| // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines BugReporter, a utility class for generating |
| // PathDiagnostics for analyses based on GRSimpleVals. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/BugReporter.h" |
| #include "clang/Analysis/PathSensitive/GRExprEngine.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CFG.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Analysis/ProgramPoint.h" |
| #include "clang/Analysis/PathDiagnostic.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <queue> |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // static functions. |
| //===----------------------------------------------------------------------===// |
| |
| static inline Stmt* GetStmt(ProgramPoint P) { |
| if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) |
| return PS->getStmt(); |
| else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) |
| return BE->getSrc()->getTerminator(); |
| |
| return 0; |
| } |
| |
| static inline const ExplodedNode<GRState>* |
| GetPredecessorNode(const ExplodedNode<GRState>* N) { |
| return N->pred_empty() ? NULL : *(N->pred_begin()); |
| } |
| |
| static inline const ExplodedNode<GRState>* |
| GetSuccessorNode(const ExplodedNode<GRState>* N) { |
| return N->succ_empty() ? NULL : *(N->succ_begin()); |
| } |
| |
| static Stmt* GetPreviousStmt(const ExplodedNode<GRState>* N) { |
| for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N)) |
| if (Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return 0; |
| } |
| |
| static Stmt* GetNextStmt(const ExplodedNode<GRState>* N) { |
| for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N)) |
| if (Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return 0; |
| } |
| |
| static inline Stmt* GetCurrentOrPreviousStmt(const ExplodedNode<GRState>* N) { |
| if (Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return GetPreviousStmt(N); |
| } |
| |
| static inline Stmt* GetCurrentOrNextStmt(const ExplodedNode<GRState>* N) { |
| if (Stmt *S = GetStmt(N->getLocation())) |
| return S; |
| |
| return GetNextStmt(N); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Diagnostics for 'execution continues on line XXX'. |
| //===----------------------------------------------------------------------===// |
| |
| static SourceLocation ExecutionContinues(SourceManager& SMgr, |
| const ExplodedNode<GRState>* N, |
| const Decl& D, |
| bool* OutHasStmt = 0) { |
| if (Stmt *S = GetNextStmt(N)) { |
| if (OutHasStmt) *OutHasStmt = true; |
| return S->getLocStart(); |
| } |
| else { |
| if (OutHasStmt) *OutHasStmt = false; |
| return D.getBody()->getRBracLoc(); |
| } |
| } |
| |
| static SourceLocation ExecutionContinues(llvm::raw_string_ostream& os, |
| SourceManager& SMgr, |
| const ExplodedNode<GRState>* N, |
| const Decl& D) { |
| |
| // Slow, but probably doesn't matter. |
| if (os.str().empty()) |
| os << ' '; |
| |
| bool hasStmt; |
| SourceLocation Loc = ExecutionContinues(SMgr, N, D, &hasStmt); |
| |
| if (hasStmt) |
| os << "Execution continues on line " |
| << SMgr.getInstantiationLineNumber(Loc) << '.'; |
| else |
| os << "Execution jumps to the end of the " |
| << (isa<ObjCMethodDecl>(D) ? "method" : "function") << '.'; |
| |
| return Loc; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugType and subclasses. |
| //===----------------------------------------------------------------------===// |
| BugType::~BugType() {} |
| void BugType::FlushReports(BugReporter &BR) {} |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReport and subclasses. |
| //===----------------------------------------------------------------------===// |
| BugReport::~BugReport() {} |
| RangedBugReport::~RangedBugReport() {} |
| |
| Stmt* BugReport::getStmt(BugReporter& BR) const { |
| ProgramPoint ProgP = EndNode->getLocation(); |
| Stmt *S = NULL; |
| |
| if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) { |
| if (BE->getBlock() == &BR.getCFG()->getExit()) S = GetPreviousStmt(EndNode); |
| } |
| if (!S) S = GetStmt(ProgP); |
| |
| return S; |
| } |
| |
| PathDiagnosticPiece* |
| BugReport::getEndPath(BugReporter& BR, |
| const ExplodedNode<GRState>* EndPathNode) { |
| |
| Stmt* S = getStmt(BR); |
| |
| if (!S) |
| return NULL; |
| |
| FullSourceLoc L(S->getLocStart(), BR.getContext().getSourceManager()); |
| PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription()); |
| |
| const SourceRange *Beg, *End; |
| getRanges(BR, Beg, End); |
| |
| for (; Beg != End; ++Beg) |
| P->addRange(*Beg); |
| |
| return P; |
| } |
| |
| void BugReport::getRanges(BugReporter& BR, const SourceRange*& beg, |
| const SourceRange*& end) { |
| |
| if (Expr* E = dyn_cast_or_null<Expr>(getStmt(BR))) { |
| R = E->getSourceRange(); |
| assert(R.isValid()); |
| beg = &R; |
| end = beg+1; |
| } |
| else |
| beg = end = 0; |
| } |
| |
| SourceLocation BugReport::getLocation() const { |
| if (EndNode) |
| if (Stmt* S = GetCurrentOrPreviousStmt(EndNode)) { |
| // For member expressions, return the location of the '.' or '->'. |
| if (MemberExpr* ME = dyn_cast<MemberExpr>(S)) |
| return ME->getMemberLoc(); |
| |
| return S->getLocStart(); |
| } |
| |
| return FullSourceLoc(); |
| } |
| |
| PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode<GRState>* N, |
| const ExplodedNode<GRState>* PrevN, |
| const ExplodedGraph<GRState>& G, |
| BugReporter& BR, |
| NodeResolver &NR) { |
| return NULL; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Methods for BugReporter and subclasses. |
| //===----------------------------------------------------------------------===// |
| |
| BugReportEquivClass::~BugReportEquivClass() { |
| for (iterator I=begin(), E=end(); I!=E; ++I) delete *I; |
| } |
| |
| GRBugReporter::~GRBugReporter() { FlushReports(); } |
| BugReporterData::~BugReporterData() {} |
| |
| ExplodedGraph<GRState>& |
| GRBugReporter::getGraph() { return Eng.getGraph(); } |
| |
| GRStateManager& |
| GRBugReporter::getStateManager() { return Eng.getStateManager(); } |
| |
| BugReporter::~BugReporter() { FlushReports(); } |
| |
| void BugReporter::FlushReports() { |
| if (BugTypes.isEmpty()) |
| return; |
| |
| // First flush the warnings for each BugType. This may end up creating new |
| // warnings and new BugTypes. Because ImmutableSet is a functional data |
| // structure, we do not need to worry about the iterators being invalidated. |
| for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) |
| const_cast<BugType*>(*I)->FlushReports(*this); |
| |
| // Iterate through BugTypes a second time. BugTypes may have been updated |
| // with new BugType objects and new warnings. |
| for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) { |
| BugType *BT = const_cast<BugType*>(*I); |
| |
| typedef llvm::FoldingSet<BugReportEquivClass> SetTy; |
| SetTy& EQClasses = BT->EQClasses; |
| |
| for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){ |
| BugReportEquivClass& EQ = *EI; |
| FlushReport(EQ); |
| } |
| |
| // Delete the BugType object. This will also delete the equivalence |
| // classes. |
| delete BT; |
| } |
| |
| // Remove all references to the BugType objects. |
| BugTypes = F.GetEmptySet(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PathDiagnostics generation. |
| //===----------------------------------------------------------------------===// |
| |
| typedef llvm::DenseMap<const ExplodedNode<GRState>*, |
| const ExplodedNode<GRState>*> NodeBackMap; |
| |
| static std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>, |
| std::pair<ExplodedNode<GRState>*, unsigned> > |
| MakeReportGraph(const ExplodedGraph<GRState>* G, |
| const ExplodedNode<GRState>** NStart, |
| const ExplodedNode<GRState>** NEnd) { |
| |
| // Create the trimmed graph. It will contain the shortest paths from the |
| // error nodes to the root. In the new graph we should only have one |
| // error node unless there are two or more error nodes with the same minimum |
| // path length. |
| ExplodedGraph<GRState>* GTrim; |
| InterExplodedGraphMap<GRState>* NMap; |
| |
| llvm::DenseMap<const void*, const void*> InverseMap; |
| llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap); |
| |
| // Create owning pointers for GTrim and NMap just to ensure that they are |
| // released when this function exists. |
| llvm::OwningPtr<ExplodedGraph<GRState> > AutoReleaseGTrim(GTrim); |
| llvm::OwningPtr<InterExplodedGraphMap<GRState> > AutoReleaseNMap(NMap); |
| |
| // Find the (first) error node in the trimmed graph. We just need to consult |
| // the node map (NMap) which maps from nodes in the original graph to nodes |
| // in the new graph. |
| const ExplodedNode<GRState>* N = 0; |
| unsigned NodeIndex = 0; |
| |
| for (const ExplodedNode<GRState>** I = NStart; I != NEnd; ++I) |
| if ((N = NMap->getMappedNode(*I))) { |
| NodeIndex = (I - NStart) / sizeof(*I); |
| break; |
| } |
| |
| assert(N && "No error node found in the trimmed graph."); |
| |
| // Create a new (third!) graph with a single path. This is the graph |
| // that will be returned to the caller. |
| ExplodedGraph<GRState> *GNew = |
| new ExplodedGraph<GRState>(GTrim->getCFG(), GTrim->getCodeDecl(), |
| GTrim->getContext()); |
| |
| // Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS |
| // to the root node, and then construct a new graph that contains only |
| // a single path. |
| llvm::DenseMap<const void*,unsigned> Visited; |
| std::queue<const ExplodedNode<GRState>*> WS; |
| WS.push(N); |
| |
| unsigned cnt = 0; |
| const ExplodedNode<GRState>* Root = 0; |
| |
| while (!WS.empty()) { |
| const ExplodedNode<GRState>* Node = WS.front(); |
| WS.pop(); |
| |
| if (Visited.find(Node) != Visited.end()) |
| continue; |
| |
| Visited[Node] = cnt++; |
| |
| if (Node->pred_empty()) { |
| Root = Node; |
| break; |
| } |
| |
| for (ExplodedNode<GRState>::const_pred_iterator I=Node->pred_begin(), |
| E=Node->pred_end(); I!=E; ++I) |
| WS.push(*I); |
| } |
| |
| assert (Root); |
| |
| // Now walk from the root down the BFS path, always taking the successor |
| // with the lowest number. |
| ExplodedNode<GRState> *Last = 0, *First = 0; |
| NodeBackMap *BM = new NodeBackMap(); |
| |
| for ( N = Root ;;) { |
| // Lookup the number associated with the current node. |
| llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N); |
| assert (I != Visited.end()); |
| |
| // Create the equivalent node in the new graph with the same state |
| // and location. |
| ExplodedNode<GRState>* NewN = |
| GNew->getNode(N->getLocation(), N->getState()); |
| |
| // Store the mapping to the original node. |
| llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N); |
| assert(IMitr != InverseMap.end() && "No mapping to original node."); |
| (*BM)[NewN] = (const ExplodedNode<GRState>*) IMitr->second; |
| |
| // Link up the new node with the previous node. |
| if (Last) |
| NewN->addPredecessor(Last); |
| |
| Last = NewN; |
| |
| // Are we at the final node? |
| if (I->second == 0) { |
| First = NewN; |
| break; |
| } |
| |
| // Find the next successor node. We choose the node that is marked |
| // with the lowest DFS number. |
| ExplodedNode<GRState>::const_succ_iterator SI = N->succ_begin(); |
| ExplodedNode<GRState>::const_succ_iterator SE = N->succ_end(); |
| N = 0; |
| |
| for (unsigned MinVal = 0; SI != SE; ++SI) { |
| |
| I = Visited.find(*SI); |
| |
| if (I == Visited.end()) |
| continue; |
| |
| if (!N || I->second < MinVal) { |
| N = *SI; |
| MinVal = I->second; |
| } |
| } |
| |
| assert (N); |
| } |
| |
| assert (First); |
| return std::make_pair(std::make_pair(GNew, BM), |
| std::make_pair(First, NodeIndex)); |
| } |
| |
| static const VarDecl* |
| GetMostRecentVarDeclBinding(const ExplodedNode<GRState>* N, |
| GRStateManager& VMgr, SVal X) { |
| |
| for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) { |
| |
| ProgramPoint P = N->getLocation(); |
| |
| if (!isa<PostStmt>(P)) |
| continue; |
| |
| DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt()); |
| |
| if (!DR) |
| continue; |
| |
| SVal Y = VMgr.GetSVal(N->getState(), DR); |
| |
| if (X != Y) |
| continue; |
| |
| VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl()); |
| |
| if (!VD) |
| continue; |
| |
| return VD; |
| } |
| |
| return 0; |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN NotableSymbolHandler |
| : public StoreManager::BindingsHandler { |
| |
| SymbolRef Sym; |
| const GRState* PrevSt; |
| const Stmt* S; |
| GRStateManager& VMgr; |
| const ExplodedNode<GRState>* Pred; |
| PathDiagnostic& PD; |
| BugReporter& BR; |
| |
| public: |
| |
| NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s, |
| GRStateManager& vmgr, const ExplodedNode<GRState>* pred, |
| PathDiagnostic& pd, BugReporter& br) |
| : Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {} |
| |
| bool HandleBinding(StoreManager& SMgr, Store store, |
| const MemRegion* R, SVal V) { |
| |
| SymbolRef ScanSym; |
| |
| if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V)) |
| ScanSym = SV->getSymbol(); |
| else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V)) |
| ScanSym = SV->getSymbol(); |
| else |
| return true; |
| |
| if (ScanSym != Sym) |
| return true; |
| |
| // Check if the previous state has this binding. |
| SVal X = VMgr.GetSVal(PrevSt, loc::MemRegionVal(R)); |
| |
| if (X == V) // Same binding? |
| return true; |
| |
| // Different binding. Only handle assignments for now. We don't pull |
| // this check out of the loop because we will eventually handle other |
| // cases. |
| |
| VarDecl *VD = 0; |
| |
| if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { |
| if (!B->isAssignmentOp()) |
| return true; |
| |
| // What variable did we assign to? |
| DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts()); |
| |
| if (!DR) |
| return true; |
| |
| VD = dyn_cast<VarDecl>(DR->getDecl()); |
| } |
| else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) { |
| // FIXME: Eventually CFGs won't have DeclStmts. Right now we |
| // assume that each DeclStmt has a single Decl. This invariant |
| // holds by contruction in the CFG. |
| VD = dyn_cast<VarDecl>(*DS->decl_begin()); |
| } |
| |
| if (!VD) |
| return true; |
| |
| // What is the most recently referenced variable with this binding? |
| const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V); |
| |
| if (!MostRecent) |
| return true; |
| |
| // Create the diagnostic. |
| FullSourceLoc L(S->getLocStart(), BR.getSourceManager()); |
| |
| if (Loc::IsLocType(VD->getType())) { |
| std::string msg = "'" + std::string(VD->getNameAsString()) + |
| "' now aliases '" + MostRecent->getNameAsString() + "'"; |
| |
| PD.push_front(new PathDiagnosticEventPiece(L, msg)); |
| } |
| |
| return true; |
| } |
| }; |
| } |
| |
| static void HandleNotableSymbol(const ExplodedNode<GRState>* N, |
| const Stmt* S, |
| SymbolRef Sym, BugReporter& BR, |
| PathDiagnostic& PD) { |
| |
| const ExplodedNode<GRState>* Pred = N->pred_empty() ? 0 : *N->pred_begin(); |
| const GRState* PrevSt = Pred ? Pred->getState() : 0; |
| |
| if (!PrevSt) |
| return; |
| |
| // Look at the region bindings of the current state that map to the |
| // specified symbol. Are any of them not in the previous state? |
| GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager(); |
| NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR); |
| cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H); |
| } |
| |
| namespace { |
| class VISIBILITY_HIDDEN ScanNotableSymbols |
| : public StoreManager::BindingsHandler { |
| |
| llvm::SmallSet<SymbolRef, 10> AlreadyProcessed; |
| const ExplodedNode<GRState>* N; |
| Stmt* S; |
| GRBugReporter& BR; |
| PathDiagnostic& PD; |
| |
| public: |
| ScanNotableSymbols(const ExplodedNode<GRState>* n, Stmt* s, GRBugReporter& br, |
| PathDiagnostic& pd) |
| : N(n), S(s), BR(br), PD(pd) {} |
| |
| bool HandleBinding(StoreManager& SMgr, Store store, |
| const MemRegion* R, SVal V) { |
| SymbolRef ScanSym; |
| |
| if (loc::SymbolVal* SV = dyn_cast<loc::SymbolVal>(&V)) |
| ScanSym = SV->getSymbol(); |
| else if (nonloc::SymbolVal* SV = dyn_cast<nonloc::SymbolVal>(&V)) |
| ScanSym = SV->getSymbol(); |
| else |
| return true; |
| |
| assert (ScanSym.isValid()); |
| |
| if (!BR.isNotable(ScanSym)) |
| return true; |
| |
| if (AlreadyProcessed.count(ScanSym)) |
| return true; |
| |
| AlreadyProcessed.insert(ScanSym); |
| |
| HandleNotableSymbol(N, S, ScanSym, BR, PD); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| namespace { |
| class VISIBILITY_HIDDEN NodeMapClosure : public BugReport::NodeResolver { |
| NodeBackMap& M; |
| public: |
| NodeMapClosure(NodeBackMap *m) : M(*m) {} |
| ~NodeMapClosure() {} |
| |
| const ExplodedNode<GRState>* getOriginalNode(const ExplodedNode<GRState>* N) { |
| NodeBackMap::iterator I = M.find(N); |
| return I == M.end() ? 0 : I->second; |
| } |
| }; |
| } |
| |
| /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object |
| /// and collapses PathDiagosticPieces that are expanded by macros. |
| static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) { |
| typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> > |
| MacroStackTy; |
| |
| typedef std::vector<PathDiagnosticPiece*> |
| PiecesTy; |
| |
| MacroStackTy MacroStack; |
| PiecesTy Pieces; |
| |
| for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) { |
| // Get the location of the PathDiagnosticPiece. |
| const FullSourceLoc Loc = I->getLocation(); |
| |
| // Determine the instantiation location, which is the location we group |
| // related PathDiagnosticPieces. |
| SourceLocation InstantiationLoc = Loc.isMacroID() ? |
| SM.getInstantiationLoc(Loc) : |
| SourceLocation(); |
| |
| if (Loc.isFileID()) { |
| MacroStack.clear(); |
| Pieces.push_back(&*I); |
| continue; |
| } |
| |
| assert(Loc.isMacroID()); |
| |
| // Is the PathDiagnosticPiece within the same macro group? |
| if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) { |
| MacroStack.back().first->push_back(&*I); |
| continue; |
| } |
| |
| // We aren't in the same group. Are we descending into a new macro |
| // or are part of an old one? |
| PathDiagnosticMacroPiece *MacroGroup = 0; |
| |
| SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ? |
| SM.getInstantiationLoc(Loc) : |
| SourceLocation(); |
| |
| // Walk the entire macro stack. |
| while (!MacroStack.empty()) { |
| if (InstantiationLoc == MacroStack.back().second) { |
| MacroGroup = MacroStack.back().first; |
| break; |
| } |
| |
| if (ParentInstantiationLoc == MacroStack.back().second) { |
| MacroGroup = MacroStack.back().first; |
| break; |
| } |
| |
| MacroStack.pop_back(); |
| } |
| |
| if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) { |
| // Create a new macro group and add it to the stack. |
| PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc); |
| |
| if (MacroGroup) |
| MacroGroup->push_back(NewGroup); |
| else { |
| assert(InstantiationLoc.isFileID()); |
| Pieces.push_back(NewGroup); |
| } |
| |
| MacroGroup = NewGroup; |
| MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc)); |
| } |
| |
| // Finally, add the PathDiagnosticPiece to the group. |
| MacroGroup->push_back(&*I); |
| } |
| |
| // Now take the pieces and construct a new PathDiagnostic. |
| PD.resetPath(false); |
| |
| for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) { |
| if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I)) |
| if (!MP->containsEvent()) { |
| delete MP; |
| continue; |
| } |
| |
| PD.push_back(*I); |
| } |
| } |
| |
| void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD, |
| BugReportEquivClass& EQ) { |
| |
| std::vector<const ExplodedNode<GRState>*> Nodes; |
| |
| for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) { |
| const ExplodedNode<GRState>* N = I->getEndNode(); |
| if (N) Nodes.push_back(N); |
| } |
| |
| if (Nodes.empty()) |
| return; |
| |
| // Construct a new graph that contains only a single path from the error |
| // node to a root. |
| const std::pair<std::pair<ExplodedGraph<GRState>*, NodeBackMap*>, |
| std::pair<ExplodedNode<GRState>*, unsigned> >& |
| GPair = MakeReportGraph(&getGraph(), &Nodes[0], &Nodes[0] + Nodes.size()); |
| |
| // Find the BugReport with the original location. |
| BugReport *R = 0; |
| unsigned i = 0; |
| for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i) |
| if (i == GPair.second.second) { R = *I; break; } |
| |
| assert(R && "No original report found for sliced graph."); |
| |
| llvm::OwningPtr<ExplodedGraph<GRState> > ReportGraph(GPair.first.first); |
| llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second); |
| const ExplodedNode<GRState> *N = GPair.second.first; |
| |
| // Start building the path diagnostic... |
| if (PathDiagnosticPiece* Piece = R->getEndPath(*this, N)) |
| PD.push_back(Piece); |
| else |
| return; |
| |
| const ExplodedNode<GRState>* NextNode = N->pred_empty() |
| ? NULL : *(N->pred_begin()); |
| |
| ASTContext& Ctx = getContext(); |
| SourceManager& SMgr = Ctx.getSourceManager(); |
| NodeMapClosure NMC(BackMap.get()); |
| |
| while (NextNode) { |
| N = NextNode; |
| NextNode = GetPredecessorNode(N); |
| |
| ProgramPoint P = N->getLocation(); |
| |
| if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) { |
| CFGBlock* Src = BE->getSrc(); |
| CFGBlock* Dst = BE->getDst(); |
| Stmt* T = Src->getTerminator(); |
| |
| if (!T) |
| continue; |
| |
| FullSourceLoc Start(T->getLocStart(), SMgr); |
| |
| switch (T->getStmtClass()) { |
| default: |
| break; |
| |
| case Stmt::GotoStmtClass: |
| case Stmt::IndirectGotoStmtClass: { |
| Stmt* S = GetNextStmt(N); |
| |
| if (!S) |
| continue; |
| |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| SourceLocation End = S->getLocStart(); |
| |
| os << "Control jumps to line " << SMgr.getInstantiationLineNumber(End); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| case Stmt::SwitchStmtClass: { |
| // Figure out what case arm we took. |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| SourceLocation End; |
| |
| if (Stmt* S = Dst->getLabel()) { |
| End = S->getLocStart(); |
| |
| switch (S->getStmtClass()) { |
| default: |
| os << "No cases match in the switch statement. " |
| "Control jumps to line " |
| << SMgr.getInstantiationLineNumber(End); |
| break; |
| case Stmt::DefaultStmtClass: |
| os << "Control jumps to the 'default' case at line " |
| << SMgr.getInstantiationLineNumber(End); |
| break; |
| |
| case Stmt::CaseStmtClass: { |
| os << "Control jumps to 'case "; |
| CaseStmt* Case = cast<CaseStmt>(S); |
| Expr* LHS = Case->getLHS()->IgnoreParenCasts(); |
| |
| // Determine if it is an enum. |
| bool GetRawInt = true; |
| |
| if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) { |
| // FIXME: Maybe this should be an assertion. Are there cases |
| // were it is not an EnumConstantDecl? |
| EnumConstantDecl* D = |
| dyn_cast<EnumConstantDecl>(DR->getDecl()); |
| |
| if (D) { |
| GetRawInt = false; |
| os << D->getNameAsString(); |
| } |
| } |
| |
| if (GetRawInt) { |
| |
| // Not an enum. |
| Expr* CondE = cast<SwitchStmt>(T)->getCond(); |
| unsigned bits = Ctx.getTypeSize(CondE->getType()); |
| llvm::APSInt V(bits, false); |
| |
| if (!LHS->isIntegerConstantExpr(V, Ctx, 0, true)) { |
| assert (false && "Case condition must be constant."); |
| continue; |
| } |
| |
| os << V; |
| } |
| |
| os << ":' at line " << SMgr.getInstantiationLineNumber(End); |
| break; |
| } |
| } |
| } |
| else { |
| os << "'Default' branch taken. "; |
| End = ExecutionContinues(os, SMgr, N, |
| getStateManager().getCodeDecl()); |
| } |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| case Stmt::BreakStmtClass: |
| case Stmt::ContinueStmtClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| SourceLocation End = ExecutionContinues(os, SMgr, N, |
| getStateManager().getCodeDecl()); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| case Stmt::ConditionalOperatorClass: { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| os << "'?' condition evaluates to "; |
| |
| if (*(Src->succ_begin()+1) == Dst) |
| os << "false"; |
| else |
| os << "true"; |
| |
| SourceLocation End = |
| ExecutionContinues(SMgr, N, getStateManager().getCodeDecl()); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| break; |
| } |
| |
| case Stmt::DoStmtClass: { |
| if (*(Src->succ_begin()) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is true. "; |
| SourceLocation End = |
| ExecutionContinues(os, SMgr, N, getStateManager().getCodeDecl()); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| SourceLocation End = |
| ExecutionContinues(SMgr, N, getStateManager().getCodeDecl()); |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Loop condition is false. Exiting loop")); |
| } |
| |
| break; |
| } |
| |
| case Stmt::WhileStmtClass: |
| case Stmt::ForStmtClass: { |
| if (*(Src->succ_begin()+1) == Dst) { |
| std::string sbuf; |
| llvm::raw_string_ostream os(sbuf); |
| |
| os << "Loop condition is false. "; |
| SourceLocation End = |
| ExecutionContinues(os, SMgr, N, getStateManager().getCodeDecl()); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| os.str())); |
| } |
| else { |
| SourceLocation End = |
| ExecutionContinues(SMgr, N, getStateManager().getCodeDecl()); |
| |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Loop condition is true. Entering loop body")); |
| } |
| |
| break; |
| } |
| |
| case Stmt::IfStmtClass: { |
| SourceLocation End = |
| ExecutionContinues(SMgr, N, getStateManager().getCodeDecl()); |
| |
| if (*(Src->succ_begin()+1) == Dst) |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Taking false branch")); |
| else |
| PD.push_front(new PathDiagnosticControlFlowPiece(Start, End, |
| "Taking true branch")); |
| |
| break; |
| } |
| } |
| } |
| |
| if (PathDiagnosticPiece* p = R->VisitNode(N, NextNode, *ReportGraph, *this, |
| NMC)) |
| PD.push_front(p); |
| |
| if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) { |
| // Scan the region bindings, and see if a "notable" symbol has a new |
| // lval binding. |
| ScanNotableSymbols SNS(N, PS->getStmt(), *this, PD); |
| getStateManager().iterBindings(N->getState(), SNS); |
| } |
| } |
| |
| // After constructing the full PathDiagnostic, do a pass over it to compact |
| // PathDiagnosticPieces that occur within a macro. |
| CompactPathDiagnostic(PD, getSourceManager()); |
| } |
| |
| |
| void BugReporter::Register(BugType *BT) { |
| BugTypes = F.Add(BugTypes, BT); |
| } |
| |
| void BugReporter::EmitReport(BugReport* R) { |
| // Compute the bug report's hash to determine its equivalence class. |
| llvm::FoldingSetNodeID ID; |
| R->Profile(ID); |
| |
| // Lookup the equivance class. If there isn't one, create it. |
| BugType& BT = R->getBugType(); |
| Register(&BT); |
| void *InsertPos; |
| BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!EQ) { |
| EQ = new BugReportEquivClass(R); |
| BT.EQClasses.InsertNode(EQ, InsertPos); |
| } |
| else |
| EQ->AddReport(R); |
| } |
| |
| void BugReporter::FlushReport(BugReportEquivClass& EQ) { |
| assert(!EQ.Reports.empty()); |
| BugReport &R = **EQ.begin(); |
| |
| // FIXME: Make sure we use the 'R' for the path that was actually used. |
| // Probably doesn't make a difference in practice. |
| BugType& BT = R.getBugType(); |
| |
| llvm::OwningPtr<PathDiagnostic> D(new PathDiagnostic(R.getBugType().getName(), |
| R.getDescription(), |
| BT.getCategory())); |
| GeneratePathDiagnostic(*D.get(), EQ); |
| |
| // Get the meta data. |
| std::pair<const char**, const char**> Meta = R.getExtraDescriptiveText(); |
| for (const char** s = Meta.first; s != Meta.second; ++s) D->addMeta(*s); |
| |
| // Emit a summary diagnostic to the regular Diagnostics engine. |
| PathDiagnosticClient* PD = getPathDiagnosticClient(); |
| const SourceRange *Beg = 0, *End = 0; |
| R.getRanges(*this, Beg, End); |
| Diagnostic& Diag = getDiagnostic(); |
| FullSourceLoc L(R.getLocation(), getSourceManager()); |
| unsigned ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, |
| R.getDescription().c_str()); |
| |
| switch (End-Beg) { |
| default: assert(0 && "Don't handle this many ranges yet!"); |
| case 0: Diag.Report(L, ErrorDiag); break; |
| case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break; |
| case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break; |
| case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break; |
| } |
| |
| // Emit a full diagnostic for the path if we have a PathDiagnosticClient. |
| if (!PD) |
| return; |
| |
| if (D->empty()) { |
| PathDiagnosticPiece* piece = |
| new PathDiagnosticEventPiece(L, R.getDescription()); |
| |
| for ( ; Beg != End; ++Beg) piece->addRange(*Beg); |
| D->push_back(piece); |
| } |
| |
| PD->HandlePathDiagnostic(D.take()); |
| } |
| |
| void BugReporter::EmitBasicReport(const char* name, const char* str, |
| SourceLocation Loc, |
| SourceRange* RBeg, unsigned NumRanges) { |
| EmitBasicReport(name, "", str, Loc, RBeg, NumRanges); |
| } |
| |
| void BugReporter::EmitBasicReport(const char* name, const char* category, |
| const char* str, SourceLocation Loc, |
| SourceRange* RBeg, unsigned NumRanges) { |
| |
| // 'BT' will be owned by BugReporter as soon as we call 'EmitReport'. |
| BugType *BT = new BugType(name, category); |
| FullSourceLoc L = getContext().getFullLoc(Loc); |
| RangedBugReport *R = new DiagBugReport(*BT, str, L); |
| for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg); |
| EmitReport(R); |
| } |