bool BaseObjectIsPointer = false;
Qualifiers BaseQuals;
VarDecl *BaseObject = IndirectField->getVarDecl();
if (BaseObject) {
// BaseObject is an anonymous struct/union variable (and is,
// therefore, not part of another non-anonymous record).
MarkDeclarationReferenced(Loc, BaseObject);
BaseObjectExpr =
new (Context) DeclRefExpr(BaseObject, BaseObject->getType(),
VK_LValue, Loc);
BaseQuals
= Context.getCanonicalType(BaseObject->getType()).getQualifiers();
} else if (BaseObjectExpr) {
// The caller provided the base object expression. Determine
// whether its a pointer and whether it adds any qualifiers to the
// anonymous struct/union fields we're looking into.
QualType ObjectType = BaseObjectExpr->getType();
if (const PointerType *ObjectPtr = ObjectType->getAs<PointerType>()) {
BaseObjectIsPointer = true;
ObjectType = ObjectPtr->getPointeeType();
}
BaseQuals
= Context.getCanonicalType(ObjectType).getQualifiers();
} else {
// We've found a member of an anonymous struct/union that is
// inside a non-anonymous struct/union, so in a well-formed
// program our base object expression is "this".
DeclContext *DC = getFunctionLevelDeclContext();
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
if (!MD->isStatic()) {
QualType AnonFieldType
= Context.getTagDeclType(
cast<RecordDecl>(
(*IndirectField->chain_begin())->getDeclContext()));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(AnonFieldType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, AnonFieldType)) {
// Our base object expression is "this".
BaseObjectExpr = new (Context) CXXThisExpr(Loc,
MD->getThisType(Context),
/*isImplicit=*/true);
BaseObjectIsPointer = true;
}
} else {
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
<< IndirectField->getDeclName());
}
BaseQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
}
if (!BaseObjectExpr) {
// The field is referenced for a pointer-to-member expression, e.g:
//
// struct S {
// union {
// char c;
// };
// };
// char S::*foo = &S::c;
//
FieldDecl *field = IndirectField->getAnonField();
DeclarationNameInfo NameInfo(field->getDeclName(), Loc);
return BuildDeclRefExpr(field, field->getType().getNonReferenceType(),
VK_LValue, NameInfo, &SS);
}
}
// Build the implicit member references to the field of the
// anonymous struct/union.
Expr *Result = BaseObjectExpr;
IndirectFieldDecl::chain_iterator FI = IndirectField->chain_begin(),
FEnd = IndirectField->chain_end();
// Skip the first VarDecl if present.
if (BaseObject)
FI++;
for (; FI != FEnd; FI++) {
FieldDecl *Field = cast<FieldDecl>(*FI);
// FIXME: these are somewhat meaningless
DeclarationNameInfo MemberNameInfo(Field->getDeclName(), Loc);
DeclAccessPair FoundDecl = DeclAccessPair::make(Field, Field->getAccess());
Result = BuildFieldReferenceExpr(*this, Result, BaseObjectIsPointer,
SS, Field, FoundDecl, MemberNameInfo)
.take();
// All the implicit accesses are dot-accesses.
BaseObjectIsPointer = false;
}
return Owned(Result);
}
/// Decomposes the given name into a DeclarationNameInfo, its location, and
/// possibly a list of template arguments.
///
/// If this produces template arguments, it is permitted to call
/// DecomposeTemplateName.
///
/// This actually loses a lot of source location information for
/// non-standard name kinds; we should consider preserving that in
/// some way.
static void DecomposeUnqualifiedId(Sema &SemaRef,
const UnqualifiedId &Id,
TemplateArgumentListInfo &Buffer,
DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *&TemplateArgs) {
if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
ASTTemplateArgsPtr TemplateArgsPtr(SemaRef,
Id.TemplateId->getTemplateArgs(),
Id.TemplateId->NumArgs);
SemaRef.translateTemplateArguments(TemplateArgsPtr, Buffer);
TemplateArgsPtr.release();
TemplateName TName = Id.TemplateId->Template.get();
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
NameInfo = SemaRef.Context.getNameForTemplate(TName, TNameLoc);
TemplateArgs = &Buffer;
} else {
NameInfo = SemaRef.GetNameFromUnqualifiedId(Id);
TemplateArgs = 0;
}
}
/// Determines whether the given record is "fully-formed" at the given
/// location, i.e. whether a qualified lookup into it is assured of
/// getting consistent results already.
static bool IsFullyFormedScope(Sema &SemaRef, CXXRecordDecl *Record) {
if (!Record->hasDefinition())
return false;
for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
E = Record->bases_end(); I != E; ++I) {
CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
if (!BaseRT) return false;
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
if (!BaseRecord->hasDefinition() ||
!IsFullyFormedScope(SemaRef, BaseRecord))
return false;
}
return true;
}
/// Determines if the given class is provably not derived from all of
/// the prospective base classes.
static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
CXXRecordDecl *Record,
const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
if (Bases.count(Record->getCanonicalDecl()))
return false;
RecordDecl *RD = Record->getDefinition();
if (!RD) return false;
Record = cast<CXXRecordDecl>(RD);
for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
E = Record->bases_end(); I != E; ++I) {
CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
if (!BaseRT) return false;
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
return false;
}
return true;
}
enum IMAKind {
/// The reference is definitely not an instance member access.
IMA_Static,
/// The reference may be an implicit instance member access.
IMA_Mixed,
/// The reference may be to an instance member, but it is invalid if
/// so, because the context is not an instance method.
IMA_Mixed_StaticContext,
/// The reference may be to an instance member, but it is invalid if
/// so, because the context is from an unrelated class.
IMA_Mixed_Unrelated,
/// The reference is definitely an implicit instance member access.
IMA_Instance,
/// The reference may be to an unresolved using declaration.
IMA_Unresolved,
/// The reference may be to an unresolved using declaration and the
/// context is not an instance method.
IMA_Unresolved_StaticContext,
/// All possible referrents are instance members and the current
/// context is not an instance method.
IMA_Error_StaticContext,
/// All possible referrents are instance members of an unrelated
/// class.
IMA_Error_Unrelated
};
/// The given lookup names class member(s) and is not being used for
/// an address-of-member expression. Classify the type of access
/// according to whether it's possible that this reference names an
/// instance member. This is best-effort; it is okay to
/// conservatively answer "yes", in which case some errors will simply
/// not be caught until template-instantiation.
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
const LookupResult &R) {
assert(!R.empty() && (*R.begin())->isCXXClassMember());
DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
bool isStaticContext =
(!isa<CXXMethodDecl>(DC) ||
cast<CXXMethodDecl>(DC)->isStatic());
if (R.isUnresolvableResult())
return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
// Collect all the declaring classes of instance members we find.
bool hasNonInstance = false;
bool hasField = false;
llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
NamedDecl *D = *I;
if (D->isCXXInstanceMember()) {
if (dyn_cast<FieldDecl>(D))
hasField = true;
CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
Classes.insert(R->getCanonicalDecl());
}
else
hasNonInstance = true;
}
// If we didn't find any instance members, it can't be an implicit
// member reference.
if (Classes.empty())
return IMA_Static;
// If the current context is not an instance method, it can't be
// an implicit member reference.
if (isStaticContext) {
if (hasNonInstance)
return IMA_Mixed_StaticContext;
if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
// C++0x [expr.prim.general]p10:
// An id-expression that denotes a non-static data member or non-static
// member function of a class can only be used:
// (...)
// - if that id-expression denotes a non-static data member and it appears in an unevaluated operand.
const Sema::ExpressionEvaluationContextRecord& record = SemaRef.ExprEvalContexts.back();
bool isUnevaluatedExpression = record.Context == Sema::Unevaluated;
if (isUnevaluatedExpression)
return IMA_Mixed_StaticContext;
}
return IMA_Error_StaticContext;
}
// If we can prove that the current context is unrelated to all the
// declaring classes, it can't be an implicit member reference (in
// which case it's an error if any of those members are selected).
if (IsProvablyNotDerivedFrom(SemaRef,
cast<CXXMethodDecl>(DC)->getParent(),
Classes))
return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
return (hasNonInstance ? IMA_Mixed : IMA_Instance);
}
/// Diagnose a reference to a field with no object available.
static void DiagnoseInstanceReference(Sema &SemaRef,
const CXXScopeSpec &SS,
const LookupResult &R) {
SourceLocation Loc = R.getNameLoc();
SourceRange Range(Loc);
if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
if (R.getAsSingle<FieldDecl>() || R.getAsSingle<IndirectFieldDecl>()) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
if (MD->isStatic()) {
// "invalid use of member 'x' in static member function"
SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
<< Range << R.getLookupName();
return;
}
}
SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
<< R.getLookupName() << Range;
return;
}
SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
}
/// Diagnose an empty lookup.
///
/// \return false if new lookup candidates were found
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
CorrectTypoContext CTC) {
DeclarationName Name = R.getLookupName();
unsigned diagnostic = diag::err_undeclared_var_use;
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
diagnostic = diag::err_undeclared_use;
diagnostic_suggest = diag::err_undeclared_use_suggest;
}
// If the original lookup was an unqualified lookup, fake an
// unqualified lookup. This is useful when (for example) the
// original lookup would not have found something because it was a
// dependent name.
for (DeclContext *DC = SS.isEmpty() ? CurContext : 0;
DC; DC = DC->getParent()) {
if (isa<CXXRecordDecl>(DC)) {
LookupQualifiedName(R, DC);
if (!R.empty()) {
// Don't give errors about ambiguities in this lookup.
R.suppressDiagnostics();
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
bool isInstance = CurMethod &&
CurMethod->isInstance() &&
DC == CurMethod->getParent();
// Give a code modification hint to insert 'this->'.
// TODO: fixit for inserting 'Base<T>::' in the other cases.
// Actually quite difficult!
if (isInstance) {
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
CallsUndergoingInstantiation.back()->getCallee());
CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
CurMethod->getInstantiatedFromMemberFunction());
if (DepMethod) {
Diag(R.getNameLoc(), diagnostic) << Name
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
QualType DepThisType = DepMethod->getThisType(Context);
CXXThisExpr *DepThis = new (Context) CXXThisExpr(
R.getNameLoc(), DepThisType, false);
TemplateArgumentListInfo TList;
if (ULE->hasExplicitTemplateArgs())
ULE->copyTemplateArgumentsInto(TList);
CXXDependentScopeMemberExpr *DepExpr =
CXXDependentScopeMemberExpr::Create(
Context, DepThis, DepThisType, true, SourceLocation(),
ULE->getQualifier(), ULE->getQualifierRange(), NULL,
R.getLookupNameInfo(), &TList);
CallsUndergoingInstantiation.back()->setCallee(DepExpr);
} else {
// FIXME: we should be able to handle this case too. It is correct
// to add this-> here. This is a workaround for PR7947.
Diag(R.getNameLoc(), diagnostic) << Name;
}
} else {
Diag(R.getNameLoc(), diagnostic) << Name;
}
// Do we really want to note all of these?
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
Diag((*I)->getLocation(), diag::note_dependent_var_use);
// Tell the callee to try to recover.
return false;
}
R.clear();
}
}
// We didn't find anything, so try to correct for a typo.
DeclarationName Corrected;
if (S && (Corrected = CorrectTypo(R, S, &SS, 0, false, CTC))) {
if (!R.empty()) {
if (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin())) {
if (SS.isEmpty())
Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName()
<< FixItHint::CreateReplacement(R.getNameLoc(),
R.getLookupName().getAsString());
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << R.getLookupName()
<< SS.getRange()
<< FixItHint::CreateReplacement(R.getNameLoc(),
R.getLookupName().getAsString());
if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
Diag(ND->getLocation(), diag::note_previous_decl)
<< ND->getDeclName();
// Tell the callee to try to recover.
return false;
}
if (isa<TypeDecl>(*R.begin()) || isa<ObjCInterfaceDecl>(*R.begin())) {
// FIXME: If we ended up with a typo for a type name or
// Objective-C class name, we're in trouble because the parser
// is in the wrong place to recover. Suggest the typo
// correction, but don't make it a fix-it since we're not going
// to recover well anyway.
if (SS.isEmpty())
Diag(R.getNameLoc(), diagnostic_suggest) << Name << R.getLookupName();
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << R.getLookupName()
<< SS.getRange();
// Don't try to recover; it won't work.
return true;
}
} else {
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it
// because we aren't able to recover.
if (SS.isEmpty())
Diag(R.getNameLoc(), diagnostic_suggest) << Name << Corrected;
else
Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << computeDeclContext(SS, false) << Corrected
<< SS.getRange();
return true;
}
R.clear();
}
// Emit a special diagnostic for failed member lookups.
// FIXME: computing the declaration context might fail here (?)
if (!SS.isEmpty()) {
Diag(R.getNameLoc(), diag::err_no_member)
<< Name << computeDeclContext(SS, false)
<< SS.getRange();
return true;
}
// Give up, we can't recover.
Diag(R.getNameLoc(), diagnostic) << Name;
return true;
}
ObjCPropertyDecl *Sema::canSynthesizeProvisionalIvar(IdentifierInfo *II) {
ObjCMethodDecl *CurMeth = getCurMethodDecl();
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return 0;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return 0;
ObjCPropertyDecl *property = LookupPropertyDecl(IDecl, II);
if (!property)
return 0;
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II))
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
PIDecl->getPropertyIvarDecl())
return 0;
return property;
}
bool Sema::canSynthesizeProvisionalIvar(ObjCPropertyDecl *Property) {
ObjCMethodDecl *CurMeth = getCurMethodDecl();
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return false;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return false;
if (ObjCPropertyImplDecl *PIDecl
= ClassImpDecl->FindPropertyImplDecl(Property->getIdentifier()))
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic ||
PIDecl->getPropertyIvarDecl())
return false;
return true;
}
static ObjCIvarDecl *SynthesizeProvisionalIvar(Sema &SemaRef,
LookupResult &Lookup,
IdentifierInfo *II,
SourceLocation NameLoc) {
ObjCMethodDecl *CurMeth = SemaRef.getCurMethodDecl();
bool LookForIvars;
if (Lookup.empty())
LookForIvars = true;
else if (CurMeth->isClassMethod())
LookForIvars = false;
else
LookForIvars = (Lookup.isSingleResult() &&
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod() &&
(Lookup.getAsSingle<VarDecl>() != 0));
if (!LookForIvars)
return 0;
ObjCInterfaceDecl *IDecl = CurMeth->getClassInterface();
if (!IDecl)
return 0;
ObjCImplementationDecl *ClassImpDecl = IDecl->getImplementation();
if (!ClassImpDecl)
return 0;
bool DynamicImplSeen = false;
ObjCPropertyDecl *property = SemaRef.LookupPropertyDecl(IDecl, II);
if (!property)
return 0;
if (ObjCPropertyImplDecl *PIDecl = ClassImpDecl->FindPropertyImplDecl(II)) {
DynamicImplSeen =
(PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic);
// property implementation has a designated ivar. No need to assume a new
// one.
if (!DynamicImplSeen && PIDecl->getPropertyIvarDecl())
return 0;
}
if (!DynamicImplSeen) {
QualType PropType = SemaRef.Context.getCanonicalType(property->getType());
ObjCIvarDecl *Ivar = ObjCIvarDecl::Create(SemaRef.Context, ClassImpDecl,
NameLoc,
II, PropType, /*Dinfo=*/0,
ObjCIvarDecl::Private,
(Expr *)0, true);
ClassImpDecl->addDecl(Ivar);
IDecl->makeDeclVisibleInContext(Ivar, false);
property->setPropertyIvarDecl(Ivar);
return Ivar;
}
return 0;
}
ExprResult Sema::ActOnIdExpression(Scope *S,
CXXScopeSpec &SS,
UnqualifiedId &Id,
bool HasTrailingLParen,
bool isAddressOfOperand) {
assert(!(isAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen");
if (SS.isInvalid())
return ExprError();
TemplateArgumentListInfo TemplateArgsBuffer;
// Decompose the UnqualifiedId into the following data.
DeclarationNameInfo NameInfo;
const TemplateArgumentListInfo *TemplateArgs;
DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
DeclarationName Name = NameInfo.getName();
IdentifierInfo *II = Name.getAsIdentifierInfo();
SourceLocation NameLoc = NameInfo.getLoc();
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// -- an identifier that was declared with a dependent type,
// (note: handled after lookup)
// -- a template-id that is dependent,
// (note: handled in BuildTemplateIdExpr)
// -- a conversion-function-id that specifies a dependent type,
// -- a nested-name-specifier that contains a class-name that
// names a dependent type.
// Determine whether this is a member of an unknown specialization;
// we need to handle these differently.
bool DependentID = false;
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
Name.getCXXNameType()->isDependentType()) {
DependentID = true;
} else if (SS.isSet()) {
DeclContext *DC = computeDeclContext(SS, false);
if (DC) {
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
// FIXME: We should be checking whether DC is the current instantiation.
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC))
DependentID = !IsFullyFormedScope(*this, RD);
} else {
DependentID = true;
}
}
if (DependentID) {
return ActOnDependentIdExpression(SS, NameInfo, isAddressOfOperand,
TemplateArgs);
}
bool IvarLookupFollowUp = false;
// Perform the required lookup.
LookupResult R(*this, NameInfo, LookupOrdinaryName);
if (TemplateArgs) {
// Lookup the template name again to correctly establish the context in
// which it was found. This is really unfortunate as we already did the
// lookup to determine that it was a template name in the first place. If
// this becomes a performance hit, we can work harder to preserve those
// results until we get here but it's likely not worth it.
bool MemberOfUnknownSpecialization;
LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
MemberOfUnknownSpecialization);
} else {
IvarLookupFollowUp = (!SS.isSet() && II && getCurMethodDecl());
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
// If this reference is in an Objective-C method, then we need to do
// some special Objective-C lookup, too.
if (IvarLookupFollowUp) {
ExprResult E(LookupInObjCMethod(R, S, II, true));
if (E.isInvalid())
return ExprError();
Expr *Ex = E.takeAs<Expr>();
if (Ex) return Owned(Ex);
// Synthesize ivars lazily
if (getLangOptions().ObjCDefaultSynthProperties &&
getLangOptions().ObjCNonFragileABI2) {
if (SynthesizeProvisionalIvar(*this, R, II, NameLoc)) {
if (const ObjCPropertyDecl *Property =
canSynthesizeProvisionalIvar(II)) {
Diag(NameLoc, diag::warn_synthesized_ivar_access) << II;
Diag(Property->getLocation(), diag::note_property_declare);
}
return ActOnIdExpression(S, SS, Id, HasTrailingLParen,
isAddressOfOperand);
}
}
// for further use, this must be set to false if in class method.
IvarLookupFollowUp = getCurMethodDecl()->isInstanceMethod();
}
}
if (R.isAmbiguous())
return ExprError();
// Determine whether this name might be a candidate for
// argument-dependent lookup.
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
if (R.empty() && !ADL) {
// Otherwise, this could be an implicitly declared function reference (legal
// in C90, extension in C99, forbidden in C++).
if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
if (D) R.addDecl(D);
}
// If this name wasn't predeclared and if this is not a function
// call, diagnose the problem.
if (R.empty()) {
if (DiagnoseEmptyLookup(S, SS, R, CTC_Unknown))
return ExprError();
assert(!R.empty() &&
"DiagnoseEmptyLookup returned false but added no results");
// If we found an Objective-C instance variable, let
// LookupInObjCMethod build the appropriate expression to
// reference the ivar.
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
R.clear();
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
assert(E.isInvalid() || E.get());
return move(E);
}
}
}
// This is guaranteed from this point on.
assert(!R.empty() || ADL);
if (VarDecl *Var = R.getAsSingle<VarDecl>()) {
if (getLangOptions().ObjCNonFragileABI && IvarLookupFollowUp &&
!(getLangOptions().ObjCDefaultSynthProperties &&
getLangOptions().ObjCNonFragileABI2) &&
Var->isFileVarDecl()) {
ObjCPropertyDecl *Property = canSynthesizeProvisionalIvar(II);
if (Property) {
Diag(NameLoc, diag::warn_ivar_variable_conflict) << Var->getDeclName();
Diag(Property->getLocation(), diag::note_property_declare);
Diag(Var->getLocation(), diag::note_global_declared_at);
}
}
} else if (FunctionDecl *Func = R.getAsSingle<FunctionDecl>()) {
if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
// C99 DR 316 says that, if a function type comes from a
// function definition (without a prototype), that type is only
// used for checking compatibility. Therefore, when referencing
// the function, we pretend that we don't have the full function
// type.
if (DiagnoseUseOfDecl(Func, NameLoc))
return ExprError();
QualType T = Func->getType();
QualType NoProtoType = T;
if (const FunctionProtoType *Proto = T->getAs<FunctionProtoType>())
NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType(),
Proto->getExtInfo());
// Note that functions are r-values in C.
return BuildDeclRefExpr(Func, NoProtoType, VK_RValue, NameLoc, &SS);
}
}
// Check whether this might be a C++ implicit instance member access.
// C++ [class.mfct.non-static]p3:
// When an id-expression that is not part of a class member access
// syntax and not used to form a pointer to member is used in the
// body of a non-static member function of class X, if name lookup
// resolves the name in the id-expression to a non-static non-type
// member of some class C, the id-expression is transformed into a
// class member access expression using (*this) as the
// postfix-expression to the left of the . operator.
//
// But we don't actually need to do this for '&' operands if R
// resolved to a function or overloaded function set, because the
// expression is ill-formed if it actually works out to be a
// non-static member function:
//
// C++ [expr.ref]p4:
// Otherwise, if E1.E2 refers to a non-static member function. . .
// [t]he expression can be used only as the left-hand operand of a
// member function call.
//
// There are other safeguards against such uses, but it's important
// to get this right here so that we don't end up making a
// spuriously dependent expression if we're inside a dependent
// instance method.
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
bool MightBeImplicitMember;
if (!isAddressOfOperand)
MightBeImplicitMember = true;
else if (!SS.isEmpty())
MightBeImplicitMember = false;
else if (R.isOverloadedResult())
MightBeImplicitMember = false;
else if (R.isUnresolvableResult())
MightBeImplicitMember = true;
else
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
isa<IndirectFieldDecl>(R.getFoundDecl());
if (MightBeImplicitMember)
return BuildPossibleImplicitMemberExpr(SS, R, TemplateArgs);
}
if (TemplateArgs)
return BuildTemplateIdExpr(SS, R, ADL, *TemplateArgs);
return BuildDeclarationNameExpr(SS, R, ADL);
}
/// Builds an expression which might be an implicit member expression.
ExprResult
Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs) {
switch (ClassifyImplicitMemberAccess(*this, R)) {
case IMA_Instance:
return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
case IMA_Mixed:
case IMA_Mixed_Unrelated:
case IMA_Unresolved:
return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
case IMA_Static:
case IMA_Mixed_StaticContext:
case IMA_Unresolved_StaticContext:
if (TemplateArgs)
return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
return BuildDeclarationNameExpr(SS, R, false);
case IMA_Error_StaticContext:
case IMA_Error_Unrelated:
DiagnoseInstanceReference(*this, SS, R);
return ExprError();
}
llvm_unreachable("unexpected instance member access kind");
return ExprError();
}
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
/// declaration name, generally during template instantiation.
/// There's a large number of things which don't need to be done along
/// this path.
ExprResult
Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo) {
DeclContext *DC;
if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
return BuildDependentDeclRefExpr(SS, NameInfo, 0);
if (RequireCompleteDeclContext(SS, DC))
return ExprError();
LookupResult R(*this, NameInfo, LookupOrdinaryName);
LookupQualifiedName(R, DC);
if (R.isAmbiguous())
return ExprError();
if (R.empty()) {
Diag(NameInfo.getLoc(), diag::err_no_member)
<< NameInfo.getName() << DC << SS.getRange();
return ExprError();
}
return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
}
/// LookupInObjCMethod - The parser has read a name in, and Sema has
/// detected that we're currently inside an ObjC method. Perform some
/// additional lookup.
///
/// Ideally, most of this would be done by lookup, but there's
/// actually quite a lot of extra work involved.
///
/// Returns a null sentinel to indicate trivial success.
ExprResult
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
IdentifierInfo *II, bool AllowBuiltinCreation) {
SourceLocation Loc = Lookup.getNameLoc();
ObjCMethodDecl *CurMethod = getCurMethodDecl();
// There are two cases to handle here. 1) scoped lookup could have failed,
// in which case we should look for an ivar. 2) scoped lookup could have
// found a decl, but that decl is outside the current instance method (i.e.
// a global variable). In these two cases, we do a lookup for an ivar with
// this name, if the lookup sucedes, we replace it our current decl.
// If we're in a class method, we don't normally want to look for
// ivars. But if we don't find anything else, and there's an
// ivar, that's an error.
bool IsClassMethod = CurMethod->isClassMethod();
bool LookForIvars;
if (Lookup.empty())
LookForIvars = true;
else if (IsClassMethod)
LookForIvars = false;
else
LookForIvars = (Lookup.isSingleResult() &&
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
ObjCInterfaceDecl *IFace = 0;
if (LookForIvars) {
IFace = CurMethod->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
// Diagnose using an ivar in a class method.
if (IsClassMethod)
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
<< IV->getDeclName());
// If we're referencing an invalid decl, just return this as a silent
// error node. The error diagnostic was already emitted on the decl.
if (IV->isInvalidDecl())
return ExprError();
// Check if referencing a field with __attribute__((deprecated)).
if (DiagnoseUseOfDecl(IV, Loc))
return ExprError();
// Diagnose the use of an ivar outside of the declaring class.
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
ClassDeclared != IFace)
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
// FIXME: This should use a new expr for a direct reference, don't
// turn this into Self->ivar, just return a BareIVarExpr or something.
IdentifierInfo &II = Context.Idents.get("self");
UnqualifiedId SelfName;
SelfName.setIdentifier(&II, SourceLocation());
CXXScopeSpec SelfScopeSpec;
ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec,
SelfName, false, false);
if (SelfExpr.isInvalid())
return ExprError();
Expr *SelfE = SelfExpr.take();
DefaultLvalueConversion(SelfE);
MarkDeclarationReferenced(Loc, IV);
return Owned(new (Context)
ObjCIvarRefExpr(IV, IV->getType(), Loc,
SelfE, true, true));
}
} else if (CurMethod->isInstanceMethod()) {
// We should warn if a local variable hides an ivar.
ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
IFace == ClassDeclared)
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
}
}
if (Lookup.empty() && II && AllowBuiltinCreation) {
// FIXME. Consolidate this with similar code in LookupName.
if (unsigned BuiltinID = II->getBuiltinID()) {
if (!(getLangOptions().CPlusPlus &&
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
S, Lookup.isForRedeclaration(),
Lookup.getNameLoc());
if (D) Lookup.addDecl(D);
}
}
}
// Sentinel value saying that we didn't do anything special.
return Owned((Expr*) 0);
}
/// \brief Cast a base object to a member's actual type.
///
/// Logically this happens in three phases:
///
/// * First we cast from the base type to the naming class.
/// The naming class is the class into which we were looking
/// when we found the member; it's the qualifier type if a
/// qualifier was provided, and otherwise it's the base type.
///
/// * Next we cast from the naming class to the declaring class.
/// If the member we found was brought into a class's scope by
/// a using declaration, this is that class; otherwise it's
/// the class declaring the member.
///
/// * Finally we cast from the declaring class to the "true"
/// declaring class of the member. This conversion does not
/// obey access control.
bool
Sema::PerformObjectMemberConversion(Expr *&From,
NestedNameSpecifier *Qualifier,
NamedDecl *FoundDecl,
NamedDecl *Member) {
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
if (!RD)
return false;
QualType DestRecordType;
QualType DestType;
QualType FromRecordType;
QualType FromType = From->getType();
bool PointerConversions = false;
if (isa<FieldDecl>(Member)) {
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
if (FromType->getAs<PointerType>()) {
DestType = Context.getPointerType(DestRecordType);
FromRecordType = FromType->getPointeeType();
PointerConversions = true;
} else {
DestType = DestRecordType;
FromRecordType = FromType;
}
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
if (Method->isStatic())
return false;
DestType = Method->getThisType(Context);
DestRecordType = DestType->getPointeeType();
if (FromType->getAs<PointerType>()) {
FromRecordType = FromType->getPointeeType();
PointerConversions = true;
} else {
FromRecordType = FromType;
DestType = DestRecordType;
}
} else {
// No conversion necessary.
return false;
}
if (DestType->isDependentType() || FromType->isDependentType())
return false;
// If the unqualified types are the same, no conversion is necessary.
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
return false;
SourceRange FromRange = From->getSourceRange();
SourceLocation FromLoc = FromRange.getBegin();
ExprValueKind VK = CastCategory(From);
// C++ [class.member.lookup]p8:
// [...] Ambiguities can often be resolved by qualifying a name with its
// class name.
//
// If the member was a qualified name and the qualified referred to a
// specific base subobject type, we'll cast to that intermediate type
// first and then to the object in which the member is declared. That allows
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
//
// class Base { public: int x; };
// class Derived1 : public Base { };
// class Derived2 : public Base { };
// class VeryDerived : public Derived1, public Derived2 { void f(); };
//
// void VeryDerived::f() {
// x = 17; // error: ambiguous base subobjects
// Derived1::x = 17; // okay, pick the Base subobject of Derived1
// }
if (Qualifier) {
QualType QType = QualType(Qualifier->getAsType(), 0);
assert(!QType.isNull() && "lookup done with dependent qualifier?");
assert(QType->isRecordType() && "lookup done with non-record type");
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
// In C++98, the qualifier type doesn't actually have to be a base
// type of the object type, in which case we just ignore it.
// Otherwise build the appropriate casts.
if (IsDerivedFrom(FromRecordType, QRecordType)) {
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
FromLoc, FromRange, &BasePath))
return true;
if (PointerConversions)
QType = Context.getPointerType(QType);
ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
VK, &BasePath);
FromType = QType;
FromRecordType = QRecordType;
// If the qualifier type was the same as the destination type,
// we're done.
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
return false;
}
}
bool IgnoreAccess = false;
// If we actually found the member through a using declaration, cast
// down to the using declaration's type.
//
// Pointer equality is fine here because only one declaration of a
// class ever has member declarations.
if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
assert(isa<UsingShadowDecl>(FoundDecl));
QualType URecordType = Context.getTypeDeclType(
cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
// We only need to do this if the naming-class to declaring-class
// conversion is non-trivial.
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
assert(IsDerivedFrom(FromRecordType, URecordType));
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
FromLoc, FromRange, &BasePath))
return true;
QualType UType = URecordType;
if (PointerConversions)
UType = Context.getPointerType(UType);
ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
VK, &BasePath);
FromType = UType;
FromRecordType = URecordType;
}
// We don't do access control for the conversion from the
// declaring class to the true declaring class.
IgnoreAccess = true;
}
CXXCastPath BasePath;
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
FromLoc, FromRange, &BasePath,
IgnoreAccess))
return true;
ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
VK, &BasePath);
return false;
}
/// \brief Build a MemberExpr AST node.
static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
const CXXScopeSpec &SS, ValueDecl *Member,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo,
QualType Ty,
ExprValueKind VK, ExprObjectKind OK,
const TemplateArgumentListInfo *TemplateArgs = 0) {
NestedNameSpecifier *Qualifier = 0;
SourceRange QualifierRange;
if (SS.isSet()) {
Qualifier = (NestedNameSpecifier *) SS.getScopeRep();
QualifierRange = SS.getRange();
}
return MemberExpr::Create(C, Base, isArrow, Qualifier, QualifierRange,
Member, FoundDecl, MemberNameInfo,
TemplateArgs, Ty, VK, OK);
}
static ExprResult
BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
const CXXScopeSpec &SS, FieldDecl *Field,
DeclAccessPair FoundDecl,
const DeclarationNameInfo &MemberNameInfo) {
// x.a is an l-value if 'a' has a reference type. Otherwise:
// x.a is an l-value/x-value/pr-value if the base is (and note
// that *x is always an l-value), except that if the base isn't
// an ordinary object then we must have an rvalue.
ExprValueKind VK = VK_LValue;
ExprObjectKind OK = OK_Ordinary;
if (!IsArrow) {
if (BaseExpr->getObjectKind() == OK_Ordinary)
VK = BaseExpr->getValueKind();
else
VK = VK_RValue;
}
if (VK != VK_RValue && Field->isBitField())
OK = OK_BitField;
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
QualType MemberType = Field->getType();
if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
MemberType = Ref->getPointeeType();
VK = VK_LValue;
} else {
QualType BaseType = BaseExpr->getType();
if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
Qualifiers BaseQuals = BaseType.getQualifiers();
// GC attributes are never picked up by members.
BaseQuals.removeObjCGCAttr();
// CVR attributes from the base are picked up by members,
// except that 'mutable' members don't pick up 'const'.
if (Field->isMutable()) BaseQuals.removeConst();
Qualifiers MemberQuals
= S.Context.getCanonicalType(MemberType).getQualifiers();
// TR 18037 does not allow fields to be declared with address spaces.
assert(!MemberQuals.hasAddressSpace());
Qualifiers Combined = BaseQuals + MemberQuals;
if (Combined != MemberQuals)
MemberType = S.Context.getQualifiedType(MemberType, Combined);
}
S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
if (S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
FoundDecl, Field))
return ExprError();
return S.Owned(BuildMemberExpr(S.Context, BaseExpr, IsArrow, SS,
Field, FoundDecl, MemberNameInfo,
MemberType, VK, OK));
}
/// Builds an implicit member access expression. The current context
/// is known to be an instance method, and the given unqualified lookup
/// set is known to contain only instance members, at least one of which
/// is from an appropriate type.
ExprResult
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool IsKnownInstance) {
assert(!R.empty() && !R.isAmbiguous());
SourceLocation Loc = R.getNameLoc();
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
// FIXME: This needs to happen post-isImplicitMemberReference?
// FIXME: template-ids inside anonymous structs?
if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
return BuildAnonymousStructUnionMemberReference(Loc, SS, FD);
// If this is known to be an instance access, go ahead and build a
// 'this' expression now.
DeclContext *DC = getFunctionLevelDeclContext();
QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
Expr *This = 0; // null signifies implicit access
if (IsKnownInstance) {
SourceLocation Loc = R.getNameLoc();
if (SS.getRange().isValid())
Loc = SS.getRange().getBegin();
This = new (Context) CXXThisExpr(Loc, ThisType, /*isImplicit=*/true);
}
return BuildMemberReferenceExpr(This, ThisType,
/*OpLoc*/ SourceLocation(),
/*IsArrow*/ true,
SS,
/*FirstQualifierInScope*/ 0,
R, TemplateArgs);
}
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
const LookupResult &R,
bool HasTrailingLParen) {
// Only when used directly as the postfix-expression of a call.
if (!HasTrailingLParen)
return false;
// Never if a scope specifier was provided.
if (SS.isSet())
return false;
// Only in C++ or ObjC++.
if (!getLangOptions().CPlusPlus)
return false;
// Turn off ADL when we find certain kinds of declarations during
// normal lookup:
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
NamedDecl *D = *I;
// C++0x [basic.lookup.argdep]p3:
// -- a declaration of a class member
// Since using decls preserve this property, we check this on the
// original decl.
if (D->isCXXClassMember())
return false;
// C++0x [basic.lookup.argdep]p3:
// -- a block-scope function declaration that is not a
// using-declaration
// NOTE: we also trigger this for function templates (in fact, we
// don't check the decl type at all, since all other decl types
// turn off ADL anyway).
if (isa<UsingShadowDecl>(D))
D = cast<UsingShadowDecl>(D)->getTargetDecl();
else if (D->getDeclContext()->isFunctionOrMethod())
return false;
// C++0x [basic.lookup.argdep]p3:
// -- a declaration that is neither a function or a function
// template
// And also for builtin functions.
if (isa<FunctionDecl>(D)) {
FunctionDecl *FDecl = cast<FunctionDecl>(D);
// But also builtin functions.
if (FDecl->getBuiltinID() && FDecl->isImplicit())
return false;
} else if (!isa<FunctionTemplateDecl>(D))
return false;
}
return true;
}
/// Diagnoses obvious problems with the use of the given declaration
/// as an expression. This is only actually called for lookups that
/// were not overloaded, and it doesn't promise that the declaration
/// will in fact be used.
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
if (isa<TypedefDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
return true;
}
if (isa<ObjCInterfaceDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
return true;
}
if (isa<NamespaceDecl>(D)) {
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
return true;
}
return false;
}
ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
LookupResult &R,
bool NeedsADL) {
// If this is a single, fully-resolved result and we don't need ADL,
// just build an ordinary singleton decl ref.
if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
R.getFoundDecl());
// We only need to check the declaration if there's exactly one
// result, because in the overloaded case the results can only be
// functions and function templates.
if (R.isSingleResult() &&
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
return ExprError();
// Otherwise, just build an unresolved lookup expression. Suppress
// any lookup-related diagnostics; we'll hash these out later, when
// we've picked a target.
R.suppressDiagnostics();
UnresolvedLookupExpr *ULE
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
(NestedNameSpecifier*) SS.getScopeRep(),
SS.getRange(), R.getLookupNameInfo(),
NeedsADL, R.isOverloadedResult(),
R.begin(), R.end());
return Owned(ULE);
}
static ExprValueKind getValueKindForDecl(ASTContext &Context,
const ValueDecl *D) {
// FIXME: It's not clear to me why NonTypeTemplateParmDecl is a VarDecl.
if (isa<VarDecl>(D) && !isa<NonTypeTemplateParmDecl>(D)) return VK_LValue;
if (isa<FieldDecl>(D)) return VK_LValue;
if (!Context.getLangOptions().CPlusPlus) return VK_RValue;
if (isa<FunctionDecl>(D)) {
if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
return VK_RValue;
return VK_LValue;
}
return Expr::getValueKindForType(D->getType());
}
/// \brief Complete semantic analysis for a reference to the given declaration.
ExprResult
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
NamedDecl *D) {
assert(D && "Cannot refer to a NULL declaration");
assert(!isa<FunctionTemplateDecl>(D) &&
"Cannot refer unambiguously to a function template");
SourceLocation Loc = NameInfo.getLoc();
if (CheckDeclInExpr(*this, Loc, D))
return ExprError();
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
// Specifically diagnose references to class templates that are missing
// a template argument list.
Diag(Loc, diag::err_template_decl_ref)
<< Template << SS.getRange();
Diag(Template->getLocation(), diag::note_template_decl_here);
return ExprError();
}
// Make sure that we're referring to a value.
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD) {
Diag(Loc, diag::err_ref_non_value)
<< D << SS.getRange();
Diag(D->getLocation(), diag::note_declared_at);
return ExprError();
}
// Check whether this declaration can be used. Note that we suppress
// this check when we're going to perform argument-dependent lookup
// on this function name, because this might not be the function
// that overload resolution actually selects.
if (DiagnoseUseOfDecl(VD, Loc))
return ExprError();
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return ExprError();
// Handle anonymous.
if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(VD))
return BuildAnonymousStructUnionMemberReference(Loc, SS, FD);
ExprValueKind VK = getValueKindForDecl(Context, VD);
// If the identifier reference is inside a block, and it refers to a value
// that is outside the block, create a BlockDeclRefExpr instead of a
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
// the block is formed.
//
// We do not do this for things like enum constants, global variables, etc,
// as they do not get snapshotted.
//
if (getCurBlock() &&
ShouldSnapshotBlockValueReference(*this, getCurBlock(), VD)) {
if (VD->getType().getTypePtr()->isVariablyModifiedType()) {
Diag(Loc, diag::err_ref_vm_type);
Diag(D->getLocation(), diag::note_declared_at);
return ExprError();
}
if (VD->getType()->isArrayType()) {
Diag(Loc, diag::err_ref_array_type);
Diag(D->getLocation(), diag::note_declared_at);
return ExprError();
}
MarkDeclarationReferenced(Loc, VD);
QualType ExprTy = VD->getType().getNonReferenceType();
// The BlocksAttr indicates the variable is bound by-reference.
bool byrefVar = (VD->getAttr<BlocksAttr>() != 0);
QualType T = VD->getType();
BlockDeclRefExpr *BDRE;
if (!byrefVar) {
// This is to record that a 'const' was actually synthesize and added.
bool constAdded = !ExprTy.isConstQualified();
// Variable will be bound by-copy, make it const within the closure.
ExprTy.addConst();
BDRE = new (Context) BlockDeclRefExpr(VD, ExprTy, VK,
Loc, false, constAdded);
}
else
BDRE = new (Context) BlockDeclRefExpr(VD, ExprTy, VK, Loc, true);
if (getLangOptions().CPlusPlus) {
if (!T->isDependentType() && !T->isReferenceType()) {
Expr *E = new (Context)
DeclRefExpr(const_cast<ValueDecl*>(BDRE->getDecl()), T,
VK, SourceLocation());
if (T->getAs<RecordType>())
if (!T->isUnionType()) {
ExprResult Res = PerformCopyInitialization(
InitializedEntity::InitializeBlock(VD->getLocation(),
T, false),
SourceLocation(),
Owned(E));
if (!Res.isInvalid()) {
Res = MaybeCreateExprWithCleanups(Res);
Expr *Init = Res.takeAs<Expr>();
BDRE->setCopyConstructorExpr(Init);
}
}
}
}
return Owned(BDRE);
}
// If this reference is not in a block or if the referenced variable is
// within the block, create a normal DeclRefExpr.
return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), VK,
NameInfo, &SS);
}
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind) {
PredefinedExpr::IdentType IT;
switch (Kind) {
default: assert(0 && "Unknown simple primary expr!");
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
}
// Pre-defined identifiers are of type char[x], where x is the length of the
// string.
Decl *currentDecl = getCurFunctionOrMethodDecl();
if (!currentDecl && getCurBlock())
currentDecl = getCurBlock()->TheDecl;
if (!currentDecl) {
Diag(Loc, diag::ext_predef_outside_function);
currentDecl = Context.getTranslationUnitDecl();
}
QualType ResTy;
if (cast<DeclContext>(currentDecl)->isDependentContext()) {
ResTy = Context.DependentTy;
} else {
unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
llvm::APInt LengthI(32, Length + 1);
ResTy = Context.CharTy.withConst();
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
}
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
}
ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
bool Invalid = false;
llvm::StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
if (Invalid)
return ExprError();
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
PP);
if (Literal.hadError())
return ExprError();
QualType Ty;
if (!getLangOptions().CPlusPlus)
Ty = Context.IntTy; // 'x' and L'x' -> int in C.
else if (Literal.isWide())
Ty = Context.WCharTy; // L'x' -> wchar_t in C++.
else if (Literal.isMultiChar())
Ty = Context.IntTy; // 'wxyz' -> int in C++.
else
Ty = Context.CharTy; // 'x' -> char in C++
return Owned(new (Context) CharacterLiteral(Literal.getValue(),
Literal.isWide(),
Ty, Tok.getLocation()));
}
ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
unsigned IntSize = Context.Target.getIntWidth();
return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
Context.IntTy, Tok.getLocation()));
}
llvm::SmallString<512> IntegerBuffer;
// Add padding so that NumericLiteralParser can overread by one character.
IntegerBuffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &IntegerBuffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
if (Invalid)
return ExprError();
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError)
return ExprError();
Expr *Res;
if (Literal.isFloatingLiteral()) {
QualType Ty;
if (Literal.isFloat)
Ty = Context.FloatTy;
else if (!Literal.isLong)
Ty = Context.DoubleTy;
else
Ty = Context.LongDoubleTy;
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
using llvm::APFloat;
APFloat Val(Format);
APFloat::opStatus result = Literal.GetFloatValue(Val);
// Overflow is always an error, but underflow is only an error if
// we underflowed to zero (APFloat reports denormals as underflow).
if ((result & APFloat::opOverflow) ||
((result & APFloat::opUnderflow) && Val.isZero())) {
unsigned diagnostic;
llvm::SmallString<20> buffer;
if (result & APFloat::opOverflow) {
diagnostic = diag::warn_float_overflow;
APFloat::getLargest(Format).toString(buffer);
} else {
diagnostic = diag::warn_float_underflow;
APFloat::getSmallest(Format).toString(buffer);
}
Diag(Tok.getLocation(), diagnostic)
<< Ty
<< llvm::StringRef(buffer.data(), buffer.size());
}
bool isExact = (result == APFloat::opOK);
Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
if (getLangOptions().SinglePrecisionConstants && Ty == Context.DoubleTy)
ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast);
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
} else {
QualType Ty;
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Literal.isLongLong)
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
Diag(Tok.getLocation(), diag::warn_integer_too_large);
Ty = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
unsigned Width = 0;
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize = Context.Target.getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
Ty = Context.IntTy;
else if (AllowUnsigned)
Ty = Context.UnsignedIntTy;
Width = IntSize;
}
}
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
unsigned LongSize = Context.Target.getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
Ty = Context.LongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongTy;
Width = LongSize;
}
}
// Finally, check long long if needed.
if (Ty.isNull()) {
unsigned LongLongSize = Context.Target.getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
// To be compatible with MSVC, hex integer literals ending with the
// LL or i64 suffix are always signed in Microsoft mode.
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
(getLangOptions().Microsoft && Literal.isLongLong)))
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
Width = LongLongSize;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
Width = Context.Target.getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
ResultVal = ResultVal.trunc(Width);
}
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary)
Res = new (Context) ImaginaryLiteral(Res,
Context.getComplexType(Res->getType()));
return Owned(Res);
}
ExprResult Sema::ActOnParenExpr(SourceLocation L,
SourceLocation R, Expr *E) {
assert((E != 0) && "ActOnParenExpr() missing expr");
return Owned(new (Context) ParenExpr(L, R, E));
}
/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc,
SourceRange ExprRange,
bool isSizeof) {
if (exprType->isDependentType())
return false;
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
// result shall be the alignment of the referenced type."
if (const ReferenceType *Ref = exprType->getAs<ReferenceType>())
exprType = Ref->getPointeeType();
// C99 6.5.3.4p1:
if (exprType->isFunctionType()) {
// alignof(function) is allowed as an extension.
if (isSizeof)
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
return false;
}
// Allow sizeof(void)/alignof(void) as an extension.
if (exprType->isVoidType()) {
Diag(OpLoc, diag::ext_sizeof_void_type)
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
return false;
}
if (RequireCompleteType(OpLoc, exprType,
PDiag(diag::err_sizeof_alignof_incomplete_type)
<< int(!isSizeof) << ExprRange))
return true;
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
if (LangOpts.ObjCNonFragileABI && exprType->isObjCObjectType()) {
Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
<< exprType << isSizeof << ExprRange;
return true;
}
return false;
}
static bool CheckAlignOfExpr(Sema &S, Expr *E, SourceLocation OpLoc,
SourceRange ExprRange) {
E = E->IgnoreParens();
// alignof decl is always ok.
if (isa<DeclRefExpr>(E))
return false;
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
if (E->getBitField()) {
S. Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
return true;
}
// Alignment of a field access is always okay, so long as it isn't a
// bit-field.
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
if (isa<FieldDecl>(ME->getMemberDecl()))
return false;
return S.CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
}
/// \brief Build a sizeof or alignof expression given a type operand.
ExprResult
Sema::CreateSizeOfAlignOfExpr(TypeSourceInfo *TInfo,
SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
if (!TInfo)
return ExprError();
QualType T = TInfo->getType();
if (!T->isDependentType() &&
CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, TInfo,
Context.getSizeType(), OpLoc,
R.getEnd()));
}
/// \brief Build a sizeof or alignof expression given an expression
/// operand.
ExprResult
Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
// Verify that the operand is valid.
bool isInvalid = false;
if (E->isTypeDependent()) {
// Delay type-checking for type-dependent expressions.
} else if (!isSizeOf) {
isInvalid = CheckAlignOfExpr(*this, E, OpLoc, R);
} else if (E->getBitField()) { // C99 6.5.3.4p1.
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
isInvalid = true;
} else if (E->getType()->isPlaceholderType()) {
ExprResult PE = CheckPlaceholderExpr(E, OpLoc);
if (PE.isInvalid()) return ExprError();
return CreateSizeOfAlignOfExpr(PE.take(), OpLoc, isSizeOf, R);
} else {
isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
}
if (isInvalid)
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
Context.getSizeType(), OpLoc,
R.getEnd()));
}
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
/// the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
ExprResult
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return ExprError();
if (isType) {
TypeSourceInfo *TInfo;
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
return CreateSizeOfAlignOfExpr(TInfo, OpLoc, isSizeof, ArgRange);
}
Expr *ArgEx = (Expr *)TyOrEx;
ExprResult Result
= CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
return move(Result);
}
static QualType CheckRealImagOperand(Sema &S, Expr *&V, SourceLocation Loc,
bool isReal) {
if (V->isTypeDependent())
return S.Context.DependentTy;
// _Real and _Imag are only l-values for normal l-values.
if (V->getObjectKind() != OK_Ordinary)
S.DefaultLvalueConversion(V);
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAs<ComplexType>())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V->getType()->isArithmeticType())
return V->getType();
// Test for placeholders.
ExprResult PR = S.CheckPlaceholderExpr(V, Loc);
if (PR.isInvalid()) return QualType();
if (PR.take() != V) {
V = PR.take();
return CheckRealImagOperand(S, V, Loc, isReal);
}
// Reject anything else.
S.Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
<< (isReal ? "__real" : "__imag");
return QualType();
}
ExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, Expr *Input) {
UnaryOperatorKind Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UO_PostInc; break;
case tok::minusminus: Opc = UO_PostDec; break;
}
return BuildUnaryOp(S, OpLoc, Opc, Input);
}
/// Expressions of certain arbitrary types are forbidden by C from
/// having l-value type. These are:
/// - 'void', but not qualified void
/// - function types
///
/// The exact rule here is C99 6.3.2.1:
/// An lvalue is an expression with an object type or an incomplete
/// type other than void.
static bool IsCForbiddenLValueType(ASTContext &C, QualType T) {
return ((T->isVoidType() && !T.hasQualifiers()) ||
T->isFunctionType());
}
ExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc) {
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
if (Result.isInvalid()) return ExprError();
Base = Result.take();
Expr *LHSExp = Base, *RHSExp = Idx;
if (getLangOptions().CPlusPlus &&
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
Context.DependentTy,
VK_LValue, OK_Ordinary,
RLoc));
}
if (getLangOptions().CPlusPlus &&
(LHSExp->getType()->isRecordType() ||
LHSExp->getType()->isEnumeralType() ||
RHSExp->getType()->isRecordType() ||
RHSExp->getType()->isEnumeralType())) {
return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
}
return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
}
ExprResult
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
Expr *Idx, SourceLocation RLoc) {
Expr *LHSExp = Base;
Expr *RHSExp = Idx;
// Perform default conversions.
if (!LHSExp->getType()->getAs<VectorType>())
DefaultFunctionArrayLvalueConversion(LHSExp);
DefaultFunctionArrayLvalueConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
ExprValueKind VK = VK_LValue;
ExprObjectKind OK = OK_Ordinary;
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = Context.DependentTy;
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
LHSTy->getAs<ObjCObjectPointerType>()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
RHSTy->getAs<ObjCObjectPointerType>()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
VK = LHSExp->getValueKind();
if (VK != VK_RValue)
OK = OK_VectorComponent;
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else if (LHSTy->isArrayType()) {
// If we see an array that wasn't promoted by
// DefaultFunctionArrayLvalueConversion, it must be an array that
// wasn't promoted because of the C90 rule that doesn't
// allow promoting non-lvalue arrays. Warn, then
// force the promotion here.
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
LHSExp->getSourceRange();
ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
CK_ArrayToPointerDecay);
LHSTy = LHSExp->getType();
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
} else if (RHSTy->isArrayType()) {
// Same as previous, except for 123[f().a] case
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
RHSExp->getSourceRange();
ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
CK_ArrayToPointerDecay);
RHSTy = RHSExp->getType();
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
} else {
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
<< IndexExpr->getSourceRange());
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
&& !IndexExpr->isTypeDependent())
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
// type. Note that Functions are not objects, and that (in C99 parlance)
// incomplete types are not object types.
if (ResultType->isFunctionType()) {
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
// GNU extension: subscripting on pointer to void
Diag(LLoc, diag::ext_gnu_void_ptr)
<< BaseExpr->getSourceRange();
// C forbids expressions of unqualified void type from being l-values.
// See IsCForbiddenLValueType.
if (!ResultType.hasQualifiers()) VK = VK_RValue;
} else if (!ResultType->isDependentType() &&
RequireCompleteType(LLoc, ResultType,
PDiag(diag::err_subscript_incomplete_type)
<< BaseExpr->getSourceRange()))
return ExprError();
// Diagnose bad cases where we step over interface counts.
if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
Diag(LLoc, diag::err_subscript_nonfragile_interface)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
assert(VK == VK_RValue || LangOpts.CPlusPlus ||
!IsCForbiddenLValueType(Context, ResultType));
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
ResultType, VK, OK, RLoc));
}
/// Check an ext-vector component access expression.
///
/// VK should be set in advance to the value kind of the base
/// expression.
static QualType
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
SourceLocation OpLoc, const IdentifierInfo *CompName,
SourceLocation CompLoc) {
// FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
// see FIXME there.
//
// FIXME: This logic can be greatly simplified by splitting it along
// halving/not halving and reworking the component checking.
const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
// The vector accessor can't exceed the number of elements.
const char *compStr = CompName->getNameStart();
// This flag determines whether or not the component is one of the four
// special names that indicate a subset of exactly half the elements are
// to be selected.
bool HalvingSwizzle = false;
// This flag determines whether or not CompName has an 's' char prefix,
// indicating that it is a string of hex values to be used as vector indices.
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
bool HasRepeated = false;
bool HasIndex[16] = {};
int Idx;
// Check that we've found one of the special components, or that the component
// names must come from the same set.
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
HalvingSwizzle = true;
} else if (!HexSwizzle &&
(Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
do {
if (HasIndex[Idx]) HasRepeated = true;
HasIndex[Idx] = true;
compStr++;
} while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
} else {
if (HexSwizzle) compStr++;
while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
if (HasIndex[Idx]) HasRepeated = true;
HasIndex[Idx] = true;
compStr++;
}
}
if (!HalvingSwizzle && *compStr) {
// We didn't get to the end of the string. This means the component names
// didn't come from the same set *or* we encountered an illegal name.
S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
<< llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
return QualType();
}
// Ensure no component accessor exceeds the width of the vector type it
// operates on.
if (!HalvingSwizzle) {
compStr = CompName->getNameStart();
if (HexSwizzle)
compStr++;
while (*compStr) {
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
<< baseType << SourceRange(CompLoc);
return QualType();
}
}
}
// The component accessor looks fine - now we need to compute the actual type.
// The vector type is implied by the component accessor. For example,
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
: CompName->getLength();
if (HexSwizzle)
CompSize--;
if (CompSize == 1)
return vecType->getElementType();
if (HasRepeated) VK = VK_RValue;
QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
// Now look up the TypeDefDecl from the vector type. Without this,
// diagostics look bad. We want extended vector types to appear built-in.
for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
return S.Context.getTypedefType(S.ExtVectorDecls[i]);
}
return VT; // should never get here (a typedef type should always be found).
}
static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
IdentifierInfo *Member,
const Selector &Sel,
ASTContext &Context) {
if (Member)
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
return PD;
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
return OMD;
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
E = PDecl->protocol_end(); I != E; ++I) {
if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
Context))
return D;
}
return 0;
}
static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
IdentifierInfo *Member,
const Selector &Sel,
ASTContext &Context) {
// Check protocols on qualified interfaces.
Decl *GDecl = 0;
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
if (Member)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
GDecl = PD;
break;
}
// Also must look for a getter or setter name which uses property syntax.
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
GDecl = OMD;
break;
}
}
if (!GDecl) {
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
// Search in the protocol-qualifier list of current protocol.
GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
Context);
if (GDecl)
return GDecl;
}
}
return GDecl;
}
ExprResult
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
bool IsArrow, SourceLocation OpLoc,
const CXXScopeSpec &SS,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
// Even in dependent contexts, try to diagnose base expressions with
// obviously wrong types, e.g.:
//
// T* t;
// t.f;
//
// In Obj-C++, however, the above expression is valid, since it could be
// accessing the 'f' property if T is an Obj-C interface. The extra check
// allows this, while still reporting an error if T is a struct pointer.
if (!IsArrow) {
const PointerType *PT = BaseType->getAs<PointerType>();
if (PT && (!getLangOptions().ObjC1 ||
PT->getPointeeType()->isRecordType())) {
assert(BaseExpr && "cannot happen with implicit member accesses");
Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange();
return ExprError();
}
}
assert(BaseType->isDependentType() ||
NameInfo.getName().isDependentName() ||
isDependentScopeSpecifier(SS));
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
// must have pointer type, and the accessed type is the pointee.
return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
IsArrow, OpLoc,
SS.getScopeRep(),
SS.getRange(),
FirstQualifierInScope,
NameInfo, TemplateArgs));
}
/// We know that the given qualified member reference points only to
/// declarations which do not belong to the static type of the base
/// expression. Diagnose the problem.
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
Expr *BaseExpr,
QualType BaseType,
const CXXScopeSpec &SS,
const LookupResult &R) {
// If this is an implicit member access, use a different set of
// diagnostics.
if (!BaseExpr)
return DiagnoseInstanceReference(SemaRef, SS, R);
SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_of_unrelated)
<< SS.getRange() << R.getRepresentativeDecl() << BaseType;
}
// Check whether the declarations we found through a nested-name
// specifier in a member expression are actually members of the base
// type. The restriction here is:
//
// C++ [expr.ref]p2:
// ... In these cases, the id-expression shall name a
// member of the class or of one of its base classes.
//
// So it's perfectly legitimate for the nested-name specifier to name
// an unrelated class, and for us to find an overload set including
// decls from classes which are not superclasses, as long as the decl
// we actually pick through overload resolution is from a superclass.
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
QualType BaseType,
const CXXScopeSpec &SS,
const LookupResult &R) {
const RecordType *BaseRT = BaseType->getAs<RecordType>();
if (!BaseRT) {
// We can't check this yet because the base type is still
// dependent.
assert(BaseType->isDependentType());
return false;
}
CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
// If this is an implicit member reference and we find a
// non-instance member, it's not an error.
if (!BaseExpr && !(*I)->isCXXInstanceMember())
return false;
// Note that we use the DC of the decl, not the underlying decl.
DeclContext *DC = (*I)->getDeclContext();
while (DC->isTransparentContext())
DC = DC->getParent();
if (!DC->isRecord())
continue;
llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
return false;
}
DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS, R);
return true;
}
static bool
LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
SourceRange BaseRange, const RecordType *RTy,
SourceLocation OpLoc, CXXScopeSpec &SS,
bool HasTemplateArgs) {
RecordDecl *RDecl = RTy->getDecl();
if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
<< BaseRange))
return true;
if (HasTemplateArgs) {
// LookupTemplateName doesn't expect these both to exist simultaneously.
QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
bool MOUS;
SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
return false;
}
DeclContext *DC = RDecl;
if (SS.isSet()) {
// If the member name was a qualified-id, look into the
// nested-name-specifier.
DC = SemaRef.computeDeclContext(SS, false);
if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
<< SS.getRange() << DC;
return true;
}
assert(DC && "Cannot handle non-computable dependent contexts in lookup");
if (!isa<TypeDecl>(DC)) {
SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
<< DC << SS.getRange();
return true;
}
}
// The record definition is complete, now look up the member.
SemaRef.LookupQualifiedName(R, DC);
if (!R.empty())
return false;
// We didn't find anything with the given name, so try to correct
// for typos.
DeclarationName Name = R.getLookupName();
if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
!R.empty() &&
(isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
<< Name << DC << R.getLookupName() << SS.getRange()
<< FixItHint::CreateReplacement(R.getNameLoc(),
R.getLookupName().getAsString());
if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
<< ND->getDeclName();
return false;
} else {
R.clear();
R.setLookupName(Name);
}
return false;
}
ExprResult
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
SourceLocation OpLoc, bool IsArrow,
CXXScopeSpec &SS,
NamedDecl *FirstQualifierInScope,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
if (BaseType->isDependentType() ||
(SS.isSet() && isDependentScopeSpecifier(SS)))
return ActOnDependentMemberExpr(Base, BaseType,
IsArrow, OpLoc,
SS, FirstQualifierInScope,
NameInfo, TemplateArgs);
LookupResult R(*this, NameInfo, LookupMemberName);
// Implicit member accesses.
if (!Base) {
QualType RecordTy = BaseType;
if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
if (LookupMemberExprInRecord(*this, R, SourceRange(),
RecordTy->getAs<RecordType>(),
OpLoc, SS, TemplateArgs != 0))
return ExprError();
// Explicit member accesses.
} else {
ExprResult Result =
LookupMemberExpr(R, Base, IsArrow, OpLoc,
SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
if (Result.isInvalid()) {
Owned(Base);
return ExprError();
}
if (Result.get())
return move(Result);
// LookupMemberExpr can modify Base, and thus change BaseType
BaseType = Base->getType();
}
return BuildMemberReferenceExpr(Base, BaseType,
OpLoc, IsArrow, SS, FirstQualifierInScope,
R, TemplateArgs);
}
ExprResult
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
SourceLocation OpLoc, bool IsArrow,
const CXXScopeSpec &SS,
NamedDecl *FirstQualifierInScope,
LookupResult &R,
const TemplateArgumentListInfo *TemplateArgs,
bool SuppressQualifierCheck) {
QualType BaseType = BaseExprType;
if (IsArrow) {
assert(BaseType->isPointerType());
BaseType = BaseType->getAs<PointerType>()->getPointeeType();
}
R.setBaseObjectType(BaseType);
NestedNameSpecifier *Qualifier = SS.getScopeRep();
const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
DeclarationName MemberName = MemberNameInfo.getName();
SourceLocation MemberLoc = MemberNameInfo.getLoc();
if (R.isAmbiguous())
return ExprError();
if (R.empty()) {
// Rederive where we looked up.
DeclContext *DC = (SS.isSet()
? computeDeclContext(SS, false)
: BaseType->getAs<RecordType>()->getDecl());
Diag(R.getNameLoc(), diag::err_no_member)
<< MemberName << DC
<< (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
return ExprError();
}
// Diagnose lookups that find only declarations from a non-base
// type. This is possible for either qualified lookups (which may
// have been qualified with an unrelated type) or implicit member
// expressions (which were found with unqualified lookup and thus
// may have come from an enclosing scope). Note that it's okay for
// lookup to find declarations from a non-base type as long as those
// aren't the ones picked by overload resolution.
if ((SS.isSet() || !BaseExpr ||
(isa<CXXThisExpr>(BaseExpr) &&
cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
!SuppressQualifierCheck &&
CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
return ExprError();
// Construct an unresolved result if we in fact got an unresolved
// result.
if (R.isOverloadedResult() || R.isUnresolvableResult()) {
// Suppress any lookup-related diagnostics; we'll do these when we
// pick a member.
R.suppressDiagnostics();
UnresolvedMemberExpr *MemExpr
= UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
BaseExpr, BaseExprType,
IsArrow, OpLoc,
Qualifier, SS.getRange(),
MemberNameInfo,
TemplateArgs, R.begin(), R.end());
return Owned(MemExpr);
}
assert(R.isSingleResult());
DeclAccessPair FoundDecl = R.begin().getPair();
NamedDecl *MemberDecl = R.getFoundDecl();
// FIXME: diagnose the presence of template arguments now.
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
// error cases.
if (MemberDecl->isInvalidDecl())
return ExprError();
// Handle the implicit-member-access case.
if (!BaseExpr) {
// If this is not an instance member, convert to a non-member access.
if (!MemberDecl->isCXXInstanceMember())
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
SourceLocation Loc = R.getNameLoc();
if (SS.getRange().isValid())
Loc = SS.getRange().getBegin();
BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
}
bool ShouldCheckUse = true;
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
// Don't diagnose the use of a virtual member function unless it's
// explicitly qualified.
if (MD->isVirtual() && !SS.isSet())
ShouldCheckUse = false;
}
// Check the use of this member.
if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
Owned(BaseExpr);
return ExprError();
}
// Perform a property load on the base regardless of whether we
// actually need it for the declaration.
if (BaseExpr->getObjectKind() == OK_ObjCProperty)
ConvertPropertyForRValue(BaseExpr);
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
SS, FD, FoundDecl, MemberNameInfo);
if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
return BuildAnonymousStructUnionMemberReference(MemberLoc, SS, FD,
BaseExpr, OpLoc);
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, Var);
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
Var, FoundDecl, MemberNameInfo,
Var->getType().getNonReferenceType(),
VK_LValue, OK_Ordinary));
}
if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
MemberFn, FoundDecl, MemberNameInfo,
MemberFn->getType(),
MemberFn->isInstance() ? VK_RValue : VK_LValue,
OK_Ordinary));
}
assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
Enum, FoundDecl, MemberNameInfo,
Enum->getType(), VK_RValue, OK_Ordinary));
}
Owned(BaseExpr);
// We found something that we didn't expect. Complain.
if (isa<TypeDecl>(MemberDecl))
Diag(MemberLoc, diag::err_typecheck_member_reference_type)
<< MemberName << BaseType << int(IsArrow);
else
Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
<< MemberName << BaseType << int(IsArrow);
Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
<< MemberName;
R.suppressDiagnostics();
return ExprError();
}
/// Given that normal member access failed on the given expression,
/// and given that the expression's type involves builtin-id or
/// builtin-Class, decide whether substituting in the redefinition
/// types would be profitable. The redefinition type is whatever
/// this translation unit tried to typedef to id/Class; we store
/// it to the side and then re-use it in places like this.
static bool ShouldTryAgainWithRedefinitionType(Sema &S, Expr *&base) {
const ObjCObjectPointerType *opty
= base->getType()->getAs<ObjCObjectPointerType>();
if (!opty) return false;
const ObjCObjectType *ty = opty->getObjectType();
QualType redef;
if (ty->isObjCId()) {
redef = S.Context.ObjCIdRedefinitionType;
} else if (ty->isObjCClass()) {
redef = S.Context.ObjCClassRedefinitionType;
} else {
return false;
}
// Do the substitution as long as the redefinition type isn't just a
// possibly-qualified pointer to builtin-id or builtin-Class again.
opty = redef->getAs<ObjCObjectPointerType>();
if (opty && !opty->getObjectType()->getInterface() != 0)
return false;
S.ImpCastExprToType(base, redef, CK_BitCast);
return true;
}
/// Look up the given member of the given non-type-dependent
/// expression. This can return in one of two ways:
/// * If it returns a sentinel null-but-valid result, the caller will
/// assume that lookup was performed and the results written into
/// the provided structure. It will take over from there.
/// * Otherwise, the returned expression will be produced in place of
/// an ordinary member expression.
///
/// The ObjCImpDecl bit is a gross hack that will need to be properly
/// fixed for ObjC++.
ExprResult
Sema::LookupMemberExpr(LookupResult &R, Expr *&BaseExpr,
bool &IsArrow, SourceLocation OpLoc,
CXXScopeSpec &SS,
Decl *ObjCImpDecl, bool HasTemplateArgs) {
assert(BaseExpr && "no base expression");
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
if (IsArrow) DefaultLvalueConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
assert(!BaseType->isDependentType());
DeclarationName MemberName = R.getLookupName();
SourceLocation MemberLoc = R.getNameLoc();
// For later type-checking purposes, turn arrow accesses into dot
// accesses. The only access type we support that doesn't follow
// the C equivalence "a->b === (*a).b" is ObjC property accesses,
// and those never use arrows, so this is unaffected.
if (IsArrow) {
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
BaseType = Ptr->getPointeeType();
else if (const ObjCObjectPointerType *Ptr
= BaseType->getAs<ObjCObjectPointerType>())
BaseType = Ptr->getPointeeType();
else if (BaseType->isRecordType()) {
// Recover from arrow accesses to records, e.g.:
// struct MyRecord foo;
// foo->bar
// This is actually well-formed in C++ if MyRecord has an
// overloaded operator->, but that should have been dealt with
// by now.
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
<< BaseType << int(IsArrow) << BaseExpr->getSourceRange()
<< FixItHint::CreateReplacement(OpLoc, ".");
IsArrow = false;
} else {
Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
<< BaseType << BaseExpr->getSourceRange();
return ExprError();
}
}
// Handle field access to simple records.
if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
if (LookupMemberExprInRecord(*this, R, BaseExpr->getSourceRange(),
RTy, OpLoc, SS, HasTemplateArgs))
return ExprError();
// Returning valid-but-null is how we indicate to the caller that
// the lookup result was filled in.
return Owned((Expr*) 0);
}
// Handle ivar access to Objective-C objects.
if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
// There are three cases for the base type:
// - builtin id (qualified or unqualified)
// - builtin Class (qualified or unqualified)
// - an interface
ObjCInterfaceDecl *IDecl = OTy->getInterface();
if (!IDecl) {
// There's an implicit 'isa' ivar on all objects.
// But we only actually find it this way on objects of type 'id',
// apparently.
if (OTy->isObjCId() && Member->isStr("isa"))
return Owned(new (Context) ObjCIsaExpr(BaseExpr, IsArrow, MemberLoc,
Context.getObjCClassType()));
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
goto fail;
}
ObjCInterfaceDecl *ClassDeclared;
ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
if (!IV) {
// Attempt to correct for typos in ivar names.
LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
LookupMemberName);
if (CorrectTypo(Res, 0, 0, IDecl, false,
IsArrow ? CTC_ObjCIvarLookup
: CTC_ObjCPropertyLookup) &&
(IV = Res.getAsSingle<ObjCIvarDecl>())) {
Diag(R.getNameLoc(),
diag::err_typecheck_member_reference_ivar_suggest)
<< IDecl->getDeclName() << MemberName << IV->getDeclName()
<< FixItHint::CreateReplacement(R.getNameLoc(),
IV->getNameAsString());
Diag(IV->getLocation(), diag::note_previous_decl)
<< IV->getDeclName();
} else {
Res.clear();
Res.setLookupName(Member);
Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
<< IDecl->getDeclName() << MemberName
<< BaseExpr->getSourceRange();
return ExprError();
}
}
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
// error cases.
if (IV->isInvalidDecl())
return ExprError();
// Check whether we can reference this field.
if (DiagnoseUseOfDecl(IV, MemberLoc))
return ExprError();
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
IV->getAccessControl() != ObjCIvarDecl::Package) {
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
if (ObjCMethodDecl *MD = getCurMethodDecl())
ClassOfMethodDecl = MD->getClassInterface();
else if (ObjCImpDecl && getCurFunctionDecl()) {
// Case of a c-function declared inside an objc implementation.
// FIXME: For a c-style function nested inside an objc implementation
// class, there is no implementation context available, so we pass
// down the context as argument to this routine. Ideally, this context
// need be passed down in the AST node and somehow calculated from the
// AST for a function decl.
if (ObjCImplementationDecl *IMPD =
dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
ClassOfMethodDecl = IMPD->getClassInterface();
else if (ObjCCategoryImplDecl* CatImplClass =
dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
ClassOfMethodDecl = CatImplClass->getClassInterface();
}
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
if (ClassDeclared != IDecl ||
ClassOfMethodDecl != ClassDeclared)
Diag(MemberLoc, diag::error_private_ivar_access)
<< IV->getDeclName();
} else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
// @protected
Diag(MemberLoc, diag::error_protected_ivar_access)
<< IV->getDeclName();
}
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
MemberLoc, BaseExpr,
IsArrow));
}
// Objective-C property access.
const ObjCObjectPointerType *OPT;
if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
// This actually uses the base as an r-value.
DefaultLvalueConversion(BaseExpr);
assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr->getType()));
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
const ObjCObjectType *OT = OPT->getObjectType();
// id, with and without qualifiers.
if (OT->isObjCId()) {
// Check protocols on qualified interfaces.
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
// Check the use of this declaration
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
VK_LValue,
OK_ObjCProperty,
MemberLoc,
BaseExpr));
}
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
// Check the use of this method.
if (DiagnoseUseOfDecl(OMD, MemberLoc))
return ExprError();
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), Member);
ObjCMethodDecl *SMD = 0;
if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
SetterSel, Context))
SMD = dyn_cast<ObjCMethodDecl>(SDecl);
QualType PType = OMD->getSendResultType();
ExprValueKind VK = VK_LValue;
if (!getLangOptions().CPlusPlus &&
IsCForbiddenLValueType(Context, PType))
VK = VK_RValue;
ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
VK, OK,
MemberLoc, BaseExpr));
}
}
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< MemberName << BaseType);
}
// 'Class', unqualified only.
if (OT->isObjCClass()) {
// Only works in a method declaration (??!).
ObjCMethodDecl *MD = getCurMethodDecl();
if (!MD) {
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
goto fail;
}
// Also must look for a getter name which uses property syntax.
Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
ObjCInterfaceDecl *IFace = MD->getClassInterface();
ObjCMethodDecl *Getter;
if ((Getter = IFace->lookupClassMethod(Sel))) {
// Check the use of this method.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
} else
Getter = IFace->lookupPrivateMethod(Sel, false);
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), Member);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = IFace->lookupPrivateMethod(SetterSel, false);
}
// Look through local category implementations associated with the class.
if (!Setter)
Setter = IFace->getCategoryClassMethod(SetterSel);
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
ExprValueKind VK = VK_LValue;
if (Getter) {
PType = Getter->getSendResultType();
if (!getLangOptions().CPlusPlus &&
IsCForbiddenLValueType(Context, PType))
VK = VK_RValue;
} else {
// Get the expression type from Setter's incoming parameter.
PType = (*(Setter->param_end() -1))->getType();
}
ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
// FIXME: we must check that the setter has property type.
return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
PType, VK, OK,
MemberLoc, BaseExpr));
}
if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< MemberName << BaseType);
}
// Normal property access.
return HandleExprPropertyRefExpr(OPT, BaseExpr, MemberName, MemberLoc,
SourceLocation(), QualType(), false);
}
// Handle 'field access' to vectors, such as 'V.xx'.
if (BaseType->isExtVectorType()) {
// FIXME: this expr should store IsArrow.
IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr->getValueKind());
QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
Member, MemberLoc);
if (ret.isNull())
return ExprError();
return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr,
*Member, MemberLoc));
}
// Adjust builtin-sel to the appropriate redefinition type if that's
// not just a pointer to builtin-sel again.
if (IsArrow &&
BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
!Context.ObjCSelRedefinitionType->isObjCSelType()) {
ImpCastExprToType(BaseExpr, Context.ObjCSelRedefinitionType, CK_BitCast);
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
}
// Failure cases.
fail:
// There's a possible road to recovery for function types.
const FunctionType *Fun = 0;
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
if ((Fun = Ptr->getPointeeType()->getAs<FunctionType>())) {
// fall out, handled below.
// Recover from dot accesses to pointers, e.g.:
// type *foo;
// foo.bar
// This is actually well-formed in two cases:
// - 'type' is an Objective C type
// - 'bar' is a pseudo-destructor name which happens to refer to
// the appropriate pointer type
} else if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
<< BaseType << int(IsArrow) << BaseExpr->getSourceRange()
<< FixItHint::CreateReplacement(OpLoc, "->");
// Recurse as an -> access.
IsArrow = true;
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
}
} else {
Fun = BaseType->getAs<FunctionType>();
}
// If the user is trying to apply -> or . to a function pointer
// type, it's probably because they forgot parentheses to call that
// function. Suggest the addition of those parentheses, build the
// call, and continue on.
if (Fun || BaseType == Context.OverloadTy) {
bool TryCall;
if (BaseType == Context.OverloadTy) {
TryCall = true;
} else {
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Fun)) {
TryCall = (FPT->getNumArgs() == 0);
} else {
TryCall = true;
}
if (TryCall) {
QualType ResultTy = Fun->getResultType();
TryCall = (!IsArrow && ResultTy->isRecordType()) ||
(IsArrow && ResultTy->isPointerType() &&
ResultTy->getAs<PointerType>()->getPointeeType()->isRecordType());
}
}
if (TryCall) {
SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
Diag(BaseExpr->getExprLoc(), diag::err_member_reference_needs_call)
<< QualType(Fun, 0)
<< FixItHint::CreateInsertion(Loc, "()");
ExprResult NewBase
= ActOnCallExpr(0, BaseExpr, Loc, MultiExprArg(*this, 0, 0), Loc);
if (NewBase.isInvalid())
return ExprError();
BaseExpr = NewBase.takeAs<Expr>();
DefaultFunctionArrayConversion(BaseExpr);
BaseType = BaseExpr->getType();
return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
ObjCImpDecl, HasTemplateArgs);
}
}
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange();
return ExprError();
}
/// The main callback when the parser finds something like
/// expression . [nested-name-specifier] identifier
/// expression -> [nested-name-specifier] identifier
/// where 'identifier' encompasses a fairly broad spectrum of
/// possibilities, including destructor and operator references.
///
/// \param OpKind either tok::arrow or tok::period
/// \param HasTrailingLParen whether the next token is '(', which
/// is used to diagnose mis-uses of special members that can
/// only be called
/// \param ObjCImpDecl the current ObjC @implementation decl;
/// this is an ugly hack around the fact that ObjC @implementations
/// aren't properly put in the context chain
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &Id,
Decl *ObjCImpDecl,
bool HasTrailingLParen) {
if (SS.isSet() && SS.isInvalid())
return ExprError();
// Warn about the explicit constructor calls Microsoft extension.
if (getLangOptions().Microsoft &&
Id.getKind() == UnqualifiedId::IK_ConstructorName)
Diag(Id.getSourceRange().getBegin(),
diag::ext_ms_explicit_constructor_call);
TemplateArgumentListInfo TemplateArgsBuffer;
// Decompose the name into its component parts.
DeclarationNameInfo NameInfo;
const TemplateArgumentListInfo *TemplateArgs;
DecomposeUnqualifiedId(*this, Id, TemplateArgsBuffer,
NameInfo, TemplateArgs);
DeclarationName Name = NameInfo.getName();
bool IsArrow = (OpKind == tok::arrow);
NamedDecl *FirstQualifierInScope
= (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
// This is a postfix expression, so get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
if (Result.isInvalid()) return ExprError();
Base = Result.take();
if (Base->getType()->isDependentType() || Name.isDependentName() ||
isDependentScopeSpecifier(SS)) {
Result = ActOnDependentMemberExpr(Base, Base->getType(),
IsArrow, OpLoc,
SS, FirstQualifierInScope,
NameInfo, TemplateArgs);
} else {
LookupResult R(*this, NameInfo, LookupMemberName);
Result = LookupMemberExpr(R, Base, IsArrow, OpLoc,
SS, ObjCImpDecl, TemplateArgs != 0);
if (Result.isInvalid()) {
Owned(Base);
return ExprError();
}
if (Result.get()) {
// The only way a reference to a destructor can be used is to
// immediately call it, which falls into this case. If the
// next token is not a '(', produce a diagnostic and build the
// call now.
if (!HasTrailingLParen &&
Id.getKind() == UnqualifiedId::IK_DestructorName)
return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
return move(Result);
}
Result = BuildMemberReferenceExpr(Base, Base->getType(),
OpLoc, IsArrow, SS, FirstQualifierInScope,
R, TemplateArgs);
}
return move(Result);
}
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
FunctionDecl *FD,
ParmVarDecl *Param) {
if (Param->hasUnparsedDefaultArg()) {
Diag(CallLoc,
diag::err_use_of_default_argument_to_function_declared_later) <<
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
Diag(UnparsedDefaultArgLocs[Param],
diag::note_default_argument_declared_here);
return ExprError();
}
if (Param->hasUninstantiatedDefaultArg()) {
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
// Instantiate the expression.
MultiLevelTemplateArgumentList ArgList
= getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
std::pair<const TemplateArgument *, unsigned> Innermost
= ArgList.getInnermost();
InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
Innermost.second);
ExprResult Result;
{
// C++ [dcl.fct.default]p5:
// The names in the [default argument] expression are bound, and
// the semantic constraints are checked, at the point where the
// default argument expression appears.
ContextRAII SavedContext(*this, FD);
Result = SubstExpr(UninstExpr, ArgList);
}
if (Result.isInvalid())
return ExprError();
// Check the expression as an initializer for the parameter.
InitializedEntity Entity
= InitializedEntity::InitializeParameter(Context, Param);
InitializationKind Kind
= InitializationKind::CreateCopy(Param->getLocation(),
/*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
Expr *ResultE = Result.takeAs<Expr>();
InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
Result = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(*this, &ResultE, 1));
if (Result.isInvalid())
return ExprError();
// Build the default argument expression.
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
Result.takeAs<Expr>()));
}
// If the default expression creates temporaries, we need to
// push them to the current stack of expression temporaries so they'll
// be properly destroyed.
// FIXME: We should really be rebuilding the default argument with new
// bound temporaries; see the comment in PR5810.
for (unsigned i = 0, e = Param->getNumDefaultArgTemporaries(); i != e; ++i) {
CXXTemporary *Temporary = Param->getDefaultArgTemporary(i);
MarkDeclarationReferenced(Param->getDefaultArg()->getLocStart(),
const_cast<CXXDestructorDecl*>(Temporary->getDestructor()));
ExprTemporaries.push_back(Temporary);
}
// We already type-checked the argument, so we know it works.
// Just mark all of the declarations in this potentially-evaluated expression
// as being "referenced".
MarkDeclarationsReferencedInExpr(Param->getDefaultArg());
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
bool Invalid = false;
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (NumArgs < NumArgsInProto) {
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< Fn->getType()->isBlockPointerType()
<< NumArgsInProto << NumArgs << Fn->getSourceRange();
Call->setNumArgs(Context, NumArgsInProto);
}
// If too many are passed and not variadic, error on the extras and drop
// them.
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< Fn->getType()->isBlockPointerType()
<< NumArgsInProto << NumArgs << Fn->getSourceRange()
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
// This deletes the extra arguments.
Call->setNumArgs(Context, NumArgsInProto);
return true;
}
}
llvm::SmallVector<Expr *, 8> AllArgs;
VariadicCallType CallType =
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
if (Fn->getType()->isBlockPointerType())
CallType = VariadicBlock; // Block
else if (isa<MemberExpr>(Fn))
CallType = VariadicMethod;
Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
Proto, 0, Args, NumArgs, AllArgs, CallType);
if (Invalid)
return true;
unsigned TotalNumArgs = AllArgs.size();
for (unsigned i = 0; i < TotalNumArgs; ++i)
Call->setArg(i, AllArgs[i]);
return false;
}
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
unsigned FirstProtoArg,
Expr **Args, unsigned NumArgs,
llvm::SmallVector<Expr *, 8> &AllArgs,
VariadicCallType CallType) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
bool Invalid = false;
if (NumArgs != NumArgsInProto)
// Use default arguments for missing arguments
NumArgsToCheck = NumArgsInProto;
unsigned ArgIx = 0;
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
QualType ProtoArgType = Proto->getArgType(i);
Expr *Arg;
if (ArgIx < NumArgs) {
Arg = Args[ArgIx++];
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
ProtoArgType,
PDiag(diag::err_call_incomplete_argument)
<< Arg->getSourceRange()))
return true;
// Pass the argument
ParmVarDecl *Param = 0;
if (FDecl && i < FDecl->getNumParams())
Param = FDecl->getParamDecl(i);
InitializedEntity Entity =
Param? InitializedEntity::InitializeParameter(Context, Param)
: InitializedEntity::InitializeParameter(Context, ProtoArgType);
ExprResult ArgE = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(Arg));
if (ArgE.isInvalid())
return true;
Arg = ArgE.takeAs<Expr>();
} else {
ParmVarDecl *Param = FDecl->getParamDecl(i);
ExprResult ArgExpr =
BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
if (ArgExpr.isInvalid())
return true;
Arg = ArgExpr.takeAs<Expr>();
}
AllArgs.push_back(Arg);
}
// If this is a variadic call, handle args passed through "...".
if (CallType != VariadicDoesNotApply) {
// Promote the arguments (C99 6.5.2.2p7).
for (unsigned i = ArgIx; i != NumArgs; ++i) {
Expr *Arg = Args[i];
Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType, FDecl);
AllArgs.push_back(Arg);
}
}
return Invalid;
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
ExprResult
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
MultiExprArg args, SourceLocation RParenLoc) {
unsigned NumArgs = args.size();
// Since this might be a postfix expression, get rid of ParenListExprs.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
if (Result.isInvalid()) return ExprError();
Fn = Result.take();
Expr **Args = args.release();
if (getLangOptions().CPlusPlus) {
// If this is a pseudo-destructor expression, build the call immediately.
if (isa<CXXPseudoDestructorExpr>(Fn)) {
if (NumArgs > 0) {
// Pseudo-destructor calls should not have any arguments.
Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
<< FixItHint::CreateRemoval(
SourceRange(Args[0]->getLocStart(),
Args[NumArgs-1]->getLocEnd()));
NumArgs = 0;
}
return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
VK_RValue, RParenLoc));
}
// Determine whether this is a dependent call inside a C++ template,
// in which case we won't do any semantic analysis now.
// FIXME: Will need to cache the results of name lookup (including ADL) in
// Fn.
bool Dependent = false;
if (Fn->isTypeDependent())
Dependent = true;
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
Dependent = true;
if (Dependent)
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
Context.DependentTy, VK_RValue,
RParenLoc));
// Determine whether this is a call to an object (C++ [over.call.object]).
if (Fn->getType()->isRecordType())
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
RParenLoc));
Expr *NakedFn = Fn->IgnoreParens();
// Determine whether this is a call to an unresolved member function.
if (UnresolvedMemberExpr *MemE = dyn_cast<UnresolvedMemberExpr>(NakedFn)) {
// If lookup was unresolved but not dependent (i.e. didn't find
// an unresolved using declaration), it has to be an overloaded
// function set, which means it must contain either multiple
// declarations (all methods or method templates) or a single
// method template.
assert((MemE->getNumDecls() > 1) ||
isa<FunctionTemplateDecl>(
(*MemE->decls_begin())->getUnderlyingDecl()));
(void)MemE;
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
RParenLoc);
}
// Determine whether this is a call to a member function.
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(NakedFn)) {
NamedDecl *MemDecl = MemExpr->getMemberDecl();
if (isa<CXXMethodDecl>(MemDecl))
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
RParenLoc);
}
// Determine whether this is a call to a pointer-to-member function.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(NakedFn)) {
if (BO->getOpcode() == BO_PtrMemD ||
BO->getOpcode() == BO_PtrMemI) {
if (const FunctionProtoType *FPT
= BO->getType()->getAs<FunctionProtoType>()) {
QualType ResultTy = FPT->getCallResultType(Context);
ExprValueKind VK = Expr::getValueKindForType(FPT->getResultType());
CXXMemberCallExpr *TheCall
= new (Context) CXXMemberCallExpr(Context, Fn, Args,
NumArgs, ResultTy, VK,
RParenLoc);
if (CheckCallReturnType(FPT->getResultType(),
BO->getRHS()->getSourceRange().getBegin(),
TheCall, 0))
return ExprError();
if (ConvertArgumentsForCall(TheCall, BO, 0, FPT, Args, NumArgs,
RParenLoc))
return ExprError();
return MaybeBindToTemporary(TheCall);
}
return ExprError(Diag(Fn->getLocStart(),
diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
}
}
}
// If we're directly calling a function, get the appropriate declaration.
// Also, in C++, keep track of whether we should perform argument-dependent
// lookup and whether there were any explicitly-specified template arguments.
Expr *NakedFn = Fn->IgnoreParens();
if (isa<UnresolvedLookupExpr>(NakedFn)) {
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(NakedFn);
return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
RParenLoc);
}
NamedDecl *NDecl = 0;
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
if (UnOp->getOpcode() == UO_AddrOf)
NakedFn = UnOp->getSubExpr()->IgnoreParens();
if (isa<DeclRefExpr>(NakedFn))
NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc);
}
/// BuildResolvedCallExpr - Build a call to a resolved expression,
/// i.e. an expression not of \p OverloadTy. The expression should
/// unary-convert to an expression of function-pointer or
/// block-pointer type.
///
/// \param NDecl the declaration being called, if available
ExprResult
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
// Promote the function operand.
UsualUnaryConversions(Fn);
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
CallExpr *TheCall = new (Context) CallExpr(Context, Fn,
Args, NumArgs,
Context.BoolTy,
VK_RValue,
RParenLoc);
const FunctionType *FuncT;
if (!Fn->getType()->isBlockPointerType()) {
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
// have type pointer to function".
const PointerType *PT = Fn->getType()->getAs<PointerType>();
if (PT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
FuncT = PT->getPointeeType()->getAs<FunctionType>();
} else { // This is a block call.
FuncT = Fn->getType()->getAs<BlockPointerType>()->getPointeeType()->
getAs<FunctionType>();
}
if (FuncT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
// Check for a valid return type
if (CheckCallReturnType(FuncT->getResultType(),
Fn->getSourceRange().getBegin(), TheCall,
FDecl))
return ExprError();
// We know the result type of the call, set it.
TheCall->setType(FuncT->getCallResultType(Context));
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
RParenLoc))
return ExprError();
} else {
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
if (FDecl) {
// Check if we have too few/too many template arguments, based
// on our knowledge of the function definition.
const FunctionDecl *Def = 0;
if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
const FunctionProtoType *Proto
= Def->getType()->getAs<FunctionProtoType>();
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
}
// If the function we're calling isn't a function prototype, but we have
// a function prototype from a prior declaratiom, use that prototype.
if (!FDecl->hasPrototype())
Proto = FDecl->getType()->getAs<FunctionProtoType>();
}
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
if (Proto && i < Proto->getNumArgs()) {
InitializedEntity Entity
= InitializedEntity::InitializeParameter(Context,
Proto->getArgType(i));
ExprResult ArgE = PerformCopyInitialization(Entity,
SourceLocation(),
Owned(Arg));
if (ArgE.isInvalid())
return true;
Arg = ArgE.takeAs<Expr>();
} else {
DefaultArgumentPromotion(Arg);
}
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
Arg->getType(),
PDiag(diag::err_call_incomplete_argument)
<< Arg->getSourceRange()))
return ExprError();
TheCall->setArg(i, Arg);
}
}
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (!Method->isStatic())
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange());
// Check for sentinels
if (NDecl)
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
// Do special checking on direct calls to functions.
if (FDecl) {
if (CheckFunctionCall(FDecl, TheCall))
return ExprError();
if (unsigned BuiltinID = FDecl->getBuiltinID())
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
} else if (NDecl) {
if (CheckBlockCall(NDecl, TheCall))
return ExprError();
}
return MaybeBindToTemporary(TheCall);
}
ExprResult
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
SourceLocation RParenLoc, Expr *InitExpr) {
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
// FIXME: put back this assert when initializers are worked out.
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
TypeSourceInfo *TInfo;
QualType literalType = GetTypeFromParser(Ty, &TInfo);
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(literalType);
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
}
ExprResult
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
SourceLocation RParenLoc, Expr *literalExpr) {
QualType literalType = TInfo->getType();
if (literalType->isArrayType()) {
if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
PDiag(diag::err_illegal_decl_array_incomplete_type)
<< SourceRange(LParenLoc,
literalExpr->getSourceRange().getEnd())))
return ExprError();
if (literalType->isVariableArrayType())
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
} else if (!literalType->isDependentType() &&
RequireCompleteType(LParenLoc, literalType,
PDiag(diag::err_typecheck_decl_incomplete_type)
<< SourceRange(LParenLoc,
literalExpr->getSourceRange().getEnd())))
return ExprError();
InitializedEntity Entity
= InitializedEntity::InitializeTemporary(literalType);
InitializationKind Kind
= InitializationKind::CreateCast(SourceRange(LParenLoc, RParenLoc),
/*IsCStyleCast=*/true);
InitializationSequence InitSeq(*this, Entity, Kind, &literalExpr, 1);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(*this, &literalExpr, 1),
&literalType);
if (Result.isInvalid())
return ExprError();
literalExpr = Result.get();
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
if (isFileScope) { // 6.5.2.5p3
if (CheckForConstantInitializer(literalExpr, literalType))
return ExprError();
}
// In C, compound literals are l-values for some reason.
ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
return Owned(new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
VK, literalExpr, isFileScope));
}
ExprResult
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
SourceLocation RBraceLoc) {
unsigned NumInit = initlist.size();
Expr **InitList = initlist.release();
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being intialized.
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
NumInit, RBraceLoc);
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
return Owned(E);
}
/// Prepares for a scalar cast, performing all the necessary stages
/// except the final cast and returning the kind required.
static CastKind PrepareScalarCast(Sema &S, Expr *&Src, QualType DestTy) {
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
// Also, callers should have filtered out the invalid cases with
// pointers. Everything else should be possible.
QualType SrcTy = Src->getType();
if (S.Context.hasSameUnqualifiedType(SrcTy, DestTy))
return CK_NoOp;
switch (SrcTy->getScalarTypeKind()) {
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
case Type::STK_Pointer:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Pointer:
return DestTy->isObjCObjectPointerType() ?
CK_AnyPointerToObjCPointerCast :
CK_BitCast;
case Type::STK_Bool:
return CK_PointerToBoolean;
case Type::STK_Integral:
return CK_PointerToIntegral;
case Type::STK_Floating:
case Type::STK_FloatingComplex:
case Type::STK_IntegralComplex:
case Type::STK_MemberPointer:
llvm_unreachable("illegal cast from pointer");
}
break;
case Type::STK_Bool: // casting from bool is like casting from an integer
case Type::STK_Integral:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Pointer:
if (Src->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull))
return CK_NullToPointer;
return CK_IntegralToPointer;
case Type::STK_Bool:
return CK_IntegralToBoolean;
case Type::STK_Integral:
return CK_IntegralCast;
case Type::STK_Floating:
return CK_IntegralToFloating;
case Type::STK_IntegralComplex:
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
CK_IntegralCast);
return CK_IntegralRealToComplex;
case Type::STK_FloatingComplex:
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
CK_IntegralToFloating);
return CK_FloatingRealToComplex;
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
case Type::STK_Floating:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_Floating:
return CK_FloatingCast;
case Type::STK_Bool:
return CK_FloatingToBoolean;
case Type::STK_Integral:
return CK_FloatingToIntegral;
case Type::STK_FloatingComplex:
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
CK_FloatingCast);
return CK_FloatingRealToComplex;
case Type::STK_IntegralComplex:
S.ImpCastExprToType(Src, DestTy->getAs<ComplexType>()->getElementType(),
CK_FloatingToIntegral);
return CK_IntegralRealToComplex;
case Type::STK_Pointer:
llvm_unreachable("valid float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
case Type::STK_FloatingComplex:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FloatingComplex:
return CK_FloatingComplexCast;
case Type::STK_IntegralComplex:
return CK_FloatingComplexToIntegralComplex;
case Type::STK_Floating: {
QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
if (S.Context.hasSameType(ET, DestTy))
return CK_FloatingComplexToReal;
S.ImpCastExprToType(Src, ET, CK_FloatingComplexToReal);
return CK_FloatingCast;
}
case Type::STK_Bool:
return CK_FloatingComplexToBoolean;
case Type::STK_Integral:
S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
CK_FloatingComplexToReal);
return CK_FloatingToIntegral;
case Type::STK_Pointer:
llvm_unreachable("valid complex float->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
case Type::STK_IntegralComplex:
switch (DestTy->getScalarTypeKind()) {
case Type::STK_FloatingComplex:
return CK_IntegralComplexToFloatingComplex;
case Type::STK_IntegralComplex:
return CK_IntegralComplexCast;
case Type::STK_Integral: {
QualType ET = SrcTy->getAs<ComplexType>()->getElementType();
if (S.Context.hasSameType(ET, DestTy))
return CK_IntegralComplexToReal;
S.ImpCastExprToType(Src, ET, CK_IntegralComplexToReal);
return CK_IntegralCast;
}
case Type::STK_Bool:
return CK_IntegralComplexToBoolean;
case Type::STK_Floating:
S.ImpCastExprToType(Src, SrcTy->getAs<ComplexType>()->getElementType(),
CK_IntegralComplexToReal);
return CK_IntegralToFloating;
case Type::STK_Pointer:
llvm_unreachable("valid complex int->pointer cast?");
case Type::STK_MemberPointer:
llvm_unreachable("member pointer type in C");
}
break;
}
llvm_unreachable("Unhandled scalar cast");
return CK_BitCast;
}
/// CheckCastTypes - Check type constraints for casting between types.
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType,
Expr *&castExpr, CastKind& Kind, ExprValueKind &VK,
CXXCastPath &BasePath, bool FunctionalStyle) {
if (getLangOptions().CPlusPlus)
return CXXCheckCStyleCast(SourceRange(TyR.getBegin(),
castExpr->getLocEnd()),
castType, VK, castExpr, Kind, BasePath,
FunctionalStyle);
// We only support r-value casts in C.
VK = VK_RValue;
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
// type needs to be scalar.
if (castType->isVoidType()) {
// We don't necessarily do lvalue-to-rvalue conversions on this.
IgnoredValueConversions(castExpr);
// Cast to void allows any expr type.
Kind = CK_ToVoid;
return false;
}
DefaultFunctionArrayLvalueConversion(castExpr);
if (RequireCompleteType(TyR.getBegin(), castType,
diag::err_typecheck_cast_to_incomplete))
return true;
if (!castType->isScalarType() && !castType->isVectorType()) {
if (Context.hasSameUnqualifiedType(castType, castExpr->getType()) &&
(castType->isStructureType() || castType->isUnionType())) {
// GCC struct/union extension: allow cast to self.
// FIXME: Check that the cast destination type is complete.
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
<< castType << castExpr->getSourceRange();
Kind = CK_NoOp;
return false;
}
if (castType->isUnionType()) {
// GCC cast to union extension
RecordDecl *RD = castType->getAs<RecordType>()->getDecl();
RecordDecl::field_iterator Field, FieldEnd;
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Context.hasSameUnqualifiedType(Field->getType(),
castExpr->getType()) &&
!Field->isUnnamedBitfield()) {
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
<< castExpr->getSourceRange();
break;
}
}
if (Field == FieldEnd)
return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
<< castExpr->getType() << castExpr->getSourceRange();
Kind = CK_ToUnion;
return false;
}
// Reject any other conversions to non-scalar types.
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
<< castType << castExpr->getSourceRange();
}
// The type we're casting to is known to be a scalar or vector.
// Require the operand to be a scalar or vector.
if (!castExpr->getType()->isScalarType() &&
!castExpr->getType()->isVectorType()) {
return Diag(castExpr->getLocStart(),
diag::err_typecheck_expect_scalar_operand)
<< castExpr->getType() << castExpr->getSourceRange();
}
if (castType->isExtVectorType())
return CheckExtVectorCast(TyR, castType, castExpr, Kind);
if (castType->isVectorType())
return CheckVectorCast(TyR, castType, castExpr->getType(), Kind);
if (castExpr->getType()->isVectorType())
return CheckVectorCast(TyR, castExpr->getType(), castType, Kind);
// The source and target types are both scalars, i.e.
// - arithmetic types (fundamental, enum, and complex)
// - all kinds of pointers
// Note that member pointers were filtered out with C++, above.
if (isa<ObjCSelectorExpr>(castExpr))
return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
// If either type is a pointer, the other type has to be either an
// integer or a pointer.
if (!castType->isArithmeticType()) {
QualType castExprType = castExpr->getType();
if (!castExprType->isIntegralType(Context) &&
castExprType->isArithmeticType())
return Diag(castExpr->getLocStart(),
diag::err_cast_pointer_from_non_pointer_int)
<< castExprType << castExpr->getSourceRange();
} else if (!castExpr->getType()->isArithmeticType()) {
if (!castType->isIntegralType(Context) && castType->isArithmeticType())
return Diag(castExpr->getLocStart(),
diag::err_cast_pointer_to_non_pointer_int)
<< castType << castExpr->getSourceRange();
}
Kind = PrepareScalarCast(*this, castExpr, castType);
if (Kind == CK_BitCast)
CheckCastAlign(castExpr, castType, TyR);
return false;
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
CastKind &Kind) {
assert(VectorTy->isVectorType() && "Not a vector type!");
if (Ty->isVectorType() || Ty->isIntegerType()) {
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
return Diag(R.getBegin(),
Ty->isVectorType() ?
diag::err_invalid_conversion_between_vectors :
diag::err_invalid_conversion_between_vector_and_integer)
<< VectorTy << Ty << R;
} else
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< VectorTy << Ty << R;
Kind = CK_BitCast;
return false;
}
bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *&CastExpr,
CastKind &Kind) {
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
QualType SrcTy = CastExpr->getType();
// If SrcTy is a VectorType, the total size must match to explicitly cast to
// an ExtVectorType.
if (SrcTy->isVectorType()) {
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
<< DestTy << SrcTy << R;
Kind = CK_BitCast;
return false;
}
// All non-pointer scalars can be cast to ExtVector type. The appropriate
// conversion will take place first from scalar to elt type, and then
// splat from elt type to vector.
if (SrcTy->isPointerType())
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< DestTy << SrcTy << R;
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
ImpCastExprToType(CastExpr, DestElemTy,
PrepareScalarCast(*this, CastExpr, DestElemTy));
Kind = CK_VectorSplat;
return false;
}
ExprResult
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, ParsedType Ty,
SourceLocation RParenLoc, Expr *castExpr) {
assert((Ty != 0) && (castExpr != 0) &&
"ActOnCastExpr(): missing type or expr");
TypeSourceInfo *castTInfo;
QualType castType = GetTypeFromParser(Ty, &castTInfo);
if (!castTInfo)
castTInfo = Context.getTrivialTypeSourceInfo(castType);
// If the Expr being casted is a ParenListExpr, handle it specially.
if (isa<ParenListExpr>(castExpr))
return ActOnCastOfParenListExpr(S, LParenLoc, RParenLoc, castExpr,
castTInfo);
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, castExpr);
}
ExprResult
Sema::BuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *Ty,
SourceLocation RParenLoc, Expr *castExpr) {
CastKind Kind = CK_Invalid;
ExprValueKind VK = VK_RValue;
CXXCastPath BasePath;
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), Ty->getType(), castExpr,
Kind, VK, BasePath))
return ExprError();
return Owned(CStyleCastExpr::Create(Context,
Ty->getType().getNonLValueExprType(Context),
VK, Kind, castExpr, &BasePath, Ty,
LParenLoc, RParenLoc));
}
/// This is not an AltiVec-style cast, so turn the ParenListExpr into a sequence
/// of comma binary operators.
ExprResult
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *expr) {
ParenListExpr *E = dyn_cast<ParenListExpr>(expr);
if (!E)
return Owned(expr);
ExprResult Result(E->getExpr(0));
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
E->getExpr(i));
if (Result.isInvalid()) return ExprError();
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
}
ExprResult
Sema::ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
SourceLocation RParenLoc, Expr *Op,
TypeSourceInfo *TInfo) {
ParenListExpr *PE = cast<ParenListExpr>(Op);
QualType Ty = TInfo->getType();
bool isAltiVecLiteral = false;
// Check for an altivec literal,
// i.e. all the elements are integer constants.
if (getLangOptions().AltiVec && Ty->isVectorType()) {
if (PE->getNumExprs() == 0) {
Diag(PE->getExprLoc(), diag::err_altivec_empty_initializer);
return ExprError();
}
if (PE->getNumExprs() == 1) {
if (!PE->getExpr(0)->getType()->isVectorType())
isAltiVecLiteral = true;
}
else
isAltiVecLiteral = true;
}
// If this is an altivec initializer, '(' type ')' '(' init, ..., init ')'
// then handle it as such.
if (isAltiVecLiteral) {
llvm::SmallVector<Expr *, 8> initExprs;
for (unsigned i = 0, e = PE->getNumExprs(); i != e; ++i)
initExprs.push_back(PE->getExpr(i));
// FIXME: This means that pretty-printing the final AST will produce curly
// braces instead of the original commas.
InitListExpr *E = new (Context) InitListExpr(Context, LParenLoc,
&initExprs[0],
initExprs.size(), RParenLoc);
E->setType(Ty);
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, E);
} else {
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
// sequence of BinOp comma operators.
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Op);
if (Result.isInvalid()) return ExprError();
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Result.take());
}
}
ExprResult Sema::ActOnParenOrParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val,
ParsedType TypeOfCast) {
unsigned nexprs = Val.size();
Expr **exprs = reinterpret_cast<Expr**>(Val.release());
assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
Expr *expr;
if (nexprs == 1 && TypeOfCast && !TypeIsVectorType(TypeOfCast))
expr = new (Context) ParenExpr(L, R, exprs[0]);
else
expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
return Owned(expr);
}
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lhs = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
Expr *&SAVE, ExprValueKind &VK,
ExprObjectKind &OK,
SourceLocation QuestionLoc) {
// If both LHS and RHS are overloaded functions, try to resolve them.
if (Context.hasSameType(LHS->getType(), RHS->getType()) &&
LHS->getType()->isSpecificBuiltinType(BuiltinType::Overload)) {
ExprResult LHSResult = CheckPlaceholderExpr(LHS, QuestionLoc);
if (LHSResult.isInvalid())
return QualType();
ExprResult RHSResult = CheckPlaceholderExpr(RHS, QuestionLoc);
if (RHSResult.isInvalid())
return QualType();
LHS = LHSResult.take();
RHS = RHSResult.take();
}
// C++ is sufficiently different to merit its own checker.
if (getLangOptions().CPlusPlus)
return CXXCheckConditionalOperands(Cond, LHS, RHS, SAVE,
VK, OK, QuestionLoc);
VK = VK_RValue;
OK = OK_Ordinary;
UsualUnaryConversions(Cond);
if (SAVE) {
SAVE = LHS = Cond;
}
else
UsualUnaryConversions(LHS);
UsualUnaryConversions(RHS);
QualType CondTy = Cond->getType();
QualType LHSTy = LHS->getType();
QualType RHSTy = RHS->getType();
// first, check the condition.
if (!CondTy->isScalarType()) { // C99 6.5.15p2
// OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
// Throw an error if its not either.
if (getLangOptions().OpenCL) {
if (!CondTy->isVectorType()) {
Diag(Cond->getLocStart(),
diag::err_typecheck_cond_expect_scalar_or_vector)
<< CondTy;
return QualType();
}
}
else {
Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
}
// Now check the two expressions.
if (LHSTy->isVectorType() || RHSTy->isVectorType())
return CheckVectorOperands(QuestionLoc, LHS, RHS);
// OpenCL: If the condition is a vector, and both operands are scalar,
// attempt to implicity convert them to the vector type to act like the
// built in select.
if (getLangOptions().OpenCL && CondTy->isVectorType()) {
// Both operands should be of scalar type.
if (!LHSTy->isScalarType()) {
Diag(LHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
if (!RHSTy->isScalarType()) {
Diag(RHS->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
// Implicity convert these scalars to the type of the condition.
ImpCastExprToType(LHS, CondTy, CK_IntegralCast);
ImpCastExprToType(RHS, CondTy, CK_IntegralCast);
}
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
UsualArithmeticConversions(LHS, RHS);
return LHS->getType();
}
// If both operands are the same structure or union type, the result is that
// type.
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
if (LHSRT->getDecl() == RHSRT->getDecl())
// "If both the operands have structure or union type, the result has
// that type." This implies that CV qualifiers are dropped.
return LHSTy.getUnqualifiedType();
// FIXME: Type of conditional expression must be complete in C mode.
}
// C99 6.5.15p5: "If both operands have void type, the result has void type."
// The following || allows only one side to be void (a GCC-ism).
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
if (!LHSTy->isVoidType())
Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
<< RHS->getSourceRange();
if (!RHSTy->isVoidType())
Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
<< LHS->getSourceRange();
ImpCastExprToType(LHS, Context.VoidTy, CK_ToVoid);
ImpCastExprToType(RHS, Context.VoidTy, CK_ToVoid);
return Context.VoidTy;
}
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
if ((LHSTy->isAnyPointerType() || LHSTy->isBlockPointerType()) &&
RHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
// promote the null to a pointer.
ImpCastExprToType(RHS, LHSTy, CK_NullToPointer);
return LHSTy;
}
if ((RHSTy->isAnyPointerType() || RHSTy->isBlockPointerType()) &&
LHS->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
ImpCastExprToType(LHS, RHSTy, CK_NullToPointer);
return RHSTy;
}
// All objective-c pointer type analysis is done here.
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
QuestionLoc);
if (!compositeType.isNull())
return compositeType;
// Handle block pointer types.
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
QualType destType = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(LHS, destType, CK_BitCast);
ImpCastExprToType(RHS, destType, CK_BitCast);
return destType;
}
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
// We have 2 block pointer types.
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical block pointer types are always compatible.
return LHSTy;
}
// The block pointer types aren't identical, continue checking.
QualType lhptee = LHSTy->getAs<BlockPointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<BlockPointerType>()->getPointeeType();
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(LHS, incompatTy, CK_BitCast);
ImpCastExprToType(RHS, incompatTy, CK_BitCast);
return incompatTy;
}
// The block pointer types are compatible.
ImpCastExprToType(LHS, LHSTy, CK_BitCast);
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
// Check constraints for C object pointers types (C99 6.5.15p3,6).
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
// get the "pointed to" types
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
ImpCastExprToType(LHS, destType, CK_NoOp);
// Promote to void*.
ImpCastExprToType(RHS, destType, CK_BitCast);
return destType;
}
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
QualType destPointee
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
ImpCastExprToType(RHS, destType, CK_NoOp);
// Promote to void*.
ImpCastExprToType(LHS, destType, CK_BitCast);
return destType;
}
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical pointer types are always compatible.
return LHSTy;
}
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(LHS, incompatTy, CK_BitCast);
ImpCastExprToType(RHS, incompatTy, CK_BitCast);
return incompatTy;
}
// The pointer types are compatible.
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
// differently qualified versions of compatible types, the result type is
// a pointer to an appropriately qualified version of the *composite*
// type.
// FIXME: Need to calculate the composite type.
// FIXME: Need to add qualifiers
ImpCastExprToType(LHS, LHSTy, CK_BitCast);
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
// GCC compatibility: soften pointer/integer mismatch. Note that
// null pointers have been filtered out by this point.
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
ImpCastExprToType(LHS, RHSTy, CK_IntegralToPointer);
return RHSTy;
}
if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
ImpCastExprToType(RHS, LHSTy, CK_IntegralToPointer);
return LHSTy;
}
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
/// FindCompositeObjCPointerType - Helper method to find composite type of
/// two objective-c pointer types of the two input expressions.
QualType Sema::FindCompositeObjCPointerType(Expr *&LHS, Expr *&RHS,
SourceLocation QuestionLoc) {
QualType LHSTy = LHS->getType();
QualType RHSTy = RHS->getType();
// Handle things like Class and struct objc_class*. Here we case the result
// to the pseudo-builtin, because that will be implicitly cast back to the
// redefinition type if an attempt is made to access its fields.
if (LHSTy->isObjCClassType() &&
(Context.hasSameType(RHSTy, Context.ObjCClassRedefinitionType))) {
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
if (RHSTy->isObjCClassType() &&
(Context.hasSameType(LHSTy, Context.ObjCClassRedefinitionType))) {
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
return RHSTy;
}
// And the same for struct objc_object* / id
if (LHSTy->isObjCIdType() &&
(Context.hasSameType(RHSTy, Context.ObjCIdRedefinitionType))) {
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
if (RHSTy->isObjCIdType() &&
(Context.hasSameType(LHSTy, Context.ObjCIdRedefinitionType))) {
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
return RHSTy;
}
// And the same for struct objc_selector* / SEL
if (Context.isObjCSelType(LHSTy) &&
(Context.hasSameType(RHSTy, Context.ObjCSelRedefinitionType))) {
ImpCastExprToType(RHS, LHSTy, CK_BitCast);
return LHSTy;
}
if (Context.isObjCSelType(RHSTy) &&
(Context.hasSameType(LHSTy, Context.ObjCSelRedefinitionType))) {
ImpCastExprToType(LHS, RHSTy, CK_BitCast);
return RHSTy;
}
// Check constraints for Objective-C object pointers types.
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical object pointer types are always compatible.
return LHSTy;
}
const ObjCObjectPointerType *LHSOPT = LHSTy->getAs<ObjCObjectPointerType>();
const ObjCObjectPointerType *RHSOPT = RHSTy->getAs<ObjCObjectPointerType>();
QualType compositeType = LHSTy;
// If both operands are interfaces and either operand can be
// assigned to the other, use that type as the composite
// type. This allows
// xxx ? (A*) a : (B*) b
// where B is a subclass of A.
//
// Additionally, as for assignment, if either type is 'id'
// allow silent coercion. Finally, if the types are
// incompatible then make sure to use 'id' as the composite
// type so the result is acceptable for sending messages to.
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
// It could return the composite type.
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
} else if ((LHSTy->isObjCQualifiedIdType() ||
RHSTy->isObjCQualifiedIdType()) &&
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
// Need to handle "id<xx>" explicitly.
// GCC allows qualified id and any Objective-C type to devolve to
// id. Currently localizing to here until clear this should be
// part of ObjCQualifiedIdTypesAreCompatible.
compositeType = Context.getObjCIdType();
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
compositeType = Context.getObjCIdType();
} else if (!(compositeType =
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
;
else {
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy
<< LHS->getSourceRange() << RHS->getSourceRange();
QualType incompatTy = Context.getObjCIdType();
ImpCastExprToType(LHS, incompatTy, CK_BitCast);
ImpCastExprToType(RHS, incompatTy, CK_BitCast);
return incompatTy;
}
// The object pointer types are compatible.
ImpCastExprToType(LHS, compositeType, CK_BitCast);
ImpCastExprToType(RHS, compositeType, CK_BitCast);
return compositeType;
}
// Check Objective-C object pointer types and 'void *'
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType destPointee
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
ImpCastExprToType(LHS, destType, CK_NoOp);
// Promote to void*.
ImpCastExprToType(RHS, destType, CK_BitCast);
return destType;
}
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
QualType destPointee
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
QualType destType = Context.getPointerType(destPointee);
// Add qualifiers if necessary.
ImpCastExprToType(RHS, destType, CK_NoOp);
// Promote to void*.
ImpCastExprToType(LHS, destType, CK_BitCast);
return destType;
}
return QualType();
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
Expr *CondExpr, Expr *LHSExpr,
Expr *RHSExpr) {
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
bool isLHSNull = LHSExpr == 0;
Expr *SAVEExpr = 0;
if (isLHSNull) {
LHSExpr = SAVEExpr = CondExpr;
}
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType result = CheckConditionalOperands(CondExpr, LHSExpr, RHSExpr,
SAVEExpr, VK, OK, QuestionLoc);
if (result.isNull())
return ExprError();
return Owned(new (Context) ConditionalOperator(CondExpr, QuestionLoc,
LHSExpr, ColonLoc,
RHSExpr, SAVEExpr,
result, VK, OK));
}
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
Sema::AssignConvertType
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
QualType lhptee, rhptee;
if ((lhsType->isObjCClassType() &&
(Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType))) ||
(rhsType->isObjCClassType() &&
(Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)))) {
return Compatible;
}
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAs<PointerType>()->getPointeeType();
rhptee = rhsType->getAs<PointerType>()->getPointeeType();
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
AssignConvertType ConvTy = Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
// FIXME: Handle ExtQualType
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
ConvTy = CompatiblePointerDiscardsQualifiers;
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
// version of void...
if (lhptee->isVoidType()) {
if (rhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(rhptee->isFunctionType());
return FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
if (lhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(lhptee->isFunctionType());
return FunctionVoidPointer;
}
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
lhptee = lhptee.getUnqualifiedType();
rhptee = rhptee.getUnqualifiedType();
if (!Context.typesAreCompatible(lhptee, rhptee)) {
// Check if the pointee types are compatible ignoring the sign.
// We explicitly check for char so that we catch "char" vs
// "unsigned char" on systems where "char" is unsigned.
if (lhptee->isCharType())
lhptee = Context.UnsignedCharTy;
else if (lhptee->hasSignedIntegerRepresentation())
lhptee = Context.getCorrespondingUnsignedType(lhptee);
if (rhptee->isCharType())
rhptee = Context.UnsignedCharTy;
else if (rhptee->hasSignedIntegerRepresentation())
rhptee = Context.getCorrespondingUnsignedType(rhptee);
if (lhptee == rhptee) {
// Types are compatible ignoring the sign. Qualifier incompatibility
// takes priority over sign incompatibility because the sign
// warning can be disabled.
if (ConvTy != Compatible)
return ConvTy;
return IncompatiblePointerSign;
}
// If we are a multi-level pointer, it's possible that our issue is simply
// one of qualification - e.g. char ** -> const char ** is not allowed. If
// the eventual target type is the same and the pointers have the same
// level of indirection, this must be the issue.
if (lhptee->isPointerType() && rhptee->isPointerType()) {
do {
lhptee = lhptee->getAs<PointerType>()->getPointeeType();
rhptee = rhptee->getAs<PointerType>()->getPointeeType();
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
} while (lhptee->isPointerType() && rhptee->isPointerType());
if (Context.hasSameUnqualifiedType(lhptee, rhptee))
return IncompatibleNestedPointerQualifiers;
}
// General pointer incompatibility takes priority over qualifiers.
return IncompatiblePointer;
}
return ConvTy;
}
/// CheckBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
Sema::AssignConvertType
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
QualType rhsType) {
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAs<BlockPointerType>()->getPointeeType();
rhptee = rhsType->getAs<BlockPointerType>()->getPointeeType();
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
AssignConvertType ConvTy = Compatible;
// For blocks we enforce that qualifiers are identical.
if (lhptee.getLocalCVRQualifiers() != rhptee.getLocalCVRQualifiers())
ConvTy = CompatiblePointerDiscardsQualifiers;
if (!getLangOptions().CPlusPlus) {
if (!Context.typesAreBlockPointerCompatible(lhsType, rhsType))
return IncompatibleBlockPointer;
}
else if (!Context.typesAreCompatible(lhptee, rhptee))
return IncompatibleBlockPointer;
return ConvTy;
}
/// CheckObjCPointerTypesForAssignment - Compares two objective-c pointer types
/// for assignment compatibility.
Sema::AssignConvertType
Sema::CheckObjCPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
if (lhsType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (lhsType->isObjCClassType() && !rhsType->isObjCBuiltinType() &&
!rhsType->isObjCQualifiedClassType())
return IncompatiblePointer;
return Compatible;
}
if (rhsType->isObjCBuiltinType()) {
// Class is not compatible with ObjC object pointers.
if (rhsType->isObjCClassType() && !lhsType->isObjCBuiltinType() &&
!lhsType->isObjCQualifiedClassType())
return IncompatiblePointer;
return Compatible;
}
QualType lhptee =
lhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
QualType rhptee =
rhsType->getAs<ObjCObjectPointerType>()->getPointeeType();
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
return CompatiblePointerDiscardsQualifiers;
if (Context.typesAreCompatible(lhsType, rhsType))
return Compatible;
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType())
return IncompatibleObjCQualifiedId;
return IncompatiblePointer;
}
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(SourceLocation Loc,
QualType lhsType, QualType rhsType) {
// Fake up an opaque expression. We don't actually care about what
// cast operations are required, so if CheckAssignmentConstraints
// adds casts to this they'll be wasted, but fortunately that doesn't
// usually happen on valid code.
OpaqueValueExpr rhs(Loc, rhsType, VK_RValue);
Expr *rhsPtr = &rhs;
CastKind K = CK_Invalid;
return CheckAssignmentConstraints(lhsType, rhsPtr, K);
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
/// Sets 'Kind' for any result kind except Incompatible.
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, Expr *&rhs,
CastKind &Kind) {
QualType rhsType = rhs->getType();
// Get canonical types. We're not formatting these types, just comparing
// them.
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
// Common case: no conversion required.
if (lhsType == rhsType) {
Kind = CK_NoOp;
return Compatible;
}
// If the left-hand side is a reference type, then we are in a
// (rare!) case where we've allowed the use of references in C,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
// lhsType so that the resulting expression does not have reference
// type.
if (const ReferenceType *lhsTypeRef = lhsType->getAs<ReferenceType>()) {
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType)) {
Kind = CK_LValueBitCast;
return Compatible;
}
return Incompatible;
}
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
if (lhsType->isExtVectorType()) {
if (rhsType->isExtVectorType())
return Incompatible;
if (rhsType->isArithmeticType()) {
// CK_VectorSplat does T -> vector T, so first cast to the
// element type.
QualType elType = cast<ExtVectorType>(lhsType)->getElementType();
if (elType != rhsType) {
Kind = PrepareScalarCast(*this, rhs, elType);
ImpCastExprToType(rhs, elType, Kind);
}
Kind = CK_VectorSplat;
return Compatible;
}
}
// Conversions to or from vector type.
if (lhsType->isVectorType() || rhsType->isVectorType()) {
if (lhsType->isVectorType() && rhsType->isVectorType()) {
// Allow assignments of an AltiVec vector type to an equivalent GCC
// vector type and vice versa
if (Context.areCompatibleVectorTypes(lhsType, rhsType)) {
Kind = CK_BitCast;
return Compatible;
}
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOptions().LaxVectorConversions &&
(Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))) {
Kind = CK_BitCast;
return IncompatibleVectors;
}
}
return Incompatible;
}
// Arithmetic conversions.
if (lhsType->isArithmeticType() && rhsType->isArithmeticType() &&
!(getLangOptions().CPlusPlus && lhsType->isEnumeralType())) {
Kind = PrepareScalarCast(*this, rhs, lhsType);
return Compatible;
}
// Conversions to normal pointers.
if (const PointerType *lhsPointer = dyn_cast<PointerType>(lhsType)) {
// U* -> T*
if (isa<PointerType>(rhsType)) {
Kind = CK_BitCast;
return CheckPointerTypesForAssignment(lhsType, rhsType);
}
// int -> T*
if (rhsType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null?
return IntToPointer;
}
// C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa<ObjCObjectPointerType>(rhsType)) {
// - conversions to void*
if (lhsPointer->getPointeeType()->isVoidType()) {
Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
}
// - conversions from 'Class' to the redefinition type
if (rhsType->isObjCClassType() &&
Context.hasSameType(lhsType, Context.ObjCClassRedefinitionType)) {
Kind = CK_BitCast;
return Compatible;
}
Kind = CK_BitCast;
return IncompatiblePointer;
}
// U^ -> void*
if (rhsType->getAs<BlockPointerType>()) {
if (lhsPointer->getPointeeType()->isVoidType()) {
Kind = CK_BitCast;
return Compatible;
}
}
return Incompatible;
}
// Conversions to block pointers.
if (isa<BlockPointerType>(lhsType)) {
// U^ -> T^
if (rhsType->isBlockPointerType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
}
// int or null -> T^
if (rhsType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToBlockPointer;
}
// id -> T^
if (getLangOptions().ObjC1 && rhsType->isObjCIdType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
// void* -> T^
if (const PointerType *RHSPT = rhsType->getAs<PointerType>())
if (RHSPT->getPointeeType()->isVoidType()) {
Kind = CK_AnyPointerToBlockPointerCast;
return Compatible;
}
return Incompatible;
}
// Conversions to Objective-C pointers.
if (isa<ObjCObjectPointerType>(lhsType)) {
// A* -> B*
if (rhsType->isObjCObjectPointerType()) {
Kind = CK_BitCast;
return CheckObjCPointerTypesForAssignment(lhsType, rhsType);
}
// int or null -> A*
if (rhsType->isIntegerType()) {
Kind = CK_IntegralToPointer; // FIXME: null
return IntToPointer;
}
// In general, C pointers are not compatible with ObjC object pointers,
// with two exceptions:
if (isa<PointerType>(rhsType)) {
// - conversions from 'void*'
if (rhsType->isVoidPointerType()) {
Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
}
// - conversions to 'Class' from its redefinition type
if (lhsType->isObjCClassType() &&
Context.hasSameType(rhsType, Context.ObjCClassRedefinitionType)) {
Kind = CK_BitCast;
return Compatible;
}
Kind = CK_AnyPointerToObjCPointerCast;
return IncompatiblePointer;
}
// T^ -> A*
if (rhsType->isBlockPointerType()) {
Kind = CK_AnyPointerToObjCPointerCast;
return Compatible;
}
return Incompatible;
}
// Conversions from pointers that are not covered by the above.
if (isa<PointerType>(rhsType)) {
// T* -> _Bool
if (lhsType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
if (lhsType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
return Incompatible;
}
// Conversions from Objective-C pointers that are not covered by the above.
if (isa<ObjCObjectPointerType>(rhsType)) {
// T* -> _Bool
if (lhsType == Context.BoolTy) {
Kind = CK_PointerToBoolean;
return Compatible;
}
// T* -> int
if (lhsType->isIntegerType()) {
Kind = CK_PointerToIntegral;
return PointerToInt;
}
return Incompatible;
}
// struct A -> struct B
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
if (Context.typesAreCompatible(lhsType, rhsType)) {
Kind = CK_NoOp;
return Compatible;
}
}
return Incompatible;
}
/// \brief Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
QualType UnionType, FieldDecl *Field) {
// Build an initializer list that designates the appropriate member
// of the transparent union.
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
&E, 1,
SourceLocation());
Initializer->setType(UnionType);
Initializer->setInitializedFieldInUnion(Field);
// Build a compound literal constructing a value of the transparent
// union type from this initializer list.
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
E = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
VK_RValue, Initializer, false);
}
Sema::AssignConvertType
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
QualType FromType = rExpr->getType();
// If the ArgType is a Union type, we want to handle a potential
// transparent_union GCC extension.
const RecordType *UT = ArgType->getAsUnionType();
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
return Incompatible;
// The field to initialize within the transparent union.
RecordDecl *UD = UT->getDecl();
FieldDecl *InitField = 0;
// It's compatible if the expression matches any of the fields.
for (RecordDecl::field_iterator it = UD->field_begin(),
itend = UD->field_end();
it != itend; ++it) {
if (it->getType()->isPointerType()) {
// If the transparent union contains a pointer type, we allow:
// 1) void pointer
// 2) null pointer constant
if (FromType->isPointerType())
if (FromType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
ImpCastExprToType(rExpr, it->getType(), CK_BitCast);
InitField = *it;
break;
}
if (rExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
ImpCastExprToType(rExpr, it->getType(), CK_NullToPointer);
InitField = *it;
break;
}
}
Expr *rhs = rExpr;
CastKind Kind = CK_Invalid;
if (CheckAssignmentConstraints(it->getType(), rhs, Kind)
== Compatible) {
ImpCastExprToType(rhs, it->getType(), Kind);
rExpr = rhs;
InitField = *it;
break;
}
}
if (!InitField)
return Incompatible;
ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
return Compatible;
}
Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
if (getLangOptions().CPlusPlus) {
if (!lhsType->isRecordType()) {
// C++ 5.17p3: If the left operand is not of class type, the
// expression is implicitly converted (C++ 4) to the
// cv-unqualified type of the left operand.
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
AA_Assigning))
return Incompatible;
return Compatible;
}
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
}
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
if ((lhsType->isPointerType() ||
lhsType->isObjCObjectPointerType() ||
lhsType->isBlockPointerType())
&& rExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
ImpCastExprToType(rExpr, lhsType, CK_NullToPointer);
return Compatible;
}
// This check seems unnatural, however it is necessary to ensure the proper
// conversion of functions/arrays. If the conversion were done for all
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
// expressions that suppress this implicit conversion (&, sizeof).
//
// Suppress this for references: C++ 8.5.3p5.
if (!lhsType->isReferenceType())
DefaultFunctionArrayLvalueConversion(rExpr);
CastKind Kind = CK_Invalid;
Sema::AssignConvertType result =
CheckAssignmentConstraints(lhsType, rExpr, Kind);
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
// CheckAssignmentConstraints allows the left-hand side to be a reference,
// so that we can use references in built-in functions even in C.
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
if (result != Incompatible && rExpr->getType() != lhsType)
ImpCastExprToType(rExpr, lhsType.getNonLValueExprType(Context), Kind);
return result;
}
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
Diag(Loc, diag::err_typecheck_invalid_operands)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhsType =
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
QualType rhsType =
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
// If the vector types are identical, return.
if (lhsType == rhsType)
return lhsType;
// Handle the case of a vector & extvector type of the same size and element
// type. It would be nice if we only had one vector type someday.
if (getLangOptions().LaxVectorConversions) {
if (const VectorType *LV = lhsType->getAs<VectorType>()) {
if (const VectorType *RV = rhsType->getAs<VectorType>()) {
if (LV->getElementType() == RV->getElementType() &&
LV->getNumElements() == RV->getNumElements()) {
if (lhsType->isExtVectorType()) {
ImpCastExprToType(rex, lhsType, CK_BitCast);
return lhsType;
}
ImpCastExprToType(lex, rhsType, CK_BitCast);
return rhsType;
} else if (Context.getTypeSize(lhsType) ==Context.getTypeSize(rhsType)){
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a
// bitcast; no bits are changed but the result type is different.
ImpCastExprToType(rex, lhsType, CK_BitCast);
return lhsType;
}
}
}
}
// Handle the case of equivalent AltiVec and GCC vector types
if (lhsType->isVectorType() && rhsType->isVectorType() &&
Context.areCompatibleVectorTypes(lhsType, rhsType)) {
ImpCastExprToType(lex, rhsType, CK_BitCast);
return rhsType;
}
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
// swap back (so that we don't reverse the inputs to a subtract, for instance.
bool swapped = false;
if (rhsType->isExtVectorType()) {
swapped = true;
std::swap(rex, lex);
std::swap(rhsType, lhsType);
}
// Handle the case of an ext vector and scalar.
if (const ExtVectorType *LV = lhsType->getAs<ExtVectorType>()) {
QualType EltTy = LV->getElementType();
if (EltTy->isIntegralType(Context) && rhsType->isIntegralType(Context)) {
int order = Context.getIntegerTypeOrder(EltTy, rhsType);
if (order > 0)
ImpCastExprToType(rex, EltTy, CK_IntegralCast);
if (order >= 0) {
ImpCastExprToType(rex, lhsType, CK_VectorSplat);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
rhsType->isRealFloatingType()) {
int order = Context.getFloatingTypeOrder(EltTy, rhsType);
if (order > 0)
ImpCastExprToType(rex, EltTy, CK_FloatingCast);
if (order >= 0) {
ImpCastExprToType(rex, lhsType, CK_VectorSplat);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
}
// Vectors of different size or scalar and non-ext-vector are errors.
Diag(Loc, diag::err_typecheck_vector_not_convertable)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
QualType Sema::CheckMultiplyDivideOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign, bool isDiv) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (!lex->getType()->isArithmeticType() ||
!rex->getType()->isArithmeticType())
return InvalidOperands(Loc, lex, rex);
// Check for division by zero.
if (isDiv &&
rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
DiagRuntimeBehavior(Loc, PDiag(diag::warn_division_by_zero)
<< rex->getSourceRange());
return compType;
}
QualType Sema::CheckRemainderOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
if (lex->getType()->hasIntegerRepresentation() &&
rex->getType()->hasIntegerRepresentation())
return CheckVectorOperands(Loc, lex, rex);
return InvalidOperands(Loc, lex, rex);
}
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
return InvalidOperands(Loc, lex, rex);
// Check for remainder by zero.
if (rex->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
DiagRuntimeBehavior(Loc, PDiag(diag::warn_remainder_by_zero)
<< rex->getSourceRange());
return compType;
}
QualType Sema::CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(Loc, lex, rex);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
// handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType() &&
rex->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Put any potential pointer into PExp
Expr* PExp = lex, *IExp = rex;
if (IExp->getType()->isAnyPointerType())
std::swap(PExp, IExp);
if (PExp->getType()->isAnyPointerType()) {
if (IExp->getType()->isIntegerType()) {
QualType PointeeTy = PExp->getType()->getPointeeType();
// Check for arithmetic on pointers to incomplete types.
if (PointeeTy->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
// GNU extension: arithmetic on pointer to void
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
} else if (PointeeTy->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
<< lex->getType() << lex->getSourceRange();
return QualType();
}
// GNU extension: arithmetic on pointer to function
Diag(Loc, diag::ext_gnu_ptr_func_arith)
<< lex->getType() << lex->getSourceRange();
} else {
// Check if we require a complete type.
if (((PExp->getType()->isPointerType() &&
!PExp->getType()->isDependentType()) ||
PExp->getType()->isObjCObjectPointerType()) &&
RequireCompleteType(Loc, PointeeTy,
PDiag(diag::err_typecheck_arithmetic_incomplete_type)
<< PExp->getSourceRange()
<< PExp->getType()))
return QualType();
}
// Diagnose bad cases where we step over interface counts.
if (PointeeTy->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
<< PointeeTy << PExp->getSourceRange();
return QualType();
}
if (CompLHSTy) {
QualType LHSTy = Context.isPromotableBitField(lex);
if (LHSTy.isNull()) {
LHSTy = lex->getType();
if (LHSTy->isPromotableIntegerType())
LHSTy = Context.getPromotedIntegerType(LHSTy);
}
*CompLHSTy = LHSTy;
}
return PExp->getType();
}
}
return InvalidOperands(Loc, lex, rex);
}
// C99 6.5.6
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
SourceLocation Loc, QualType* CompLHSTy) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(Loc, lex, rex);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType()
&& rex->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Either ptr - int or ptr - ptr.
if (lex->getType()->isAnyPointerType()) {
QualType lpointee = lex->getType()->getPointeeType();
// The LHS must be an completely-defined object type.
bool ComplainAboutVoid = false;
Expr *ComplainAboutFunc = 0;
if (lpointee->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
// GNU C extension: arithmetic on pointer to void
ComplainAboutVoid = true;
} else if (lpointee->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
<< lex->getType() << lex->getSourceRange();
return QualType();
}
// GNU C extension: arithmetic on pointer to function
ComplainAboutFunc = lex;
} else if (!lpointee->isDependentType() &&
RequireCompleteType(Loc, lpointee,
PDiag(diag::err_typecheck_sub_ptr_object)
<< lex->getSourceRange()
<< lex->getType()))
return QualType();
// Diagnose bad cases where we step over interface counts.
if (lpointee->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
<< lpointee << lex->getSourceRange();
return QualType();
}
// The result type of a pointer-int computation is the pointer type.
if (rex->getType()->isIntegerType()) {
if (ComplainAboutVoid)
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
if (ComplainAboutFunc)
Diag(Loc, diag::ext_gnu_ptr_func_arith)
<< ComplainAboutFunc->getType()
<< ComplainAboutFunc->getSourceRange();
if (CompLHSTy) *CompLHSTy = lex->getType();
return lex->getType();
}
// Handle pointer-pointer subtractions.
if (const PointerType *RHSPTy = rex->getType()->getAs<PointerType>()) {
QualType rpointee = RHSPTy->getPointeeType();
// RHS must be a completely-type object type.
// Handle the GNU void* extension.
if (rpointee->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
ComplainAboutVoid = true;
} else if (rpointee->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
<< rex->getType() << rex->getSourceRange();
return QualType();
}
// GNU extension: arithmetic on pointer to function
if (!ComplainAboutFunc)
ComplainAboutFunc = rex;
} else if (!rpointee->isDependentType() &&
RequireCompleteType(Loc, rpointee,
PDiag(diag::err_typecheck_sub_ptr_object)
<< rex->getSourceRange()
<< rex->getType()))
return QualType();
if (getLangOptions().CPlusPlus) {
// Pointee types must be the same: C++ [expr.add]
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
} else {
// Pointee types must be compatible C99 6.5.6p3
if (!Context.typesAreCompatible(
Context.getCanonicalType(lpointee).getUnqualifiedType(),
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
}
if (ComplainAboutVoid)
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
if (ComplainAboutFunc)
Diag(Loc, diag::ext_gnu_ptr_func_arith)
<< ComplainAboutFunc->getType()
<< ComplainAboutFunc->getSourceRange();
if (CompLHSTy) *CompLHSTy = lex->getType();
return Context.getPointerDiffType();
}
}
return InvalidOperands(Loc, lex, rex);
}
static bool isScopedEnumerationType(QualType T) {
if (const EnumType *ET = dyn_cast<EnumType>(T))
return ET->getDecl()->isScoped();
return false;
}
// C99 6.5.7
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
bool isCompAssign) {
// C99 6.5.7p2: Each of the operands shall have integer type.
if (!lex->getType()->hasIntegerRepresentation() ||
!rex->getType()->hasIntegerRepresentation())
return InvalidOperands(Loc, lex, rex);
// C++0x: Don't allow scoped enums. FIXME: Use something better than
// hasIntegerRepresentation() above instead of this.
if (isScopedEnumerationType(lex->getType()) ||
isScopedEnumerationType(rex->getType())) {
return InvalidOperands(Loc, lex, rex);
}
// Vector shifts promote their scalar inputs to vector type.
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
// For the LHS, do usual unary conversions, but then reset them away
// if this is a compound assignment.
Expr *old_lex = lex;
UsualUnaryConversions(lex);
QualType LHSTy = lex->getType();
if (isCompAssign) lex = old_lex;
// The RHS is simpler.
UsualUnaryConversions(rex);
// Sanity-check shift operands
llvm::APSInt Right;
// Check right/shifter operand
if (!rex->isValueDependent() &&
rex->isIntegerConstantExpr(Right, Context)) {
if (Right.isNegative())
Diag(Loc, diag::warn_shift_negative) << rex->getSourceRange();
else {
llvm::APInt LeftBits(Right.getBitWidth(),
Context.getTypeSize(lex->getType()));
if (Right.uge(LeftBits))
Diag(Loc, diag::warn_shift_gt_typewidth) << rex->getSourceRange();
}
}
// "The type of the result is that of the promoted left operand."
return LHSTy;
}
static bool IsWithinTemplateSpecialization(Decl *D) {
if (DeclContext *DC = D->getDeclContext()) {
if (isa<ClassTemplateSpecializationDecl>(DC))
return true;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
return FD->isFunctionTemplateSpecialization();
}
return false;
}
// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
unsigned OpaqueOpc, bool isRelational) {
BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
// Handle vector comparisons separately.
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
QualType lType = lex->getType();
QualType rType = rex->getType();
if (!lType->hasFloatingRepresentation() &&
!(lType->isBlockPointerType() && isRelational) &&
!lex->getLocStart().isMacroID() &&
!rex->getLocStart().isMacroID()) {
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
//
// NOTE: Don't warn about comparison expressions resulting from macro
// expansion. Also don't warn about comparisons which are only self
// comparisons within a template specialization. The warnings should catch
// obvious cases in the definition of the template anyways. The idea is to
// warn when the typed comparison operator will always evaluate to the same
// result.
Expr *LHSStripped = lex->IgnoreParenImpCasts();
Expr *RHSStripped = rex->IgnoreParenImpCasts();
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
if (DRL->getDecl() == DRR->getDecl() &&
!IsWithinTemplateSpecialization(DRL->getDecl())) {
DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
<< 0 // self-
<< (Opc == BO_EQ
|| Opc == BO_LE
|| Opc == BO_GE));
} else if (lType->isArrayType() && rType->isArrayType() &&
!DRL->getDecl()->getType()->isReferenceType() &&
!DRR->getDecl()->getType()->isReferenceType()) {
// what is it always going to eval to?
char always_evals_to;
switch(Opc) {
case BO_EQ: // e.g. array1 == array2
always_evals_to = 0; // false
break;
case BO_NE: // e.g. array1 != array2
always_evals_to = 1; // true
break;
default:
// best we can say is 'a constant'
always_evals_to = 2; // e.g. array1 <= array2
break;
}
DiagRuntimeBehavior(Loc, PDiag(diag::warn_comparison_always)
<< 1 // array
<< always_evals_to);
}
}
}
if (isa<CastExpr>(LHSStripped))
LHSStripped = LHSStripped->IgnoreParenCasts();
if (isa<CastExpr>(RHSStripped))
RHSStripped = RHSStripped->IgnoreParenCasts();
// Warn about comparisons against a string constant (unless the other
// operand is null), the user probably wants strcmp.
Expr *literalString = 0;
Expr *literalStringStripped = 0;
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
!RHSStripped->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
literalString = lex;
literalStringStripped = LHSStripped;
} else if ((isa<StringLiteral>(RHSStripped) ||
isa<ObjCEncodeExpr>(RHSStripped)) &&
!LHSStripped->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull)) {
literalString = rex;
literalStringStripped = RHSStripped;
}
if (literalString) {
std::string resultComparison;
switch (Opc) {
case BO_LT: resultComparison = ") < 0"; break;
case BO_GT: resultComparison = ") > 0"; break;
case BO_LE: resultComparison = ") <= 0"; break;
case BO_GE: resultComparison = ") >= 0"; break;
case BO_EQ: resultComparison = ") == 0"; break;
case BO_NE: resultComparison = ") != 0"; break;
default: assert(false && "Invalid comparison operator");
}
DiagRuntimeBehavior(Loc,
PDiag(diag::warn_stringcompare)
<< isa<ObjCEncodeExpr>(literalStringStripped)
<< literalString->getSourceRange());
}
}
// C99 6.5.8p3 / C99 6.5.9p4
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
UsualArithmeticConversions(lex, rex);
else {
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
}
lType = lex->getType();
rType = rex->getType();
// The result of comparisons is 'bool' in C++, 'int' in C.
QualType ResultTy = getLangOptions().CPlusPlus ? Context.BoolTy:Context.IntTy;
if (isRelational) {
if (lType->isRealType() && rType->isRealType())
return ResultTy;
} else {
// Check for comparisons of floating point operands using != and ==.
if (lType->hasFloatingRepresentation())
CheckFloatComparison(Loc,lex,rex);
if (lType->isArithmeticType() && rType->isArithmeticType())
return ResultTy;
}
bool LHSIsNull = lex->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
bool RHSIsNull = rex->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNull);
// All of the following pointer-related warnings are GCC extensions, except
// when handling null pointer constants.
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
QualType LCanPointeeTy =
Context.getCanonicalType(lType->getAs<PointerType>()->getPointeeType());
QualType RCanPointeeTy =
Context.getCanonicalType(rType->getAs<PointerType>()->getPointeeType());
if (getLangOptions().CPlusPlus) {
if (LCanPointeeTy == RCanPointeeTy)
return ResultTy;
if (!isRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
// This is a gcc extension compatibility comparison.
// In a SFINAE context, we treat this as a hard error to maintain
// conformance with the C++ standard.
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
&& !LHSIsNull && !RHSIsNull) {
Diag(Loc,
isSFINAEContext()?
diag::err_typecheck_comparison_of_fptr_to_void
: diag::ext_typecheck_comparison_of_fptr_to_void)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
if (isSFINAEContext())
return QualType();
ImpCastExprToType(rex, lType, CK_BitCast);
return ResultTy;
}
}
// C++ [expr.rel]p2:
// [...] Pointer conversions (4.10) and qualification
// conversions (4.4) are performed on pointer operands (or on
// a pointer operand and a null pointer constant) to bring
// them to their composite pointer type. [...]
//
// C++ [expr.eq]p1 uses the same notion for (in)equality
// comparisons of pointers.
bool NonStandardCompositeType = false;
QualType T = FindCompositePointerType(Loc, lex, rex,
isSFINAEContext()? 0 : &NonStandardCompositeType);
if (T.isNull()) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
return QualType();
} else if (NonStandardCompositeType) {
Diag(Loc,
diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
<< lType << rType << T
<< lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(lex, T, CK_BitCast);
ImpCastExprToType(rex, T, CK_BitCast);
return ResultTy;
}
// C99 6.5.9p2 and C99 6.5.8p2
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
RCanPointeeTy.getUnqualifiedType())) {
// Valid unless a relational comparison of function pointers
if (isRelational && LCanPointeeTy->isFunctionType()) {
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
} else if (!isRelational &&
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
// Valid unless comparison between non-null pointer and function pointer
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
&& !LHSIsNull && !RHSIsNull) {
Diag(Loc, diag::ext_typecheck_comparison_of_fptr_to_void)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
} else {
// Invalid
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
if (LCanPointeeTy != RCanPointeeTy)
ImpCastExprToType(rex, lType, CK_BitCast);
return ResultTy;
}
if (getLangOptions().CPlusPlus) {
// Comparison of nullptr_t with itself.
if (lType->isNullPtrType() && rType->isNullPtrType())
return ResultTy;
// Comparison of pointers with null pointer constants and equality
// comparisons of member pointers to null pointer constants.
if (RHSIsNull &&
((lType->isPointerType() || lType->isNullPtrType()) ||
(!isRelational && lType->isMemberPointerType()))) {
ImpCastExprToType(rex, lType,
lType->isMemberPointerType()
? CK_NullToMemberPointer
: CK_NullToPointer);
return ResultTy;
}
if (LHSIsNull &&
((rType->isPointerType() || rType->isNullPtrType()) ||
(!isRelational && rType->isMemberPointerType()))) {
ImpCastExprToType(lex, rType,
rType->isMemberPointerType()
? CK_NullToMemberPointer
: CK_NullToPointer);
return ResultTy;
}
// Comparison of member pointers.
if (!isRelational &&
lType->isMemberPointerType() && rType->isMemberPointerType()) {
// C++ [expr.eq]p2:
// In addition, pointers to members can be compared, or a pointer to
// member and a null pointer constant. Pointer to member conversions
// (4.11) and qualification conversions (4.4) are performed to bring
// them to a common type. If one operand is a null pointer constant,
// the common type is the type of the other operand. Otherwise, the
// common type is a pointer to member type similar (4.4) to the type
// of one of the operands, with a cv-qualification signature (4.4)
// that is the union of the cv-qualification signatures of the operand
// types.
bool NonStandardCompositeType = false;
QualType T = FindCompositePointerType(Loc, lex, rex,
isSFINAEContext()? 0 : &NonStandardCompositeType);
if (T.isNull()) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
return QualType();
} else if (NonStandardCompositeType) {
Diag(Loc,
diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
<< lType << rType << T
<< lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(lex, T, CK_BitCast);
ImpCastExprToType(rex, T, CK_BitCast);
return ResultTy;
}
}
// Handle block pointer types.
if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
QualType lpointee = lType->getAs<BlockPointerType>()->getPointeeType();
QualType rpointee = rType->getAs<BlockPointerType>()->getPointeeType();
if (!LHSIsNull && !RHSIsNull &&
!Context.typesAreCompatible(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType, CK_BitCast);
return ResultTy;
}
// Allow block pointers to be compared with null pointer constants.
if (!isRelational
&& ((lType->isBlockPointerType() && rType->isPointerType())
|| (lType->isPointerType() && rType->isBlockPointerType()))) {
if (!LHSIsNull && !RHSIsNull) {
if (!((rType->isPointerType() && rType->getAs<PointerType>()
->getPointeeType()->isVoidType())
|| (lType->isPointerType() && lType->getAs<PointerType>()
->getPointeeType()->isVoidType())))
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType, CK_BitCast);
return ResultTy;
}
if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
if (lType->isPointerType() || rType->isPointerType()) {
const PointerType *LPT = lType->getAs<PointerType>();
const PointerType *RPT = rType->getAs<PointerType>();
bool LPtrToVoid = LPT ?
Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
bool RPtrToVoid = RPT ?
Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
if (!LPtrToVoid && !RPtrToVoid &&
!Context.typesAreCompatible(lType, rType)) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType, CK_BitCast);
return ResultTy;
}
if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
if (!Context.areComparableObjCPointerTypes(lType, rType))
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType, CK_BitCast);
return ResultTy;
}
}
if ((lType->isAnyPointerType() && rType->isIntegerType()) ||
(lType->isIntegerType() && rType->isAnyPointerType())) {
unsigned DiagID = 0;
bool isError = false;
if ((LHSIsNull && lType->isIntegerType()) ||
(RHSIsNull && rType->isIntegerType())) {
if (isRelational && !getLangOptions().CPlusPlus)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
} else if (isRelational && !getLangOptions().CPlusPlus)
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
else if (getLangOptions().CPlusPlus) {
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
isError = true;
} else
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
if (DiagID) {
Diag(Loc, DiagID)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
if (isError)
return QualType();
}
if (lType->isIntegerType())
ImpCastExprToType(lex, rType,
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
else
ImpCastExprToType(rex, lType,
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
return ResultTy;
}
// Handle block pointers.
if (!isRelational && RHSIsNull
&& lType->isBlockPointerType() && rType->isIntegerType()) {
ImpCastExprToType(rex, lType, CK_NullToPointer);
return ResultTy;
}
if (!isRelational && LHSIsNull
&& lType->isIntegerType() && rType->isBlockPointerType()) {
ImpCastExprToType(lex, rType, CK_NullToPointer);
return ResultTy;
}
return InvalidOperands(Loc, lex, rex);
}
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
SourceLocation Loc,
bool isRelational) {
// Check to make sure we're operating on vectors of the same type and width,
// Allowing one side to be a scalar of element type.
QualType vType = CheckVectorOperands(Loc, lex, rex);
if (vType.isNull())
return vType;
// If AltiVec, the comparison results in a numeric type, i.e.
// bool for C++, int for C
if (getLangOptions().AltiVec)
return (getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy);
QualType lType = lex->getType();
QualType rType = rex->getType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
if (!lType->hasFloatingRepresentation()) {
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
DiagRuntimeBehavior(Loc,
PDiag(diag::warn_comparison_always)
<< 0 // self-
<< 2 // "a constant"
);
}
// Check for comparisons of floating point operands using != and ==.
if (!isRelational && lType->hasFloatingRepresentation()) {
assert (rType->hasFloatingRepresentation());
CheckFloatComparison(Loc,lex,rex);
}
// Return the type for the comparison, which is the same as vector type for
// integer vectors, or an integer type of identical size and number of
// elements for floating point vectors.
if (lType->hasIntegerRepresentation())
return lType;
const VectorType *VTy = lType->getAs<VectorType>();
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
if (TypeSize == Context.getTypeSize(Context.LongTy))
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
"Unhandled vector element size in vector compare");
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}
inline QualType Sema::CheckBitwiseOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
if (lex->getType()->hasIntegerRepresentation() &&
rex->getType()->hasIntegerRepresentation())
return CheckVectorOperands(Loc, lex, rex);
return InvalidOperands(Loc, lex, rex);
}
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegralOrUnscopedEnumerationType() &&
rex->getType()->isIntegralOrUnscopedEnumerationType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation Loc, unsigned Opc) {
// Diagnose cases where the user write a logical and/or but probably meant a
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
// is a constant.
if (lex->getType()->isIntegerType() && !lex->getType()->isBooleanType() &&
rex->getType()->isIntegerType() && !rex->isValueDependent() &&
// Don't warn in macros.
!Loc.isMacroID()) {
// If the RHS can be constant folded, and if it constant folds to something
// that isn't 0 or 1 (which indicate a potential logical operation that
// happened to fold to true/false) then warn.
Expr::EvalResult Result;
if (rex->Evaluate(Result, Context) && !Result.HasSideEffects &&
Result.Val.getInt() != 0 && Result.Val.getInt() != 1) {
Diag(Loc, diag::warn_logical_instead_of_bitwise)
<< rex->getSourceRange()
<< (Opc == BO_LAnd ? "&&" : "||")
<< (Opc == BO_LAnd ? "&" : "|");
}
}
if (!Context.getLangOptions().CPlusPlus) {
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
if (!lex->getType()->isScalarType() || !rex->getType()->isScalarType())
return InvalidOperands(Loc, lex, rex);
return Context.IntTy;
}
// The following is safe because we only use this method for
// non-overloadable operands.
// C++ [expr.log.and]p1
// C++ [expr.log.or]p1
// The operands are both contextually converted to type bool.
if (PerformContextuallyConvertToBool(lex) ||
PerformContextuallyConvertToBool(rex))
return InvalidOperands(Loc, lex, rex);
// C++ [expr.log.and]p2
// C++ [expr.log.or]p2
// The result is a bool.
return Context.BoolTy;
}
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
/// is a read-only property; return true if so. A readonly property expression
/// depends on various declarations and thus must be treated specially.
///
static bool IsReadonlyProperty(Expr *E, Sema &S) {
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
if (PropExpr->isImplicitProperty()) return false;
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
QualType BaseType = PropExpr->isSuperReceiver() ?
PropExpr->getSuperReceiverType() :
PropExpr->getBase()->getType();
if (const ObjCObjectPointerType *OPT =
BaseType->getAsObjCInterfacePointerType())
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
if (S.isPropertyReadonly(PDecl, IFace))
return true;
}
return false;
}
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
/// emit an error and return true. If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
SourceLocation OrigLoc = Loc;
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
&Loc);
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
IsLV = Expr::MLV_ReadonlyProperty;
if (IsLV == Expr::MLV_Valid)
return false;
unsigned Diag = 0;
bool NeedType = false;
switch (IsLV) { // C99 6.5.16p2
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
case Expr::MLV_ArrayType:
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_NotObjectType:
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_LValueCast:
Diag = diag::err_typecheck_lvalue_casts_not_supported;
break;
case Expr::MLV_Valid:
llvm_unreachable("did not take early return for MLV_Valid");
case Expr::MLV_InvalidExpression:
case Expr::MLV_MemberFunction:
case Expr::MLV_ClassTemporary:
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
break;
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
return S.RequireCompleteType(Loc, E->getType(),
S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
<< E->getSourceRange());
case Expr::MLV_DuplicateVectorComponents:
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
break;
case Expr::MLV_NotBlockQualified:
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
break;
case Expr::MLV_ReadonlyProperty:
Diag = diag::error_readonly_property_assignment;
break;
case Expr::MLV_NoSetterProperty:
Diag = diag::error_nosetter_property_assignment;
break;
case Expr::MLV_SubObjCPropertySetting:
Diag = diag::error_no_subobject_property_setting;
break;
}
SourceRange Assign;
if (Loc != OrigLoc)
Assign = SourceRange(OrigLoc, OrigLoc);
if (NeedType)
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
else
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
return true;
}
// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
SourceLocation Loc,
QualType CompoundType) {
// Verify that LHS is a modifiable lvalue, and emit error if not.
if (CheckForModifiableLvalue(LHS, Loc, *this))
return QualType();
QualType LHSType = LHS->getType();
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
AssignConvertType ConvTy;
if (CompoundType.isNull()) {
QualType LHSTy(LHSType);
// Simple assignment "x = y".
if (LHS->getObjectKind() == OK_ObjCProperty)
ConvertPropertyForLValue(LHS, RHS, LHSTy);
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
// Special case of NSObject attributes on c-style pointer types.
if (ConvTy == IncompatiblePointer &&
((Context.isObjCNSObjectType(LHSType) &&
RHSType->isObjCObjectPointerType()) ||
(Context.isObjCNSObjectType(RHSType) &&
LHSType->isObjCObjectPointerType())))
ConvTy = Compatible;
if (ConvTy == Compatible &&
getLangOptions().ObjCNonFragileABI &&
LHSType->isObjCObjectType())
Diag(Loc, diag::err_assignment_requires_nonfragile_object)
<< LHSType;
// If the RHS is a unary plus or minus, check to see if they = and + are
// right next to each other. If so, the user may have typo'd "x =+ 4"
// instead of "x += 4".
Expr *RHSCheck = RHS;
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
RHSCheck = ICE->getSubExpr();
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
if ((UO->getOpcode() == UO_Plus ||
UO->getOpcode() == UO_Minus) &&
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
// Only if the two operators are exactly adjacent.
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
// And there is a space or other character before the subexpr of the
// unary +/-. We don't want to warn on "x=-1".
Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
UO->getSubExpr()->getLocStart().isFileID()) {
Diag(Loc, diag::warn_not_compound_assign)
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
}
}
} else {
// Compound assignment "x += y"
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
}
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
RHS, AA_Assigning))
return QualType();
// Check to see if the destination operand is a dereferenced null pointer. If
// so, and if not volatile-qualified, this is undefined behavior that the
// optimizer will delete, so warn about it. People sometimes try to use this
// to get a deterministic trap and are surprised by clang's behavior. This
// only handles the pattern "*null = whatever", which is a very syntactic
// check.
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS->IgnoreParenCasts()))
if (UO->getOpcode() == UO_Deref &&
UO->getSubExpr()->IgnoreParenCasts()->
isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) &&
!UO->getType().isVolatileQualified()) {
Diag(UO->getOperatorLoc(), diag::warn_indirection_through_null)
<< UO->getSubExpr()->getSourceRange();
Diag(UO->getOperatorLoc(), diag::note_indirection_through_null);
}
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// operand.
return (getLangOptions().CPlusPlus
? LHSType : LHSType.getUnqualifiedType());
}
// C99 6.5.17
static QualType CheckCommaOperands(Sema &S, Expr *&LHS, Expr *&RHS,
SourceLocation Loc) {
S.DiagnoseUnusedExprResult(LHS);
ExprResult LHSResult = S.CheckPlaceholderExpr(LHS, Loc);
if (LHSResult.isInvalid())
return QualType();
ExprResult RHSResult = S.CheckPlaceholderExpr(RHS, Loc);
if (RHSResult.isInvalid())
return QualType();
RHS = RHSResult.take();
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its
// operands, but not unary promotions.
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
// So we treat the LHS as a ignored value, and in C++ we allow the
// containing site to determine what should be done with the RHS.
S.IgnoredValueConversions(LHS);
if (!S.getLangOptions().CPlusPlus) {
S.DefaultFunctionArrayLvalueConversion(RHS);
if (!RHS->getType()->isVoidType())
S.RequireCompleteType(Loc, RHS->getType(), diag::err_incomplete_type);
}
return RHS->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
ExprValueKind &VK,
SourceLocation OpLoc,
bool isInc, bool isPrefix) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
QualType ResType = Op->getType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
if (!isInc) {
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
// Increment of bool sets it to true, but is deprecated.
S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
} else if (ResType->isRealType()) {
// OK!
} else if (ResType->isAnyPointerType()) {
QualType PointeeTy = ResType->getPointeeType();
// C99 6.5.2.4p2, 6.5.6p2
if (PointeeTy->isVoidType()) {
if (S.getLangOptions().CPlusPlus) {
S.Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
<< Op->getSourceRange();
return QualType();
}
// Pointer to void is a GNU extension in C.
S.Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
} else if (PointeeTy->isFunctionType()) {
if (S.getLangOptions().CPlusPlus) {
S.Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
<< Op->getType() << Op->getSourceRange();
return QualType();
}
S.Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
<< ResType << Op->getSourceRange();
} else if (S.RequireCompleteType(OpLoc, PointeeTy,
S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
<< Op->getSourceRange()
<< ResType))
return QualType();
// Diagnose bad cases where we step over interface counts.
else if (PointeeTy->isObjCObjectType() && S.LangOpts.ObjCNonFragileABI) {
S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
<< PointeeTy << Op->getSourceRange();
return QualType();
}
} else if (ResType->isAnyComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
S.Diag(OpLoc, diag::ext_integer_increment_complex)
<< ResType << Op->getSourceRange();
} else if (ResType->isPlaceholderType()) {
ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
if (PR.isInvalid()) return QualType();
return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
isInc, isPrefix);
} else {
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
<< ResType << int(isInc) << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
if (CheckForModifiableLvalue(Op, OpLoc, S))
return QualType();
// In C++, a prefix increment is the same type as the operand. Otherwise
// (in C or with postfix), the increment is the unqualified type of the
// operand.
if (isPrefix && S.getLangOptions().CPlusPlus) {
VK = VK_LValue;
return ResType;
} else {
VK = VK_RValue;
return ResType.getUnqualifiedType();
}
}
void Sema::ConvertPropertyForRValue(Expr *&E) {
assert(E->getValueKind() == VK_LValue &&
E->getObjectKind() == OK_ObjCProperty);
const ObjCPropertyRefExpr *PRE = E->getObjCProperty();
ExprValueKind VK = VK_RValue;
if (PRE->isImplicitProperty()) {
if (const ObjCMethodDecl *GetterMethod =
PRE->getImplicitPropertyGetter()) {
QualType Result = GetterMethod->getResultType();
VK = Expr::getValueKindForType(Result);
}
else {
Diag(PRE->getLocation(), diag::err_getter_not_found)
<< PRE->getBase()->getType();
}
}
E = ImplicitCastExpr::Create(Context, E->getType(), CK_GetObjCProperty,
E, 0, VK);
ExprResult Result = MaybeBindToTemporary(E);
if (!Result.isInvalid())
E = Result.take();
}
void Sema::ConvertPropertyForLValue(Expr *&LHS, Expr *&RHS, QualType &LHSTy) {
assert(LHS->getValueKind() == VK_LValue &&
LHS->getObjectKind() == OK_ObjCProperty);
const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
if (PRE->isImplicitProperty()) {
// If using property-dot syntax notation for assignment, and there is a
// setter, RHS expression is being passed to the setter argument. So,
// type conversion (and comparison) is RHS to setter's argument type.
if (const ObjCMethodDecl *SetterMD = PRE->getImplicitPropertySetter()) {
ObjCMethodDecl::param_iterator P = SetterMD->param_begin();
LHSTy = (*P)->getType();
// Otherwise, if the getter returns an l-value, just call that.
} else {
QualType Result = PRE->getImplicitPropertyGetter()->getResultType();
ExprValueKind VK = Expr::getValueKindForType(Result);
if (VK == VK_LValue) {
LHS = ImplicitCastExpr::Create(Context, LHS->getType(),
CK_GetObjCProperty, LHS, 0, VK);
return;
}
}
}
if (getLangOptions().CPlusPlus && LHSTy->isRecordType()) {
InitializedEntity Entity =
InitializedEntity::InitializeParameter(Context, LHSTy);
Expr *Arg = RHS;
ExprResult ArgE = PerformCopyInitialization(Entity, SourceLocation(),
Owned(Arg));
if (!ArgE.isInvalid())
RHS = ArgE.takeAs<Expr>();
}
}
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
/// - &(x) => x
/// - &*****f => f for f a function designator.
/// - &s.xx => s
/// - &s.zz[1].yy -> s, if zz is an array
/// - *(x + 1) -> x, if x is an array
/// - &"123"[2] -> 0
/// - & __real__ x -> x
static NamedDecl *getPrimaryDecl(Expr *E) {
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
return cast<DeclRefExpr>(E)->getDecl();
case Stmt::MemberExprClass:
// If this is an arrow operator, the address is an offset from
// the base's value, so the object the base refers to is
// irrelevant.
if (cast<MemberExpr>(E)->isArrow())
return 0;
// Otherwise, the expression refers to a part of the base
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
case Stmt::ArraySubscriptExprClass: {
// FIXME: This code shouldn't be necessary! We should catch the implicit
// promotion of register arrays earlier.
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
if (ICE->getSubExpr()->getType()->isArrayType())
return getPrimaryDecl(ICE->getSubExpr());
}
return 0;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator *UO = cast<UnaryOperator>(E);
switch(UO->getOpcode()) {
case UO_Real:
case UO_Imag:
case UO_Extension:
return getPrimaryDecl(UO->getSubExpr());
default:
return 0;
}
}
case Stmt::ParenExprClass:
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
case Stmt::ImplicitCastExprClass:
// If the result of an implicit cast is an l-value, we care about
// the sub-expression; otherwise, the result here doesn't matter.
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
default:
return 0;
}
}
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
static QualType CheckAddressOfOperand(Sema &S, Expr *OrigOp,
SourceLocation OpLoc) {
if (OrigOp->isTypeDependent())
return S.Context.DependentTy;
if (OrigOp->getType() == S.Context.OverloadTy)
return S.Context.OverloadTy;
ExprResult PR = S.CheckPlaceholderExpr(OrigOp, OpLoc);
if (PR.isInvalid()) return QualType();
OrigOp = PR.take();
// Make sure to ignore parentheses in subsequent checks
Expr *op = OrigOp->IgnoreParens();
if (S.getLangOptions().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UO_Deref)
// Per C99 6.5.3.2, the address of a deref always returns a valid result
// (assuming the deref expression is valid).
return uOp->getSubExpr()->getType();
}
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
NamedDecl *dcl = getPrimaryDecl(op);
Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
if (lval == Expr::LV_ClassTemporary) {
bool sfinae = S.isSFINAEContext();
S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
: diag::ext_typecheck_addrof_class_temporary)
<< op->getType() << op->getSourceRange();
if (sfinae)
return QualType();
} else if (isa<ObjCSelectorExpr>(op)) {
return S.Context.getPointerType(op->getType());
} else if (lval == Expr::LV_MemberFunction) {
// If it's an instance method, make a member pointer.
// The expression must have exactly the form &A::foo.
// If the underlying expression isn't a decl ref, give up.
if (!isa<DeclRefExpr>(op)) {
S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
<< OrigOp->getSourceRange();
return QualType();
}
DeclRefExpr *DRE = cast<DeclRefExpr>(op);
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
// The id-expression was parenthesized.
if (OrigOp != DRE) {
S.Diag(OpLoc, diag::err_parens_pointer_member_function)
<< OrigOp->getSourceRange();
// The method was named without a qualifier.
} else if (!DRE->getQualifier()) {
S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
<< op->getSourceRange();
}
return S.Context.getMemberPointerType(op->getType(),
S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
// C99 6.5.3.2p1
// The operand must be either an l-value or a function designator
if (!op->getType()->isFunctionType()) {
// FIXME: emit more specific diag...
S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
<< op->getSourceRange();
return QualType();
}
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
// The operand cannot be a bit-field
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "bit-field" << op->getSourceRange();
return QualType();
} else if (op->getObjectKind() == OK_VectorComponent) {
// The operand cannot be an element of a vector
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "vector element" << op->getSourceRange();
return QualType();
} else if (op->getObjectKind() == OK_ObjCProperty) {
// cannot take address of a property expression.
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "property expression" << op->getSourceRange();
return QualType();
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
// in C++ it is not error to take address of a register
// variable (c++03 7.1.1P3)
if (vd->getStorageClass() == SC_Register &&
!S.getLangOptions().CPlusPlus) {
S.Diag(OpLoc, diag::err_typecheck_address_of)
<< "register variable" << op->getSourceRange();
return QualType();
}
} else if (isa<FunctionTemplateDecl>(dcl)) {
return S.Context.OverloadTy;
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
// Okay: we can take the address of a field.
// Could be a pointer to member, though, if there is an explicit
// scope qualifier for the class.
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
DeclContext *Ctx = dcl->getDeclContext();
if (Ctx && Ctx->isRecord()) {
if (FD->getType()->isReferenceType()) {
S.Diag(OpLoc,
diag::err_cannot_form_pointer_to_member_of_reference_type)
<< FD->getDeclName() << FD->getType();
return QualType();
}
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
Ctx = Ctx->getParent();
return S.Context.getMemberPointerType(op->getType(),
S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
}
}
} else if (!isa<FunctionDecl>(dcl))
assert(0 && "Unknown/unexpected decl type");
}
if (lval == Expr::LV_IncompleteVoidType) {
// Taking the address of a void variable is technically illegal, but we
// allow it in cases which are otherwise valid.
// Example: "extern void x; void* y = &x;".
S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
}
// If the operand has type "type", the result has type "pointer to type".
if (op->getType()->isObjCObjectType())
return S.Context.getObjCObjectPointerType(op->getType());
return S.Context.getPointerType(op->getType());
}
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
SourceLocation OpLoc) {
if (Op->isTypeDependent())
return S.Context.DependentTy;
S.UsualUnaryConversions(Op);
QualType OpTy = Op->getType();
QualType Result;
// Note that per both C89 and C99, indirection is always legal, even if OpTy
// is an incomplete type or void. It would be possible to warn about
// dereferencing a void pointer, but it's completely well-defined, and such a
// warning is unlikely to catch any mistakes.
if (const PointerType *PT = OpTy->getAs<PointerType>())
Result = PT->getPointeeType();
else if (const ObjCObjectPointerType *OPT =
OpTy->getAs<ObjCObjectPointerType>())
Result = OPT->getPointeeType();
else {
ExprResult PR = S.CheckPlaceholderExpr(Op, OpLoc);
if (PR.isInvalid()) return QualType();
if (PR.take() != Op)
return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
}
if (Result.isNull()) {
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
<< OpTy << Op->getSourceRange();
return QualType();
}
// Dereferences are usually l-values...
VK = VK_LValue;
// ...except that certain expressions are never l-values in C.
if (!S.getLangOptions().CPlusPlus &&
IsCForbiddenLValueType(S.Context, Result))
VK = VK_RValue;
return Result;
}
static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
tok::TokenKind Kind) {
BinaryOperatorKind Opc;
switch (Kind) {
default: assert(0 && "Unknown binop!");
case tok::periodstar: Opc = BO_PtrMemD; break;
case tok::arrowstar: Opc = BO_PtrMemI; break;
case tok::star: Opc = BO_Mul; break;
case tok::slash: Opc = BO_Div; break;
case tok::percent: Opc = BO_Rem; break;
case tok::plus: Opc = BO_Add; break;
case tok::minus: Opc = BO_Sub; break;
case tok::lessless: Opc = BO_Shl; break;
case tok::greatergreater: Opc = BO_Shr; break;
case tok::lessequal: Opc = BO_LE; break;
case tok::less: Opc = BO_LT; break;
case tok::greaterequal: Opc = BO_GE; break;
case tok::greater: Opc = BO_GT; break;
case tok::exclaimequal: Opc = BO_NE; break;
case tok::equalequal: Opc = BO_EQ; break;
case tok::amp: Opc = BO_And; break;
case tok::caret: Opc = BO_Xor; break;
case tok::pipe: Opc = BO_Or; break;
case tok::ampamp: Opc = BO_LAnd; break;
case tok::pipepipe: Opc = BO_LOr; break;
case tok::equal: Opc = BO_Assign; break;
case tok::starequal: Opc = BO_MulAssign; break;
case tok::slashequal: Opc = BO_DivAssign; break;
case tok::percentequal: Opc = BO_RemAssign; break;
case tok::plusequal: Opc = BO_AddAssign; break;
case tok::minusequal: Opc = BO_SubAssign; break;
case tok::lesslessequal: Opc = BO_ShlAssign; break;
case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
case tok::ampequal: Opc = BO_AndAssign; break;
case tok::caretequal: Opc = BO_XorAssign; break;
case tok::pipeequal: Opc = BO_OrAssign; break;
case tok::comma: Opc = BO_Comma; break;
}
return Opc;
}
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperatorKind Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UO_PreInc; break;
case tok::minusminus: Opc = UO_PreDec; break;
case tok::amp: Opc = UO_AddrOf; break;
case tok::star: Opc = UO_Deref; break;
case tok::plus: Opc = UO_Plus; break;
case tok::minus: Opc = UO_Minus; break;
case tok::tilde: Opc = UO_Not; break;
case tok::exclaim: Opc = UO_LNot; break;
case tok::kw___real: Opc = UO_Real; break;
case tok::kw___imag: Opc = UO_Imag; break;
case tok::kw___extension__: Opc = UO_Extension; break;
}
return Opc;
}
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
/// This warning is only emitted for builtin assignment operations. It is also
/// suppressed in the event of macro expansions.
static void DiagnoseSelfAssignment(Sema &S, Expr *lhs, Expr *rhs,
SourceLocation OpLoc) {
if (!S.ActiveTemplateInstantiations.empty())
return;
if (OpLoc.isInvalid() || OpLoc.isMacroID())
return;
lhs = lhs->IgnoreParenImpCasts();
rhs = rhs->IgnoreParenImpCasts();
const DeclRefExpr *LeftDeclRef = dyn_cast<DeclRefExpr>(lhs);
const DeclRefExpr *RightDeclRef = dyn_cast<DeclRefExpr>(rhs);
if (!LeftDeclRef || !RightDeclRef ||
LeftDeclRef->getLocation().isMacroID() ||
RightDeclRef->getLocation().isMacroID())
return;
const ValueDecl *LeftDecl =
cast<ValueDecl>(LeftDeclRef->getDecl()->getCanonicalDecl());
const ValueDecl *RightDecl =
cast<ValueDecl>(RightDeclRef->getDecl()->getCanonicalDecl());
if (LeftDecl != RightDecl)
return;
if (LeftDecl->getType().isVolatileQualified())
return;
if (const ReferenceType *RefTy = LeftDecl->getType()->getAs<ReferenceType>())
if (RefTy->getPointeeType().isVolatileQualified())
return;
S.Diag(OpLoc, diag::warn_self_assignment)
<< LeftDeclRef->getType()
<< lhs->getSourceRange() << rhs->getSourceRange();
}
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *lhs, Expr *rhs) {
QualType ResultTy; // Result type of the binary operator.
// The following two variables are used for compound assignment operators
QualType CompLHSTy; // Type of LHS after promotions for computation
QualType CompResultTy; // Type of computation result
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
switch (Opc) {
case BO_Assign:
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
if (getLangOptions().CPlusPlus &&
lhs->getObjectKind() != OK_ObjCProperty) {
VK = lhs->getValueKind();
OK = lhs->getObjectKind();
}
if (!ResultTy.isNull())
DiagnoseSelfAssignment(*this, lhs, rhs, OpLoc);
break;
case BO_PtrMemD:
case BO_PtrMemI:
ResultTy = CheckPointerToMemberOperands(lhs, rhs, VK, OpLoc,
Opc == BO_PtrMemI);
break;
case BO_Mul:
case BO_Div:
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, false,
Opc == BO_Div);
break;
case BO_Rem:
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
break;
case BO_Add:
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
break;
case BO_Sub:
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
break;
case BO_Shl:
case BO_Shr:
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
break;
case BO_LE:
case BO_LT:
case BO_GE:
case BO_GT:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
break;
case BO_EQ:
case BO_NE:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
break;
case BO_And:
case BO_Xor:
case BO_Or:
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
break;
case BO_LAnd:
case BO_LOr:
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc, Opc);
break;
case BO_MulAssign:
case BO_DivAssign:
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true,
Opc == BO_DivAssign);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_RemAssign:
CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_AddAssign:
CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_SubAssign:
CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_ShlAssign:
case BO_ShrAssign:
CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_AndAssign:
case BO_XorAssign:
case BO_OrAssign:
CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BO_Comma:
ResultTy = CheckCommaOperands(*this, lhs, rhs, OpLoc);
if (getLangOptions().CPlusPlus) {
VK = rhs->getValueKind();
OK = rhs->getObjectKind();
}
break;
}
if (ResultTy.isNull())
return ExprError();
if (CompResultTy.isNull())
return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy,
VK, OK, OpLoc));
if (getLangOptions().CPlusPlus && lhs->getObjectKind() != OK_ObjCProperty) {
VK = VK_LValue;
OK = lhs->getObjectKind();
}
return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
VK, OK, CompLHSTy,
CompResultTy, OpLoc));
}
/// SuggestParentheses - Emit a diagnostic together with a fixit hint that wraps
/// ParenRange in parentheses.
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
const PartialDiagnostic &PD,
const PartialDiagnostic &FirstNote,
SourceRange FirstParenRange,
const PartialDiagnostic &SecondNote,
SourceRange SecondParenRange) {
Self.Diag(Loc, PD);
if (!FirstNote.getDiagID())
return;
SourceLocation EndLoc = Self.PP.getLocForEndOfToken(FirstParenRange.getEnd());
if (!FirstParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
// We can't display the parentheses, so just return.
return;
}
Self.Diag(Loc, FirstNote)
<< FixItHint::CreateInsertion(FirstParenRange.getBegin(), "(")
<< FixItHint::CreateInsertion(EndLoc, ")");
if (!SecondNote.getDiagID())
return;
EndLoc = Self.PP.getLocForEndOfToken(SecondParenRange.getEnd());
if (!SecondParenRange.getEnd().isFileID() || EndLoc.isInvalid()) {
// We can't display the parentheses, so just dig the
// warning/error and return.
Self.Diag(Loc, SecondNote);
return;
}
Self.Diag(Loc, SecondNote)
<< FixItHint::CreateInsertion(SecondParenRange.getBegin(), "(")
<< FixItHint::CreateInsertion(EndLoc, ")");
}
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
/// operators are mixed in a way that suggests that the programmer forgot that
/// comparison operators have higher precedence. The most typical example of
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc,Expr *lhs,Expr *rhs){
typedef BinaryOperator BinOp;
BinOp::Opcode lhsopc = static_cast<BinOp::Opcode>(-1),
rhsopc = static_cast<BinOp::Opcode>(-1);
if (BinOp *BO = dyn_cast<BinOp>(lhs))
lhsopc = BO->getOpcode();
if (BinOp *BO = dyn_cast<BinOp>(rhs))
rhsopc = BO->getOpcode();
// Subs are not binary operators.
if (lhsopc == -1 && rhsopc == -1)
return;
// Bitwise operations are sometimes used as eager logical ops.
// Don't diagnose this.
if ((BinOp::isComparisonOp(lhsopc) || BinOp::isBitwiseOp(lhsopc)) &&
(BinOp::isComparisonOp(rhsopc) || BinOp::isBitwiseOp(rhsopc)))
return;
if (BinOp::isComparisonOp(lhsopc))
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::warn_precedence_bitwise_rel)
<< SourceRange(lhs->getLocStart(), OpLoc)
<< BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(lhsopc),
Self.PDiag(diag::note_precedence_bitwise_first)
<< BinOp::getOpcodeStr(Opc),
SourceRange(cast<BinOp>(lhs)->getRHS()->getLocStart(), rhs->getLocEnd()),
Self.PDiag(diag::note_precedence_bitwise_silence)
<< BinOp::getOpcodeStr(lhsopc),
lhs->getSourceRange());
else if (BinOp::isComparisonOp(rhsopc))
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::warn_precedence_bitwise_rel)
<< SourceRange(OpLoc, rhs->getLocEnd())
<< BinOp::getOpcodeStr(Opc) << BinOp::getOpcodeStr(rhsopc),
Self.PDiag(diag::note_precedence_bitwise_first)
<< BinOp::getOpcodeStr(Opc),
SourceRange(lhs->getLocEnd(), cast<BinOp>(rhs)->getLHS()->getLocStart()),
Self.PDiag(diag::note_precedence_bitwise_silence)
<< BinOp::getOpcodeStr(rhsopc),
rhs->getSourceRange());
}
/// \brief It accepts a '&&' expr that is inside a '||' one.
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
/// in parentheses.
static void
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
Expr *E) {
assert(isa<BinaryOperator>(E) &&
cast<BinaryOperator>(E)->getOpcode() == BO_LAnd);
SuggestParentheses(Self, OpLoc,
Self.PDiag(diag::warn_logical_and_in_logical_or)
<< E->getSourceRange(),
Self.PDiag(diag::note_logical_and_in_logical_or_silence),
E->getSourceRange(),
Self.PDiag(0), SourceRange());
}
/// \brief Returns true if the given expression can be evaluated as a constant
/// 'true'.
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
bool Res;
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
}
/// \brief Returns true if the given expression can be evaluated as a constant
/// 'false'.
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
bool Res;
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
}
/// \brief Look for '&&' in the left hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
Expr *OrLHS, Expr *OrRHS) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrLHS)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
if (EvaluatesAsFalse(S, OrRHS))
return;
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getLHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
} else if (Bop->getOpcode() == BO_LOr) {
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
// If it's "a || b && 1 || c" we didn't warn earlier for
// "a || b && 1", but warn now.
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
}
}
}
}
/// \brief Look for '&&' in the right hand of a '||' expr.
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
Expr *OrLHS, Expr *OrRHS) {
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrRHS)) {
if (Bop->getOpcode() == BO_LAnd) {
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
if (EvaluatesAsFalse(S, OrLHS))
return;
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
if (!EvaluatesAsTrue(S, Bop->getRHS()))
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
}
}
}
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
/// precedence.
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
SourceLocation OpLoc, Expr *lhs, Expr *rhs){
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
if (BinaryOperator::isBitwiseOp(Opc))
return DiagnoseBitwisePrecedence(Self, Opc, OpLoc, lhs, rhs);
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
// We don't warn for 'assert(a || b && "bad")' since this is safe.
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, lhs, rhs);
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, lhs, rhs);
}
}
// Binary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
Expr *lhs, Expr *rhs) {
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, lhs, rhs);
return BuildBinOp(S, TokLoc, Opc, lhs, rhs);
}
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
BinaryOperatorKind Opc,
Expr *lhs, Expr *rhs) {
if (getLangOptions().CPlusPlus) {
bool UseBuiltinOperator;
if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
UseBuiltinOperator = false;
} else if (Opc == BO_Assign && lhs->getObjectKind() == OK_ObjCProperty) {
UseBuiltinOperator = true;
} else {
UseBuiltinOperator = !lhs->getType()->isOverloadableType() &&
!rhs->getType()->isOverloadableType();
}
if (!UseBuiltinOperator) {
// Find all of the overloaded operators visible from this
// point. We perform both an operator-name lookup from the local
// scope and an argument-dependent lookup based on the types of
// the arguments.
UnresolvedSet<16> Functions;
OverloadedOperatorKind OverOp
= BinaryOperator::getOverloadedOperator(Opc);
if (S && OverOp != OO_None)
LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
Functions);
// Build the (potentially-overloaded, potentially-dependent)
// binary operation.
return CreateOverloadedBinOp(OpLoc, Opc, Functions, lhs, rhs);
}
}
// Build a built-in binary operation.
return CreateBuiltinBinOp(OpLoc, Opc, lhs, rhs);
}
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *Input) {
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType resultType;
switch (Opc) {
case UO_PreInc:
case UO_PreDec:
case UO_PostInc:
case UO_PostDec:
resultType = CheckIncrementDecrementOperand(*this, Input, VK, OpLoc,
Opc == UO_PreInc ||
Opc == UO_PostInc,
Opc == UO_PreInc ||
Opc == UO_PreDec);
break;
case UO_AddrOf:
resultType = CheckAddressOfOperand(*this, Input, OpLoc);
break;
case UO_Deref:
DefaultFunctionArrayLvalueConversion(Input);
resultType = CheckIndirectionOperand(*this, Input, VK, OpLoc);
break;
case UO_Plus:
case UO_Minus:
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
if (resultType->isArithmeticType() || // C99 6.5.3.3p1
resultType->isVectorType())
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
resultType->isEnumeralType())
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
Opc == UO_Plus &&
resultType->isPointerType())
break;
else if (resultType->isPlaceholderType()) {
ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
if (PR.isInvalid()) return ExprError();
return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
}
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
case UO_Not: // bitwise complement
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
if (resultType->isComplexType() || resultType->isComplexIntegerType())
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input->getSourceRange();
else if (resultType->hasIntegerRepresentation())
break;
else if (resultType->isPlaceholderType()) {
ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
if (PR.isInvalid()) return ExprError();
return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
}
break;
case UO_LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
DefaultFunctionArrayLvalueConversion(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
if (resultType->isScalarType()) { // C99 6.5.3.3p1
// ok, fallthrough
} else if (resultType->isPlaceholderType()) {
ExprResult PR = CheckPlaceholderExpr(Input, OpLoc);
if (PR.isInvalid()) return ExprError();
return CreateBuiltinUnaryOp(OpLoc, Opc, PR.take());
} else {
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
}
// LNot always has type int. C99 6.5.3.3p5.
// In C++, it's bool. C++ 5.3.1p8
resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
break;
case UO_Real:
case UO_Imag:
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
// _Real and _Imag map ordinary l-values into ordinary l-values.
if (Input->getValueKind() != VK_RValue &&
Input->getObjectKind() == OK_Ordinary)
VK = Input->getValueKind();
break;
case UO_Extension:
resultType = Input->getType();
VK = Input->getValueKind();
OK = Input->getObjectKind();
break;
}
if (resultType.isNull())
return ExprError();
return Owned(new (Context) UnaryOperator(Input, Opc, resultType,
VK, OK, OpLoc));
}
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
UnaryOperatorKind Opc,
Expr *Input) {
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
UnaryOperator::getOverloadedOperator(Opc) != OO_None) {
// Find all of the overloaded operators visible from this
// point. We perform both an operator-name lookup from the local
// scope and an argument-dependent lookup based on the types of
// the arguments.
UnresolvedSet<16> Functions;
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
if (S && OverOp != OO_None)
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
Functions);
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
}
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
}
// Unary Operators. 'Tok' is the token for the operator.
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, Expr *Input) {
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
SourceLocation LabLoc,
IdentifierInfo *LabelII) {
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = getCurFunction()->LabelMap[LabelII];
// If we haven't seen this label yet, create a forward reference. It
// will be validated and/or cleaned up in ActOnFinishFunctionBody.
if (LabelDecl == 0)
LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
LabelDecl->setUsed();
// Create the AST node. The address of a label always has type 'void*'.
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
Context.getPointerType(Context.VoidTy)));
}
ExprResult
Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
SourceLocation RPLoc) { // "({..})"
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
bool isFileScope
= (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
if (isFileScope)
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
// FIXME: there are a variety of strange constraints to enforce here, for
// example, it is not possible to goto into a stmt expression apparently.
// More semantic analysis is needed.
// If there are sub stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
bool StmtExprMayBindToTemp = false;
if (!Compound->body_empty()) {
Stmt *LastStmt = Compound->body_back();
LabelStmt *LastLabelStmt = 0;
// If LastStmt is a label, skip down through into the body.
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
LastLabelStmt = Label;
LastStmt = Label->getSubStmt();
}
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) {
// Do function/array conversion on the last expression, but not
// lvalue-to-rvalue. However, initialize an unqualified type.
DefaultFunctionArrayConversion(LastExpr);
Ty = LastExpr->getType().getUnqualifiedType();
if (!Ty->isDependentType() && !LastExpr->isTypeDependent()) {
ExprResult Res = PerformCopyInitialization(
InitializedEntity::InitializeResult(LPLoc,
Ty,
false),
SourceLocation(),
Owned(LastExpr));
if (Res.isInvalid())
return ExprError();
if ((LastExpr = Res.takeAs<Expr>())) {
if (!LastLabelStmt)
Compound->setLastStmt(LastExpr);
else
LastLabelStmt->setSubStmt(LastExpr);
StmtExprMayBindToTemp = true;
}
}
}
}
// FIXME: Check that expression type is complete/non-abstract; statement
// expressions are not lvalues.
Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
if (StmtExprMayBindToTemp)
return MaybeBindToTemporary(ResStmtExpr);
return Owned(ResStmtExpr);
}
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
TypeSourceInfo *TInfo,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc) {
QualType ArgTy = TInfo->getType();
bool Dependent = ArgTy->isDependentType();
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!Dependent && !ArgTy->isRecordType())
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
<< ArgTy << TypeRange);
// Type must be complete per C99 7.17p3 because a declaring a variable
// with an incomplete type would be ill-formed.
if (!Dependent
&& RequireCompleteType(BuiltinLoc, ArgTy,
PDiag(diag::err_offsetof_incomplete_type)
<< TypeRange))
return ExprError();
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
// GCC extension, diagnose them.
// FIXME: This diagnostic isn't actually visible because the location is in
// a system header!
if (NumComponents != 1)
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
bool DidWarnAboutNonPOD = false;
QualType CurrentType = ArgTy;
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
llvm::SmallVector<OffsetOfNode, 4> Comps;
llvm::SmallVector<Expr*, 4> Exprs;
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
if (!CurrentType->isDependentType()) {
const ArrayType *AT = Context.getAsArrayType(CurrentType);
if(!AT)
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
<< CurrentType);
CurrentType = AT->getElementType();
} else
CurrentType = Context.DependentTy;
// The expression must be an integral expression.
// FIXME: An integral constant expression?
Expr *Idx = static_cast<Expr*>(OC.U.E);
if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
!Idx->getType()->isIntegerType())
return ExprError(Diag(Idx->getLocStart(),
diag::err_typecheck_subscript_not_integer)
<< Idx->getSourceRange());
// Record this array index.
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
Exprs.push_back(Idx);
continue;
}
// Offset of a field.
if (CurrentType->isDependentType()) {
// We have the offset of a field, but we can't look into the dependent
// type. Just record the identifier of the field.
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
CurrentType = Context.DependentTy;
continue;
}
// We need to have a complete type to look into.
if (RequireCompleteType(OC.LocStart, CurrentType,
diag::err_offsetof_incomplete_type))
return ExprError();
// Look for the designated field.
const RecordType *RC = CurrentType->getAs<RecordType>();
if (!RC)
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
<< CurrentType);
RecordDecl *RD = RC->getDecl();
// C++ [lib.support.types]p5:
// The macro offsetof accepts a restricted set of type arguments in this
// International Standard. type shall be a POD structure or a POD union
// (clause 9).
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
DiagRuntimeBehavior(BuiltinLoc,
PDiag(diag::warn_offsetof_non_pod_type)
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
<< CurrentType))
DidWarnAboutNonPOD = true;
}
// Look for the field.
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
LookupQualifiedName(R, RD);
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
IndirectFieldDecl *IndirectMemberDecl = 0;
if (!MemberDecl) {
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
MemberDecl = IndirectMemberDecl->getAnonField();
}
if (!MemberDecl)
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
OC.LocEnd));
// C99 7.17p3:
// (If the specified member is a bit-field, the behavior is undefined.)
//
// We diagnose this as an error.
if (MemberDecl->getBitWidth()) {
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
<< MemberDecl->getDeclName()
<< SourceRange(BuiltinLoc, RParenLoc);
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
return ExprError();
}
RecordDecl *Parent = MemberDecl->getParent();
if (IndirectMemberDecl)
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
// If the member was found in a base class, introduce OffsetOfNodes for
// the base class indirections.
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
CXXBasePath &Path = Paths.front();
for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
B != BEnd; ++B)
Comps.push_back(OffsetOfNode(B->Base));
}
if (IndirectMemberDecl) {
for (IndirectFieldDecl::chain_iterator FI =
IndirectMemberDecl->chain_begin(),
FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
assert(isa<FieldDecl>(*FI));
Comps.push_back(OffsetOfNode(OC.LocStart,
cast<FieldDecl>(*FI), OC.LocEnd));
}
} else
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
CurrentType = MemberDecl->getType().getNonReferenceType();
}
return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
TInfo, Comps.data(), Comps.size(),
Exprs.data(), Exprs.size(), RParenLoc));
}
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
ParsedType argty,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RPLoc) {
TypeSourceInfo *ArgTInfo;
QualType ArgTy = GetTypeFromParser(argty, &ArgTInfo);
if (ArgTy.isNull())
return ExprError();
if (!ArgTInfo)
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
RPLoc);
}
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
Expr *CondExpr,
Expr *LHSExpr, Expr *RHSExpr,
SourceLocation RPLoc) {
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
ExprValueKind VK = VK_RValue;
ExprObjectKind OK = OK_Ordinary;
QualType resType;
bool ValueDependent = false;
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
resType = Context.DependentTy;
ValueDependent = true;
} else {
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return ExprError(Diag(ExpLoc,
diag::err_typecheck_choose_expr_requires_constant)
<< CondExpr->getSourceRange());
// If the condition is > zero, then the AST type is the same as the LSHExpr.
Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
resType = ActiveExpr->getType();
ValueDependent = ActiveExpr->isValueDependent();
VK = ActiveExpr->getValueKind();
OK = ActiveExpr->getObjectKind();
}
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
resType, VK, OK, RPLoc,
resType->isDependentType(),
ValueDependent));
}
//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
PushBlockScope(BlockScope, Block);
CurContext->addDecl(Block);
if (BlockScope)
PushDeclContext(BlockScope, Block);
else
CurContext = Block;
}
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
BlockScopeInfo *CurBlock = getCurBlock();
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
QualType T = Sig->getType();
// GetTypeForDeclarator always produces a function type for a block
// literal signature. Furthermore, it is always a FunctionProtoType
// unless the function was written with a typedef.
assert(T->isFunctionType() &&
"GetTypeForDeclarator made a non-function block signature");
// Look for an explicit signature in that function type.
FunctionProtoTypeLoc ExplicitSignature;
TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
if (isa<FunctionProtoTypeLoc>(tmp)) {
ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
// Check whether that explicit signature was synthesized by
// GetTypeForDeclarator. If so, don't save that as part of the
// written signature.
if (ExplicitSignature.getLParenLoc() ==
ExplicitSignature.getRParenLoc()) {
// This would be much cheaper if we stored TypeLocs instead of
// TypeSourceInfos.
TypeLoc Result = ExplicitSignature.getResultLoc();
unsigned Size = Result.getFullDataSize();
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
Sig->getTypeLoc().initializeFullCopy(Result, Size);
ExplicitSignature = FunctionProtoTypeLoc();
}
}
CurBlock->TheDecl->setSignatureAsWritten(Sig);
CurBlock->FunctionType = T;
const FunctionType *Fn = T->getAs<FunctionType>();
QualType RetTy = Fn->getResultType();
bool isVariadic =
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
CurBlock->TheDecl->setIsVariadic(isVariadic);
// Don't allow returning a objc interface by value.
if (RetTy->isObjCObjectType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
return;
}
// Context.DependentTy is used as a placeholder for a missing block
// return type. TODO: what should we do with declarators like:
// ^ * { ... }
// If the answer is "apply template argument deduction"....
if (RetTy != Context.DependentTy)
CurBlock->ReturnType = RetTy;
// Push block parameters from the declarator if we had them.
llvm::SmallVector<ParmVarDecl*, 8> Params;
if (ExplicitSignature) {
for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
ParmVarDecl *Param = ExplicitSignature.getArg(I);
if (Param->getIdentifier() == 0 &&
!Param->isImplicit() &&
!Param->isInvalidDecl() &&
!getLangOptions().CPlusPlus)
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
Params.push_back(Param);
}
// Fake up parameter variables if we have a typedef, like
// ^ fntype { ... }
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
for (FunctionProtoType::arg_type_iterator
I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
ParmVarDecl *Param =
BuildParmVarDeclForTypedef(CurBlock->TheDecl,
ParamInfo.getSourceRange().getBegin(),
*I);
Params.push_back(Param);
}
}
// Set the parameters on the block decl.
if (!Params.empty()) {
CurBlock->TheDecl->setParams(Params.data(), Params.size());
CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
CurBlock->TheDecl->param_end(),
/*CheckParameterNames=*/false);
}
// Finally we can process decl attributes.
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
if (!isVariadic && CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
// Put the parameter variables in scope. We can bail out immediately
// if we don't have any.
if (Params.empty())
return;
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
(*AI)->setOwningFunction(CurBlock->TheDecl);
// If this has an identifier, add it to the scope stack.
if ((*AI)->getIdentifier()) {
CheckShadow(CurBlock->TheScope, *AI);
PushOnScopeChains(*AI, CurBlock->TheScope);
}
}
}
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
// Pop off CurBlock, handle nested blocks.
PopDeclContext();
PopFunctionOrBlockScope();
}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
Stmt *Body, Scope *CurScope) {
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
Diag(CaretLoc, diag::err_blocks_disable);
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
PopDeclContext();
QualType RetTy = Context.VoidTy;
if (!BSI->ReturnType.isNull())
RetTy = BSI->ReturnType;
bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
QualType BlockTy;
// If the user wrote a function type in some form, try to use that.
if (!BSI->FunctionType.isNull()) {
const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
FunctionType::ExtInfo Ext = FTy->getExtInfo();
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
// Turn protoless block types into nullary block types.
if (isa<FunctionNoProtoType>(FTy)) {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
// Otherwise, if we don't need to change anything about the function type,
// preserve its sugar structure.
} else if (FTy->getResultType() == RetTy &&
(!NoReturn || FTy->getNoReturnAttr())) {
BlockTy = BSI->FunctionType;
// Otherwise, make the minimal modifications to the function type.
} else {
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
EPI.TypeQuals = 0; // FIXME: silently?
EPI.ExtInfo = Ext;
BlockTy = Context.getFunctionType(RetTy,
FPT->arg_type_begin(),
FPT->getNumArgs(),
EPI);
}
// If we don't have a function type, just build one from nothing.
} else {
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = FunctionType::ExtInfo(NoReturn, 0, CC_Default);
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
}
DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
BSI->TheDecl->param_end());
BlockTy = Context.getBlockPointerType(BlockTy);
// If needed, diagnose invalid gotos and switches in the block.
if (getCurFunction()->NeedsScopeChecking() && !hasAnyErrorsInThisFunction())
DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
bool Good = true;
// Check goto/label use.
for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
I = BSI->LabelMap.begin(), E = BSI->LabelMap.end(); I != E; ++I) {
LabelStmt *L = I->second;
// Verify that we have no forward references left. If so, there was a goto
// or address of a label taken, but no definition of it.
if (L->getSubStmt() != 0) {
if (!L->isUsed())
Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
continue;
}
// Emit error.
Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
Good = false;
}
if (!Good) {
PopFunctionOrBlockScope();
return ExprError();
}
BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy,
BSI->hasBlockDeclRefExprs);
// Issue any analysis-based warnings.
const sema::AnalysisBasedWarnings::Policy &WP =
AnalysisWarnings.getDefaultPolicy();
AnalysisWarnings.IssueWarnings(WP, Result);
PopFunctionOrBlockScope();
return Owned(Result);
}
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
Expr *expr, ParsedType type,
SourceLocation RPLoc) {
TypeSourceInfo *TInfo;
GetTypeFromParser(type, &TInfo);
return BuildVAArgExpr(BuiltinLoc, expr, TInfo, RPLoc);
}
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
Expr *E, TypeSourceInfo *TInfo,
SourceLocation RPLoc) {
Expr *OrigExpr = E;
// Get the va_list type
QualType VaListType = Context.getBuiltinVaListType();
if (VaListType->isArrayType()) {
// Deal with implicit array decay; for example, on x86-64,
// va_list is an array, but it's supposed to decay to
// a pointer for va_arg.
VaListType = Context.getArrayDecayedType(VaListType);
// Make sure the input expression also decays appropriately.
UsualUnaryConversions(E);
} else {
// Otherwise, the va_list argument must be an l-value because
// it is modified by va_arg.
if (!E->isTypeDependent() &&
CheckForModifiableLvalue(E, BuiltinLoc, *this))
return ExprError();
}
if (!E->isTypeDependent() &&
!Context.hasSameType(VaListType, E->getType())) {
return ExprError(Diag(E->getLocStart(),
diag::err_first_argument_to_va_arg_not_of_type_va_list)
<< OrigExpr->getType() << E->getSourceRange());
}
// FIXME: Check that type is complete/non-abstract
// FIXME: Warn if a non-POD type is passed in.
QualType T = TInfo->getType().getNonLValueExprType(Context);
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
}
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
unsigned pw = Context.Target.getPointerWidth(0);
if (pw == Context.Target.getIntWidth())
Ty = Context.IntTy;
else if (pw == Context.Target.getLongWidth())
Ty = Context.LongTy;
else if (pw == Context.Target.getLongLongWidth())
Ty = Context.LongLongTy;
else {
assert(!"I don't know size of pointer!");
Ty = Context.IntTy;
}
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
}
static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
Expr *SrcExpr, FixItHint &Hint) {
if (!SemaRef.getLangOptions().ObjC1)
return;
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
if (!PT)
return;
// Check if the destination is of type 'id'.
if (!PT->isObjCIdType()) {
// Check if the destination is the 'NSString' interface.
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
if (!ID || !ID->getIdentifier()->isStr("NSString"))
return;
}
// Strip off any parens and casts.
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr->IgnoreParenCasts());
if (!SL || SL->isWide())
return;
Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
}
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, AssignmentAction Action,
bool *Complained) {
if (Complained)
*Complained = false;
// Decode the result (notice that AST's are still created for extensions).
bool isInvalid = false;
unsigned DiagKind;
FixItHint Hint;
switch (ConvTy) {
default: assert(0 && "Unknown conversion type");
case Compatible: return false;
case PointerToInt:
DiagKind = diag::ext_typecheck_convert_pointer_int;
break;
case IntToPointer:
DiagKind = diag::ext_typecheck_convert_int_pointer;
break;
case IncompatiblePointer:
MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
break;
case IncompatiblePointerSign:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
break;
case FunctionVoidPointer:
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
break;
case CompatiblePointerDiscardsQualifiers:
// If the qualifiers lost were because we were applying the
// (deprecated) C++ conversion from a string literal to a char*
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
// Ideally, this check would be performed in
// CheckPointerTypesForAssignment. However, that would require a
// bit of refactoring (so that the second argument is an
// expression, rather than a type), which should be done as part
// of a larger effort to fix CheckPointerTypesForAssignment for
// C++ semantics.
if (getLangOptions().CPlusPlus &&
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
return false;
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
break;
case IncompatibleNestedPointerQualifiers:
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
break;
case IntToBlockPointer:
DiagKind = diag::err_int_to_block_pointer;
break;
case IncompatibleBlockPointer:
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
break;
case IncompatibleObjCQualifiedId:
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
// it can give a more specific diagnostic.
DiagKind = diag::warn_incompatible_qualified_id;
break;
case IncompatibleVectors:
DiagKind = diag::warn_incompatible_vectors;
break;
case Incompatible:
DiagKind = diag::err_typecheck_convert_incompatible;
isInvalid = true;
break;
}
QualType FirstType, SecondType;
switch (Action) {
case AA_Assigning:
case AA_Initializing:
// The destination type comes first.
FirstType = DstType;
SecondType = SrcType;
break;
case AA_Returning:
case AA_Passing:
case AA_Converting:
case AA_Sending:
case AA_Casting:
// The source type comes first.
FirstType = SrcType;
SecondType = DstType;
break;
}
Diag(Loc, DiagKind) << FirstType << SecondType << Action
<< SrcExpr->getSourceRange() << Hint;
if (Complained)
*Complained = true;
return isInvalid;
}
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
llvm::APSInt ICEResult;
if (E->isIntegerConstantExpr(ICEResult, Context)) {
if (Result)
*Result = ICEResult;
return false;
}
Expr::EvalResult EvalResult;
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
EvalResult.HasSideEffects) {
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
if (EvalResult.Diag) {
// We only show the note if it's not the usual "invalid subexpression"
// or if it's actually in a subexpression.
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
Diag(EvalResult.DiagLoc, EvalResult.Diag);
}
return true;
}
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
E->getSourceRange();
if (EvalResult.Diag &&
Diags.getDiagnosticLevel(diag::ext_expr_not_ice, EvalResult.DiagLoc)
!= Diagnostic::Ignored)
Diag(EvalResult.DiagLoc, EvalResult.Diag);
if (Result)
*Result = EvalResult.Val.getInt();
return false;
}
void
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
ExprEvalContexts.push_back(
ExpressionEvaluationContextRecord(NewContext, ExprTemporaries.size()));
}
void
Sema::PopExpressionEvaluationContext() {
// Pop the current expression evaluation context off the stack.
ExpressionEvaluationContextRecord Rec = ExprEvalContexts.back();
ExprEvalContexts.pop_back();
if (Rec.Context == PotentiallyPotentiallyEvaluated) {
if (Rec.PotentiallyReferenced) {
// Mark any remaining declarations in the current position of the stack
// as "referenced". If they were not meant to be referenced, semantic
// analysis would have eliminated them (e.g., in ActOnCXXTypeId).
for (PotentiallyReferencedDecls::iterator
I = Rec.PotentiallyReferenced->begin(),
IEnd = Rec.PotentiallyReferenced->end();
I != IEnd; ++I)
MarkDeclarationReferenced(I->first, I->second);
}
if (Rec.PotentiallyDiagnosed) {
// Emit any pending diagnostics.
for (PotentiallyEmittedDiagnostics::iterator
I = Rec.PotentiallyDiagnosed->begin(),
IEnd = Rec.PotentiallyDiagnosed->end();
I != IEnd; ++I)
Diag(I->first, I->second);
}
}
// When are coming out of an unevaluated context, clear out any
// temporaries that we may have created as part of the evaluation of
// the expression in that context: they aren't relevant because they
// will never be constructed.
if (Rec.Context == Unevaluated &&
ExprTemporaries.size() > Rec.NumTemporaries)
ExprTemporaries.erase(ExprTemporaries.begin() + Rec.NumTemporaries,
ExprTemporaries.end());
// Destroy the popped expression evaluation record.
Rec.Destroy();
}
/// \brief Note that the given declaration was referenced in the source code.
///
/// This routine should be invoke whenever a given declaration is referenced
/// in the source code, and where that reference occurred. If this declaration
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
/// C99 6.9p3), then the declaration will be marked as used.
///
/// \param Loc the location where the declaration was referenced.
///
/// \param D the declaration that has been referenced by the source code.
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
assert(D && "No declaration?");
if (D->isUsed(false))
return;
// Mark a parameter or variable declaration "used", regardless of whether we're in a
// template or not. The reason for this is that unevaluated expressions
// (e.g. (void)sizeof()) constitute a use for warning purposes (-Wunused-variables and
// -Wunused-parameters)
if (isa<ParmVarDecl>(D) ||
(isa<VarDecl>(D) && D->getDeclContext()->isFunctionOrMethod())) {
D->setUsed();
return;
}
if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D))
return;
// Do not mark anything as "used" within a dependent context; wait for
// an instantiation.
if (CurContext->isDependentContext())
return;
switch (ExprEvalContexts.back().Context) {
case Unevaluated:
// We are in an expression that is not potentially evaluated; do nothing.
return;
case PotentiallyEvaluated:
// We are in a potentially-evaluated expression, so this declaration is
// "used"; handle this below.
break;
case PotentiallyPotentiallyEvaluated:
// We are in an expression that may be potentially evaluated; queue this
// declaration reference until we know whether the expression is
// potentially evaluated.
ExprEvalContexts.back().addReferencedDecl(Loc, D);
return;
case PotentiallyEvaluatedIfUsed:
// Referenced declarations will only be used if the construct in the
// containing expression is used.
return;
}
// Note that this declaration has been used.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
unsigned TypeQuals;
if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
if (Constructor->getParent()->hasTrivialConstructor())
return;
if (!Constructor->isUsed(false))
DefineImplicitDefaultConstructor(Loc, Constructor);
} else if (Constructor->isImplicit() &&
Constructor->isCopyConstructor(TypeQuals)) {
if (!Constructor->isUsed(false))
DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
}
MarkVTableUsed(Loc, Constructor->getParent());
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
if (Destructor->isImplicit() && !Destructor->isUsed(false))
DefineImplicitDestructor(Loc, Destructor);
if (Destructor->isVirtual())
MarkVTableUsed(Loc, Destructor->getParent());
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
MethodDecl->getOverloadedOperator() == OO_Equal) {
if (!MethodDecl->isUsed(false))
DefineImplicitCopyAssignment(Loc, MethodDecl);
} else if (MethodDecl->isVirtual())
MarkVTableUsed(Loc, MethodDecl->getParent());
}
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// Implicit instantiation of function templates and member functions of
// class templates.
if (Function->isImplicitlyInstantiable()) {
bool AlreadyInstantiated = false;
if (FunctionTemplateSpecializationInfo *SpecInfo
= Function->getTemplateSpecializationInfo()) {
if (SpecInfo->getPointOfInstantiation().isInvalid())
SpecInfo->setPointOfInstantiation(Loc);
else if (SpecInfo->getTemplateSpecializationKind()
== TSK_ImplicitInstantiation)
AlreadyInstantiated = true;
} else if (MemberSpecializationInfo *MSInfo
= Function->getMemberSpecializationInfo()) {
if (MSInfo->getPointOfInstantiation().isInvalid())
MSInfo->setPointOfInstantiation(Loc);
else if (MSInfo->getTemplateSpecializationKind()
== TSK_ImplicitInstantiation)
AlreadyInstantiated = true;
}
if (!AlreadyInstantiated) {
if (isa<CXXRecordDecl>(Function->getDeclContext()) &&
cast<CXXRecordDecl>(Function->getDeclContext())->isLocalClass())
PendingLocalImplicitInstantiations.push_back(std::make_pair(Function,
Loc));
else
PendingInstantiations.push_back(std::make_pair(Function, Loc));
}
} else // Walk redefinitions, as some of them may be instantiable.
for (FunctionDecl::redecl_iterator i(Function->redecls_begin()),
e(Function->redecls_end()); i != e; ++i) {
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
MarkDeclarationReferenced(Loc, *i);
}
// FIXME: keep track of references to static functions
// Recursive functions should be marked when used from another function.
if (CurContext != Function)
Function->setUsed(true);
return;
}
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Implicit instantiation of static data members of class templates.
if (Var->isStaticDataMember() &&
Var->getInstantiatedFromStaticDataMember()) {
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
assert(MSInfo && "Missing member specialization information?");
if (MSInfo->getPointOfInstantiation().isInvalid() &&
MSInfo->getTemplateSpecializationKind()== TSK_ImplicitInstantiation) {
MSInfo->setPointOfInstantiation(Loc);
PendingInstantiations.push_back(std::make_pair(Var, Loc));
}
}
// FIXME: keep track of references to static data?
D->setUsed(true);
return;
}
}
namespace {
// Mark all of the declarations referenced
// FIXME: Not fully implemented yet! We need to have a better understanding
// of when we're entering
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
Sema &S;
SourceLocation Loc;
public:
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
bool TraverseTemplateArgument(const TemplateArgument &Arg);
bool TraverseRecordType(RecordType *T);
};
}
bool MarkReferencedDecls::TraverseTemplateArgument(
const TemplateArgument &Arg) {
if (Arg.getKind() == TemplateArgument::Declaration) {
S.MarkDeclarationReferenced(Loc, Arg.getAsDecl());
}
return Inherited::TraverseTemplateArgument(Arg);
}
bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
if (ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
const TemplateArgumentList &Args = Spec->getTemplateArgs();
return TraverseTemplateArguments(Args.data(), Args.size());
}
return true;
}
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
MarkReferencedDecls Marker(*this, Loc);
Marker.TraverseType(Context.getCanonicalType(T));
}
namespace {
/// \brief Helper class that marks all of the declarations referenced by
/// potentially-evaluated subexpressions as "referenced".
class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
Sema &S;
public:
typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
explicit EvaluatedExprMarker(Sema &S) : Inherited(S.Context), S(S) { }
void VisitDeclRefExpr(DeclRefExpr *E) {
S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
}
void VisitMemberExpr(MemberExpr *E) {
S.MarkDeclarationReferenced(E->getMemberLoc(), E->getMemberDecl());
Inherited::VisitMemberExpr(E);
}
void VisitCXXNewExpr(CXXNewExpr *E) {
if (E->getConstructor())
S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
if (E->getOperatorNew())
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorNew());
if (E->getOperatorDelete())
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
Inherited::VisitCXXNewExpr(E);
}
void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
if (E->getOperatorDelete())
S.MarkDeclarationReferenced(E->getLocStart(), E->getOperatorDelete());
QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
S.MarkDeclarationReferenced(E->getLocStart(),
S.LookupDestructor(Record));
}
Inherited::VisitCXXDeleteExpr(E);
}
void VisitCXXConstructExpr(CXXConstructExpr *E) {
S.MarkDeclarationReferenced(E->getLocStart(), E->getConstructor());
Inherited::VisitCXXConstructExpr(E);
}
void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
S.MarkDeclarationReferenced(E->getLocation(), E->getDecl());
}
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
Visit(E->getExpr());
}
};
}
/// \brief Mark any declarations that appear within this expression or any
/// potentially-evaluated subexpressions as "referenced".
void Sema::MarkDeclarationsReferencedInExpr(Expr *E) {
EvaluatedExprMarker(*this).Visit(E);
}
/// \brief Emit a diagnostic that describes an effect on the run-time behavior
/// of the program being compiled.
///
/// This routine emits the given diagnostic when the code currently being
/// type-checked is "potentially evaluated", meaning that there is a
/// possibility that the code will actually be executable. Code in sizeof()
/// expressions, code used only during overload resolution, etc., are not
/// potentially evaluated. This routine will suppress such diagnostics or,
/// in the absolutely nutty case of potentially potentially evaluated
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
/// later.
///
/// This routine should be used for all diagnostics that describe the run-time
/// behavior of a program, such as passing a non-POD value through an ellipsis.
/// Failure to do so will likely result in spurious diagnostics or failures
/// during overload resolution or within sizeof/alignof/typeof/typeid.
bool Sema::DiagRuntimeBehavior(SourceLocation Loc,
const PartialDiagnostic &PD) {
switch (ExprEvalContexts.back().Context ) {
case Unevaluated:
// The argument will never be evaluated, so don't complain.
break;
case PotentiallyEvaluated:
case PotentiallyEvaluatedIfUsed:
Diag(Loc, PD);
return true;
case PotentiallyPotentiallyEvaluated:
ExprEvalContexts.back().addDiagnostic(Loc, PD);
break;
}
return false;
}
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
CallExpr *CE, FunctionDecl *FD) {
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
return false;
PartialDiagnostic Note =
FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
<< FD->getDeclName() : PDiag();
SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
if (RequireCompleteType(Loc, ReturnType,
FD ?
PDiag(diag::err_call_function_incomplete_return)
<< CE->getSourceRange() << FD->getDeclName() :
PDiag(diag::err_call_incomplete_return)
<< CE->getSourceRange(),
std::make_pair(NoteLoc, Note)))
return true;
return false;
}
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
// will prevent this condition from triggering, which is what we want.
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
SourceLocation Loc;
unsigned diagnostic = diag::warn_condition_is_assignment;
bool IsOrAssign = false;
if (isa<BinaryOperator>(E)) {
BinaryOperator *Op = cast<BinaryOperator>(E);
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
return;
IsOrAssign = Op->getOpcode() == BO_OrAssign;
// Greylist some idioms by putting them into a warning subcategory.
if (ObjCMessageExpr *ME
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
Selector Sel = ME->getSelector();
// self = [<foo> init...]
if (isSelfExpr(Op->getLHS())
&& Sel.getIdentifierInfoForSlot(0)->getName().startswith("init"))
diagnostic = diag::warn_condition_is_idiomatic_assignment;
// <foo> = [<bar> nextObject]
else if (Sel.isUnarySelector() &&
Sel.getIdentifierInfoForSlot(0)->getName() == "nextObject")
diagnostic = diag::warn_condition_is_idiomatic_assignment;
}
Loc = Op->getOperatorLoc();
} else if (isa<CXXOperatorCallExpr>(E)) {
CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(E);
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
return;
IsOrAssign = Op->getOperator() == OO_PipeEqual;
Loc = Op->getOperatorLoc();
} else {
// Not an assignment.
return;
}
SourceLocation Open = E->getSourceRange().getBegin();
SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
Diag(Loc, diagnostic) << E->getSourceRange();
if (IsOrAssign)
Diag(Loc, diag::note_condition_or_assign_to_comparison)
<< FixItHint::CreateReplacement(Loc, "!=");
else
Diag(Loc, diag::note_condition_assign_to_comparison)
<< FixItHint::CreateReplacement(Loc, "==");
Diag(Loc, diag::note_condition_assign_silence)
<< FixItHint::CreateInsertion(Open, "(")
<< FixItHint::CreateInsertion(Close, ")");
}
bool Sema::CheckBooleanCondition(Expr *&E, SourceLocation Loc) {
DiagnoseAssignmentAsCondition(E);
if (!E->isTypeDependent()) {
if (E->isBoundMemberFunction(Context))
return Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
<< E->getSourceRange();
if (getLangOptions().CPlusPlus)
return CheckCXXBooleanCondition(E); // C++ 6.4p4
DefaultFunctionArrayLvalueConversion(E);
QualType T = E->getType();
if (!T->isScalarType()) // C99 6.8.4.1p1
return Diag(Loc, diag::err_typecheck_statement_requires_scalar)
<< T << E->getSourceRange();
}
return false;
}
ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
Expr *Sub) {
if (!Sub)
return ExprError();
if (CheckBooleanCondition(Sub, Loc))
return ExprError();
return Owned(Sub);
}
/// Check for operands with placeholder types and complain if found.
/// Returns true if there was an error and no recovery was possible.
ExprResult Sema::CheckPlaceholderExpr(Expr *E, SourceLocation Loc) {
const BuiltinType *BT = E->getType()->getAs<BuiltinType>();
if (!BT || !BT->isPlaceholderType()) return Owned(E);
// If this is overload, check for a single overload.
if (BT->getKind() == BuiltinType::Overload) {
if (FunctionDecl *Specialization
= ResolveSingleFunctionTemplateSpecialization(E)) {
// The access doesn't really matter in this case.
DeclAccessPair Found = DeclAccessPair::make(Specialization,
Specialization->getAccess());
E = FixOverloadedFunctionReference(E, Found, Specialization);
if (!E) return ExprError();
return Owned(E);
}
Diag(Loc, diag::err_ovl_unresolvable) << E->getSourceRange();
return ExprError();
}
// Otherwise it's a use of undeduced auto.
assert(BT->getKind() == BuiltinType::UndeducedAuto);
DeclRefExpr *DRE = cast<DeclRefExpr>(E->IgnoreParens());
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
<< DRE->getDecl() << E->getSourceRange();
return ExprError();
}