blob: cf1d1b774dbaa6eb0c182acd4bee1a64a528d132 [file] [log] [blame]
// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines BugReporter, a utility class for generating
// PathDiagnostics for analyses based on GRSimpleVals.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/BugReporter.h"
#include "clang/Analysis/PathSensitive/GRExprEngine.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CFG.h"
#include "clang/AST/Expr.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Analysis/PathDiagnostic.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// static functions.
//===----------------------------------------------------------------------===//
static inline Stmt* GetStmt(const ProgramPoint& P) {
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
return PS->getStmt();
}
else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
return BE->getSrc()->getTerminator();
}
else if (const BlockEntrance* BE = dyn_cast<BlockEntrance>(&P)) {
return BE->getFirstStmt();
}
assert (false && "Unsupported ProgramPoint.");
return NULL;
}
static inline Stmt* GetStmt(const CFGBlock* B) {
if (B->empty())
return const_cast<Stmt*>(B->getTerminator());
else
return (*B)[0];
}
static inline const ExplodedNode<GRState>*
GetNextNode(const ExplodedNode<GRState>* N) {
return N->pred_empty() ? NULL : *(N->pred_begin());
}
static Stmt* GetLastStmt(const ExplodedNode<GRState>* N) {
assert (isa<BlockEntrance>(N->getLocation()));
for (N = GetNextNode(N); N; N = GetNextNode(N)) {
ProgramPoint P = N->getLocation();
if (PostStmt* PS = dyn_cast<PostStmt>(&P)) return PS->getStmt();
}
return NULL;
}
static inline Stmt* GetStmt(const ExplodedNode<GRState>* N) {
ProgramPoint ProgP = N->getLocation();
return isa<BlockEntrance>(ProgP) ? GetLastStmt(N) : GetStmt(ProgP);
}
static void ExecutionContinues(llvm::raw_string_ostream& os,
SourceManager& SMgr,
const Stmt* S) {
if (!S)
return;
// Slow, but probably doesn't matter.
if (os.str().empty()) os << ' ';
os << "Execution continues on line "
<< SMgr.getInstantiationLineNumber(S->getLocStart()) << '.';
}
static inline void ExecutionContinues(llvm::raw_string_ostream& os,
SourceManager& SMgr,
const ExplodedNode<GRState>* N) {
ExecutionContinues(os, SMgr, GetStmt(N->getLocation()));
}
static inline void ExecutionContinues(llvm::raw_string_ostream& os,
SourceManager& SMgr,
const CFGBlock* B) {
ExecutionContinues(os, SMgr, GetStmt(B));
}
//===----------------------------------------------------------------------===//
// Methods for BugType and subclasses.
//===----------------------------------------------------------------------===//
BugType::~BugType() {}
void BugType::FlushReports(BugReporter &BR) {}
//===----------------------------------------------------------------------===//
// Methods for BugReport and subclasses.
//===----------------------------------------------------------------------===//
BugReport::~BugReport() {}
RangedBugReport::~RangedBugReport() {}
Stmt* BugReport::getStmt(BugReporter& BR) const {
ProgramPoint ProgP = EndNode->getLocation();
Stmt *S = NULL;
if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
if (BE->getBlock() == &BR.getCFG()->getExit()) S = GetLastStmt(EndNode);
}
if (!S) S = GetStmt(ProgP);
return S;
}
PathDiagnosticPiece*
BugReport::getEndPath(BugReporter& BR,
const ExplodedNode<GRState>* EndPathNode) {
Stmt* S = getStmt(BR);
if (!S)
return NULL;
FullSourceLoc L(S->getLocStart(), BR.getContext().getSourceManager());
PathDiagnosticPiece* P = new PathDiagnosticPiece(L, getDescription());
const SourceRange *Beg, *End;
getRanges(BR, Beg, End);
for (; Beg != End; ++Beg)
P->addRange(*Beg);
return P;
}
void BugReport::getRanges(BugReporter& BR, const SourceRange*& beg,
const SourceRange*& end) {
if (Expr* E = dyn_cast_or_null<Expr>(getStmt(BR))) {
R = E->getSourceRange();
beg = &R;
end = beg+1;
}
else
beg = end = 0;
}
SourceLocation BugReport::getLocation() const {
if (EndNode)
if (Stmt* S = GetStmt(EndNode))
return S->getLocStart();
return FullSourceLoc();
}
PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode<GRState>* N,
const ExplodedNode<GRState>* PrevN,
const ExplodedGraph<GRState>& G,
BugReporter& BR) {
return NULL;
}
//===----------------------------------------------------------------------===//
// Methods for BugReporter and subclasses.
//===----------------------------------------------------------------------===//
BugReportEquivClass::~BugReportEquivClass() {
for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
}
GRBugReporter::~GRBugReporter() { FlushReports(); }
BugReporterData::~BugReporterData() {}
ExplodedGraph<GRState>&
GRBugReporter::getGraph() { return Eng.getGraph(); }
GRStateManager&
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
BugReporter::~BugReporter() { FlushReports(); }
void BugReporter::FlushReports() {
if (BugTypes.isEmpty())
return;
// First flush the warnings for each BugType. This may end up creating new
// warnings and new BugTypes. Because ImmutableSet is a functional data
// structure, we do not need to worry about the iterators being invalidated.
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
const_cast<BugType*>(*I)->FlushReports(*this);
// Iterate through BugTypes a second time. BugTypes may have been updated
// with new BugType objects and new warnings.
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) {
BugType *BT = const_cast<BugType*>(*I);
typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
SetTy& EQClasses = BT->EQClasses;
for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
BugReportEquivClass& EQ = *EI;
FlushReport(EQ);
}
// Delete the BugType object. This will also delete the equivalence
// classes.
delete BT;
}
// Remove all references to the BugType objects.
BugTypes = F.GetEmptySet();
}
//===----------------------------------------------------------------------===//
// PathDiagnostics generation.
//===----------------------------------------------------------------------===//
static std::pair<ExplodedGraph<GRState>*,
std::pair<ExplodedNode<GRState>*, unsigned> >
MakeReportGraph(const ExplodedGraph<GRState>* G,
const ExplodedNode<GRState>** NStart,
const ExplodedNode<GRState>** NEnd) {
// Create the trimmed graph. It will contain the shortest paths from the
// error nodes to the root. In the new graph we should only have one
// error node unless there are two or more error nodes with the same minimum
// path length.
ExplodedGraph<GRState>* GTrim;
InterExplodedGraphMap<GRState>* NMap;
llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd);
// Create owning pointers for GTrim and NMap just to ensure that they are
// released when this function exists.
llvm::OwningPtr<ExplodedGraph<GRState> > AutoReleaseGTrim(GTrim);
llvm::OwningPtr<InterExplodedGraphMap<GRState> > AutoReleaseNMap(NMap);
// Find the (first) error node in the trimmed graph. We just need to consult
// the node map (NMap) which maps from nodes in the original graph to nodes
// in the new graph.
const ExplodedNode<GRState>* N = 0;
unsigned NodeIndex = 0;
for (const ExplodedNode<GRState>** I = NStart; I != NEnd; ++I)
if ((N = NMap->getMappedNode(*I))) {
NodeIndex = (I - NStart) / sizeof(*I);
break;
}
assert(N && "No error node found in the trimmed graph.");
// Create a new (third!) graph with a single path. This is the graph
// that will be returned to the caller.
ExplodedGraph<GRState> *GNew =
new ExplodedGraph<GRState>(GTrim->getCFG(), GTrim->getCodeDecl(),
GTrim->getContext());
// Sometimes the trimmed graph can contain a cycle. Perform a reverse DFS
// to the root node, and then construct a new graph that contains only
// a single path.
llvm::DenseMap<const void*,unsigned> Visited;
llvm::SmallVector<const ExplodedNode<GRState>*, 10> WS;
WS.push_back(N);
unsigned cnt = 0;
const ExplodedNode<GRState>* Root = 0;
while (!WS.empty()) {
const ExplodedNode<GRState>* Node = WS.back();
WS.pop_back();
if (Visited.find(Node) != Visited.end())
continue;
Visited[Node] = cnt++;
if (Node->pred_empty()) {
Root = Node;
break;
}
for (ExplodedNode<GRState>::const_pred_iterator I=Node->pred_begin(),
E=Node->pred_end(); I!=E; ++I)
WS.push_back(*I);
}
assert (Root);
// Now walk from the root down the DFS path, always taking the successor
// with the lowest number.
ExplodedNode<GRState> *Last = 0, *First = 0;
for ( N = Root ;;) {
// Lookup the number associated with the current node.
llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
assert (I != Visited.end());
// Create the equivalent node in the new graph with the same state
// and location.
ExplodedNode<GRState>* NewN =
GNew->getNode(N->getLocation(), N->getState());
// Link up the new node with the previous node.
if (Last)
NewN->addPredecessor(Last);
Last = NewN;
// Are we at the final node?
if (I->second == 0) {
First = NewN;
break;
}
// Find the next successor node. We choose the node that is marked
// with the lowest DFS number.
ExplodedNode<GRState>::const_succ_iterator SI = N->succ_begin();
ExplodedNode<GRState>::const_succ_iterator SE = N->succ_end();
N = 0;
for (unsigned MinVal = 0; SI != SE; ++SI) {
I = Visited.find(*SI);
if (I == Visited.end())
continue;
if (!N || I->second < MinVal) {
N = *SI;
MinVal = I->second;
}
}
assert (N);
}
assert (First);
return std::make_pair(GNew, std::make_pair(First, NodeIndex));
}
static const VarDecl*
GetMostRecentVarDeclBinding(const ExplodedNode<GRState>* N,
GRStateManager& VMgr, SVal X) {
for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
ProgramPoint P = N->getLocation();
if (!isa<PostStmt>(P))
continue;
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
if (!DR)
continue;
SVal Y = VMgr.GetSVal(N->getState(), DR);
if (X != Y)
continue;
VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
if (!VD)
continue;
return VD;
}
return 0;
}
namespace {
class VISIBILITY_HIDDEN NotableSymbolHandler
: public StoreManager::BindingsHandler {
SymbolRef Sym;
const GRState* PrevSt;
const Stmt* S;
GRStateManager& VMgr;
const ExplodedNode<GRState>* Pred;
PathDiagnostic& PD;
BugReporter& BR;
public:
NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
GRStateManager& vmgr, const ExplodedNode<GRState>* pred,
PathDiagnostic& pd, BugReporter& br)
: Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
bool HandleBinding(StoreManager& SMgr, Store store, MemRegion* R, SVal V) {
SymbolRef ScanSym;
if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else
return true;
if (ScanSym != Sym)
return true;
// Check if the previous state has this binding.
SVal X = VMgr.GetSVal(PrevSt, loc::MemRegionVal(R));
if (X == V) // Same binding?
return true;
// Different binding. Only handle assignments for now. We don't pull
// this check out of the loop because we will eventually handle other
// cases.
VarDecl *VD = 0;
if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
if (!B->isAssignmentOp())
return true;
// What variable did we assign to?
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
if (!DR)
return true;
VD = dyn_cast<VarDecl>(DR->getDecl());
}
else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
// FIXME: Eventually CFGs won't have DeclStmts. Right now we
// assume that each DeclStmt has a single Decl. This invariant
// holds by contruction in the CFG.
VD = dyn_cast<VarDecl>(*DS->decl_begin());
}
if (!VD)
return true;
// What is the most recently referenced variable with this binding?
const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
if (!MostRecent)
return true;
// Create the diagnostic.
FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
if (VD->getType()->isPointerLikeType()) {
std::string msg = "'" + std::string(VD->getNameAsString()) +
"' now aliases '" + MostRecent->getNameAsString() + "'";
PD.push_front(new PathDiagnosticPiece(L, msg));
}
return true;
}
};
}
static void HandleNotableSymbol(const ExplodedNode<GRState>* N,
const Stmt* S,
SymbolRef Sym, BugReporter& BR,
PathDiagnostic& PD) {
const ExplodedNode<GRState>* Pred = N->pred_empty() ? 0 : *N->pred_begin();
const GRState* PrevSt = Pred ? Pred->getState() : 0;
if (!PrevSt)
return;
// Look at the region bindings of the current state that map to the
// specified symbol. Are any of them not in the previous state?
GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
}
namespace {
class VISIBILITY_HIDDEN ScanNotableSymbols
: public StoreManager::BindingsHandler {
llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
const ExplodedNode<GRState>* N;
Stmt* S;
GRBugReporter& BR;
PathDiagnostic& PD;
public:
ScanNotableSymbols(const ExplodedNode<GRState>* n, Stmt* s, GRBugReporter& br,
PathDiagnostic& pd)
: N(n), S(s), BR(br), PD(pd) {}
bool HandleBinding(StoreManager& SMgr, Store store, MemRegion* R, SVal V) {
SymbolRef ScanSym;
if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V))
ScanSym = SV->getSymbol();
else
return true;
assert (ScanSym.isInitialized());
if (!BR.isNotable(ScanSym))
return true;
if (AlreadyProcessed.count(ScanSym))
return true;
AlreadyProcessed.insert(ScanSym);
HandleNotableSymbol(N, S, ScanSym, BR, PD);
return true;
}
};
} // end anonymous namespace
void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
BugReportEquivClass& EQ) {
std::vector<const ExplodedNode<GRState>*> Nodes;
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
const ExplodedNode<GRState>* N = I->getEndNode();
if (N) Nodes.push_back(N);
}
if (Nodes.empty())
return;
// Construct a new graph that contains only a single path from the error
// node to a root.
const std::pair<ExplodedGraph<GRState>*,
std::pair<ExplodedNode<GRState>*, unsigned> >&
GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size());
// Find the BugReport with the original location.
BugReport *R = 0;
unsigned i = 0;
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i)
if (i == GPair.second.second) { R = *I; break; }
assert(R && "No original report found for sliced graph.");
llvm::OwningPtr<ExplodedGraph<GRState> > ReportGraph(GPair.first);
const ExplodedNode<GRState> *N = GPair.second.first;
// Start building the path diagnostic...
if (PathDiagnosticPiece* Piece = R->getEndPath(*this, N))
PD.push_back(Piece);
else
return;
const ExplodedNode<GRState>* NextNode = N->pred_empty()
? NULL : *(N->pred_begin());
ASTContext& Ctx = getContext();
SourceManager& SMgr = Ctx.getSourceManager();
while (NextNode) {
const ExplodedNode<GRState>* LastNode = N;
N = NextNode;
NextNode = GetNextNode(N);
ProgramPoint P = N->getLocation();
if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
CFGBlock* Src = BE->getSrc();
CFGBlock* Dst = BE->getDst();
Stmt* T = Src->getTerminator();
if (!T)
continue;
FullSourceLoc L(T->getLocStart(), SMgr);
switch (T->getStmtClass()) {
default:
break;
case Stmt::GotoStmtClass:
case Stmt::IndirectGotoStmtClass: {
Stmt* S = GetStmt(LastNode->getLocation());
if (!S)
continue;
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Control jumps to line "
<< SMgr.getInstantiationLineNumber(S->getLocStart()) << ".\n";
PD.push_front(new PathDiagnosticPiece(L, os.str()));
break;
}
case Stmt::SwitchStmtClass: {
// Figure out what case arm we took.
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
if (Stmt* S = Dst->getLabel())
switch (S->getStmtClass()) {
default:
os << "No cases match in the switch statement. "
"Control jumps to line "
<< SMgr.getInstantiationLineNumber(S->getLocStart()) << ".\n";
break;
case Stmt::DefaultStmtClass:
os << "Control jumps to the 'default' case at line "
<< SMgr.getInstantiationLineNumber(S->getLocStart()) << ".\n";
break;
case Stmt::CaseStmtClass: {
os << "Control jumps to 'case ";
CaseStmt* Case = cast<CaseStmt>(S);
Expr* LHS = Case->getLHS()->IgnoreParenCasts();
// Determine if it is an enum.
bool GetRawInt = true;
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
// FIXME: Maybe this should be an assertion. Are there cases
// were it is not an EnumConstantDecl?
EnumConstantDecl* D = dyn_cast<EnumConstantDecl>(DR->getDecl());
if (D) {
GetRawInt = false;
os << D->getNameAsString();
}
}
if (GetRawInt) {
// Not an enum.
Expr* CondE = cast<SwitchStmt>(T)->getCond();
unsigned bits = Ctx.getTypeSize(CondE->getType());
llvm::APSInt V(bits, false);
if (!LHS->isIntegerConstantExpr(V, Ctx, 0, true)) {
assert (false && "Case condition must be constant.");
continue;
}
os << V;
}
os << ":' at line "
<< SMgr.getInstantiationLineNumber(S->getLocStart()) << ".\n";
break;
}
}
else {
os << "'Default' branch taken. ";
ExecutionContinues(os, SMgr, LastNode);
}
PD.push_front(new PathDiagnosticPiece(L, os.str()));
break;
}
case Stmt::BreakStmtClass:
case Stmt::ContinueStmtClass: {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
ExecutionContinues(os, SMgr, LastNode);
PD.push_front(new PathDiagnosticPiece(L, os.str()));
break;
}
case Stmt::ConditionalOperatorClass: {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "'?' condition evaluates to ";
if (*(Src->succ_begin()+1) == Dst)
os << "false.";
else
os << "true.";
PD.push_front(new PathDiagnosticPiece(L, os.str()));
break;
}
case Stmt::DoStmtClass: {
if (*(Src->succ_begin()) == Dst) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Loop condition is true. ";
ExecutionContinues(os, SMgr, Dst);
PD.push_front(new PathDiagnosticPiece(L, os.str()));
}
else
PD.push_front(new PathDiagnosticPiece(L,
"Loop condition is false. Exiting loop."));
break;
}
case Stmt::WhileStmtClass:
case Stmt::ForStmtClass: {
if (*(Src->succ_begin()+1) == Dst) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "Loop condition is false. ";
ExecutionContinues(os, SMgr, Dst);
PD.push_front(new PathDiagnosticPiece(L, os.str()));
}
else
PD.push_front(new PathDiagnosticPiece(L,
"Loop condition is true. Entering loop body."));
break;
}
case Stmt::IfStmtClass: {
if (*(Src->succ_begin()+1) == Dst)
PD.push_front(new PathDiagnosticPiece(L, "Taking false branch."));
else
PD.push_front(new PathDiagnosticPiece(L, "Taking true branch."));
break;
}
}
}
if (PathDiagnosticPiece* p = R->VisitNode(N, NextNode, *ReportGraph, *this))
PD.push_front(p);
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
// Scan the region bindings, and see if a "notable" symbol has a new
// lval binding.
ScanNotableSymbols SNS(N, PS->getStmt(), *this, PD);
getStateManager().iterBindings(N->getState(), SNS);
}
}
}
void BugReporter::Register(BugType *BT) {
BugTypes = F.Add(BugTypes, BT);
}
void BugReporter::EmitReport(BugReport* R) {
// Compute the bug report's hash to determine its equivalence class.
llvm::FoldingSetNodeID ID;
R->Profile(ID);
// Lookup the equivance class. If there isn't one, create it.
BugType& BT = R->getBugType();
Register(&BT);
void *InsertPos;
BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos);
if (!EQ) {
EQ = new BugReportEquivClass(R);
BT.EQClasses.InsertNode(EQ, InsertPos);
}
else
EQ->AddReport(R);
}
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
assert(!EQ.Reports.empty());
BugReport &R = **EQ.begin();
// FIXME: Make sure we use the 'R' for the path that was actually used.
// Probably doesn't make a difference in practice.
BugType& BT = R.getBugType();
llvm::OwningPtr<PathDiagnostic> D(new PathDiagnostic(R.getBugType().getName(),
R.getDescription(),
BT.getCategory()));
GeneratePathDiagnostic(*D.get(), EQ);
// Get the meta data.
std::pair<const char**, const char**> Meta = R.getExtraDescriptiveText();
for (const char** s = Meta.first; s != Meta.second; ++s) D->addMeta(*s);
// Emit a summary diagnostic to the regular Diagnostics engine.
PathDiagnosticClient* PD = getPathDiagnosticClient();
const SourceRange *Beg = 0, *End = 0;
R.getRanges(*this, Beg, End);
Diagnostic& Diag = getDiagnostic();
FullSourceLoc L(R.getLocation(), getSourceManager());
unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning,
R.getDescription().c_str());
switch (End-Beg) {
default: assert(0 && "Don't handle this many ranges yet!");
case 0: Diag.Report(L, ErrorDiag); break;
case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break;
case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break;
case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break;
}
// Emit a full diagnostic for the path if we have a PathDiagnosticClient.
if (!PD)
return;
if (D->empty()) {
PathDiagnosticPiece* piece = new PathDiagnosticPiece(L, R.getDescription());
for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
D->push_back(piece);
}
PD->HandlePathDiagnostic(D.take());
}
void BugReporter::EmitBasicReport(const char* name, const char* str,
SourceLocation Loc,
SourceRange* RBeg, unsigned NumRanges) {
EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
}
void BugReporter::EmitBasicReport(const char* name, const char* category,
const char* str, SourceLocation Loc,
SourceRange* RBeg, unsigned NumRanges) {
// 'BT' will be owned by BugReporter as soon as we call 'EmitReport'.
BugType *BT = new BugType(name, category);
FullSourceLoc L = getContext().getFullLoc(Loc);
RangedBugReport *R = new DiagBugReport(*BT, str, L);
for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
EmitReport(R);
}