| //===--- SemaExprObjC.cpp - Semantic Analysis for ObjC Expressions --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for Objective-C expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Analysis/DomainSpecific/CocoaConventions.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "clang/Lex/Preprocessor.h" |
| |
| using namespace clang; |
| using namespace sema; |
| using llvm::makeArrayRef; |
| |
| ExprResult Sema::ParseObjCStringLiteral(SourceLocation *AtLocs, |
| Expr **strings, |
| unsigned NumStrings) { |
| StringLiteral **Strings = reinterpret_cast<StringLiteral**>(strings); |
| |
| // Most ObjC strings are formed out of a single piece. However, we *can* |
| // have strings formed out of multiple @ strings with multiple pptokens in |
| // each one, e.g. @"foo" "bar" @"baz" "qux" which need to be turned into one |
| // StringLiteral for ObjCStringLiteral to hold onto. |
| StringLiteral *S = Strings[0]; |
| |
| // If we have a multi-part string, merge it all together. |
| if (NumStrings != 1) { |
| // Concatenate objc strings. |
| llvm::SmallString<128> StrBuf; |
| SmallVector<SourceLocation, 8> StrLocs; |
| |
| for (unsigned i = 0; i != NumStrings; ++i) { |
| S = Strings[i]; |
| |
| // ObjC strings can't be wide or UTF. |
| if (!S->isAscii()) { |
| Diag(S->getLocStart(), diag::err_cfstring_literal_not_string_constant) |
| << S->getSourceRange(); |
| return true; |
| } |
| |
| // Append the string. |
| StrBuf += S->getString(); |
| |
| // Get the locations of the string tokens. |
| StrLocs.append(S->tokloc_begin(), S->tokloc_end()); |
| } |
| |
| // Create the aggregate string with the appropriate content and location |
| // information. |
| S = StringLiteral::Create(Context, StrBuf, |
| StringLiteral::Ascii, /*Pascal=*/false, |
| Context.getPointerType(Context.CharTy), |
| &StrLocs[0], StrLocs.size()); |
| } |
| |
| // Verify that this composite string is acceptable for ObjC strings. |
| if (CheckObjCString(S)) |
| return true; |
| |
| // Initialize the constant string interface lazily. This assumes |
| // the NSString interface is seen in this translation unit. Note: We |
| // don't use NSConstantString, since the runtime team considers this |
| // interface private (even though it appears in the header files). |
| QualType Ty = Context.getObjCConstantStringInterface(); |
| if (!Ty.isNull()) { |
| Ty = Context.getObjCObjectPointerType(Ty); |
| } else if (getLangOptions().NoConstantCFStrings) { |
| IdentifierInfo *NSIdent=0; |
| std::string StringClass(getLangOptions().ObjCConstantStringClass); |
| |
| if (StringClass.empty()) |
| NSIdent = &Context.Idents.get("NSConstantString"); |
| else |
| NSIdent = &Context.Idents.get(StringClass); |
| |
| NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0], |
| LookupOrdinaryName); |
| if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { |
| Context.setObjCConstantStringInterface(StrIF); |
| Ty = Context.getObjCConstantStringInterface(); |
| Ty = Context.getObjCObjectPointerType(Ty); |
| } else { |
| // If there is no NSConstantString interface defined then treat this |
| // as error and recover from it. |
| Diag(S->getLocStart(), diag::err_no_nsconstant_string_class) << NSIdent |
| << S->getSourceRange(); |
| Ty = Context.getObjCIdType(); |
| } |
| } else { |
| IdentifierInfo *NSIdent = &Context.Idents.get("NSString"); |
| NamedDecl *IF = LookupSingleName(TUScope, NSIdent, AtLocs[0], |
| LookupOrdinaryName); |
| if (ObjCInterfaceDecl *StrIF = dyn_cast_or_null<ObjCInterfaceDecl>(IF)) { |
| Context.setObjCConstantStringInterface(StrIF); |
| Ty = Context.getObjCConstantStringInterface(); |
| Ty = Context.getObjCObjectPointerType(Ty); |
| } else { |
| // If there is no NSString interface defined then treat constant |
| // strings as untyped objects and let the runtime figure it out later. |
| Ty = Context.getObjCIdType(); |
| } |
| } |
| |
| return new (Context) ObjCStringLiteral(S, Ty, AtLocs[0]); |
| } |
| |
| ExprResult Sema::BuildObjCEncodeExpression(SourceLocation AtLoc, |
| TypeSourceInfo *EncodedTypeInfo, |
| SourceLocation RParenLoc) { |
| QualType EncodedType = EncodedTypeInfo->getType(); |
| QualType StrTy; |
| if (EncodedType->isDependentType()) |
| StrTy = Context.DependentTy; |
| else { |
| if (!EncodedType->getAsArrayTypeUnsafe() && //// Incomplete array is handled. |
| !EncodedType->isVoidType()) // void is handled too. |
| if (RequireCompleteType(AtLoc, EncodedType, |
| PDiag(diag::err_incomplete_type_objc_at_encode) |
| << EncodedTypeInfo->getTypeLoc().getSourceRange())) |
| return ExprError(); |
| |
| std::string Str; |
| Context.getObjCEncodingForType(EncodedType, Str); |
| |
| // The type of @encode is the same as the type of the corresponding string, |
| // which is an array type. |
| StrTy = Context.CharTy; |
| // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings) |
| StrTy.addConst(); |
| StrTy = Context.getConstantArrayType(StrTy, llvm::APInt(32, Str.size()+1), |
| ArrayType::Normal, 0); |
| } |
| |
| return new (Context) ObjCEncodeExpr(StrTy, EncodedTypeInfo, AtLoc, RParenLoc); |
| } |
| |
| ExprResult Sema::ParseObjCEncodeExpression(SourceLocation AtLoc, |
| SourceLocation EncodeLoc, |
| SourceLocation LParenLoc, |
| ParsedType ty, |
| SourceLocation RParenLoc) { |
| // FIXME: Preserve type source info ? |
| TypeSourceInfo *TInfo; |
| QualType EncodedType = GetTypeFromParser(ty, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(EncodedType, |
| PP.getLocForEndOfToken(LParenLoc)); |
| |
| return BuildObjCEncodeExpression(AtLoc, TInfo, RParenLoc); |
| } |
| |
| ExprResult Sema::ParseObjCSelectorExpression(Selector Sel, |
| SourceLocation AtLoc, |
| SourceLocation SelLoc, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| ObjCMethodDecl *Method = LookupInstanceMethodInGlobalPool(Sel, |
| SourceRange(LParenLoc, RParenLoc), false, false); |
| if (!Method) |
| Method = LookupFactoryMethodInGlobalPool(Sel, |
| SourceRange(LParenLoc, RParenLoc)); |
| if (!Method) |
| Diag(SelLoc, diag::warn_undeclared_selector) << Sel; |
| |
| if (!Method || |
| Method->getImplementationControl() != ObjCMethodDecl::Optional) { |
| llvm::DenseMap<Selector, SourceLocation>::iterator Pos |
| = ReferencedSelectors.find(Sel); |
| if (Pos == ReferencedSelectors.end()) |
| ReferencedSelectors.insert(std::make_pair(Sel, SelLoc)); |
| } |
| |
| // In ARC, forbid the user from using @selector for |
| // retain/release/autorelease/dealloc/retainCount. |
| if (getLangOptions().ObjCAutoRefCount) { |
| switch (Sel.getMethodFamily()) { |
| case OMF_retain: |
| case OMF_release: |
| case OMF_autorelease: |
| case OMF_retainCount: |
| case OMF_dealloc: |
| Diag(AtLoc, diag::err_arc_illegal_selector) << |
| Sel << SourceRange(LParenLoc, RParenLoc); |
| break; |
| |
| case OMF_None: |
| case OMF_alloc: |
| case OMF_copy: |
| case OMF_finalize: |
| case OMF_init: |
| case OMF_mutableCopy: |
| case OMF_new: |
| case OMF_self: |
| case OMF_performSelector: |
| break; |
| } |
| } |
| QualType Ty = Context.getObjCSelType(); |
| return new (Context) ObjCSelectorExpr(Ty, Sel, AtLoc, RParenLoc); |
| } |
| |
| ExprResult Sema::ParseObjCProtocolExpression(IdentifierInfo *ProtocolId, |
| SourceLocation AtLoc, |
| SourceLocation ProtoLoc, |
| SourceLocation LParenLoc, |
| SourceLocation RParenLoc) { |
| ObjCProtocolDecl* PDecl = LookupProtocol(ProtocolId, ProtoLoc); |
| if (!PDecl) { |
| Diag(ProtoLoc, diag::err_undeclared_protocol) << ProtocolId; |
| return true; |
| } |
| |
| QualType Ty = Context.getObjCProtoType(); |
| if (Ty.isNull()) |
| return true; |
| Ty = Context.getObjCObjectPointerType(Ty); |
| return new (Context) ObjCProtocolExpr(Ty, PDecl, AtLoc, RParenLoc); |
| } |
| |
| /// Try to capture an implicit reference to 'self'. |
| ObjCMethodDecl *Sema::tryCaptureObjCSelf() { |
| // Ignore block scopes: we can capture through them. |
| DeclContext *DC = CurContext; |
| while (true) { |
| if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext(); |
| else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext(); |
| else break; |
| } |
| |
| // If we're not in an ObjC method, error out. Note that, unlike the |
| // C++ case, we don't require an instance method --- class methods |
| // still have a 'self', and we really do still need to capture it! |
| ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(DC); |
| if (!method) |
| return 0; |
| |
| ImplicitParamDecl *self = method->getSelfDecl(); |
| assert(self && "capturing 'self' in non-definition?"); |
| |
| // Mark that we're closing on 'this' in all the block scopes, if applicable. |
| for (unsigned idx = FunctionScopes.size() - 1; |
| isa<BlockScopeInfo>(FunctionScopes[idx]); |
| --idx) { |
| BlockScopeInfo *blockScope = cast<BlockScopeInfo>(FunctionScopes[idx]); |
| unsigned &captureIndex = blockScope->CaptureMap[self]; |
| if (captureIndex) break; |
| |
| bool nested = isa<BlockScopeInfo>(FunctionScopes[idx-1]); |
| blockScope->Captures.push_back( |
| BlockDecl::Capture(self, /*byref*/ false, nested, /*copy*/ 0)); |
| captureIndex = blockScope->Captures.size(); // +1 |
| } |
| |
| return method; |
| } |
| |
| static QualType stripObjCInstanceType(ASTContext &Context, QualType T) { |
| if (T == Context.getObjCInstanceType()) |
| return Context.getObjCIdType(); |
| |
| return T; |
| } |
| |
| QualType Sema::getMessageSendResultType(QualType ReceiverType, |
| ObjCMethodDecl *Method, |
| bool isClassMessage, bool isSuperMessage) { |
| assert(Method && "Must have a method"); |
| if (!Method->hasRelatedResultType()) |
| return Method->getSendResultType(); |
| |
| // If a method has a related return type: |
| // - if the method found is an instance method, but the message send |
| // was a class message send, T is the declared return type of the method |
| // found |
| if (Method->isInstanceMethod() && isClassMessage) |
| return stripObjCInstanceType(Context, Method->getSendResultType()); |
| |
| // - if the receiver is super, T is a pointer to the class of the |
| // enclosing method definition |
| if (isSuperMessage) { |
| if (ObjCMethodDecl *CurMethod = getCurMethodDecl()) |
| if (ObjCInterfaceDecl *Class = CurMethod->getClassInterface()) |
| return Context.getObjCObjectPointerType( |
| Context.getObjCInterfaceType(Class)); |
| } |
| |
| // - if the receiver is the name of a class U, T is a pointer to U |
| if (ReceiverType->getAs<ObjCInterfaceType>() || |
| ReceiverType->isObjCQualifiedInterfaceType()) |
| return Context.getObjCObjectPointerType(ReceiverType); |
| // - if the receiver is of type Class or qualified Class type, |
| // T is the declared return type of the method. |
| if (ReceiverType->isObjCClassType() || |
| ReceiverType->isObjCQualifiedClassType()) |
| return stripObjCInstanceType(Context, Method->getSendResultType()); |
| |
| // - if the receiver is id, qualified id, Class, or qualified Class, T |
| // is the receiver type, otherwise |
| // - T is the type of the receiver expression. |
| return ReceiverType; |
| } |
| |
| void Sema::EmitRelatedResultTypeNote(const Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| const ObjCMessageExpr *MsgSend = dyn_cast<ObjCMessageExpr>(E); |
| if (!MsgSend) |
| return; |
| |
| const ObjCMethodDecl *Method = MsgSend->getMethodDecl(); |
| if (!Method) |
| return; |
| |
| if (!Method->hasRelatedResultType()) |
| return; |
| |
| if (Context.hasSameUnqualifiedType(Method->getResultType() |
| .getNonReferenceType(), |
| MsgSend->getType())) |
| return; |
| |
| if (!Context.hasSameUnqualifiedType(Method->getResultType(), |
| Context.getObjCInstanceType())) |
| return; |
| |
| Diag(Method->getLocation(), diag::note_related_result_type_inferred) |
| << Method->isInstanceMethod() << Method->getSelector() |
| << MsgSend->getType(); |
| } |
| |
| bool Sema::CheckMessageArgumentTypes(QualType ReceiverType, |
| Expr **Args, unsigned NumArgs, |
| Selector Sel, ObjCMethodDecl *Method, |
| bool isClassMessage, bool isSuperMessage, |
| SourceLocation lbrac, SourceLocation rbrac, |
| QualType &ReturnType, ExprValueKind &VK) { |
| if (!Method) { |
| // Apply default argument promotion as for (C99 6.5.2.2p6). |
| for (unsigned i = 0; i != NumArgs; i++) { |
| if (Args[i]->isTypeDependent()) |
| continue; |
| |
| ExprResult Result = DefaultArgumentPromotion(Args[i]); |
| if (Result.isInvalid()) |
| return true; |
| Args[i] = Result.take(); |
| } |
| |
| unsigned DiagID; |
| if (getLangOptions().ObjCAutoRefCount) |
| DiagID = diag::err_arc_method_not_found; |
| else |
| DiagID = isClassMessage ? diag::warn_class_method_not_found |
| : diag::warn_inst_method_not_found; |
| if (!getLangOptions().DebuggerSupport) |
| Diag(lbrac, DiagID) |
| << Sel << isClassMessage << SourceRange(lbrac, rbrac); |
| |
| // In debuggers, we want to use __unknown_anytype for these |
| // results so that clients can cast them. |
| if (getLangOptions().DebuggerSupport) { |
| ReturnType = Context.UnknownAnyTy; |
| } else { |
| ReturnType = Context.getObjCIdType(); |
| } |
| VK = VK_RValue; |
| return false; |
| } |
| |
| ReturnType = getMessageSendResultType(ReceiverType, Method, isClassMessage, |
| isSuperMessage); |
| VK = Expr::getValueKindForType(Method->getResultType()); |
| |
| unsigned NumNamedArgs = Sel.getNumArgs(); |
| // Method might have more arguments than selector indicates. This is due |
| // to addition of c-style arguments in method. |
| if (Method->param_size() > Sel.getNumArgs()) |
| NumNamedArgs = Method->param_size(); |
| // FIXME. This need be cleaned up. |
| if (NumArgs < NumNamedArgs) { |
| Diag(lbrac, diag::err_typecheck_call_too_few_args) |
| << 2 << NumNamedArgs << NumArgs; |
| return false; |
| } |
| |
| bool IsError = false; |
| for (unsigned i = 0; i < NumNamedArgs; i++) { |
| // We can't do any type-checking on a type-dependent argument. |
| if (Args[i]->isTypeDependent()) |
| continue; |
| |
| Expr *argExpr = Args[i]; |
| |
| ParmVarDecl *param = Method->param_begin()[i]; |
| assert(argExpr && "CheckMessageArgumentTypes(): missing expression"); |
| |
| // Strip the unbridged-cast placeholder expression off unless it's |
| // a consumed argument. |
| if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && |
| !param->hasAttr<CFConsumedAttr>()) |
| argExpr = stripARCUnbridgedCast(argExpr); |
| |
| if (RequireCompleteType(argExpr->getSourceRange().getBegin(), |
| param->getType(), |
| PDiag(diag::err_call_incomplete_argument) |
| << argExpr->getSourceRange())) |
| return true; |
| |
| InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| param); |
| ExprResult ArgE = PerformCopyInitialization(Entity, lbrac, Owned(argExpr)); |
| if (ArgE.isInvalid()) |
| IsError = true; |
| else |
| Args[i] = ArgE.takeAs<Expr>(); |
| } |
| |
| // Promote additional arguments to variadic methods. |
| if (Method->isVariadic()) { |
| for (unsigned i = NumNamedArgs; i < NumArgs; ++i) { |
| if (Args[i]->isTypeDependent()) |
| continue; |
| |
| ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); |
| IsError |= Arg.isInvalid(); |
| Args[i] = Arg.take(); |
| } |
| } else { |
| // Check for extra arguments to non-variadic methods. |
| if (NumArgs != NumNamedArgs) { |
| Diag(Args[NumNamedArgs]->getLocStart(), |
| diag::err_typecheck_call_too_many_args) |
| << 2 /*method*/ << NumNamedArgs << NumArgs |
| << Method->getSourceRange() |
| << SourceRange(Args[NumNamedArgs]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd()); |
| } |
| } |
| // diagnose nonnull arguments. |
| for (specific_attr_iterator<NonNullAttr> |
| i = Method->specific_attr_begin<NonNullAttr>(), |
| e = Method->specific_attr_end<NonNullAttr>(); i != e; ++i) { |
| CheckNonNullArguments(*i, Args, lbrac); |
| } |
| |
| DiagnoseSentinelCalls(Method, lbrac, Args, NumArgs); |
| return IsError; |
| } |
| |
| bool Sema::isSelfExpr(Expr *receiver) { |
| // 'self' is objc 'self' in an objc method only. |
| ObjCMethodDecl *method = |
| dyn_cast<ObjCMethodDecl>(CurContext->getNonClosureAncestor()); |
| if (!method) return false; |
| |
| receiver = receiver->IgnoreParenLValueCasts(); |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(receiver)) |
| if (DRE->getDecl() == method->getSelfDecl()) |
| return true; |
| return false; |
| } |
| |
| // Helper method for ActOnClassMethod/ActOnInstanceMethod. |
| // Will search "local" class/category implementations for a method decl. |
| // If failed, then we search in class's root for an instance method. |
| // Returns 0 if no method is found. |
| ObjCMethodDecl *Sema::LookupPrivateClassMethod(Selector Sel, |
| ObjCInterfaceDecl *ClassDecl) { |
| ObjCMethodDecl *Method = 0; |
| // lookup in class and all superclasses |
| while (ClassDecl && !Method) { |
| if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) |
| Method = ImpDecl->getClassMethod(Sel); |
| |
| // Look through local category implementations associated with the class. |
| if (!Method) |
| Method = ClassDecl->getCategoryClassMethod(Sel); |
| |
| // Before we give up, check if the selector is an instance method. |
| // But only in the root. This matches gcc's behaviour and what the |
| // runtime expects. |
| if (!Method && !ClassDecl->getSuperClass()) { |
| Method = ClassDecl->lookupInstanceMethod(Sel); |
| // Look through local category implementations associated |
| // with the root class. |
| if (!Method) |
| Method = LookupPrivateInstanceMethod(Sel, ClassDecl); |
| } |
| |
| ClassDecl = ClassDecl->getSuperClass(); |
| } |
| return Method; |
| } |
| |
| ObjCMethodDecl *Sema::LookupPrivateInstanceMethod(Selector Sel, |
| ObjCInterfaceDecl *ClassDecl) { |
| if (!ClassDecl->hasDefinition()) |
| return 0; |
| |
| ObjCMethodDecl *Method = 0; |
| while (ClassDecl && !Method) { |
| // If we have implementations in scope, check "private" methods. |
| if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) |
| Method = ImpDecl->getInstanceMethod(Sel); |
| |
| // Look through local category implementations associated with the class. |
| if (!Method) |
| Method = ClassDecl->getCategoryInstanceMethod(Sel); |
| ClassDecl = ClassDecl->getSuperClass(); |
| } |
| return Method; |
| } |
| |
| /// LookupMethodInType - Look up a method in an ObjCObjectType. |
| ObjCMethodDecl *Sema::LookupMethodInObjectType(Selector sel, QualType type, |
| bool isInstance) { |
| const ObjCObjectType *objType = type->castAs<ObjCObjectType>(); |
| if (ObjCInterfaceDecl *iface = objType->getInterface()) { |
| // Look it up in the main interface (and categories, etc.) |
| if (ObjCMethodDecl *method = iface->lookupMethod(sel, isInstance)) |
| return method; |
| |
| // Okay, look for "private" methods declared in any |
| // @implementations we've seen. |
| if (isInstance) { |
| if (ObjCMethodDecl *method = LookupPrivateInstanceMethod(sel, iface)) |
| return method; |
| } else { |
| if (ObjCMethodDecl *method = LookupPrivateClassMethod(sel, iface)) |
| return method; |
| } |
| } |
| |
| // Check qualifiers. |
| for (ObjCObjectType::qual_iterator |
| i = objType->qual_begin(), e = objType->qual_end(); i != e; ++i) |
| if (ObjCMethodDecl *method = (*i)->lookupMethod(sel, isInstance)) |
| return method; |
| |
| return 0; |
| } |
| |
| /// LookupMethodInQualifiedType - Lookups up a method in protocol qualifier |
| /// list of a qualified objective pointer type. |
| ObjCMethodDecl *Sema::LookupMethodInQualifiedType(Selector Sel, |
| const ObjCObjectPointerType *OPT, |
| bool Instance) |
| { |
| ObjCMethodDecl *MD = 0; |
| for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), |
| E = OPT->qual_end(); I != E; ++I) { |
| ObjCProtocolDecl *PROTO = (*I); |
| if ((MD = PROTO->lookupMethod(Sel, Instance))) { |
| return MD; |
| } |
| } |
| return 0; |
| } |
| |
| /// HandleExprPropertyRefExpr - Handle foo.bar where foo is a pointer to an |
| /// objective C interface. This is a property reference expression. |
| ExprResult Sema:: |
| HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT, |
| Expr *BaseExpr, SourceLocation OpLoc, |
| DeclarationName MemberName, |
| SourceLocation MemberLoc, |
| SourceLocation SuperLoc, QualType SuperType, |
| bool Super) { |
| const ObjCInterfaceType *IFaceT = OPT->getInterfaceType(); |
| ObjCInterfaceDecl *IFace = IFaceT->getDecl(); |
| |
| if (MemberName.getNameKind() != DeclarationName::Identifier) { |
| Diag(MemberLoc, diag::err_invalid_property_name) |
| << MemberName << QualType(OPT, 0); |
| return ExprError(); |
| } |
| |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| SourceRange BaseRange = Super? SourceRange(SuperLoc) |
| : BaseExpr->getSourceRange(); |
| if (RequireCompleteType(MemberLoc, OPT->getPointeeType(), |
| PDiag(diag::err_property_not_found_forward_class) |
| << MemberName << BaseRange)) |
| return ExprError(); |
| |
| // Search for a declared property first. |
| if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(Member)) { |
| // Check whether we can reference this property. |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| if (Super) |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| MemberLoc, |
| SuperLoc, SuperType)); |
| else |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| MemberLoc, BaseExpr)); |
| } |
| // Check protocols on qualified interfaces. |
| for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), |
| E = OPT->qual_end(); I != E; ++I) |
| if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) { |
| // Check whether we can reference this property. |
| if (DiagnoseUseOfDecl(PD, MemberLoc)) |
| return ExprError(); |
| |
| if (Super) |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, |
| Context.PseudoObjectTy, |
| VK_LValue, |
| OK_ObjCProperty, |
| MemberLoc, |
| SuperLoc, SuperType)); |
| else |
| return Owned(new (Context) ObjCPropertyRefExpr(PD, |
| Context.PseudoObjectTy, |
| VK_LValue, |
| OK_ObjCProperty, |
| MemberLoc, |
| BaseExpr)); |
| } |
| // If that failed, look for an "implicit" property by seeing if the nullary |
| // selector is implemented. |
| |
| // FIXME: The logic for looking up nullary and unary selectors should be |
| // shared with the code in ActOnInstanceMessage. |
| |
| Selector Sel = PP.getSelectorTable().getNullarySelector(Member); |
| ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel); |
| |
| // May be founf in property's qualified list. |
| if (!Getter) |
| Getter = LookupMethodInQualifiedType(Sel, OPT, true); |
| |
| // If this reference is in an @implementation, check for 'private' methods. |
| if (!Getter) |
| Getter = IFace->lookupPrivateMethod(Sel); |
| |
| // Look through local category implementations associated with the class. |
| if (!Getter) |
| Getter = IFace->getCategoryInstanceMethod(Sel); |
| if (Getter) { |
| // Check if we can reference this property. |
| if (DiagnoseUseOfDecl(Getter, MemberLoc)) |
| return ExprError(); |
| } |
| // If we found a getter then this may be a valid dot-reference, we |
| // will look for the matching setter, in case it is needed. |
| Selector SetterSel = |
| SelectorTable::constructSetterName(PP.getIdentifierTable(), |
| PP.getSelectorTable(), Member); |
| ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel); |
| |
| // May be founf in property's qualified list. |
| if (!Setter) |
| Setter = LookupMethodInQualifiedType(SetterSel, OPT, true); |
| |
| if (!Setter) { |
| // If this reference is in an @implementation, also check for 'private' |
| // methods. |
| Setter = IFace->lookupPrivateMethod(SetterSel); |
| } |
| // Look through local category implementations associated with the class. |
| if (!Setter) |
| Setter = IFace->getCategoryInstanceMethod(SetterSel); |
| |
| if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc)) |
| return ExprError(); |
| |
| if (Getter || Setter) { |
| if (Super) |
| return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, |
| Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| MemberLoc, |
| SuperLoc, SuperType)); |
| else |
| return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, |
| Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| MemberLoc, BaseExpr)); |
| |
| } |
| |
| // Attempt to correct for typos in property names. |
| TypoCorrection Corrected = CorrectTypo( |
| DeclarationNameInfo(MemberName, MemberLoc), LookupOrdinaryName, NULL, |
| NULL, IFace, false, CTC_NoKeywords, OPT); |
| if (ObjCPropertyDecl *Property = |
| Corrected.getCorrectionDeclAs<ObjCPropertyDecl>()) { |
| DeclarationName TypoResult = Corrected.getCorrection(); |
| Diag(MemberLoc, diag::err_property_not_found_suggest) |
| << MemberName << QualType(OPT, 0) << TypoResult |
| << FixItHint::CreateReplacement(MemberLoc, TypoResult.getAsString()); |
| Diag(Property->getLocation(), diag::note_previous_decl) |
| << Property->getDeclName(); |
| return HandleExprPropertyRefExpr(OPT, BaseExpr, OpLoc, |
| TypoResult, MemberLoc, |
| SuperLoc, SuperType, Super); |
| } |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *Ivar = |
| IFace->lookupInstanceVariable(Member, ClassDeclared)) { |
| QualType T = Ivar->getType(); |
| if (const ObjCObjectPointerType * OBJPT = |
| T->getAsObjCInterfacePointerType()) { |
| if (RequireCompleteType(MemberLoc, OBJPT->getPointeeType(), |
| PDiag(diag::err_property_not_as_forward_class) |
| << MemberName << BaseExpr->getSourceRange())) |
| return ExprError(); |
| } |
| Diag(MemberLoc, |
| diag::err_ivar_access_using_property_syntax_suggest) |
| << MemberName << QualType(OPT, 0) << Ivar->getDeclName() |
| << FixItHint::CreateReplacement(OpLoc, "->"); |
| return ExprError(); |
| } |
| |
| Diag(MemberLoc, diag::err_property_not_found) |
| << MemberName << QualType(OPT, 0); |
| if (Setter) |
| Diag(Setter->getLocation(), diag::note_getter_unavailable) |
| << MemberName << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| |
| |
| ExprResult Sema:: |
| ActOnClassPropertyRefExpr(IdentifierInfo &receiverName, |
| IdentifierInfo &propertyName, |
| SourceLocation receiverNameLoc, |
| SourceLocation propertyNameLoc) { |
| |
| IdentifierInfo *receiverNamePtr = &receiverName; |
| ObjCInterfaceDecl *IFace = getObjCInterfaceDecl(receiverNamePtr, |
| receiverNameLoc); |
| |
| bool IsSuper = false; |
| if (IFace == 0) { |
| // If the "receiver" is 'super' in a method, handle it as an expression-like |
| // property reference. |
| if (receiverNamePtr->isStr("super")) { |
| IsSuper = true; |
| |
| if (ObjCMethodDecl *CurMethod = tryCaptureObjCSelf()) { |
| if (CurMethod->isInstanceMethod()) { |
| QualType T = |
| Context.getObjCInterfaceType(CurMethod->getClassInterface()); |
| T = Context.getObjCObjectPointerType(T); |
| |
| return HandleExprPropertyRefExpr(T->getAsObjCInterfacePointerType(), |
| /*BaseExpr*/0, |
| SourceLocation()/*OpLoc*/, |
| &propertyName, |
| propertyNameLoc, |
| receiverNameLoc, T, true); |
| } |
| |
| // Otherwise, if this is a class method, try dispatching to our |
| // superclass. |
| IFace = CurMethod->getClassInterface()->getSuperClass(); |
| } |
| } |
| |
| if (IFace == 0) { |
| Diag(receiverNameLoc, diag::err_expected_ident_or_lparen); |
| return ExprError(); |
| } |
| } |
| |
| // Search for a declared property first. |
| Selector Sel = PP.getSelectorTable().getNullarySelector(&propertyName); |
| ObjCMethodDecl *Getter = IFace->lookupClassMethod(Sel); |
| |
| // If this reference is in an @implementation, check for 'private' methods. |
| if (!Getter) |
| if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) |
| if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) |
| if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) |
| Getter = ImpDecl->getClassMethod(Sel); |
| |
| if (Getter) { |
| // FIXME: refactor/share with ActOnMemberReference(). |
| // Check if we can reference this property. |
| if (DiagnoseUseOfDecl(Getter, propertyNameLoc)) |
| return ExprError(); |
| } |
| |
| // Look for the matching setter, in case it is needed. |
| Selector SetterSel = |
| SelectorTable::constructSetterName(PP.getIdentifierTable(), |
| PP.getSelectorTable(), &propertyName); |
| |
| ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel); |
| if (!Setter) { |
| // If this reference is in an @implementation, also check for 'private' |
| // methods. |
| if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) |
| if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) |
| if (ObjCImplementationDecl *ImpDecl = ClassDecl->getImplementation()) |
| Setter = ImpDecl->getClassMethod(SetterSel); |
| } |
| // Look through local category implementations associated with the class. |
| if (!Setter) |
| Setter = IFace->getCategoryClassMethod(SetterSel); |
| |
| if (Setter && DiagnoseUseOfDecl(Setter, propertyNameLoc)) |
| return ExprError(); |
| |
| if (Getter || Setter) { |
| if (IsSuper) |
| return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, |
| Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| propertyNameLoc, |
| receiverNameLoc, |
| Context.getObjCInterfaceType(IFace))); |
| |
| return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter, |
| Context.PseudoObjectTy, |
| VK_LValue, OK_ObjCProperty, |
| propertyNameLoc, |
| receiverNameLoc, IFace)); |
| } |
| return ExprError(Diag(propertyNameLoc, diag::err_property_not_found) |
| << &propertyName << Context.getObjCInterfaceType(IFace)); |
| } |
| |
| Sema::ObjCMessageKind Sema::getObjCMessageKind(Scope *S, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| bool IsSuper, |
| bool HasTrailingDot, |
| ParsedType &ReceiverType) { |
| ReceiverType = ParsedType(); |
| |
| // If the identifier is "super" and there is no trailing dot, we're |
| // messaging super. If the identifier is "super" and there is a |
| // trailing dot, it's an instance message. |
| if (IsSuper && S->isInObjcMethodScope()) |
| return HasTrailingDot? ObjCInstanceMessage : ObjCSuperMessage; |
| |
| LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
| LookupName(Result, S); |
| |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| // Normal name lookup didn't find anything. If we're in an |
| // Objective-C method, look for ivars. If we find one, we're done! |
| // FIXME: This is a hack. Ivar lookup should be part of normal |
| // lookup. |
| if (ObjCMethodDecl *Method = getCurMethodDecl()) { |
| if (!Method->getClassInterface()) { |
| // Fall back: let the parser try to parse it as an instance message. |
| return ObjCInstanceMessage; |
| } |
| |
| ObjCInterfaceDecl *ClassDeclared; |
| if (Method->getClassInterface()->lookupInstanceVariable(Name, |
| ClassDeclared)) |
| return ObjCInstanceMessage; |
| } |
| |
| // Break out; we'll perform typo correction below. |
| break; |
| |
| case LookupResult::NotFoundInCurrentInstantiation: |
| case LookupResult::FoundOverloaded: |
| case LookupResult::FoundUnresolvedValue: |
| case LookupResult::Ambiguous: |
| Result.suppressDiagnostics(); |
| return ObjCInstanceMessage; |
| |
| case LookupResult::Found: { |
| // If the identifier is a class or not, and there is a trailing dot, |
| // it's an instance message. |
| if (HasTrailingDot) |
| return ObjCInstanceMessage; |
| // We found something. If it's a type, then we have a class |
| // message. Otherwise, it's an instance message. |
| NamedDecl *ND = Result.getFoundDecl(); |
| QualType T; |
| if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) |
| T = Context.getObjCInterfaceType(Class); |
| else if (TypeDecl *Type = dyn_cast<TypeDecl>(ND)) |
| T = Context.getTypeDeclType(Type); |
| else |
| return ObjCInstanceMessage; |
| |
| // We have a class message, and T is the type we're |
| // messaging. Build source-location information for it. |
| TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); |
| ReceiverType = CreateParsedType(T, TSInfo); |
| return ObjCClassMessage; |
| } |
| } |
| |
| // Determine our typo-correction context. |
| CorrectTypoContext CTC = CTC_Expression; |
| if (ObjCMethodDecl *Method = getCurMethodDecl()) |
| if (Method->getClassInterface() && |
| Method->getClassInterface()->getSuperClass()) |
| CTC = CTC_ObjCMessageReceiver; |
| |
| if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(), |
| Result.getLookupKind(), S, NULL, |
| NULL, false, CTC)) { |
| if (NamedDecl *ND = Corrected.getCorrectionDecl()) { |
| // If we found a declaration, correct when it refers to an Objective-C |
| // class. |
| if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(ND)) { |
| Diag(NameLoc, diag::err_unknown_receiver_suggest) |
| << Name << Corrected.getCorrection() |
| << FixItHint::CreateReplacement(SourceRange(NameLoc), |
| ND->getNameAsString()); |
| Diag(ND->getLocation(), diag::note_previous_decl) |
| << Corrected.getCorrection(); |
| |
| QualType T = Context.getObjCInterfaceType(Class); |
| TypeSourceInfo *TSInfo = Context.getTrivialTypeSourceInfo(T, NameLoc); |
| ReceiverType = CreateParsedType(T, TSInfo); |
| return ObjCClassMessage; |
| } |
| } else if (Corrected.isKeyword() && |
| Corrected.getCorrectionAsIdentifierInfo()->isStr("super")) { |
| // If we've found the keyword "super", this is a send to super. |
| Diag(NameLoc, diag::err_unknown_receiver_suggest) |
| << Name << Corrected.getCorrection() |
| << FixItHint::CreateReplacement(SourceRange(NameLoc), "super"); |
| return ObjCSuperMessage; |
| } |
| } |
| |
| // Fall back: let the parser try to parse it as an instance message. |
| return ObjCInstanceMessage; |
| } |
| |
| ExprResult Sema::ActOnSuperMessage(Scope *S, |
| SourceLocation SuperLoc, |
| Selector Sel, |
| SourceLocation LBracLoc, |
| ArrayRef<SourceLocation> SelectorLocs, |
| SourceLocation RBracLoc, |
| MultiExprArg Args) { |
| // Determine whether we are inside a method or not. |
| ObjCMethodDecl *Method = tryCaptureObjCSelf(); |
| if (!Method) { |
| Diag(SuperLoc, diag::err_invalid_receiver_to_message_super); |
| return ExprError(); |
| } |
| |
| ObjCInterfaceDecl *Class = Method->getClassInterface(); |
| if (!Class) { |
| Diag(SuperLoc, diag::error_no_super_class_message) |
| << Method->getDeclName(); |
| return ExprError(); |
| } |
| |
| ObjCInterfaceDecl *Super = Class->getSuperClass(); |
| if (!Super) { |
| // The current class does not have a superclass. |
| Diag(SuperLoc, diag::error_root_class_cannot_use_super) |
| << Class->getIdentifier(); |
| return ExprError(); |
| } |
| |
| // We are in a method whose class has a superclass, so 'super' |
| // is acting as a keyword. |
| if (Method->isInstanceMethod()) { |
| if (Sel.getMethodFamily() == OMF_dealloc) |
| ObjCShouldCallSuperDealloc = false; |
| if (Sel.getMethodFamily() == OMF_finalize) |
| ObjCShouldCallSuperFinalize = false; |
| |
| // Since we are in an instance method, this is an instance |
| // message to the superclass instance. |
| QualType SuperTy = Context.getObjCInterfaceType(Super); |
| SuperTy = Context.getObjCObjectPointerType(SuperTy); |
| return BuildInstanceMessage(0, SuperTy, SuperLoc, |
| Sel, /*Method=*/0, |
| LBracLoc, SelectorLocs, RBracLoc, move(Args)); |
| } |
| |
| // Since we are in a class method, this is a class message to |
| // the superclass. |
| return BuildClassMessage(/*ReceiverTypeInfo=*/0, |
| Context.getObjCInterfaceType(Super), |
| SuperLoc, Sel, /*Method=*/0, |
| LBracLoc, SelectorLocs, RBracLoc, move(Args)); |
| } |
| |
| /// \brief Build an Objective-C class message expression. |
| /// |
| /// This routine takes care of both normal class messages and |
| /// class messages to the superclass. |
| /// |
| /// \param ReceiverTypeInfo Type source information that describes the |
| /// receiver of this message. This may be NULL, in which case we are |
| /// sending to the superclass and \p SuperLoc must be a valid source |
| /// location. |
| |
| /// \param ReceiverType The type of the object receiving the |
| /// message. When \p ReceiverTypeInfo is non-NULL, this is the same |
| /// type as that refers to. For a superclass send, this is the type of |
| /// the superclass. |
| /// |
| /// \param SuperLoc The location of the "super" keyword in a |
| /// superclass message. |
| /// |
| /// \param Sel The selector to which the message is being sent. |
| /// |
| /// \param Method The method that this class message is invoking, if |
| /// already known. |
| /// |
| /// \param LBracLoc The location of the opening square bracket ']'. |
| /// |
| /// \param RBrac The location of the closing square bracket ']'. |
| /// |
| /// \param Args The message arguments. |
| ExprResult Sema::BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo, |
| QualType ReceiverType, |
| SourceLocation SuperLoc, |
| Selector Sel, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| ArrayRef<SourceLocation> SelectorLocs, |
| SourceLocation RBracLoc, |
| MultiExprArg ArgsIn) { |
| SourceLocation Loc = SuperLoc.isValid()? SuperLoc |
| : ReceiverTypeInfo->getTypeLoc().getSourceRange().getBegin(); |
| if (LBracLoc.isInvalid()) { |
| Diag(Loc, diag::err_missing_open_square_message_send) |
| << FixItHint::CreateInsertion(Loc, "["); |
| LBracLoc = Loc; |
| } |
| |
| if (ReceiverType->isDependentType()) { |
| // If the receiver type is dependent, we can't type-check anything |
| // at this point. Build a dependent expression. |
| unsigned NumArgs = ArgsIn.size(); |
| Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); |
| assert(SuperLoc.isInvalid() && "Message to super with dependent type"); |
| return Owned(ObjCMessageExpr::Create(Context, ReceiverType, |
| VK_RValue, LBracLoc, ReceiverTypeInfo, |
| Sel, SelectorLocs, /*Method=*/0, |
| makeArrayRef(Args, NumArgs),RBracLoc)); |
| } |
| |
| // Find the class to which we are sending this message. |
| ObjCInterfaceDecl *Class = 0; |
| const ObjCObjectType *ClassType = ReceiverType->getAs<ObjCObjectType>(); |
| if (!ClassType || !(Class = ClassType->getInterface())) { |
| Diag(Loc, diag::err_invalid_receiver_class_message) |
| << ReceiverType; |
| return ExprError(); |
| } |
| assert(Class && "We don't know which class we're messaging?"); |
| // objc++ diagnoses during typename annotation. |
| if (!getLangOptions().CPlusPlus) |
| (void)DiagnoseUseOfDecl(Class, Loc); |
| // Find the method we are messaging. |
| if (!Method) { |
| SourceRange TypeRange |
| = SuperLoc.isValid()? SourceRange(SuperLoc) |
| : ReceiverTypeInfo->getTypeLoc().getSourceRange(); |
| if (RequireCompleteType(Loc, Context.getObjCInterfaceType(Class), |
| (getLangOptions().ObjCAutoRefCount |
| ? PDiag(diag::err_arc_receiver_forward_class) |
| : PDiag(diag::warn_receiver_forward_class)) |
| << TypeRange)) { |
| // A forward class used in messaging is treated as a 'Class' |
| Method = LookupFactoryMethodInGlobalPool(Sel, |
| SourceRange(LBracLoc, RBracLoc)); |
| if (Method && !getLangOptions().ObjCAutoRefCount) |
| Diag(Method->getLocation(), diag::note_method_sent_forward_class) |
| << Method->getDeclName(); |
| } |
| if (!Method) |
| Method = Class->lookupClassMethod(Sel); |
| |
| // If we have an implementation in scope, check "private" methods. |
| if (!Method) |
| Method = LookupPrivateClassMethod(Sel, Class); |
| |
| if (Method && DiagnoseUseOfDecl(Method, Loc)) |
| return ExprError(); |
| } |
| |
| // Check the argument types and determine the result type. |
| QualType ReturnType; |
| ExprValueKind VK = VK_RValue; |
| |
| unsigned NumArgs = ArgsIn.size(); |
| Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); |
| if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, true, |
| SuperLoc.isValid(), LBracLoc, RBracLoc, |
| ReturnType, VK)) |
| return ExprError(); |
| |
| if (Method && !Method->getResultType()->isVoidType() && |
| RequireCompleteType(LBracLoc, Method->getResultType(), |
| diag::err_illegal_message_expr_incomplete_type)) |
| return ExprError(); |
| |
| // Construct the appropriate ObjCMessageExpr. |
| Expr *Result; |
| if (SuperLoc.isValid()) |
| Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, |
| SuperLoc, /*IsInstanceSuper=*/false, |
| ReceiverType, Sel, SelectorLocs, |
| Method, makeArrayRef(Args, NumArgs), |
| RBracLoc); |
| else |
| Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, |
| ReceiverTypeInfo, Sel, SelectorLocs, |
| Method, makeArrayRef(Args, NumArgs), |
| RBracLoc); |
| return MaybeBindToTemporary(Result); |
| } |
| |
| // ActOnClassMessage - used for both unary and keyword messages. |
| // ArgExprs is optional - if it is present, the number of expressions |
| // is obtained from Sel.getNumArgs(). |
| ExprResult Sema::ActOnClassMessage(Scope *S, |
| ParsedType Receiver, |
| Selector Sel, |
| SourceLocation LBracLoc, |
| ArrayRef<SourceLocation> SelectorLocs, |
| SourceLocation RBracLoc, |
| MultiExprArg Args) { |
| TypeSourceInfo *ReceiverTypeInfo; |
| QualType ReceiverType = GetTypeFromParser(Receiver, &ReceiverTypeInfo); |
| if (ReceiverType.isNull()) |
| return ExprError(); |
| |
| |
| if (!ReceiverTypeInfo) |
| ReceiverTypeInfo = Context.getTrivialTypeSourceInfo(ReceiverType, LBracLoc); |
| |
| return BuildClassMessage(ReceiverTypeInfo, ReceiverType, |
| /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, |
| LBracLoc, SelectorLocs, RBracLoc, move(Args)); |
| } |
| |
| /// \brief Build an Objective-C instance message expression. |
| /// |
| /// This routine takes care of both normal instance messages and |
| /// instance messages to the superclass instance. |
| /// |
| /// \param Receiver The expression that computes the object that will |
| /// receive this message. This may be empty, in which case we are |
| /// sending to the superclass instance and \p SuperLoc must be a valid |
| /// source location. |
| /// |
| /// \param ReceiverType The (static) type of the object receiving the |
| /// message. When a \p Receiver expression is provided, this is the |
| /// same type as that expression. For a superclass instance send, this |
| /// is a pointer to the type of the superclass. |
| /// |
| /// \param SuperLoc The location of the "super" keyword in a |
| /// superclass instance message. |
| /// |
| /// \param Sel The selector to which the message is being sent. |
| /// |
| /// \param Method The method that this instance message is invoking, if |
| /// already known. |
| /// |
| /// \param LBracLoc The location of the opening square bracket ']'. |
| /// |
| /// \param RBrac The location of the closing square bracket ']'. |
| /// |
| /// \param Args The message arguments. |
| ExprResult Sema::BuildInstanceMessage(Expr *Receiver, |
| QualType ReceiverType, |
| SourceLocation SuperLoc, |
| Selector Sel, |
| ObjCMethodDecl *Method, |
| SourceLocation LBracLoc, |
| ArrayRef<SourceLocation> SelectorLocs, |
| SourceLocation RBracLoc, |
| MultiExprArg ArgsIn) { |
| // The location of the receiver. |
| SourceLocation Loc = SuperLoc.isValid()? SuperLoc : Receiver->getLocStart(); |
| |
| if (LBracLoc.isInvalid()) { |
| Diag(Loc, diag::err_missing_open_square_message_send) |
| << FixItHint::CreateInsertion(Loc, "["); |
| LBracLoc = Loc; |
| } |
| |
| // If we have a receiver expression, perform appropriate promotions |
| // and determine receiver type. |
| if (Receiver) { |
| if (Receiver->hasPlaceholderType()) { |
| ExprResult Result; |
| if (Receiver->getType() == Context.UnknownAnyTy) |
| Result = forceUnknownAnyToType(Receiver, Context.getObjCIdType()); |
| else |
| Result = CheckPlaceholderExpr(Receiver); |
| if (Result.isInvalid()) return ExprError(); |
| Receiver = Result.take(); |
| } |
| |
| if (Receiver->isTypeDependent()) { |
| // If the receiver is type-dependent, we can't type-check anything |
| // at this point. Build a dependent expression. |
| unsigned NumArgs = ArgsIn.size(); |
| Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); |
| assert(SuperLoc.isInvalid() && "Message to super with dependent type"); |
| return Owned(ObjCMessageExpr::Create(Context, Context.DependentTy, |
| VK_RValue, LBracLoc, Receiver, Sel, |
| SelectorLocs, /*Method=*/0, |
| makeArrayRef(Args, NumArgs), |
| RBracLoc)); |
| } |
| |
| // If necessary, apply function/array conversion to the receiver. |
| // C99 6.7.5.3p[7,8]. |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(Receiver); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Receiver = Result.take(); |
| ReceiverType = Receiver->getType(); |
| } |
| |
| if (!Method) { |
| // Handle messages to id. |
| bool receiverIsId = ReceiverType->isObjCIdType(); |
| if (receiverIsId || ReceiverType->isBlockPointerType() || |
| (Receiver && Context.isObjCNSObjectType(Receiver->getType()))) { |
| Method = LookupInstanceMethodInGlobalPool(Sel, |
| SourceRange(LBracLoc, RBracLoc), |
| receiverIsId); |
| if (!Method) |
| Method = LookupFactoryMethodInGlobalPool(Sel, |
| SourceRange(LBracLoc, RBracLoc), |
| receiverIsId); |
| if (Method) |
| DiagnoseAvailabilityOfDecl(Method, Loc, 0); |
| |
| } else if (ReceiverType->isObjCClassType() || |
| ReceiverType->isObjCQualifiedClassType()) { |
| // Handle messages to Class. |
| // We allow sending a message to a qualified Class ("Class<foo>"), which |
| // is ok as long as one of the protocols implements the selector (if not, warn). |
| if (const ObjCObjectPointerType *QClassTy |
| = ReceiverType->getAsObjCQualifiedClassType()) { |
| // Search protocols for class methods. |
| Method = LookupMethodInQualifiedType(Sel, QClassTy, false); |
| if (!Method) { |
| Method = LookupMethodInQualifiedType(Sel, QClassTy, true); |
| // warn if instance method found for a Class message. |
| if (Method) { |
| Diag(Loc, diag::warn_instance_method_on_class_found) |
| << Method->getSelector() << Sel; |
| Diag(Method->getLocation(), diag::note_method_declared_at); |
| } |
| } |
| } else { |
| if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { |
| if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) { |
| // First check the public methods in the class interface. |
| Method = ClassDecl->lookupClassMethod(Sel); |
| |
| if (!Method) |
| Method = LookupPrivateClassMethod(Sel, ClassDecl); |
| } |
| if (Method && DiagnoseUseOfDecl(Method, Loc)) |
| return ExprError(); |
| } |
| if (!Method) { |
| // If not messaging 'self', look for any factory method named 'Sel'. |
| if (!Receiver || !isSelfExpr(Receiver)) { |
| Method = LookupFactoryMethodInGlobalPool(Sel, |
| SourceRange(LBracLoc, RBracLoc), |
| true); |
| if (!Method) { |
| // If no class (factory) method was found, check if an _instance_ |
| // method of the same name exists in the root class only. |
| Method = LookupInstanceMethodInGlobalPool(Sel, |
| SourceRange(LBracLoc, RBracLoc), |
| true); |
| if (Method) |
| if (const ObjCInterfaceDecl *ID = |
| dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext())) { |
| if (ID->getSuperClass()) |
| Diag(Loc, diag::warn_root_inst_method_not_found) |
| << Sel << SourceRange(LBracLoc, RBracLoc); |
| } |
| } |
| } |
| } |
| } |
| } else { |
| ObjCInterfaceDecl* ClassDecl = 0; |
| |
| // We allow sending a message to a qualified ID ("id<foo>"), which is ok as |
| // long as one of the protocols implements the selector (if not, warn). |
| if (const ObjCObjectPointerType *QIdTy |
| = ReceiverType->getAsObjCQualifiedIdType()) { |
| // Search protocols for instance methods. |
| Method = LookupMethodInQualifiedType(Sel, QIdTy, true); |
| if (!Method) |
| Method = LookupMethodInQualifiedType(Sel, QIdTy, false); |
| } else if (const ObjCObjectPointerType *OCIType |
| = ReceiverType->getAsObjCInterfacePointerType()) { |
| // We allow sending a message to a pointer to an interface (an object). |
| ClassDecl = OCIType->getInterfaceDecl(); |
| |
| // Try to complete the type. Under ARC, this is a hard error from which |
| // we don't try to recover. |
| const ObjCInterfaceDecl *forwardClass = 0; |
| if (RequireCompleteType(Loc, OCIType->getPointeeType(), |
| getLangOptions().ObjCAutoRefCount |
| ? PDiag(diag::err_arc_receiver_forward_instance) |
| << (Receiver ? Receiver->getSourceRange() |
| : SourceRange(SuperLoc)) |
| : PDiag())) { |
| if (getLangOptions().ObjCAutoRefCount) |
| return ExprError(); |
| |
| forwardClass = OCIType->getInterfaceDecl(); |
| Method = 0; |
| } else { |
| Method = ClassDecl->lookupInstanceMethod(Sel); |
| } |
| |
| if (!Method) |
| // Search protocol qualifiers. |
| Method = LookupMethodInQualifiedType(Sel, OCIType, true); |
| |
| if (!Method) { |
| // If we have implementations in scope, check "private" methods. |
| Method = LookupPrivateInstanceMethod(Sel, ClassDecl); |
| |
| if (!Method && getLangOptions().ObjCAutoRefCount) { |
| Diag(Loc, diag::err_arc_may_not_respond) |
| << OCIType->getPointeeType() << Sel; |
| return ExprError(); |
| } |
| |
| if (!Method && (!Receiver || !isSelfExpr(Receiver))) { |
| // If we still haven't found a method, look in the global pool. This |
| // behavior isn't very desirable, however we need it for GCC |
| // compatibility. FIXME: should we deviate?? |
| if (OCIType->qual_empty()) { |
| Method = LookupInstanceMethodInGlobalPool(Sel, |
| SourceRange(LBracLoc, RBracLoc)); |
| if (Method && !forwardClass) |
| Diag(Loc, diag::warn_maynot_respond) |
| << OCIType->getInterfaceDecl()->getIdentifier() << Sel; |
| } |
| } |
| } |
| if (Method && DiagnoseUseOfDecl(Method, Loc, forwardClass)) |
| return ExprError(); |
| } else if (!getLangOptions().ObjCAutoRefCount && |
| !Context.getObjCIdType().isNull() && |
| (ReceiverType->isPointerType() || |
| ReceiverType->isIntegerType())) { |
| // Implicitly convert integers and pointers to 'id' but emit a warning. |
| // But not in ARC. |
| Diag(Loc, diag::warn_bad_receiver_type) |
| << ReceiverType |
| << Receiver->getSourceRange(); |
| if (ReceiverType->isPointerType()) |
| Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), |
| CK_CPointerToObjCPointerCast).take(); |
| else { |
| // TODO: specialized warning on null receivers? |
| bool IsNull = Receiver->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull); |
| Receiver = ImpCastExprToType(Receiver, Context.getObjCIdType(), |
| IsNull ? CK_NullToPointer : CK_IntegralToPointer).take(); |
| } |
| ReceiverType = Receiver->getType(); |
| } else { |
| ExprResult ReceiverRes; |
| if (getLangOptions().CPlusPlus) |
| ReceiverRes = PerformContextuallyConvertToObjCPointer(Receiver); |
| if (ReceiverRes.isUsable()) { |
| Receiver = ReceiverRes.take(); |
| return BuildInstanceMessage(Receiver, |
| ReceiverType, |
| SuperLoc, |
| Sel, |
| Method, |
| LBracLoc, |
| SelectorLocs, |
| RBracLoc, |
| move(ArgsIn)); |
| } else { |
| // Reject other random receiver types (e.g. structs). |
| Diag(Loc, diag::err_bad_receiver_type) |
| << ReceiverType << Receiver->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| } |
| |
| // Check the message arguments. |
| unsigned NumArgs = ArgsIn.size(); |
| Expr **Args = reinterpret_cast<Expr **>(ArgsIn.release()); |
| QualType ReturnType; |
| ExprValueKind VK = VK_RValue; |
| bool ClassMessage = (ReceiverType->isObjCClassType() || |
| ReceiverType->isObjCQualifiedClassType()); |
| if (CheckMessageArgumentTypes(ReceiverType, Args, NumArgs, Sel, Method, |
| ClassMessage, SuperLoc.isValid(), |
| LBracLoc, RBracLoc, ReturnType, VK)) |
| return ExprError(); |
| |
| if (Method && !Method->getResultType()->isVoidType() && |
| RequireCompleteType(LBracLoc, Method->getResultType(), |
| diag::err_illegal_message_expr_incomplete_type)) |
| return ExprError(); |
| |
| SourceLocation SelLoc = SelectorLocs.front(); |
| |
| // In ARC, forbid the user from sending messages to |
| // retain/release/autorelease/dealloc/retainCount explicitly. |
| if (getLangOptions().ObjCAutoRefCount) { |
| ObjCMethodFamily family = |
| (Method ? Method->getMethodFamily() : Sel.getMethodFamily()); |
| switch (family) { |
| case OMF_init: |
| if (Method) |
| checkInitMethod(Method, ReceiverType); |
| |
| case OMF_None: |
| case OMF_alloc: |
| case OMF_copy: |
| case OMF_finalize: |
| case OMF_mutableCopy: |
| case OMF_new: |
| case OMF_self: |
| break; |
| |
| case OMF_dealloc: |
| case OMF_retain: |
| case OMF_release: |
| case OMF_autorelease: |
| case OMF_retainCount: |
| Diag(Loc, diag::err_arc_illegal_explicit_message) |
| << Sel << SelLoc; |
| break; |
| |
| case OMF_performSelector: |
| if (Method && NumArgs >= 1) { |
| if (ObjCSelectorExpr *SelExp = dyn_cast<ObjCSelectorExpr>(Args[0])) { |
| Selector ArgSel = SelExp->getSelector(); |
| ObjCMethodDecl *SelMethod = |
| LookupInstanceMethodInGlobalPool(ArgSel, |
| SelExp->getSourceRange()); |
| if (!SelMethod) |
| SelMethod = |
| LookupFactoryMethodInGlobalPool(ArgSel, |
| SelExp->getSourceRange()); |
| if (SelMethod) { |
| ObjCMethodFamily SelFamily = SelMethod->getMethodFamily(); |
| switch (SelFamily) { |
| case OMF_alloc: |
| case OMF_copy: |
| case OMF_mutableCopy: |
| case OMF_new: |
| case OMF_self: |
| case OMF_init: |
| // Issue error, unless ns_returns_not_retained. |
| if (!SelMethod->hasAttr<NSReturnsNotRetainedAttr>()) { |
| // selector names a +1 method |
| Diag(SelLoc, |
| diag::err_arc_perform_selector_retains); |
| Diag(SelMethod->getLocation(), diag::note_method_declared_at); |
| } |
| break; |
| default: |
| // +0 call. OK. unless ns_returns_retained. |
| if (SelMethod->hasAttr<NSReturnsRetainedAttr>()) { |
| // selector names a +1 method |
| Diag(SelLoc, |
| diag::err_arc_perform_selector_retains); |
| Diag(SelMethod->getLocation(), diag::note_method_declared_at); |
| } |
| break; |
| } |
| } |
| } else { |
| // error (may leak). |
| Diag(SelLoc, diag::warn_arc_perform_selector_leaks); |
| Diag(Args[0]->getExprLoc(), diag::note_used_here); |
| } |
| } |
| break; |
| } |
| } |
| |
| // Construct the appropriate ObjCMessageExpr instance. |
| ObjCMessageExpr *Result; |
| if (SuperLoc.isValid()) |
| Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, |
| SuperLoc, /*IsInstanceSuper=*/true, |
| ReceiverType, Sel, SelectorLocs, Method, |
| makeArrayRef(Args, NumArgs), RBracLoc); |
| else |
| Result = ObjCMessageExpr::Create(Context, ReturnType, VK, LBracLoc, |
| Receiver, Sel, SelectorLocs, Method, |
| makeArrayRef(Args, NumArgs), RBracLoc); |
| |
| if (getLangOptions().ObjCAutoRefCount) { |
| // In ARC, annotate delegate init calls. |
| if (Result->getMethodFamily() == OMF_init && |
| (SuperLoc.isValid() || isSelfExpr(Receiver))) { |
| // Only consider init calls *directly* in init implementations, |
| // not within blocks. |
| ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CurContext); |
| if (method && method->getMethodFamily() == OMF_init) { |
| // The implicit assignment to self means we also don't want to |
| // consume the result. |
| Result->setDelegateInitCall(true); |
| return Owned(Result); |
| } |
| } |
| |
| // In ARC, check for message sends which are likely to introduce |
| // retain cycles. |
| checkRetainCycles(Result); |
| } |
| |
| return MaybeBindToTemporary(Result); |
| } |
| |
| // ActOnInstanceMessage - used for both unary and keyword messages. |
| // ArgExprs is optional - if it is present, the number of expressions |
| // is obtained from Sel.getNumArgs(). |
| ExprResult Sema::ActOnInstanceMessage(Scope *S, |
| Expr *Receiver, |
| Selector Sel, |
| SourceLocation LBracLoc, |
| ArrayRef<SourceLocation> SelectorLocs, |
| SourceLocation RBracLoc, |
| MultiExprArg Args) { |
| if (!Receiver) |
| return ExprError(); |
| |
| return BuildInstanceMessage(Receiver, Receiver->getType(), |
| /*SuperLoc=*/SourceLocation(), Sel, /*Method=*/0, |
| LBracLoc, SelectorLocs, RBracLoc, move(Args)); |
| } |
| |
| enum ARCConversionTypeClass { |
| /// int, void, struct A |
| ACTC_none, |
| |
| /// id, void (^)() |
| ACTC_retainable, |
| |
| /// id*, id***, void (^*)(), |
| ACTC_indirectRetainable, |
| |
| /// void* might be a normal C type, or it might a CF type. |
| ACTC_voidPtr, |
| |
| /// struct A* |
| ACTC_coreFoundation |
| }; |
| static bool isAnyRetainable(ARCConversionTypeClass ACTC) { |
| return (ACTC == ACTC_retainable || |
| ACTC == ACTC_coreFoundation || |
| ACTC == ACTC_voidPtr); |
| } |
| static bool isAnyCLike(ARCConversionTypeClass ACTC) { |
| return ACTC == ACTC_none || |
| ACTC == ACTC_voidPtr || |
| ACTC == ACTC_coreFoundation; |
| } |
| |
| static ARCConversionTypeClass classifyTypeForARCConversion(QualType type) { |
| bool isIndirect = false; |
| |
| // Ignore an outermost reference type. |
| if (const ReferenceType *ref = type->getAs<ReferenceType>()) { |
| type = ref->getPointeeType(); |
| isIndirect = true; |
| } |
| |
| // Drill through pointers and arrays recursively. |
| while (true) { |
| if (const PointerType *ptr = type->getAs<PointerType>()) { |
| type = ptr->getPointeeType(); |
| |
| // The first level of pointer may be the innermost pointer on a CF type. |
| if (!isIndirect) { |
| if (type->isVoidType()) return ACTC_voidPtr; |
| if (type->isRecordType()) return ACTC_coreFoundation; |
| } |
| } else if (const ArrayType *array = type->getAsArrayTypeUnsafe()) { |
| type = QualType(array->getElementType()->getBaseElementTypeUnsafe(), 0); |
| } else { |
| break; |
| } |
| isIndirect = true; |
| } |
| |
| if (isIndirect) { |
| if (type->isObjCARCBridgableType()) |
| return ACTC_indirectRetainable; |
| return ACTC_none; |
| } |
| |
| if (type->isObjCARCBridgableType()) |
| return ACTC_retainable; |
| |
| return ACTC_none; |
| } |
| |
| namespace { |
| /// A result from the cast checker. |
| enum ACCResult { |
| /// Cannot be casted. |
| ACC_invalid, |
| |
| /// Can be safely retained or not retained. |
| ACC_bottom, |
| |
| /// Can be casted at +0. |
| ACC_plusZero, |
| |
| /// Can be casted at +1. |
| ACC_plusOne |
| }; |
| ACCResult merge(ACCResult left, ACCResult right) { |
| if (left == right) return left; |
| if (left == ACC_bottom) return right; |
| if (right == ACC_bottom) return left; |
| return ACC_invalid; |
| } |
| |
| /// A checker which white-lists certain expressions whose conversion |
| /// to or from retainable type would otherwise be forbidden in ARC. |
| class ARCCastChecker : public StmtVisitor<ARCCastChecker, ACCResult> { |
| typedef StmtVisitor<ARCCastChecker, ACCResult> super; |
| |
| ASTContext &Context; |
| ARCConversionTypeClass SourceClass; |
| ARCConversionTypeClass TargetClass; |
| |
| static bool isCFType(QualType type) { |
| // Someday this can use ns_bridged. For now, it has to do this. |
| return type->isCARCBridgableType(); |
| } |
| |
| public: |
| ARCCastChecker(ASTContext &Context, ARCConversionTypeClass source, |
| ARCConversionTypeClass target) |
| : Context(Context), SourceClass(source), TargetClass(target) {} |
| |
| using super::Visit; |
| ACCResult Visit(Expr *e) { |
| return super::Visit(e->IgnoreParens()); |
| } |
| |
| ACCResult VisitStmt(Stmt *s) { |
| return ACC_invalid; |
| } |
| |
| /// Null pointer constants can be casted however you please. |
| ACCResult VisitExpr(Expr *e) { |
| if (e->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) |
| return ACC_bottom; |
| return ACC_invalid; |
| } |
| |
| /// Objective-C string literals can be safely casted. |
| ACCResult VisitObjCStringLiteral(ObjCStringLiteral *e) { |
| // If we're casting to any retainable type, go ahead. Global |
| // strings are immune to retains, so this is bottom. |
| if (isAnyRetainable(TargetClass)) return ACC_bottom; |
| |
| return ACC_invalid; |
| } |
| |
| /// Look through certain implicit and explicit casts. |
| ACCResult VisitCastExpr(CastExpr *e) { |
| switch (e->getCastKind()) { |
| case CK_NullToPointer: |
| return ACC_bottom; |
| |
| case CK_NoOp: |
| case CK_LValueToRValue: |
| case CK_BitCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| return Visit(e->getSubExpr()); |
| |
| default: |
| return ACC_invalid; |
| } |
| } |
| |
| /// Look through unary extension. |
| ACCResult VisitUnaryExtension(UnaryOperator *e) { |
| return Visit(e->getSubExpr()); |
| } |
| |
| /// Ignore the LHS of a comma operator. |
| ACCResult VisitBinComma(BinaryOperator *e) { |
| return Visit(e->getRHS()); |
| } |
| |
| /// Conditional operators are okay if both sides are okay. |
| ACCResult VisitConditionalOperator(ConditionalOperator *e) { |
| ACCResult left = Visit(e->getTrueExpr()); |
| if (left == ACC_invalid) return ACC_invalid; |
| return merge(left, Visit(e->getFalseExpr())); |
| } |
| |
| /// Look through pseudo-objects. |
| ACCResult VisitPseudoObjectExpr(PseudoObjectExpr *e) { |
| // If we're getting here, we should always have a result. |
| return Visit(e->getResultExpr()); |
| } |
| |
| /// Statement expressions are okay if their result expression is okay. |
| ACCResult VisitStmtExpr(StmtExpr *e) { |
| return Visit(e->getSubStmt()->body_back()); |
| } |
| |
| /// Some declaration references are okay. |
| ACCResult VisitDeclRefExpr(DeclRefExpr *e) { |
| // References to global constants from system headers are okay. |
| // These are things like 'kCFStringTransformToLatin'. They are |
| // can also be assumed to be immune to retains. |
| VarDecl *var = dyn_cast<VarDecl>(e->getDecl()); |
| if (isAnyRetainable(TargetClass) && |
| isAnyRetainable(SourceClass) && |
| var && |
| var->getStorageClass() == SC_Extern && |
| var->getType().isConstQualified() && |
| Context.getSourceManager().isInSystemHeader(var->getLocation())) { |
| return ACC_bottom; |
| } |
| |
| // Nothing else. |
| return ACC_invalid; |
| } |
| |
| /// Some calls are okay. |
| ACCResult VisitCallExpr(CallExpr *e) { |
| if (FunctionDecl *fn = e->getDirectCallee()) |
| if (ACCResult result = checkCallToFunction(fn)) |
| return result; |
| |
| return super::VisitCallExpr(e); |
| } |
| |
| ACCResult checkCallToFunction(FunctionDecl *fn) { |
| // Require a CF*Ref return type. |
| if (!isCFType(fn->getResultType())) |
| return ACC_invalid; |
| |
| if (!isAnyRetainable(TargetClass)) |
| return ACC_invalid; |
| |
| // Honor an explicit 'not retained' attribute. |
| if (fn->hasAttr<CFReturnsNotRetainedAttr>()) |
| return ACC_plusZero; |
| |
| // Honor an explicit 'retained' attribute, except that for |
| // now we're not going to permit implicit handling of +1 results, |
| // because it's a bit frightening. |
| if (fn->hasAttr<CFReturnsRetainedAttr>()) |
| return ACC_invalid; // ACC_plusOne if we start accepting this |
| |
| // Recognize this specific builtin function, which is used by CFSTR. |
| unsigned builtinID = fn->getBuiltinID(); |
| if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString) |
| return ACC_bottom; |
| |
| // Otherwise, don't do anything implicit with an unaudited function. |
| if (!fn->hasAttr<CFAuditedTransferAttr>()) |
| return ACC_invalid; |
| |
| // Otherwise, it's +0 unless it follows the create convention. |
| if (ento::coreFoundation::followsCreateRule(fn)) |
| return ACC_invalid; // ACC_plusOne if we start accepting this |
| |
| return ACC_plusZero; |
| } |
| |
| ACCResult VisitObjCMessageExpr(ObjCMessageExpr *e) { |
| return checkCallToMethod(e->getMethodDecl()); |
| } |
| |
| ACCResult VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *e) { |
| ObjCMethodDecl *method; |
| if (e->isExplicitProperty()) |
| method = e->getExplicitProperty()->getGetterMethodDecl(); |
| else |
| method = e->getImplicitPropertyGetter(); |
| return checkCallToMethod(method); |
| } |
| |
| ACCResult checkCallToMethod(ObjCMethodDecl *method) { |
| if (!method) return ACC_invalid; |
| |
| // Check for message sends to functions returning CF types. We |
| // just obey the Cocoa conventions with these, even though the |
| // return type is CF. |
| if (!isAnyRetainable(TargetClass) || !isCFType(method->getResultType())) |
| return ACC_invalid; |
| |
| // If the method is explicitly marked not-retained, it's +0. |
| if (method->hasAttr<CFReturnsNotRetainedAttr>()) |
| return ACC_plusZero; |
| |
| // If the method is explicitly marked as returning retained, or its |
| // selector follows a +1 Cocoa convention, treat it as +1. |
| if (method->hasAttr<CFReturnsRetainedAttr>()) |
| return ACC_plusOne; |
| |
| switch (method->getSelector().getMethodFamily()) { |
| case OMF_alloc: |
| case OMF_copy: |
| case OMF_mutableCopy: |
| case OMF_new: |
| return ACC_plusOne; |
| |
| default: |
| // Otherwise, treat it as +0. |
| return ACC_plusZero; |
| } |
| } |
| }; |
| } |
| |
| static void |
| diagnoseObjCARCConversion(Sema &S, SourceRange castRange, |
| QualType castType, ARCConversionTypeClass castACTC, |
| Expr *castExpr, ARCConversionTypeClass exprACTC, |
| Sema::CheckedConversionKind CCK) { |
| SourceLocation loc = |
| (castRange.isValid() ? castRange.getBegin() : castExpr->getExprLoc()); |
| |
| if (S.makeUnavailableInSystemHeader(loc, |
| "converts between Objective-C and C pointers in -fobjc-arc")) |
| return; |
| |
| QualType castExprType = castExpr->getType(); |
| |
| unsigned srcKind = 0; |
| switch (exprACTC) { |
| case ACTC_none: |
| case ACTC_coreFoundation: |
| case ACTC_voidPtr: |
| srcKind = (castExprType->isPointerType() ? 1 : 0); |
| break; |
| case ACTC_retainable: |
| srcKind = (castExprType->isBlockPointerType() ? 2 : 3); |
| break; |
| case ACTC_indirectRetainable: |
| srcKind = 4; |
| break; |
| } |
| |
| // Check whether this could be fixed with a bridge cast. |
| SourceLocation afterLParen = S.PP.getLocForEndOfToken(castRange.getBegin()); |
| SourceLocation noteLoc = afterLParen.isValid() ? afterLParen : loc; |
| |
| // Bridge from an ARC type to a CF type. |
| if (castACTC == ACTC_retainable && isAnyRetainable(exprACTC)) { |
| S.Diag(loc, diag::err_arc_cast_requires_bridge) |
| << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit |
| << 2 // of C pointer type |
| << castExprType |
| << unsigned(castType->isBlockPointerType()) // to ObjC|block type |
| << castType |
| << castRange |
| << castExpr->getSourceRange(); |
| |
| S.Diag(noteLoc, diag::note_arc_bridge) |
| << (CCK != Sema::CCK_CStyleCast ? FixItHint() : |
| FixItHint::CreateInsertion(afterLParen, "__bridge ")); |
| S.Diag(noteLoc, diag::note_arc_bridge_transfer) |
| << castExprType |
| << (CCK != Sema::CCK_CStyleCast ? FixItHint() : |
| FixItHint::CreateInsertion(afterLParen, "__bridge_transfer ")); |
| |
| return; |
| } |
| |
| // Bridge from a CF type to an ARC type. |
| if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC)) { |
| S.Diag(loc, diag::err_arc_cast_requires_bridge) |
| << unsigned(CCK == Sema::CCK_ImplicitConversion) // cast|implicit |
| << unsigned(castExprType->isBlockPointerType()) // of ObjC|block type |
| << castExprType |
| << 2 // to C pointer type |
| << castType |
| << castRange |
| << castExpr->getSourceRange(); |
| |
| S.Diag(noteLoc, diag::note_arc_bridge) |
| << (CCK != Sema::CCK_CStyleCast ? FixItHint() : |
| FixItHint::CreateInsertion(afterLParen, "__bridge ")); |
| S.Diag(noteLoc, diag::note_arc_bridge_retained) |
| << castType |
| << (CCK != Sema::CCK_CStyleCast ? FixItHint() : |
| FixItHint::CreateInsertion(afterLParen, "__bridge_retained ")); |
| |
| return; |
| } |
| |
| S.Diag(loc, diag::err_arc_mismatched_cast) |
| << (CCK != Sema::CCK_ImplicitConversion) |
| << srcKind << castExprType << castType |
| << castRange << castExpr->getSourceRange(); |
| } |
| |
| Sema::ARCConversionResult |
| Sema::CheckObjCARCConversion(SourceRange castRange, QualType castType, |
| Expr *&castExpr, CheckedConversionKind CCK) { |
| QualType castExprType = castExpr->getType(); |
| |
| // For the purposes of the classification, we assume reference types |
| // will bind to temporaries. |
| QualType effCastType = castType; |
| if (const ReferenceType *ref = castType->getAs<ReferenceType>()) |
| effCastType = ref->getPointeeType(); |
| |
| ARCConversionTypeClass exprACTC = classifyTypeForARCConversion(castExprType); |
| ARCConversionTypeClass castACTC = classifyTypeForARCConversion(effCastType); |
| if (exprACTC == castACTC) { |
| // check for viablity and report error if casting an rvalue to a |
| // life-time qualifier. |
| if ((castACTC == ACTC_retainable) && |
| (CCK == CCK_CStyleCast || CCK == CCK_OtherCast) && |
| (castType != castExprType)) { |
| const Type *DT = castType.getTypePtr(); |
| QualType QDT = castType; |
| // We desugar some types but not others. We ignore those |
| // that cannot happen in a cast; i.e. auto, and those which |
| // should not be de-sugared; i.e typedef. |
| if (const ParenType *PT = dyn_cast<ParenType>(DT)) |
| QDT = PT->desugar(); |
| else if (const TypeOfType *TP = dyn_cast<TypeOfType>(DT)) |
| QDT = TP->desugar(); |
| else if (const AttributedType *AT = dyn_cast<AttributedType>(DT)) |
| QDT = AT->desugar(); |
| if (QDT != castType && |
| QDT.getObjCLifetime() != Qualifiers::OCL_None) { |
| SourceLocation loc = |
| (castRange.isValid() ? castRange.getBegin() |
| : castExpr->getExprLoc()); |
| Diag(loc, diag::err_arc_nolifetime_behavior); |
| } |
| } |
| return ACR_okay; |
| } |
| |
| if (isAnyCLike(exprACTC) && isAnyCLike(castACTC)) return ACR_okay; |
| |
| // Allow all of these types to be cast to integer types (but not |
| // vice-versa). |
| if (castACTC == ACTC_none && castType->isIntegralType(Context)) |
| return ACR_okay; |
| |
| // Allow casts between pointers to lifetime types (e.g., __strong id*) |
| // and pointers to void (e.g., cv void *). Casting from void* to lifetime* |
| // must be explicit. |
| if (exprACTC == ACTC_indirectRetainable && castACTC == ACTC_voidPtr) |
| return ACR_okay; |
| if (castACTC == ACTC_indirectRetainable && exprACTC == ACTC_voidPtr && |
| CCK != CCK_ImplicitConversion) |
| return ACR_okay; |
| |
| switch (ARCCastChecker(Context, exprACTC, castACTC).Visit(castExpr)) { |
| // For invalid casts, fall through. |
| case ACC_invalid: |
| break; |
| |
| // Do nothing for both bottom and +0. |
| case ACC_bottom: |
| case ACC_plusZero: |
| return ACR_okay; |
| |
| // If the result is +1, consume it here. |
| case ACC_plusOne: |
| castExpr = ImplicitCastExpr::Create(Context, castExpr->getType(), |
| CK_ARCConsumeObject, castExpr, |
| 0, VK_RValue); |
| ExprNeedsCleanups = true; |
| return ACR_okay; |
| } |
| |
| // If this is a non-implicit cast from id or block type to a |
| // CoreFoundation type, delay complaining in case the cast is used |
| // in an acceptable context. |
| if (exprACTC == ACTC_retainable && isAnyRetainable(castACTC) && |
| CCK != CCK_ImplicitConversion) |
| return ACR_unbridged; |
| |
| diagnoseObjCARCConversion(*this, castRange, castType, castACTC, |
| castExpr, exprACTC, CCK); |
| return ACR_okay; |
| } |
| |
| /// Given that we saw an expression with the ARCUnbridgedCastTy |
| /// placeholder type, complain bitterly. |
| void Sema::diagnoseARCUnbridgedCast(Expr *e) { |
| // We expect the spurious ImplicitCastExpr to already have been stripped. |
| assert(!e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); |
| CastExpr *realCast = cast<CastExpr>(e->IgnoreParens()); |
| |
| SourceRange castRange; |
| QualType castType; |
| CheckedConversionKind CCK; |
| |
| if (CStyleCastExpr *cast = dyn_cast<CStyleCastExpr>(realCast)) { |
| castRange = SourceRange(cast->getLParenLoc(), cast->getRParenLoc()); |
| castType = cast->getTypeAsWritten(); |
| CCK = CCK_CStyleCast; |
| } else if (ExplicitCastExpr *cast = dyn_cast<ExplicitCastExpr>(realCast)) { |
| castRange = cast->getTypeInfoAsWritten()->getTypeLoc().getSourceRange(); |
| castType = cast->getTypeAsWritten(); |
| CCK = CCK_OtherCast; |
| } else { |
| castType = cast->getType(); |
| CCK = CCK_ImplicitConversion; |
| } |
| |
| ARCConversionTypeClass castACTC = |
| classifyTypeForARCConversion(castType.getNonReferenceType()); |
| |
| Expr *castExpr = realCast->getSubExpr(); |
| assert(classifyTypeForARCConversion(castExpr->getType()) == ACTC_retainable); |
| |
| diagnoseObjCARCConversion(*this, castRange, castType, castACTC, |
| castExpr, ACTC_retainable, CCK); |
| } |
| |
| /// stripARCUnbridgedCast - Given an expression of ARCUnbridgedCast |
| /// type, remove the placeholder cast. |
| Expr *Sema::stripARCUnbridgedCast(Expr *e) { |
| assert(e->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); |
| |
| if (ParenExpr *pe = dyn_cast<ParenExpr>(e)) { |
| Expr *sub = stripARCUnbridgedCast(pe->getSubExpr()); |
| return new (Context) ParenExpr(pe->getLParen(), pe->getRParen(), sub); |
| } else if (UnaryOperator *uo = dyn_cast<UnaryOperator>(e)) { |
| assert(uo->getOpcode() == UO_Extension); |
| Expr *sub = stripARCUnbridgedCast(uo->getSubExpr()); |
| return new (Context) UnaryOperator(sub, UO_Extension, sub->getType(), |
| sub->getValueKind(), sub->getObjectKind(), |
| uo->getOperatorLoc()); |
| } else if (GenericSelectionExpr *gse = dyn_cast<GenericSelectionExpr>(e)) { |
| assert(!gse->isResultDependent()); |
| |
| unsigned n = gse->getNumAssocs(); |
| SmallVector<Expr*, 4> subExprs(n); |
| SmallVector<TypeSourceInfo*, 4> subTypes(n); |
| for (unsigned i = 0; i != n; ++i) { |
| subTypes[i] = gse->getAssocTypeSourceInfo(i); |
| Expr *sub = gse->getAssocExpr(i); |
| if (i == gse->getResultIndex()) |
| sub = stripARCUnbridgedCast(sub); |
| subExprs[i] = sub; |
| } |
| |
| return new (Context) GenericSelectionExpr(Context, gse->getGenericLoc(), |
| gse->getControllingExpr(), |
| subTypes.data(), subExprs.data(), |
| n, gse->getDefaultLoc(), |
| gse->getRParenLoc(), |
| gse->containsUnexpandedParameterPack(), |
| gse->getResultIndex()); |
| } else { |
| assert(isa<ImplicitCastExpr>(e) && "bad form of unbridged cast!"); |
| return cast<ImplicitCastExpr>(e)->getSubExpr(); |
| } |
| } |
| |
| bool Sema::CheckObjCARCUnavailableWeakConversion(QualType castType, |
| QualType exprType) { |
| QualType canCastType = |
| Context.getCanonicalType(castType).getUnqualifiedType(); |
| QualType canExprType = |
| Context.getCanonicalType(exprType).getUnqualifiedType(); |
| if (isa<ObjCObjectPointerType>(canCastType) && |
| castType.getObjCLifetime() == Qualifiers::OCL_Weak && |
| canExprType->isObjCObjectPointerType()) { |
| if (const ObjCObjectPointerType *ObjT = |
| canExprType->getAs<ObjCObjectPointerType>()) |
| if (ObjT->getInterfaceDecl()->isArcWeakrefUnavailable()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// Look for an ObjCReclaimReturnedObject cast and destroy it. |
| static Expr *maybeUndoReclaimObject(Expr *e) { |
| // For now, we just undo operands that are *immediately* reclaim |
| // expressions, which prevents the vast majority of potential |
| // problems here. To catch them all, we'd need to rebuild arbitrary |
| // value-propagating subexpressions --- we can't reliably rebuild |
| // in-place because of expression sharing. |
| if (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e)) |
| if (ice->getCastKind() == CK_ARCReclaimReturnedObject) |
| return ice->getSubExpr(); |
| |
| return e; |
| } |
| |
| ExprResult Sema::BuildObjCBridgedCast(SourceLocation LParenLoc, |
| ObjCBridgeCastKind Kind, |
| SourceLocation BridgeKeywordLoc, |
| TypeSourceInfo *TSInfo, |
| Expr *SubExpr) { |
| ExprResult SubResult = UsualUnaryConversions(SubExpr); |
| if (SubResult.isInvalid()) return ExprError(); |
| SubExpr = SubResult.take(); |
| |
| QualType T = TSInfo->getType(); |
| QualType FromType = SubExpr->getType(); |
| |
| CastKind CK; |
| |
| bool MustConsume = false; |
| if (T->isDependentType() || SubExpr->isTypeDependent()) { |
| // Okay: we'll build a dependent expression type. |
| CK = CK_Dependent; |
| } else if (T->isObjCARCBridgableType() && FromType->isCARCBridgableType()) { |
| // Casting CF -> id |
| CK = (T->isBlockPointerType() ? CK_AnyPointerToBlockPointerCast |
| : CK_CPointerToObjCPointerCast); |
| switch (Kind) { |
| case OBC_Bridge: |
| break; |
| |
| case OBC_BridgeRetained: |
| Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) |
| << 2 |
| << FromType |
| << (T->isBlockPointerType()? 1 : 0) |
| << T |
| << SubExpr->getSourceRange() |
| << Kind; |
| Diag(BridgeKeywordLoc, diag::note_arc_bridge) |
| << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge"); |
| Diag(BridgeKeywordLoc, diag::note_arc_bridge_transfer) |
| << FromType |
| << FixItHint::CreateReplacement(BridgeKeywordLoc, |
| "__bridge_transfer "); |
| |
| Kind = OBC_Bridge; |
| break; |
| |
| case OBC_BridgeTransfer: |
| // We must consume the Objective-C object produced by the cast. |
| MustConsume = true; |
| break; |
| } |
| } else if (T->isCARCBridgableType() && FromType->isObjCARCBridgableType()) { |
| // Okay: id -> CF |
| CK = CK_BitCast; |
| switch (Kind) { |
| case OBC_Bridge: |
| // Reclaiming a value that's going to be __bridge-casted to CF |
| // is very dangerous, so we don't do it. |
| SubExpr = maybeUndoReclaimObject(SubExpr); |
| break; |
| |
| case OBC_BridgeRetained: |
| // Produce the object before casting it. |
| SubExpr = ImplicitCastExpr::Create(Context, FromType, |
| CK_ARCProduceObject, |
| SubExpr, 0, VK_RValue); |
| break; |
| |
| case OBC_BridgeTransfer: |
| Diag(BridgeKeywordLoc, diag::err_arc_bridge_cast_wrong_kind) |
| << (FromType->isBlockPointerType()? 1 : 0) |
| << FromType |
| << 2 |
| << T |
| << SubExpr->getSourceRange() |
| << Kind; |
| |
| Diag(BridgeKeywordLoc, diag::note_arc_bridge) |
| << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge "); |
| Diag(BridgeKeywordLoc, diag::note_arc_bridge_retained) |
| << T |
| << FixItHint::CreateReplacement(BridgeKeywordLoc, "__bridge_retained "); |
| |
| Kind = OBC_Bridge; |
| break; |
| } |
| } else { |
| Diag(LParenLoc, diag::err_arc_bridge_cast_incompatible) |
| << FromType << T << Kind |
| << SubExpr->getSourceRange() |
| << TSInfo->getTypeLoc().getSourceRange(); |
| return ExprError(); |
| } |
| |
| Expr *Result = new (Context) ObjCBridgedCastExpr(LParenLoc, Kind, CK, |
| BridgeKeywordLoc, |
| TSInfo, SubExpr); |
| |
| if (MustConsume) { |
| ExprNeedsCleanups = true; |
| Result = ImplicitCastExpr::Create(Context, T, CK_ARCConsumeObject, Result, |
| 0, VK_RValue); |
| } |
| |
| return Result; |
| } |
| |
| ExprResult Sema::ActOnObjCBridgedCast(Scope *S, |
| SourceLocation LParenLoc, |
| ObjCBridgeCastKind Kind, |
| SourceLocation BridgeKeywordLoc, |
| ParsedType Type, |
| SourceLocation RParenLoc, |
| Expr *SubExpr) { |
| TypeSourceInfo *TSInfo = 0; |
| QualType T = GetTypeFromParser(Type, &TSInfo); |
| if (!TSInfo) |
| TSInfo = Context.getTrivialTypeSourceInfo(T, LParenLoc); |
| return BuildObjCBridgedCast(LParenLoc, Kind, BridgeKeywordLoc, TSInfo, |
| SubExpr); |
| } |