blob: 52aa1a010b0159a23e0c0a8b288ae970546ece98 [file] [log] [blame]
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Sema class, which performs semantic analysis and
// builds ASTs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_SEMA_H
#define LLVM_CLANG_AST_SEMA_H
#include "IdentifierResolver.h"
#include "CXXFieldCollector.h"
#include "SemaOverload.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Parse/Action.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/OwningPtr.h"
#include <deque>
#include <list>
#include <string>
#include <vector>
namespace llvm {
class APSInt;
}
namespace clang {
class ASTContext;
class ASTConsumer;
class Preprocessor;
class Decl;
class DeclContext;
class DeclSpec;
class ExternalSemaSource;
class NamedDecl;
class Stmt;
class Expr;
class InitListExpr;
class ParenListExpr;
class DesignatedInitExpr;
class CallExpr;
class DeclRefExpr;
class VarDecl;
class ParmVarDecl;
class TypedefDecl;
class FunctionDecl;
class QualType;
class LangOptions;
class Token;
class IntegerLiteral;
class StringLiteral;
class ArrayType;
class LabelStmt;
class SwitchStmt;
class CXXTryStmt;
class ExtVectorType;
class TypedefDecl;
class TemplateDecl;
class TemplateArgument;
class TemplateArgumentList;
class TemplateParameterList;
class TemplateTemplateParmDecl;
class ClassTemplatePartialSpecializationDecl;
class ClassTemplateDecl;
class ObjCInterfaceDecl;
class ObjCCompatibleAliasDecl;
class ObjCProtocolDecl;
class ObjCImplDecl;
class ObjCImplementationDecl;
class ObjCCategoryImplDecl;
class ObjCCategoryDecl;
class ObjCIvarDecl;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ObjCContainerDecl;
class FunctionProtoType;
class BasePaths;
struct MemberLookupCriteria;
class CXXTemporary;
/// BlockSemaInfo - When a block is being parsed, this contains information
/// about the block. It is pointed to from Sema::CurBlock.
struct BlockSemaInfo {
llvm::SmallVector<ParmVarDecl*, 8> Params;
bool hasPrototype;
bool isVariadic;
bool hasBlockDeclRefExprs;
BlockDecl *TheDecl;
/// TheScope - This is the scope for the block itself, which contains
/// arguments etc.
Scope *TheScope;
/// ReturnType - This will get set to block result type, by looking at
/// return types, if any, in the block body.
QualType ReturnType;
/// LabelMap - This is a mapping from label identifiers to the LabelStmt for
/// it (which acts like the label decl in some ways). Forward referenced
/// labels have a LabelStmt created for them with a null location & SubStmt.
llvm::DenseMap<IdentifierInfo*, LabelStmt*> LabelMap;
/// SwitchStack - This is the current set of active switch statements in the
/// block.
llvm::SmallVector<SwitchStmt*, 8> SwitchStack;
/// SavedFunctionNeedsScopeChecking - This is the value of
/// CurFunctionNeedsScopeChecking at the point when the block started.
bool SavedFunctionNeedsScopeChecking;
/// PrevBlockInfo - If this is nested inside another block, this points
/// to the outer block.
BlockSemaInfo *PrevBlockInfo;
};
/// \brief Holds a QualType and a DeclaratorInfo* that came out of a declarator
/// parsing.
///
/// LocInfoType is a "transient" type, only needed for passing to/from Parser
/// and Sema, when we want to preserve type source info for a parsed type.
/// It will not participate in the type system semantics in any way.
class LocInfoType : public Type {
enum {
// The last number that can fit in Type's TC.
// Avoids conflict with an existing Type class.
LocInfo = (1 << TypeClassBitSize) - 1
};
DeclaratorInfo *DeclInfo;
LocInfoType(QualType ty, DeclaratorInfo *DInfo)
: Type((TypeClass)LocInfo, ty, ty->isDependentType()), DeclInfo(DInfo) {
assert(getTypeClass() == (TypeClass)LocInfo && "LocInfo didn't fit in TC?");
}
friend class Sema;
public:
QualType getType() const { return getCanonicalTypeInternal(); }
DeclaratorInfo *getDeclaratorInfo() const { return DeclInfo; }
virtual void getAsStringInternal(std::string &Str,
const PrintingPolicy &Policy) const;
static bool classof(const Type *T) {
return T->getTypeClass() == (TypeClass)LocInfo;
}
static bool classof(const LocInfoType *) { return true; }
};
/// Sema - This implements semantic analysis and AST building for C.
class Sema : public Action {
Sema(const Sema&); // DO NOT IMPLEMENT
void operator=(const Sema&); // DO NOT IMPLEMENT
public:
const LangOptions &LangOpts;
Preprocessor &PP;
ASTContext &Context;
ASTConsumer &Consumer;
Diagnostic &Diags;
SourceManager &SourceMgr;
/// \brief Source of additional semantic information.
ExternalSemaSource *ExternalSource;
/// CurContext - This is the current declaration context of parsing.
DeclContext *CurContext;
/// PreDeclaratorDC - Keeps the declaration context before switching to the
/// context of a declarator's nested-name-specifier.
DeclContext *PreDeclaratorDC;
/// CurBlock - If inside of a block definition, this contains a pointer to
/// the active block object that represents it.
BlockSemaInfo *CurBlock;
/// PackContext - Manages the stack for #pragma pack. An alignment
/// of 0 indicates default alignment.
void *PackContext; // Really a "PragmaPackStack*"
/// FunctionLabelMap - This is a mapping from label identifiers to the
/// LabelStmt for it (which acts like the label decl in some ways). Forward
/// referenced labels have a LabelStmt created for them with a null location &
/// SubStmt.
///
/// Note that this should always be accessed through getLabelMap() in order
/// to handle blocks properly.
llvm::DenseMap<IdentifierInfo*, LabelStmt*> FunctionLabelMap;
/// FunctionSwitchStack - This is the current set of active switch statements
/// in the top level function. Clients should always use getSwitchStack() to
/// handle the case when they are in a block.
llvm::SmallVector<SwitchStmt*, 8> FunctionSwitchStack;
/// ExprTemporaries - This is the stack of temporaries that are created by
/// the current full expression.
llvm::SmallVector<CXXTemporary*, 8> ExprTemporaries;
/// CurFunctionNeedsScopeChecking - This is set to true when a function or
/// ObjC method body contains a VLA or an ObjC try block, which introduce
/// scopes that need to be checked for goto conditions. If a function does
/// not contain this, then it need not have the jump checker run on it.
bool CurFunctionNeedsScopeChecking;
/// ExtVectorDecls - This is a list all the extended vector types. This allows
/// us to associate a raw vector type with one of the ext_vector type names.
/// This is only necessary for issuing pretty diagnostics.
llvm::SmallVector<TypedefDecl*, 24> ExtVectorDecls;
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
llvm::OwningPtr<CXXFieldCollector> FieldCollector;
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
/// PureVirtualClassDiagSet - a set of class declarations which we have
/// emitted a list of pure virtual functions. Used to prevent emitting the
/// same list more than once.
llvm::OwningPtr<RecordDeclSetTy> PureVirtualClassDiagSet;
/// \brief A mapping from external names to the most recent
/// locally-scoped external declaration with that name.
///
/// This map contains external declarations introduced in local
/// scoped, e.g.,
///
/// \code
/// void f() {
/// void foo(int, int);
/// }
/// \endcode
///
/// Here, the name "foo" will be associated with the declaration on
/// "foo" within f. This name is not visible outside of
/// "f". However, we still find it in two cases:
///
/// - If we are declaring another external with the name "foo", we
/// can find "foo" as a previous declaration, so that the types
/// of this external declaration can be checked for
/// compatibility.
///
/// - If we would implicitly declare "foo" (e.g., due to a call to
/// "foo" in C when no prototype or definition is visible), then
/// we find this declaration of "foo" and complain that it is
/// not visible.
llvm::DenseMap<DeclarationName, NamedDecl *> LocallyScopedExternalDecls;
/// \brief The set of tentative declarations seen so far in this
/// translation unit for which no definition has been seen.
///
/// The tentative declarations are indexed by the name of the
/// declaration, and only the most recent tentative declaration for
/// a given variable will be recorded here.
llvm::DenseMap<DeclarationName, VarDecl *> TentativeDefinitions;
/// WeakUndeclaredIdentifiers - Identifiers contained in
/// #pragma weak before declared. rare. may alias another
/// identifier, declared or undeclared
class WeakInfo {
IdentifierInfo *alias; // alias (optional)
SourceLocation loc; // for diagnostics
bool used; // identifier later declared?
public:
WeakInfo()
: alias(0), loc(SourceLocation()), used(false) {}
WeakInfo(IdentifierInfo *Alias, SourceLocation Loc)
: alias(Alias), loc(Loc), used(false) {}
inline IdentifierInfo * getAlias() const { return alias; }
inline SourceLocation getLocation() const { return loc; }
void setUsed(bool Used=true) { used = Used; }
inline bool getUsed() { return used; }
bool operator==(WeakInfo RHS) const {
return alias == RHS.getAlias() && loc == RHS.getLocation();
}
bool operator!=(WeakInfo RHS) const { return !(*this == RHS); }
};
llvm::DenseMap<IdentifierInfo*,WeakInfo> WeakUndeclaredIdentifiers;
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
/// #pragma weak during processing of other Decls.
/// I couldn't figure out a clean way to generate these in-line, so
/// we store them here and handle separately -- which is a hack.
/// It would be best to refactor this.
llvm::SmallVector<Decl*,2> WeakTopLevelDecl;
IdentifierResolver IdResolver;
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
/// The C++ "std" namespace, where the standard library resides. Cached here
/// by GetStdNamespace
NamespaceDecl *StdNamespace;
/// A flag to remember whether the implicit forms of operator new and delete
/// have been declared.
bool GlobalNewDeleteDeclared;
/// The current expression evaluation context.
ExpressionEvaluationContext ExprEvalContext;
typedef std::vector<std::pair<SourceLocation, Decl *> >
PotentiallyReferencedDecls;
/// A stack of declarations, each element of which is a set of declarations
/// that will be marked as referenced if the corresponding potentially
/// potentially evaluated expression is potentially evaluated. Each element
/// in the stack corresponds to a PotentiallyPotentiallyEvaluated expression
/// evaluation context.
std::list<PotentiallyReferencedDecls> PotentiallyReferencedDeclStack;
/// \brief Whether the code handled by Sema should be considered a
/// complete translation unit or not.
///
/// When true (which is generally the case), Sema will perform
/// end-of-translation-unit semantic tasks (such as creating
/// initializers for tentative definitions in C) once parsing has
/// completed. This flag will be false when building PCH files,
/// since a PCH file is by definition not a complete translation
/// unit.
bool CompleteTranslationUnit;
llvm::BumpPtrAllocator BumpAlloc;
/// \brief The number of SFINAE diagnostics that have been trapped.
unsigned NumSFINAEErrors;
typedef llvm::DenseMap<Selector, ObjCMethodList> MethodPool;
/// Instance/Factory Method Pools - allows efficient lookup when typechecking
/// messages to "id". We need to maintain a list, since selectors can have
/// differing signatures across classes. In Cocoa, this happens to be
/// extremely uncommon (only 1% of selectors are "overloaded").
MethodPool InstanceMethodPool;
MethodPool FactoryMethodPool;
MethodPool::iterator ReadMethodPool(Selector Sel, bool isInstance);
/// Private Helper predicate to check for 'self'.
bool isSelfExpr(Expr *RExpr);
public:
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
bool CompleteTranslationUnit = true);
~Sema() {
if (PackContext) FreePackedContext();
}
const LangOptions &getLangOptions() const { return LangOpts; }
Diagnostic &getDiagnostics() const { return Diags; }
SourceManager &getSourceManager() const { return SourceMgr; }
/// \brief Helper class that creates diagnostics with optional
/// template instantiation stacks.
///
/// This class provides a wrapper around the basic DiagnosticBuilder
/// class that emits diagnostics. SemaDiagnosticBuilder is
/// responsible for emitting the diagnostic (as DiagnosticBuilder
/// does) and, if the diagnostic comes from inside a template
/// instantiation, printing the template instantiation stack as
/// well.
class SemaDiagnosticBuilder : public DiagnosticBuilder {
Sema &SemaRef;
unsigned DiagID;
public:
SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
: DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { }
explicit SemaDiagnosticBuilder(Sema &SemaRef)
: DiagnosticBuilder(DiagnosticBuilder::Suppress), SemaRef(SemaRef) { }
~SemaDiagnosticBuilder();
};
/// \brief Emit a diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
if (isSFINAEContext() && Diagnostic::isBuiltinSFINAEDiag(DiagID)) {
// If we encountered an error during template argument
// deduction, and that error is one of the SFINAE errors,
// suppress the diagnostic.
++NumSFINAEErrors;
return SemaDiagnosticBuilder(*this);
}
DiagnosticBuilder DB = Diags.Report(FullSourceLoc(Loc, SourceMgr), DiagID);
return SemaDiagnosticBuilder(DB, *this, DiagID);
}
/// \brief Emit a partial diagnostic.
SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD);
virtual void DeleteExpr(ExprTy *E);
virtual void DeleteStmt(StmtTy *S);
OwningExprResult Owned(Expr* E) { return OwningExprResult(*this, E); }
OwningExprResult Owned(ExprResult R) {
if (R.isInvalid())
return ExprError();
return OwningExprResult(*this, R.get());
}
OwningStmtResult Owned(Stmt* S) { return OwningStmtResult(*this, S); }
virtual void ActOnEndOfTranslationUnit();
/// getLabelMap() - Return the current label map. If we're in a block, we
/// return it.
llvm::DenseMap<IdentifierInfo*, LabelStmt*> &getLabelMap() {
return CurBlock ? CurBlock->LabelMap : FunctionLabelMap;
}
/// getSwitchStack - This is returns the switch stack for the current block or
/// function.
llvm::SmallVector<SwitchStmt*,8> &getSwitchStack() {
return CurBlock ? CurBlock->SwitchStack : FunctionSwitchStack;
}
/// WeakTopLevelDeclDecls - access to #pragma weak-generated Decls
llvm::SmallVector<Decl*,2> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
virtual void ActOnComment(SourceRange Comment);
//===--------------------------------------------------------------------===//
// Type Analysis / Processing: SemaType.cpp.
//
QualType adjustParameterType(QualType T);
QualType ConvertDeclSpecToType(const DeclSpec &DS, SourceLocation DeclLoc,
bool &IsInvalid);
void ProcessTypeAttributeList(QualType &Result, const AttributeList *AL);
QualType BuildPointerType(QualType T, unsigned Quals,
SourceLocation Loc, DeclarationName Entity);
QualType BuildReferenceType(QualType T, bool LValueRef, unsigned Quals,
SourceLocation Loc, DeclarationName Entity);
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
Expr *ArraySize, unsigned Quals,
SourceRange Brackets, DeclarationName Entity);
QualType BuildExtVectorType(QualType T, ExprArg ArraySize,
SourceLocation AttrLoc);
QualType BuildFunctionType(QualType T,
QualType *ParamTypes, unsigned NumParamTypes,
bool Variadic, unsigned Quals,
SourceLocation Loc, DeclarationName Entity);
QualType BuildMemberPointerType(QualType T, QualType Class,
unsigned Quals, SourceLocation Loc,
DeclarationName Entity);
QualType BuildBlockPointerType(QualType T, unsigned Quals,
SourceLocation Loc, DeclarationName Entity);
QualType GetTypeForDeclarator(Declarator &D, Scope *S,
DeclaratorInfo **DInfo = 0,
unsigned Skip = 0, TagDecl **OwnedDecl = 0);
DeclaratorInfo *GetDeclaratorInfoForDeclarator(Declarator &D, QualType T,
unsigned Skip);
/// \brief Create a LocInfoType to hold the given QualType and DeclaratorInfo.
QualType CreateLocInfoType(QualType T, DeclaratorInfo *DInfo);
DeclarationName GetNameForDeclarator(Declarator &D);
static QualType GetTypeFromParser(TypeTy *Ty, DeclaratorInfo **DInfo = 0);
bool CheckSpecifiedExceptionType(QualType T, const SourceRange &Range);
bool CheckDistantExceptionSpec(QualType T);
bool CheckEquivalentExceptionSpec(
const FunctionProtoType *Old, SourceLocation OldLoc,
const FunctionProtoType *New, SourceLocation NewLoc);
bool CheckExceptionSpecSubset(unsigned DiagID, unsigned NoteID,
const FunctionProtoType *Superset, SourceLocation SuperLoc,
const FunctionProtoType *Subset, SourceLocation SubLoc);
QualType ObjCGetTypeForMethodDefinition(DeclPtrTy D);
bool UnwrapSimilarPointerTypes(QualType& T1, QualType& T2);
virtual TypeResult ActOnTypeName(Scope *S, Declarator &D);
bool RequireCompleteType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD);
QualType getQualifiedNameType(const CXXScopeSpec &SS, QualType T);
QualType BuildTypeofExprType(Expr *E);
QualType BuildDecltypeType(Expr *E);
//===--------------------------------------------------------------------===//
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
//
/// getDeclName - Return a pretty name for the specified decl if possible, or
/// an empty string if not. This is used for pretty crash reporting.
virtual std::string getDeclName(DeclPtrTy D);
DeclGroupPtrTy ConvertDeclToDeclGroup(DeclPtrTy Ptr);
virtual TypeTy *getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, const CXXScopeSpec *SS,
bool isClassName = false);
virtual DeclSpec::TST isTagName(IdentifierInfo &II, Scope *S);
virtual DeclPtrTy ActOnDeclarator(Scope *S, Declarator &D) {
return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
}
DeclPtrTy HandleDeclarator(Scope *S, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
bool IsFunctionDefinition);
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
Scope *S);
void DiagnoseFunctionSpecifiers(Declarator& D);
NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, DeclaratorInfo *DInfo,
Decl* PrevDecl, bool &Redeclaration);
NamedDecl* ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, DeclaratorInfo *DInfo,
NamedDecl* PrevDecl,
MultiTemplateParamsArg TemplateParamLists,
bool &Redeclaration);
void CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
bool &Redeclaration);
NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, DeclaratorInfo *DInfo,
NamedDecl* PrevDecl,
MultiTemplateParamsArg TemplateParamLists,
bool IsFunctionDefinition,
bool &Redeclaration);
void CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
bool &Redeclaration,
bool &OverloadableAttrRequired);
void CheckMain(FunctionDecl *FD);
virtual DeclPtrTy ActOnParamDeclarator(Scope *S, Declarator &D);
virtual void ActOnParamDefaultArgument(DeclPtrTy param,
SourceLocation EqualLoc,
ExprArg defarg);
virtual void ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
SourceLocation EqualLoc,
SourceLocation ArgLoc);
virtual void ActOnParamDefaultArgumentError(DeclPtrTy param);
bool SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
SourceLocation EqualLoc);
// Contains the locations of the beginning of unparsed default
// argument locations.
llvm::DenseMap<ParmVarDecl *,SourceLocation> UnparsedDefaultArgLocs;
virtual void AddInitializerToDecl(DeclPtrTy dcl, ExprArg init);
void AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit);
void ActOnUninitializedDecl(DeclPtrTy dcl, bool TypeContainsUndeducedAuto);
virtual void SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc);
virtual DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
DeclPtrTy *Group,
unsigned NumDecls);
virtual void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
SourceLocation LocAfterDecls);
virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *S, Declarator &D);
virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *S, DeclPtrTy D);
virtual void ActOnStartOfObjCMethodDef(Scope *S, DeclPtrTy D);
virtual DeclPtrTy ActOnFinishFunctionBody(DeclPtrTy Decl, StmtArg Body);
DeclPtrTy ActOnFinishFunctionBody(DeclPtrTy Decl, StmtArg Body,
bool IsInstantiation);
/// \brief Diagnose any unused parameters in the given sequence of
/// ParmVarDecl pointers.
template<typename InputIterator>
void DiagnoseUnusedParameters(InputIterator Param, InputIterator ParamEnd) {
for (; Param != ParamEnd; ++Param) {
if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
!(*Param)->template hasAttr<UnusedAttr>())
Diag((*Param)->getLocation(), diag::warn_unused_parameter)
<< (*Param)->getDeclName();
}
}
void DiagnoseInvalidJumps(Stmt *Body);
virtual DeclPtrTy ActOnFileScopeAsmDecl(SourceLocation Loc, ExprArg expr);
/// Scope actions.
virtual void ActOnPopScope(SourceLocation Loc, Scope *S);
virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S);
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
virtual DeclPtrTy ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS);
bool InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
RecordDecl *AnonRecord);
virtual DeclPtrTy BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
RecordDecl *Record);
bool isAcceptableTagRedeclaration(const TagDecl *Previous,
TagDecl::TagKind NewTag,
SourceLocation NewTagLoc,
const IdentifierInfo &Name);
virtual DeclPtrTy ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, const CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr, AccessSpecifier AS,
MultiTemplateParamsArg TemplateParameterLists,
bool &OwnedDecl);
virtual void ActOnDefs(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
llvm::SmallVectorImpl<DeclPtrTy> &Decls);
virtual DeclPtrTy ActOnField(Scope *S, DeclPtrTy TagD,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth);
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
Declarator &D, Expr *BitfieldWidth,
AccessSpecifier AS);
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
DeclaratorInfo *DInfo,
RecordDecl *Record, SourceLocation Loc,
bool Mutable, Expr *BitfieldWidth,
SourceLocation TSSL,
AccessSpecifier AS, NamedDecl *PrevDecl,
Declarator *D = 0);
enum CXXSpecialMember {
CXXDefaultConstructor = 0,
CXXCopyConstructor = 1,
CXXCopyAssignment = 2,
CXXDestructor = 3
};
void DiagnoseNontrivial(const RecordType* Record, CXXSpecialMember mem);
virtual DeclPtrTy ActOnIvar(Scope *S, SourceLocation DeclStart,
DeclPtrTy IntfDecl,
Declarator &D, ExprTy *BitfieldWidth,
tok::ObjCKeywordKind visibility);
// This is used for both record definitions and ObjC interface declarations.
virtual void ActOnFields(Scope* S,
SourceLocation RecLoc, DeclPtrTy TagDecl,
DeclPtrTy *Fields, unsigned NumFields,
SourceLocation LBrac, SourceLocation RBrac,
AttributeList *AttrList);
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
virtual void ActOnTagStartDefinition(Scope *S, DeclPtrTy TagDecl);
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
virtual void ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagDecl,
SourceLocation RBraceLoc);
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
EnumConstantDecl *LastEnumConst,
SourceLocation IdLoc,
IdentifierInfo *Id,
ExprArg val);
virtual DeclPtrTy ActOnEnumConstant(Scope *S, DeclPtrTy EnumDecl,
DeclPtrTy LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *Val);
virtual void ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
SourceLocation RBraceLoc, DeclPtrTy EnumDecl,
DeclPtrTy *Elements, unsigned NumElements,
Scope *S, AttributeList *Attr);
DeclContext *getContainingDC(DeclContext *DC);
/// Set the current declaration context until it gets popped.
void PushDeclContext(Scope *S, DeclContext *DC);
void PopDeclContext();
/// EnterDeclaratorContext - Used when we must lookup names in the context
/// of a declarator's nested name specifier.
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
void ExitDeclaratorContext(Scope *S);
DeclContext *getFunctionLevelDeclContext();
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
/// to the function decl for the function being parsed. If we're currently
/// in a 'block', this returns the containing context.
FunctionDecl *getCurFunctionDecl();
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
/// the method decl for the method being parsed. If we're currently
/// in a 'block', this returns the containing context.
ObjCMethodDecl *getCurMethodDecl();
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
/// or C function we're in, otherwise return null. If we're currently
/// in a 'block', this returns the containing context.
NamedDecl *getCurFunctionOrMethodDecl();
/// Add this decl to the scope shadowed decl chains.
void PushOnScopeChains(NamedDecl *D, Scope *S);
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
/// true if 'D' belongs to the given declaration context.
bool isDeclInScope(Decl *D, DeclContext *Ctx, Scope *S = 0) {
return IdResolver.isDeclInScope(D, Ctx, Context, S);
}
/// Subroutines of ActOnDeclarator().
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T);
void MergeTypeDefDecl(TypedefDecl *New, Decl *Old);
bool MergeFunctionDecl(FunctionDecl *New, Decl *Old);
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old);
void MergeVarDecl(VarDecl *New, Decl *Old);
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old);
/// C++ Overloading.
bool IsOverload(FunctionDecl *New, Decl* OldD,
OverloadedFunctionDecl::function_iterator &MatchedDecl);
ImplicitConversionSequence
TryImplicitConversion(Expr* From, QualType ToType,
bool SuppressUserConversions = false,
bool AllowExplicit = false,
bool ForceRValue = false);
bool IsStandardConversion(Expr *From, QualType ToType,
StandardConversionSequence& SCS);
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
bool IsComplexPromotion(QualType FromType, QualType ToType);
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool isObjCPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType, bool &IncompatibleObjC);
bool CheckPointerConversion(Expr *From, QualType ToType);
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
QualType &ConvertedType);
bool CheckMemberPointerConversion(Expr *From, QualType ToType,
CastExpr::CastKind &Kind);
bool IsQualificationConversion(QualType FromType, QualType ToType);
bool IsUserDefinedConversion(Expr *From, QualType ToType,
UserDefinedConversionSequence& User,
bool AllowConversionFunctions,
bool AllowExplicit, bool ForceRValue);
ImplicitConversionSequence::CompareKind
CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
const ImplicitConversionSequence& ICS2);
ImplicitConversionSequence::CompareKind
CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
const StandardConversionSequence& SCS2);
ImplicitConversionSequence::CompareKind
CompareQualificationConversions(const StandardConversionSequence& SCS1,
const StandardConversionSequence& SCS2);
ImplicitConversionSequence::CompareKind
CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
const StandardConversionSequence& SCS2);
ImplicitConversionSequence
TryCopyInitialization(Expr* From, QualType ToType,
bool SuppressUserConversions = false,
bool ForceRValue = false);
bool PerformCopyInitialization(Expr *&From, QualType ToType,
const char *Flavor, bool Elidable = false);
ImplicitConversionSequence
TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method);
bool PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method);
ImplicitConversionSequence TryContextuallyConvertToBool(Expr *From);
bool PerformContextuallyConvertToBool(Expr *&From);
bool PerformObjectMemberConversion(Expr *&From, NamedDecl *Member);
/// OverloadingResult - Capture the result of performing overload
/// resolution.
enum OverloadingResult {
OR_Success, ///< Overload resolution succeeded.
OR_No_Viable_Function, ///< No viable function found.
OR_Ambiguous, ///< Ambiguous candidates found.
OR_Deleted ///< Overload resoltuion refers to a deleted function.
};
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
// TODO: make this is a typesafe union.
typedef llvm::SmallPtrSet<DeclContext *, 16> AssociatedNamespaceSet;
typedef llvm::SmallPtrSet<AnyFunctionDecl, 16> FunctionSet;
typedef llvm::SmallPtrSet<CXXRecordDecl *, 16> AssociatedClassSet;
void AddOverloadCandidate(FunctionDecl *Function,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool ForceRValue = false);
void AddFunctionCandidates(const FunctionSet &Functions,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false);
void AddMethodCandidate(CXXMethodDecl *Method,
Expr *Object, Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool ForceRValue = false);
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
bool HasExplicitTemplateArgs,
const TemplateArgument *ExplicitTemplateArgs,
unsigned NumExplicitTemplateArgs,
Expr *Object, Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool ForceRValue = false);
void AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
bool HasExplicitTemplateArgs,
const TemplateArgument *ExplicitTemplateArgs,
unsigned NumExplicitTemplateArgs,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions = false,
bool ForceRValue = false);
void AddConversionCandidate(CXXConversionDecl *Conversion,
Expr *From, QualType ToType,
OverloadCandidateSet& CandidateSet);
void AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
Expr *From, QualType ToType,
OverloadCandidateSet &CandidateSet);
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
const FunctionProtoType *Proto,
Expr *Object, Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
void AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
SourceLocation OpLoc,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
SourceRange OpRange = SourceRange());
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
SourceLocation OpLoc,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
SourceRange OpRange = SourceRange());
void AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet,
bool IsAssignmentOperator = false,
unsigned NumContextualBoolArguments = 0);
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
void AddArgumentDependentLookupCandidates(DeclarationName Name,
Expr **Args, unsigned NumArgs,
OverloadCandidateSet& CandidateSet);
bool isBetterOverloadCandidate(const OverloadCandidate& Cand1,
const OverloadCandidate& Cand2);
OverloadingResult BestViableFunction(OverloadCandidateSet& CandidateSet,
SourceLocation Loc,
OverloadCandidateSet::iterator& Best);
void PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
bool OnlyViable);
FunctionDecl *ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
bool Complain);
void FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn);
FunctionDecl *ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
DeclarationName UnqualifiedName,
bool HasExplicitTemplateArgs,
const TemplateArgument *ExplicitTemplateArgs,
unsigned NumExplicitTemplateArgs,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc,
bool &ArgumentDependentLookup);
OwningExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
unsigned Opc,
FunctionSet &Functions,
ExprArg input);
OwningExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
unsigned Opc,
FunctionSet &Functions,
Expr *LHS, Expr *RHS);
ExprResult
BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
SourceLocation LParenLoc, Expr **Args,
unsigned NumArgs, SourceLocation *CommaLocs,
SourceLocation RParenLoc);
ExprResult
BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
OwningExprResult BuildOverloadedArrowExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc);
/// Helpers for dealing with blocks and functions.
void CheckFallThroughForFunctionDef(Decl *D, Stmt *Body);
void CheckFallThroughForBlock(QualType BlockTy, Stmt *Body);
bool CheckParmsForFunctionDef(FunctionDecl *FD);
void CheckCXXDefaultArguments(FunctionDecl *FD);
void CheckExtraCXXDefaultArguments(Declarator &D);
enum ControlFlowKind { NeverFallThrough = 0, MaybeFallThrough = 1,
AlwaysFallThrough = 2 };
ControlFlowKind CheckFallThrough(Stmt *);
Scope *getNonFieldDeclScope(Scope *S);
/// \name Name lookup
///
/// These routines provide name lookup that is used during semantic
/// analysis to resolve the various kinds of names (identifiers,
/// overloaded operator names, constructor names, etc.) into zero or
/// more declarations within a particular scope. The major entry
/// points are LookupName, which performs unqualified name lookup,
/// and LookupQualifiedName, which performs qualified name lookup.
///
/// All name lookup is performed based on some specific criteria,
/// which specify what names will be visible to name lookup and how
/// far name lookup should work. These criteria are important both
/// for capturing language semantics (certain lookups will ignore
/// certain names, for example) and for performance, since name
/// lookup is often a bottleneck in the compilation of C++. Name
/// lookup criteria is specified via the LookupCriteria enumeration.
///
/// The results of name lookup can vary based on the kind of name
/// lookup performed, the current language, and the translation
/// unit. In C, for example, name lookup will either return nothing
/// (no entity found) or a single declaration. In C++, name lookup
/// can additionally refer to a set of overloaded functions or
/// result in an ambiguity. All of the possible results of name
/// lookup are captured by the LookupResult class, which provides
/// the ability to distinguish among them.
//@{
/// @brief Describes the kind of name lookup to perform.
enum LookupNameKind {
/// Ordinary name lookup, which finds ordinary names (functions,
/// variables, typedefs, etc.) in C and most kinds of names
/// (functions, variables, members, types, etc.) in C++.
LookupOrdinaryName = 0,
/// Tag name lookup, which finds the names of enums, classes,
/// structs, and unions.
LookupTagName,
/// Member name lookup, which finds the names of
/// class/struct/union members.
LookupMemberName,
// Look up of an operator name (e.g., operator+) for use with
// operator overloading. This lookup is similar to ordinary name
// lookup, but will ignore any declarations that are class
// members.
LookupOperatorName,
/// Look up of a name that precedes the '::' scope resolution
/// operator in C++. This lookup completely ignores operator,
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
LookupNestedNameSpecifierName,
/// Look up a namespace name within a C++ using directive or
/// namespace alias definition, ignoring non-namespace names (C++
/// [basic.lookup.udir]p1).
LookupNamespaceName,
/// Look up an ordinary name that is going to be redeclared as a
/// name with linkage. This lookup ignores any declarations that
/// are outside of the current scope unless they have linkage. See
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
LookupRedeclarationWithLinkage,
/// Look up the name of an Objective-C protocol.
LookupObjCProtocolName,
/// Look up the name of an Objective-C implementation
LookupObjCImplementationName,
/// Look up the name of an Objective-C category implementation
LookupObjCCategoryImplName
};
/// @brief Represents the results of name lookup.
///
/// An instance of the LookupResult class captures the results of a
/// single name lookup, which can return no result (nothing found),
/// a single declaration, a set of overloaded functions, or an
/// ambiguity. Use the getKind() method to determine which of these
/// results occurred for a given lookup.
///
/// Any non-ambiguous lookup can be converted into a single
/// (possibly NULL) @c NamedDecl* via a conversion function or the
/// getAsDecl() method. This conversion permits the common-case
/// usage in C and Objective-C where name lookup will always return
/// a single declaration.
struct LookupResult {
/// The kind of entity that is actually stored within the
/// LookupResult object.
enum {
/// First is a single declaration (a NamedDecl*), which may be NULL.
SingleDecl,
/// First is a single declaration (an OverloadedFunctionDecl*).
OverloadedDeclSingleDecl,
/// [First, Last) is an iterator range represented as opaque
/// pointers used to reconstruct IdentifierResolver::iterators.
OverloadedDeclFromIdResolver,
/// [First, Last) is an iterator range represented as opaque
/// pointers used to reconstruct DeclContext::lookup_iterators.
OverloadedDeclFromDeclContext,
/// First is a pointer to a BasePaths structure, which is owned
/// by the LookupResult. Last is non-zero to indicate that the
/// ambiguity is caused by two names found in base class
/// subobjects of different types.
AmbiguousLookupStoresBasePaths,
/// [First, Last) is an iterator range represented as opaque
/// pointers used to reconstruct new'ed Decl*[] array containing
/// found ambiguous decls. LookupResult is owner of this array.
AmbiguousLookupStoresDecls
} StoredKind;
/// The first lookup result, whose contents depend on the kind of
/// lookup result. This may be a NamedDecl* (if StoredKind ==
/// SingleDecl), OverloadedFunctionDecl* (if StoredKind ==
/// OverloadedDeclSingleDecl), the opaque pointer from an
/// IdentifierResolver::iterator (if StoredKind ==
/// OverloadedDeclFromIdResolver), a DeclContext::lookup_iterator
/// (if StoredKind == OverloadedDeclFromDeclContext), or a
/// BasePaths pointer (if StoredKind == AmbiguousLookupStoresBasePaths).
mutable uintptr_t First;
/// The last lookup result, whose contents depend on the kind of
/// lookup result. This may be unused (if StoredKind ==
/// SingleDecl), it may have the same type as First (for
/// overloaded function declarations), or is may be used as a
/// Boolean value (if StoredKind == AmbiguousLookupStoresBasePaths).
mutable uintptr_t Last;
/// Context - The context in which we will build any
/// OverloadedFunctionDecl nodes needed by the conversion to
/// Decl*.
ASTContext *Context;
/// @brief The kind of entity found by name lookup.
enum LookupKind {
/// @brief No entity found met the criteria.
NotFound = 0,
/// @brief Name lookup found a single declaration that met the
/// criteria. getAsDecl will return this declaration.
Found,
/// @brief Name lookup found a set of overloaded functions that
/// met the criteria. getAsDecl will turn this set of overloaded
/// functions into an OverloadedFunctionDecl.
FoundOverloaded,
/// Name lookup results in an ambiguity because multiple
/// entities that meet the lookup criteria were found in
/// subobjects of different types. For example:
/// @code
/// struct A { void f(int); }
/// struct B { void f(double); }
/// struct C : A, B { };
/// void test(C c) {
/// c.f(0); // error: A::f and B::f come from subobjects of different
/// // types. overload resolution is not performed.
/// }
/// @endcode
AmbiguousBaseSubobjectTypes,
/// Name lookup results in an ambiguity because multiple
/// nonstatic entities that meet the lookup criteria were found
/// in different subobjects of the same type. For example:
/// @code
/// struct A { int x; };
/// struct B : A { };
/// struct C : A { };
/// struct D : B, C { };
/// int test(D d) {
/// return d.x; // error: 'x' is found in two A subobjects (of B and C)
/// }
/// @endcode
AmbiguousBaseSubobjects,
/// Name lookup results in an ambiguity because multiple definitions
/// of entity that meet the lookup criteria were found in different
/// declaration contexts.
/// @code
/// namespace A {
/// int i;
/// namespace B { int i; }
/// int test() {
/// using namespace B;
/// return i; // error 'i' is found in namespace A and A::B
/// }
/// }
/// @endcode
AmbiguousReference
};
static LookupResult CreateLookupResult(ASTContext &Context, NamedDecl *D);
static LookupResult CreateLookupResult(ASTContext &Context,
IdentifierResolver::iterator F,
IdentifierResolver::iterator L);
static LookupResult CreateLookupResult(ASTContext &Context,
DeclContext::lookup_iterator F,
DeclContext::lookup_iterator L);
static LookupResult CreateLookupResult(ASTContext &Context, BasePaths *Paths,
bool DifferentSubobjectTypes) {
LookupResult Result;
Result.StoredKind = AmbiguousLookupStoresBasePaths;
Result.First = reinterpret_cast<uintptr_t>(Paths);
Result.Last = DifferentSubobjectTypes? 1 : 0;
Result.Context = &Context;
return Result;
}
template <typename Iterator>
static LookupResult CreateLookupResult(ASTContext &Context,
Iterator B, std::size_t Len) {
NamedDecl ** Array = new NamedDecl*[Len];
for (std::size_t Idx = 0; Idx < Len; ++Idx, ++B)
Array[Idx] = *B;
LookupResult Result;
Result.StoredKind = AmbiguousLookupStoresDecls;
Result.First = reinterpret_cast<uintptr_t>(Array);
Result.Last = reinterpret_cast<uintptr_t>(Array + Len);
Result.Context = &Context;
return Result;
}
LookupKind getKind() const;
/// @brief Determine whether name look found something.
operator bool() const { return getKind() != NotFound; }
/// @brief Determines whether the lookup resulted in an ambiguity.
bool isAmbiguous() const {
return StoredKind == AmbiguousLookupStoresBasePaths ||
StoredKind == AmbiguousLookupStoresDecls;
}
/// @brief Allows conversion of a lookup result into a
/// declaration, with the same behavior as getAsDecl.
operator NamedDecl*() const { return getAsDecl(); }
NamedDecl* getAsDecl() const;
BasePaths *getBasePaths() const;
/// \brief Iterate over the results of name lookup.
///
/// The @c iterator class provides iteration over the results of a
/// non-ambiguous name lookup.
class iterator {
/// The LookupResult structure we're iterating through.
LookupResult *Result;
/// The current position of this iterator within the sequence of
/// results. This value will have the same representation as the
/// @c First field in the LookupResult structure.
mutable uintptr_t Current;
public:
typedef NamedDecl * value_type;
typedef NamedDecl * reference;
typedef NamedDecl * pointer;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
iterator() : Result(0), Current(0) { }
iterator(LookupResult *Res, uintptr_t Cur) : Result(Res), Current(Cur) { }
reference operator*() const;
pointer operator->() const { return **this; }
iterator &operator++();
iterator operator++(int) {
iterator tmp(*this);
++(*this);
return tmp;
}
friend inline bool operator==(iterator const& x, iterator const& y) {
return x.Current == y.Current;
}
friend inline bool operator!=(iterator const& x, iterator const& y) {
return x.Current != y.Current;
}
};
friend class iterator;
iterator begin();
iterator end();
/// \brief Free the memory associated with this lookup.
void Destroy();
};
private:
typedef llvm::SmallVector<LookupResult, 3> LookupResultsVecTy;
std::pair<bool, LookupResult> CppLookupName(Scope *S, DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly);
ObjCMethodDecl *FindMethodInNestedImplementations(
const ObjCInterfaceDecl *IFace,
const Selector &Sel);
public:
/// Determines whether D is a suitable lookup result according to the
/// lookup criteria.
static bool isAcceptableLookupResult(NamedDecl *D, LookupNameKind NameKind,
unsigned IDNS) {
switch (NameKind) {
case Sema::LookupOrdinaryName:
case Sema::LookupTagName:
case Sema::LookupMemberName:
case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping
case Sema::LookupObjCProtocolName:
case Sema::LookupObjCImplementationName:
case Sema::LookupObjCCategoryImplName:
return D->isInIdentifierNamespace(IDNS);
case Sema::LookupOperatorName:
return D->isInIdentifierNamespace(IDNS) &&
!D->getDeclContext()->isRecord();
case Sema::LookupNestedNameSpecifierName:
return isa<TypedefDecl>(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag);
case Sema::LookupNamespaceName:
return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D);
}
assert(false &&
"isAcceptableLookupResult always returns before this point");
return false;
}
LookupResult LookupName(Scope *S, DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly = false,
bool AllowBuiltinCreation = false,
SourceLocation Loc = SourceLocation());
LookupResult LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly = false);
Decl *LookupQualifiedNameWithType(DeclContext *LookupCtx,
DeclarationName Name,
QualType T);
LookupResult LookupParsedName(Scope *S, const CXXScopeSpec *SS,
DeclarationName Name,
LookupNameKind NameKind,
bool RedeclarationOnly = false,
bool AllowBuiltinCreation = false,
SourceLocation Loc = SourceLocation(),
bool EnteringContext = false);
ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II);
ObjCCategoryImplDecl *LookupObjCCategoryImpl(IdentifierInfo *II);
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
QualType T1, QualType T2,
FunctionSet &Functions);
void ArgumentDependentLookup(DeclarationName Name,
Expr **Args, unsigned NumArgs,
FunctionSet &Functions);
void FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
AssociatedNamespaceSet &AssociatedNamespaces,
AssociatedClassSet &AssociatedClasses);
bool DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
SourceLocation NameLoc,
SourceRange LookupRange = SourceRange());
//@}
ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *Id);
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
Scope *S, bool ForRedeclaration,
SourceLocation Loc);
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
Scope *S);
void AddKnownFunctionAttributes(FunctionDecl *FD);
// More parsing and symbol table subroutines.
// Decl attributes - this routine is the top level dispatcher.
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
void ProcessDeclAttributeList(Scope *S, Decl *D, const AttributeList *AttrList);
void WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
bool &IncompleteImpl);
void WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethod,
ObjCMethodDecl *IntfMethod);
NamespaceDecl *GetStdNamespace();
bool isPropertyReadonly(ObjCPropertyDecl *PropertyDecl,
ObjCInterfaceDecl *IDecl);
/// CheckProtocolMethodDefs - This routine checks unimplemented
/// methods declared in protocol, and those referenced by it.
/// \param IDecl - Used for checking for methods which may have been
/// inherited.
void CheckProtocolMethodDefs(SourceLocation ImpLoc,
ObjCProtocolDecl *PDecl,
bool& IncompleteImpl,
const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
ObjCInterfaceDecl *IDecl);
/// CheckImplementationIvars - This routine checks if the instance variables
/// listed in the implelementation match those listed in the interface.
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **Fields, unsigned nIvars,
SourceLocation Loc);
/// ImplMethodsVsClassMethods - This is main routine to warn if any method
/// remains unimplemented in the class or category @implementation.
void ImplMethodsVsClassMethods(ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool IncompleteImpl = false);
/// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
/// true, or false, accordingly.
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
const ObjCMethodDecl *PrevMethod,
bool matchBasedOnSizeAndAlignment = false);
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
/// or protocol against those declared in their implementations.
void MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
const llvm::DenseSet<Selector> &ClsMap,
llvm::DenseSet<Selector> &InsMapSeen,
llvm::DenseSet<Selector> &ClsMapSeen,
ObjCImplDecl* IMPDecl,
ObjCContainerDecl* IDecl,
bool &IncompleteImpl,
bool ImmediateClass);
/// AddInstanceMethodToGlobalPool - All instance methods in a translation
/// unit are added to a global pool. This allows us to efficiently associate
/// a selector with a method declaraation for purposes of typechecking
/// messages sent to "id" (where the class of the object is unknown).
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method);
/// LookupInstanceMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
bool warn=true);
/// LookupFactoryMethodInGlobalPool - Returns the method and warns if
/// there are multiple signatures.
ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R);
/// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method);
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks: SemaStmt.cpp.
public:
virtual OwningStmtResult ActOnExprStmt(FullExprArg Expr);
virtual OwningStmtResult ActOnNullStmt(SourceLocation SemiLoc);
virtual OwningStmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
MultiStmtArg Elts,
bool isStmtExpr);
virtual OwningStmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
SourceLocation StartLoc,
SourceLocation EndLoc);
virtual OwningStmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprArg LHSVal,
SourceLocation DotDotDotLoc, ExprArg RHSVal,
SourceLocation ColonLoc);
virtual void ActOnCaseStmtBody(StmtTy *CaseStmt, StmtArg SubStmt);
virtual OwningStmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
StmtArg SubStmt, Scope *CurScope);
virtual OwningStmtResult ActOnLabelStmt(SourceLocation IdentLoc,
IdentifierInfo *II,
SourceLocation ColonLoc,
StmtArg SubStmt);
virtual OwningStmtResult ActOnIfStmt(SourceLocation IfLoc,
FullExprArg CondVal, StmtArg ThenVal,
SourceLocation ElseLoc, StmtArg ElseVal);
virtual OwningStmtResult ActOnStartOfSwitchStmt(ExprArg Cond);
virtual OwningStmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
StmtArg Switch, StmtArg Body);
virtual OwningStmtResult ActOnWhileStmt(SourceLocation WhileLoc,
FullExprArg Cond, StmtArg Body);
virtual OwningStmtResult ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
SourceLocation WhileLoc,
SourceLocation CondLParen, ExprArg Cond,
SourceLocation CondRParen);
virtual OwningStmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
StmtArg First, ExprArg Second,
ExprArg Third, SourceLocation RParenLoc,
StmtArg Body);
virtual OwningStmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
SourceLocation LParenLoc,
StmtArg First, ExprArg Second,
SourceLocation RParenLoc, StmtArg Body);
virtual OwningStmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
IdentifierInfo *LabelII);
virtual OwningStmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
ExprArg DestExp);
virtual OwningStmtResult ActOnContinueStmt(SourceLocation ContinueLoc,
Scope *CurScope);
virtual OwningStmtResult ActOnBreakStmt(SourceLocation GotoLoc,
Scope *CurScope);
virtual OwningStmtResult ActOnReturnStmt(SourceLocation ReturnLoc,
ExprArg RetValExp);
OwningStmtResult ActOnBlockReturnStmt(SourceLocation ReturnLoc,
Expr *RetValExp);
virtual OwningStmtResult ActOnAsmStmt(SourceLocation AsmLoc,
bool IsSimple,
bool IsVolatile,
unsigned NumOutputs,
unsigned NumInputs,
std::string *Names,
MultiExprArg Constraints,
MultiExprArg Exprs,
ExprArg AsmString,
MultiExprArg Clobbers,
SourceLocation RParenLoc);
virtual OwningStmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParen,
DeclPtrTy Parm, StmtArg Body,
StmtArg CatchList);
virtual OwningStmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc,
StmtArg Body);
virtual OwningStmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc,
StmtArg Try,
StmtArg Catch, StmtArg Finally);
virtual OwningStmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc,
ExprArg Throw,
Scope *CurScope);
virtual OwningStmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
ExprArg SynchExpr,
StmtArg SynchBody);
VarDecl *BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
DeclaratorInfo *DInfo,
IdentifierInfo *Name,
SourceLocation Loc,
SourceRange Range);
virtual DeclPtrTy ActOnExceptionDeclarator(Scope *S, Declarator &D);
virtual OwningStmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
DeclPtrTy ExDecl,
StmtArg HandlerBlock);
virtual OwningStmtResult ActOnCXXTryBlock(SourceLocation TryLoc,
StmtArg TryBlock,
MultiStmtArg Handlers);
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
/// whose result is unused, warn.
void DiagnoseUnusedExprResult(const Stmt *S);
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks: SemaExpr.cpp.
bool DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc);
bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
ObjCMethodDecl *Getter,
SourceLocation Loc);
void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs);
virtual ExpressionEvaluationContext
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext);
virtual void
PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
ExpressionEvaluationContext NewContext);
void MarkDeclarationReferenced(SourceLocation Loc, Decl *D);
// Primary Expressions.
virtual SourceRange getExprRange(ExprTy *E) const;
virtual OwningExprResult ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen,
const CXXScopeSpec *SS = 0,
bool isAddressOfOperand = false);
virtual OwningExprResult ActOnCXXOperatorFunctionIdExpr(Scope *S,
SourceLocation OperatorLoc,
OverloadedOperatorKind Op,
bool HasTrailingLParen,
const CXXScopeSpec &SS,
bool isAddressOfOperand);
virtual OwningExprResult ActOnCXXConversionFunctionExpr(Scope *S,
SourceLocation OperatorLoc,
TypeTy *Ty,
bool HasTrailingLParen,
const CXXScopeSpec &SS,
bool isAddressOfOperand);
OwningExprResult BuildDeclRefExpr(NamedDecl *D, QualType Ty,
SourceLocation Loc, bool TypeDependent,
bool ValueDependent,
const CXXScopeSpec *SS = 0);
VarDecl *BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
llvm::SmallVectorImpl<FieldDecl *> &Path);
OwningExprResult
BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
FieldDecl *Field,
Expr *BaseObjectExpr = 0,
SourceLocation OpLoc = SourceLocation());
OwningExprResult ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
DeclarationName Name,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand = false);
OwningExprResult BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand);
virtual OwningExprResult ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind);
virtual OwningExprResult ActOnNumericConstant(const Token &);
virtual OwningExprResult ActOnCharacterConstant(const Token &);
virtual OwningExprResult ActOnParenExpr(SourceLocation L, SourceLocation R,
ExprArg Val);
virtual OwningExprResult ActOnParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val);
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
virtual OwningExprResult ActOnStringLiteral(const Token *Toks,
unsigned NumToks);
// Binary/Unary Operators. 'Tok' is the token for the operator.
OwningExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc,
unsigned OpcIn,
ExprArg InputArg);
virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg Input);
OwningExprResult CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
bool isSizeOf, SourceRange R);
OwningExprResult CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
bool isSizeOf, SourceRange R);
virtual OwningExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange);
bool CheckAlignOfExpr(Expr *E, SourceLocation OpLoc, const SourceRange &R);
bool CheckSizeOfAlignOfOperand(QualType type, SourceLocation OpLoc,
const SourceRange &R, bool isSizeof);
virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprArg Input);
virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base,
SourceLocation LLoc,
ExprArg Idx,
SourceLocation RLoc);
OwningExprResult BuildMemberReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
DeclarationName MemberName,
DeclPtrTy ImplDecl,
const CXXScopeSpec *SS = 0);
virtual OwningExprResult ActOnMemberReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation MemberLoc,
IdentifierInfo &Member,
DeclPtrTy ImplDecl,
const CXXScopeSpec *SS = 0);
virtual void ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl);
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc);
void BuildBaseOrMemberInitializers(ASTContext &C,
CXXConstructorDecl *Constructor,
CXXBaseOrMemberInitializer **Initializers,
unsigned NumInitializers
);
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
virtual OwningExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
TypeTy *Ty, SourceLocation RParenLoc,
ExprArg Op);
OwningExprResult MaybeConvertParenListExprToParenExpr(Scope *S, ExprArg ME);
OwningExprResult ActOnCastOfParenListExpr(Scope *S, SourceLocation LParenLoc,
SourceLocation RParenLoc, ExprArg E,
QualType Ty);
virtual OwningExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc,
ExprArg Op);
virtual OwningExprResult ActOnInitList(SourceLocation LParenLoc,
MultiExprArg InitList,
SourceLocation RParenLoc);
virtual OwningExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation Loc,
bool GNUSyntax,
OwningExprResult Init);
virtual OwningExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
ExprArg LHS, ExprArg RHS);
OwningExprResult CreateBuiltinBinOp(SourceLocation TokLoc,
unsigned Opc, Expr *lhs, Expr *rhs);
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
virtual OwningExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprArg Cond, ExprArg LHS,
ExprArg RHS);
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
virtual OwningExprResult ActOnAddrLabel(SourceLocation OpLoc,
SourceLocation LabLoc,
IdentifierInfo *LabelII);
virtual OwningExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtArg SubStmt,
SourceLocation RPLoc); // "({..})"
/// __builtin_offsetof(type, a.b[123][456].c)
virtual OwningExprResult ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
TypeTy *Arg1,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc);
// __builtin_types_compatible_p(type1, type2)
virtual OwningExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc);
// __builtin_choose_expr(constExpr, expr1, expr2)
virtual OwningExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
ExprArg cond, ExprArg expr1,
ExprArg expr2, SourceLocation RPLoc);
// __builtin_va_arg(expr, type)
virtual OwningExprResult ActOnVAArg(SourceLocation BuiltinLoc,
ExprArg expr, TypeTy *type,
SourceLocation RPLoc);
// __null
virtual OwningExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started.
virtual void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
virtual void ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope);
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
virtual void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
virtual OwningExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc,
StmtArg Body, Scope *CurScope);
//===---------------------------- C++ Features --------------------------===//
// Act on C++ namespaces
virtual DeclPtrTy ActOnStartNamespaceDef(Scope *S, SourceLocation IdentLoc,
IdentifierInfo *Ident,
SourceLocation LBrace);
virtual void ActOnFinishNamespaceDef(DeclPtrTy Dcl, SourceLocation RBrace);
virtual DeclPtrTy ActOnUsingDirective(Scope *CurScope,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
const CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList);
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
virtual DeclPtrTy ActOnNamespaceAliasDef(Scope *CurScope,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
const CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *Ident);
virtual DeclPtrTy ActOnUsingDeclaration(Scope *CurScope,
SourceLocation UsingLoc,
const CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *TargetName,
OverloadedOperatorKind Op,
AttributeList *AttrList,
bool IsTypeName);
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
virtual void AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
/// InitializeVarWithConstructor - Creates an CXXConstructExpr
/// and sets it as the initializer for the the passed in VarDecl.
bool InitializeVarWithConstructor(VarDecl *VD,
CXXConstructorDecl *Constructor,
QualType DeclInitType,
Expr **Exprs, unsigned NumExprs);
OwningExprResult BuildCXXConstructExpr(QualType DeclInitType,
CXXConstructorDecl *Constructor,
Expr **Exprs, unsigned NumExprs);
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
OwningExprResult BuildCXXConstructExpr(QualType DeclInitType,
CXXConstructorDecl *Constructor,
bool Elidable,
Expr **Exprs, unsigned NumExprs);
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
/// the default expr if needed.
OwningExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
FunctionDecl *FD,
ParmVarDecl *Param);
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
/// constructed variable.
void FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType);
/// DefineImplicitDefaultConstructor - Checks for feasibility of
/// defining this constructor as the default constructor.
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor);
/// DefineImplicitDestructor - Checks for feasibility of
/// defining this destructor as the default destructor.
void DefineImplicitDestructor(SourceLocation CurrentLocation,
CXXDestructorDecl *Destructor);
/// DefineImplicitCopyConstructor - Checks for feasibility of
/// defining this constructor as the copy constructor.
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor,
unsigned TypeQuals);
/// DefineImplicitOverloadedAssign - Checks for feasibility of
/// defining implicit this overloaded assignment operator.
void DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
CXXMethodDecl *MethodDecl);
/// getAssignOperatorMethod - Returns the default copy assignmment operator
/// for the class.
CXXMethodDecl *getAssignOperatorMethod(ParmVarDecl *Decl,
CXXRecordDecl *ClassDecl);
/// MaybeBindToTemporary - If the passed in expression has a record type with
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
/// it simply returns the passed in expression.
OwningExprResult MaybeBindToTemporary(Expr *E);
/// InitializationKind - Represents which kind of C++ initialization
/// [dcl.init] a routine is to perform.
enum InitializationKind {
IK_Direct, ///< Direct initialization
IK_Copy, ///< Copy initialization
IK_Default ///< Default initialization
};
CXXConstructorDecl *
PerformInitializationByConstructor(QualType ClassType,
Expr **Args, unsigned NumArgs,
SourceLocation Loc, SourceRange Range,
DeclarationName InitEntity,
InitializationKind Kind);
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
virtual OwningExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
SourceLocation LAngleBracketLoc,
TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc,
ExprArg E,
SourceLocation RParenLoc);
/// ActOnCXXTypeid - Parse typeid( something ).
virtual OwningExprResult ActOnCXXTypeid(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc);
//// ActOnCXXThis - Parse 'this' pointer.
virtual OwningExprResult ActOnCXXThis(SourceLocation ThisLoc);
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
virtual OwningExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc,
tok::TokenKind Kind);
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
virtual OwningExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
//// ActOnCXXThrow - Parse throw expressions.
virtual OwningExprResult ActOnCXXThrow(SourceLocation OpLoc,
ExprArg expr);
bool CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E);
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
virtual OwningExprResult ActOnCXXTypeConstructExpr(SourceRange TypeRange,
TypeTy *TypeRep,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
/// ActOnCXXNew - Parsed a C++ 'new' expression.
virtual OwningExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
bool ParenTypeId, Declarator &D,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen);
OwningExprResult BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
bool ParenTypeId,
QualType AllocType,
SourceLocation TypeLoc,
SourceRange TypeRange,
ExprArg ArraySize,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen);
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
SourceRange R);
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
bool UseGlobal, QualType AllocType, bool IsArray,
Expr **PlaceArgs, unsigned NumPlaceArgs,
FunctionDecl *&OperatorNew,
FunctionDecl *&OperatorDelete);
bool FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
DeclarationName Name, Expr** Args,
unsigned NumArgs, DeclContext *Ctx,
bool AllowMissing, FunctionDecl *&Operator);
void DeclareGlobalNewDelete();
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
QualType Argument);
/// ActOnCXXDelete - Parsed a C++ 'delete' expression
virtual OwningExprResult ActOnCXXDelete(SourceLocation StartLoc,
bool UseGlobal, bool ArrayForm,
ExprArg Operand);
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
virtual OwningExprResult ActOnCXXConditionDeclarationExpr(Scope *S,
SourceLocation StartLoc,
Declarator &D,
SourceLocation EqualLoc,
ExprArg AssignExprVal);
/// ActOnUnaryTypeTrait - Parsed one of the unary type trait support
/// pseudo-functions.
virtual OwningExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
SourceLocation LParen,
TypeTy *Ty,
SourceLocation RParen);
virtual OwningExprResult
ActOnDestructorReferenceExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
SourceLocation ClassNameLoc,
IdentifierInfo *ClassName,
const CXXScopeSpec *SS = 0);
/// MaybeCreateCXXExprWithTemporaries - If the list of temporaries is
/// non-empty, will create a new CXXExprWithTemporaries expression.
/// Otherwise, just returs the passed in expression.
Expr *MaybeCreateCXXExprWithTemporaries(Expr *SubExpr,
bool ShouldDestroyTemporaries);
virtual OwningExprResult ActOnFinishFullExpr(ExprArg Expr);
bool RequireCompleteDeclContext(const CXXScopeSpec &SS);
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext = false);
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
bool isUnknownSpecialization(const CXXScopeSpec &SS);
/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
/// global scope ('::').
virtual CXXScopeTy *ActOnCXXGlobalScopeSpecifier(Scope *S,
SourceLocation CCLoc);
/// ActOnCXXNestedNameSpecifier - Called during parsing of a
/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
/// we want to resolve "bar::". 'SS' is empty or the previously parsed
/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
/// Returns a CXXScopeTy* object representing the C++ scope.
virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S,
const CXXScopeSpec &SS,
SourceLocation IdLoc,
SourceLocation CCLoc,
IdentifierInfo &II,
bool EnteringContext);
/// ActOnCXXNestedNameSpecifier - Called during parsing of a
/// nested-name-specifier that involves a template-id, e.g.,
/// "foo::bar<int, float>::", and now we need to build a scope
/// specifier. \p SS is empty or the previously parsed nested-name
/// part ("foo::"), \p Type is the already-parsed class template
/// specialization (or other template-id that names a type), \p
/// TypeRange is the source range where the type is located, and \p
/// CCLoc is the location of the trailing '::'.
virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S,
const CXXScopeSpec &SS,
TypeTy *Type,
SourceRange TypeRange,
SourceLocation CCLoc);
/// ActOnCXXEnterMemberScope - Called when a C++ class member accessor ('.'
/// or '->') is parsed. After this method is called, according to
/// [C++ 3.4.5p4], qualified-ids should be looked up in the contexts of both
/// the entire postfix-expression and the scope of the class of the object
/// expression.
/// 'SS' should be an empty CXXScopeSpec to be filled with the class's scope.
virtual OwningExprResult ActOnCXXEnterMemberScope(Scope *S, CXXScopeSpec &SS,
ExprArg Base,
tok::TokenKind OpKind);
/// ActOnCXXExitMemberScope - Called when a postfix-expression that previously
/// invoked ActOnCXXEnterMemberScope() is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterMemberScope. Used to
/// indicate that names should revert to being looked up in the defining
/// scope.
virtual void ActOnCXXExitMemberScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
virtual void ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
virtual void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
/// initializer for the declaration 'Dcl'.
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
virtual void ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl);
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the declaration 'Dcl'.
virtual void ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl);
// ParseObjCStringLiteral - Parse Objective-C string literals.
virtual ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
ExprTy **Strings,
unsigned NumStrings);
Expr *BuildObjCEncodeExpression(SourceLocation AtLoc,
QualType EncodedType,
SourceLocation RParenLoc);
virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncodeLoc,
SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc);
// ParseObjCSelectorExpression - Build selector expression for @selector
virtual ExprResult ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
// ParseObjCProtocolExpression - Build protocol expression for @protocol
virtual ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
//===--------------------------------------------------------------------===//
// C++ Declarations
//
virtual DeclPtrTy ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
SourceLocation LangLoc,
const char *Lang,
unsigned StrSize,
SourceLocation LBraceLoc);
virtual DeclPtrTy ActOnFinishLinkageSpecification(Scope *S,
DeclPtrTy LinkageSpec,
SourceLocation RBraceLoc);
//===--------------------------------------------------------------------===//
// C++ Classes
//
virtual bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS);
virtual DeclPtrTy ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
ExprTy *BitfieldWidth,
ExprTy *Init,
bool Deleted = false);
virtual MemInitResult ActOnMemInitializer(DeclPtrTy ConstructorD,
Scope *S,
const CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
TypeTy *TemplateTypeTy,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc);
MemInitResult BuildMemberInitializer(FieldDecl *Member, Expr **Args,
unsigned NumArgs, SourceLocation IdLoc,
SourceLocation RParenLoc);
MemInitResult BuildBaseInitializer(QualType BaseType, Expr **Args,
unsigned NumArgs, SourceLocation IdLoc,
SourceLocation RParenLoc,
CXXRecordDecl *ClassDecl);
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
virtual void ActOnMemInitializers(DeclPtrTy ConstructorDecl,
SourceLocation ColonLoc,
MemInitTy **MemInits, unsigned NumMemInits);
virtual void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
DeclPtrTy TagDecl,
SourceLocation LBrac,
SourceLocation RBrac);
virtual void ActOnReenterTemplateScope(Scope *S, DeclPtrTy Template);
virtual void ActOnStartDelayedCXXMethodDeclaration(Scope *S,
DeclPtrTy Method);
virtual void ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy Param);
virtual void ActOnFinishDelayedCXXMethodDeclaration(Scope *S,
DeclPtrTy Method);
virtual DeclPtrTy ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
ExprArg AssertExpr,
ExprArg AssertMessageExpr);
virtual DeclPtrTy ActOnFriendDecl(Scope *S,
llvm::PointerUnion<const DeclSpec*,Declarator*> D,
bool IsDefinition);
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
FunctionDecl::StorageClass& SC);
void CheckConstructor(CXXConstructorDecl *Constructor);
QualType CheckDestructorDeclarator(Declarator &D,
FunctionDecl::StorageClass& SC);
void CheckConversionDeclarator(Declarator &D, QualType &R,
FunctionDecl::StorageClass& SC);
DeclPtrTy ActOnConversionDeclarator(CXXConversionDecl *Conversion);
//===--------------------------------------------------------------------===//
// C++ Derived Classes
//
/// ActOnBaseSpecifier - Parsed a base specifier
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
QualType BaseType,
SourceLocation BaseLoc);
virtual BaseResult ActOnBaseSpecifier(DeclPtrTy classdecl,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeTy *basetype, SourceLocation
BaseLoc);
bool AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
unsigned NumBases);
virtual void ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
unsigned NumBases);
bool IsDerivedFrom(QualType Derived, QualType Base);
bool IsDerivedFrom(QualType Derived, QualType Base, BasePaths &Paths);
bool LookupInBases(CXXRecordDecl *Class, const MemberLookupCriteria& Criteria,
BasePaths &Paths);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range);
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
unsigned AmbigiousBaseConvID,
SourceLocation Loc, SourceRange Range,
DeclarationName Name);
std::string getAmbiguousPathsDisplayString(BasePaths &Paths);
/// CheckOverridingFunctionReturnType - Checks whether the return types are
/// covariant, according to C++ [class.virtual]p5.
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
/// spec is a subset of base spec.
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
const CXXMethodDecl *Old);
//===--------------------------------------------------------------------===//
// C++ Access Control
//
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
NamedDecl *PrevMemberDecl,
AccessSpecifier LexicalAS);
const CXXBaseSpecifier *FindInaccessibleBase(QualType Derived, QualType Base,
BasePaths &Paths,
bool NoPrivileges = false);
bool CheckBaseClassAccess(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
BasePaths& Paths, SourceLocation AccessLoc,
DeclarationName Name);
enum AbstractDiagSelID {
AbstractNone = -1,
AbstractReturnType,
AbstractParamType,
AbstractVariableType,
AbstractFieldType
};
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD,
const CXXRecordDecl *CurrentRD = 0);
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
AbstractDiagSelID SelID = AbstractNone,
const CXXRecordDecl *CurrentRD = 0);
//===--------------------------------------------------------------------===//
// C++ Overloaded Operators [C++ 13.5]
//
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
//===--------------------------------------------------------------------===//
// C++ Templates [C++ 14]
//
virtual TemplateNameKind isTemplateName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS,
bool EnteringContext,
TemplateTy &Template);
bool DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
TemplateDecl *AdjustDeclIfTemplate(DeclPtrTy &Decl);
virtual DeclPtrTy ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position);
virtual void ActOnTypeParameterDefault(DeclPtrTy TypeParam,
SourceLocation EqualLoc,
SourceLocation DefaultLoc,
TypeTy *Default);
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
virtual DeclPtrTy ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position);
virtual void ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParam,
SourceLocation EqualLoc,
ExprArg Default);
virtual DeclPtrTy ActOnTemplateTemplateParameter(Scope *S,
SourceLocation TmpLoc,
TemplateParamsTy *Params,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth,
unsigned Position);
virtual void ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParam,
SourceLocation EqualLoc,
ExprArg Default);
virtual TemplateParamsTy *
ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
DeclPtrTy *Params, unsigned NumParams,
SourceLocation RAngleLoc);
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams);
TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
const CXXScopeSpec &SS,
TemplateParameterList **ParamLists,
unsigned NumParamLists);
DeclResult CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, const CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
TemplateParameterList *TemplateParams,
AccessSpecifier AS);
QualType CheckTemplateIdType(TemplateName Template,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceLocation RAngleLoc);
virtual TypeResult
ActOnTemplateIdType(TemplateTy Template, SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation *TemplateArgLocs,
SourceLocation RAngleLoc);
OwningExprResult BuildTemplateIdExpr(TemplateName Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceLocation RAngleLoc);
virtual OwningExprResult ActOnTemplateIdExpr(TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation *TemplateArgLocs,
SourceLocation RAngleLoc);
virtual TemplateTy ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
const IdentifierInfo &Name,
SourceLocation NameLoc,
const CXXScopeSpec &SS);
bool CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
ClassTemplateSpecializationDecl *PrevDecl,
SourceLocation TemplateNameLoc,
SourceRange ScopeSpecifierRange,
bool PartialSpecialization,
bool ExplicitInstantiation);
bool CheckClassTemplatePartialSpecializationArgs(
TemplateParameterList *TemplateParams,
const TemplateArgumentListBuilder &TemplateArgs,
bool &MirrorsPrimaryTemplate);
virtual DeclResult
ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation *TemplateArgLocs,
SourceLocation RAngleLoc,
AttributeList *Attr,
MultiTemplateParamsArg TemplateParameterLists);
virtual DeclPtrTy ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
virtual DeclPtrTy ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D);
virtual DeclResult
ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation *TemplateArgLocs,
SourceLocation RAngleLoc,
AttributeList *Attr);
virtual DeclResult
ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
AttributeList *Attr);
bool CheckTemplateArgumentList(TemplateDecl *Template,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceLocation RAngleLoc,
bool PartialTemplateArgs,
TemplateArgumentListBuilder &Converted);
bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
const TemplateArgument &Arg,
TemplateArgumentListBuilder &Converted);
bool CheckTemplateArgument(TemplateTypeParmDecl *Param, QualType Arg,
SourceLocation ArgLoc);
bool CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
NamedDecl *&Entity);
bool CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member);
bool CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
QualType InstantiatedParamType, Expr *&Arg,
TemplateArgument &Converted);
bool CheckTemplateArgument(TemplateTemplateParmDecl *Param, DeclRefExpr *Arg);
bool TemplateParameterListsAreEqual(TemplateParameterList *New,
TemplateParameterList *Old,
bool Complain,
bool IsTemplateTemplateParm = false,
SourceLocation TemplateArgLoc
= SourceLocation());
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
/// \brief Called when the parser has parsed a C++ typename
/// specifier, e.g., "typename T::type".
///
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
/// \param IdLoc the location of the identifier.
virtual TypeResult
ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
const IdentifierInfo &II, SourceLocation IdLoc);
/// \brief Called when the parser has parsed a C++ typename
/// specifier that ends in a template-id, e.g.,
/// "typename MetaFun::template apply<T1, T2>".
///
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param Ty the type that the typename specifier refers to.
virtual TypeResult
ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
SourceLocation TemplateLoc, TypeTy *Ty);
QualType CheckTypenameType(NestedNameSpecifier *NNS,
const IdentifierInfo &II,
SourceRange Range);
QualType RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
DeclarationName Name);
/// \brief Describes the result of template argument deduction.
///
/// The TemplateDeductionResult enumeration describes the result of
/// template argument deduction, as returned from
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
/// structure provides additional information about the results of
/// template argument deduction, e.g., the deduced template argument
/// list (if successful) or the specific template parameters or
/// deduced arguments that were involved in the failure.
enum TemplateDeductionResult {
/// \brief Template argument deduction was successful.
TDK_Success = 0,
/// \brief Template argument deduction exceeded the maximum template
/// instantiation depth (which has already been diagnosed).
TDK_InstantiationDepth,
/// \brief Template argument deduction did not deduce a value
/// for every template parameter.
TDK_Incomplete,
/// \brief Template argument deduction produced inconsistent
/// deduced values for the given template parameter.
TDK_Inconsistent,
/// \brief Template argument deduction failed due to inconsistent
/// cv-qualifiers on a template parameter type that would
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
/// but were given a non-const "X".
TDK_InconsistentQuals,
/// \brief Substitution of the deduced template argument values
/// resulted in an error.
TDK_SubstitutionFailure,
/// \brief Substitution of the deduced template argument values
/// into a non-deduced context produced a type or value that
/// produces a type that does not match the original template
/// arguments provided.
TDK_NonDeducedMismatch,
/// \brief When performing template argument deduction for a function
/// template, there were too many call arguments.
TDK_TooManyArguments,
/// \brief When performing template argument deduction for a function
/// template, there were too few call arguments.
TDK_TooFewArguments,
/// \brief The explicitly-specified template arguments were not valid
/// template arguments for the given template.
TDK_InvalidExplicitArguments
};
/// \brief Provides information about an attempted template argument
/// deduction, whose success or failure was described by a
/// TemplateDeductionResult value.
class TemplateDeductionInfo {
/// \brief The context in which the template arguments are stored.
ASTContext &Context;
/// \brief The deduced template argument list.
///
TemplateArgumentList *Deduced;
// do not implement these
TemplateDeductionInfo(const TemplateDeductionInfo&);
TemplateDeductionInfo &operator=(const TemplateDeductionInfo&);
public:
TemplateDeductionInfo(ASTContext &Context) : Context(Context), Deduced(0) { }
~TemplateDeductionInfo() {
// FIXME: if (Deduced) Deduced->Destroy(Context);
}
/// \brief Take ownership of the deduced template argument list.
TemplateArgumentList *take() {
TemplateArgumentList *Result = Deduced;
Deduced = 0;
return Result;
}
/// \brief Provide a new template argument list that contains the
/// results of template argument deduction.
void reset(TemplateArgumentList *NewDeduced) {
// FIXME: if (Deduced) Deduced->Destroy(Context);
Deduced = NewDeduced;
}
/// \brief The template parameter to which a template argument
/// deduction failure refers.
///
/// Depending on the result of template argument deduction, this
/// template parameter may have different meanings:
///
/// TDK_Incomplete: this is the first template parameter whose
/// corresponding template argument was not deduced.
///
/// TDK_Inconsistent: this is the template parameter for which
/// two different template argument values were deduced.
TemplateParameter Param;
/// \brief The first template argument to which the template
/// argument deduction failure refers.
///
/// Depending on the result of the template argument deduction,
/// this template argument may have different meanings:
///
/// TDK_Inconsistent: this argument is the first value deduced
/// for the corresponding template parameter.
///
/// TDK_SubstitutionFailure: this argument is the template
/// argument we were instantiating when we encountered an error.
///
/// TDK_NonDeducedMismatch: this is the template argument
/// provided in the source code.
TemplateArgument FirstArg;
/// \brief The second template argument to which the template
/// argument deduction failure refers.
///
/// FIXME: Finish documenting this.
TemplateArgument SecondArg;
};
TemplateDeductionResult
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
TemplateDeductionInfo &Info);
TemplateDeductionResult
SubstituteExplicitTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
const TemplateArgument *ExplicitTemplateArgs,
unsigned NumExplicitTemplateArgs,
llvm::SmallVectorImpl<TemplateArgument> &Deduced,
llvm::SmallVectorImpl<QualType> &ParamTypes,
QualType *FunctionType,
TemplateDeductionInfo &Info);
TemplateDeductionResult
FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
llvm::SmallVectorImpl<TemplateArgument> &Deduced,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
bool HasExplicitTemplateArgs,
const TemplateArgument *ExplicitTemplateArgs,
unsigned NumExplicitTemplateArgs,
Expr **Args, unsigned NumArgs,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
bool HasExplicitTemplateArgs,
const TemplateArgument *ExplicitTemplateArgs,
unsigned NumExplicitTemplateArgs,
QualType ArgFunctionType,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info);
TemplateDeductionResult
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
QualType ToType,
CXXConversionDecl *&Specialization,
TemplateDeductionInfo &Info);
FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
FunctionTemplateDecl *FT2,
bool isCallContext);
void MarkDeducedTemplateParameters(const TemplateArgumentList &TemplateArgs,
llvm::SmallVectorImpl<bool> &Deduced);
//===--------------------------------------------------------------------===//
// C++ Template Instantiation
//
const TemplateArgumentList &getTemplateInstantiationArgs(NamedDecl *D);
/// \brief A template instantiation that is currently in progress.
struct ActiveTemplateInstantiation {
/// \brief The kind of template instantiation we are performing
enum InstantiationKind {
/// We are instantiating a template declaration. The entity is
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
TemplateInstantiation,
/// We are instantiating a default argument for a template
/// parameter. The Entity is the template, and
/// TemplateArgs/NumTemplateArguments provides the template
/// arguments as specified.
/// FIXME: Use a TemplateArgumentList
DefaultTemplateArgumentInstantiation,
/// We are substituting explicit template arguments provided for
/// a function template. The entity is a FunctionTemplateDecl.
ExplicitTemplateArgumentSubstitution,
/// We are substituting template argument determined as part of
/// template argument deduction for either a class template
/// partial specialization or a function template. The
/// Entity is either a ClassTemplatePartialSpecializationDecl or
/// a FunctionTemplateDecl.
DeducedTemplateArgumentSubstitution
} Kind;
/// \brief The point of instantiation within the source code.
SourceLocation PointOfInstantiation;
/// \brief The entity that is being instantiated.
uintptr_t Entity;
// \brief If this the instantiation of a default template
// argument, the list of template arguments.
const TemplateArgument *TemplateArgs;
/// \brief The number of template arguments in TemplateArgs.
unsigned NumTemplateArgs;
/// \brief The source range that covers the construct that cause
/// the instantiation, e.g., the template-id that causes a class
/// template instantiation.
SourceRange InstantiationRange;
ActiveTemplateInstantiation() : Kind(TemplateInstantiation), Entity(0),
TemplateArgs(0), NumTemplateArgs(0) {}
friend bool operator==(const ActiveTemplateInstantiation &X,
const ActiveTemplateInstantiation &Y) {
if (X.Kind != Y.Kind)
return false;
if (X.Entity != Y.Entity)
return false;
switch (X.Kind) {
case TemplateInstantiation:
return true;
case DefaultTemplateArgumentInstantiation:
case ExplicitTemplateArgumentSubstitution:
case DeducedTemplateArgumentSubstitution:
return X.TemplateArgs == Y.TemplateArgs;
}
return true;
}
friend bool operator!=(const ActiveTemplateInstantiation &X,
const ActiveTemplateInstantiation &Y) {
return !(X == Y);
}
};
/// \brief List of active template instantiations.
///
/// This vector is treated as a stack. As one template instantiation
/// requires another template instantiation, additional
/// instantiations are pushed onto the stack up to a
/// user-configurable limit LangOptions::InstantiationDepth.
llvm::SmallVector<ActiveTemplateInstantiation, 16>
ActiveTemplateInstantiations;
/// \brief The last template from which a template instantiation
/// error or warning was produced.
///
/// This value is used to suppress printing of redundant template
/// instantiation backtraces when there are multiple errors in the
/// same instantiation. FIXME: Does this belong in Sema? It's tough
/// to implement it anywhere else.
ActiveTemplateInstantiation LastTemplateInstantiationErrorContext;
/// \brief A stack object to be created when performing template
/// instantiation.
///
/// Construction of an object of type \c InstantiatingTemplate
/// pushes the current instantiation onto the stack of active
/// instantiations. If the size of this stack exceeds the maximum
/// number of recursive template instantiations, construction
/// produces an error and evaluates true.
///
/// Destruction of this object will pop the named instantiation off
/// the stack.
struct InstantiatingTemplate {
/// \brief Note that we are instantiating a class template,
/// function template, or a member thereof.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
Decl *Entity,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
TemplateDecl *Template,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating a default argument in a
/// template-id.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
FunctionTemplateDecl *FunctionTemplate,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
ActiveTemplateInstantiation::InstantiationKind Kind,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we are instantiating as part of template
/// argument deduction for a class template partial
/// specialization.
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
ClassTemplatePartialSpecializationDecl *PartialSpec,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs,
SourceRange InstantiationRange = SourceRange());
/// \brief Note that we have finished instantiating this template.
void Clear();
~InstantiatingTemplate() { Clear(); }
/// \brief Determines whether we have exceeded the maximum
/// recursive template instantiations.
operator bool() const { return Invalid; }
private:
Sema &SemaRef;
bool Invalid;
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
SourceRange InstantiationRange);
InstantiatingTemplate(const InstantiatingTemplate&); // not implemented
InstantiatingTemplate&
operator=(const InstantiatingTemplate&); // not implemented
};
void PrintInstantiationStack();
/// \brief Determines whether we are currently in a context where
/// template argument substitution failures are not considered
/// errors.
///
/// When this routine returns true, the emission of most diagnostics
/// will be suppressed and there will be no local error recovery.
bool isSFINAEContext() const;
/// \brief RAII class used to determine whether SFINAE has
/// trapped any errors that occur during template argument
/// deduction.
class SFINAETrap {
Sema &SemaRef;
unsigned PrevSFINAEErrors;
public:
explicit SFINAETrap(Sema &SemaRef)
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors) { }
~SFINAETrap() { SemaRef.NumSFINAEErrors = PrevSFINAEErrors; }
/// \brief Determine whether any SFINAE errors have been trapped.
bool hasErrorOccurred() const {
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
}
};
/// \brief A stack-allocated class that identifies which local
/// variable declaration instantiations are present in this scope.
///
/// A new instance of this class type will be created whenever we
/// instantiate a new function declaration, which will have its own
/// set of parameter declarations.
class LocalInstantiationScope {
/// \brief Reference to the semantic analysis that is performing
/// this template instantiation.
Sema &SemaRef;
/// \brief A mapping from local declarations that occur
/// within a template to their instantiations.
///
/// This mapping is used during instantiation to keep track of,
/// e.g., function parameter and variable declarations. For example,
/// given:
///
/// \code
/// template<typename T> T add(T x, T y) { return x + y; }
/// \endcode
///
/// when we instantiate add<int>, we will introduce a mapping from
/// the ParmVarDecl for 'x' that occurs in the template to the
/// instantiated ParmVarDecl for 'x'.
llvm::DenseMap<const Decl *, Decl *> LocalDecls;
/// \brief The outer scope, in which contains local variable
/// definitions from some other instantiation (that is not
/// relevant to this particular scope).
LocalInstantiationScope *Outer;
// This class is non-copyable
LocalInstantiationScope(const LocalInstantiationScope &);
LocalInstantiationScope &operator=(const LocalInstantiationScope &);
public:
LocalInstantiationScope(Sema &SemaRef)
: SemaRef(SemaRef), Outer(SemaRef.CurrentInstantiationScope) {
SemaRef.CurrentInstantiationScope = this;
}
~LocalInstantiationScope() {
SemaRef.CurrentInstantiationScope = Outer;
}
Decl *getInstantiationOf(const Decl *D) {
Decl *Result = LocalDecls[D];
assert(Result && "declaration was not instantiated in this scope!");
return Result;
}
VarDecl *getInstantiationOf(const VarDecl *Var) {
return cast<VarDecl>(getInstantiationOf(cast<Decl>(Var)));
}
ParmVarDecl *getInstantiationOf(const ParmVarDecl *Var) {
return cast<ParmVarDecl>(getInstantiationOf(cast<Decl>(Var)));
}
void InstantiatedLocal(const Decl *D, Decl *Inst) {
Decl *&Stored = LocalDecls[D];
assert(!Stored && "Already instantiated this local");
Stored = Inst;
}
};
/// \brief The current instantiation scope used to store local
/// variables.
LocalInstantiationScope *CurrentInstantiationScope;
/// \brief An entity for which implicit template instantiation is required.
///
/// The source location associated with the declaration is the first place in
/// the source code where the declaration was "used". It is not necessarily
/// the point of instantiation (which will be either before or after the
/// namespace-scope declaration that triggered this implicit instantiation),
/// However, it is the location that diagnostics should generally refer to,
/// because users will need to know what code triggered the instantiation.
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
/// \brief The queue of implicit template instantiations that are required
/// but have not yet been performed.
std::deque<PendingImplicitInstantiation> PendingImplicitInstantiations;
void PerformPendingImplicitInstantiations();
QualType SubstType(QualType T, const TemplateArgumentList &TemplateArgs,
SourceLocation Loc, DeclarationName Entity);
OwningExprResult SubstExpr(Expr *E, const TemplateArgumentList &TemplateArgs);
OwningStmtResult SubstStmt(Stmt *S, const TemplateArgumentList &TemplateArgs);
Decl *SubstDecl(Decl *D, DeclContext *Owner,
const TemplateArgumentList &TemplateArgs);
bool
SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
CXXRecordDecl *Pattern,
const TemplateArgumentList &TemplateArgs);
bool
InstantiateTemplatePattern(SourceLocation PointOfInstantiation,
CXXRecordDecl *Pattern);
bool
InstantiateClass(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
const TemplateArgumentList &TemplateArgs,
bool ExplicitInstantiation,
bool Complain = true);
bool
InstantiateClassTemplateSpecialization(
ClassTemplateSpecializationDecl *ClassTemplateSpec,
bool ExplicitInstantiation, bool Complain = true);
void InstantiateClassMembers(SourceLocation PointOfInstantiation,
CXXRecordDecl *Instantiation,
const TemplateArgumentList &TemplateArgs);
void InstantiateClassTemplateSpecializationMembers(
SourceLocation PointOfInstantiation,
ClassTemplateSpecializationDecl *ClassTemplateSpec);
NestedNameSpecifier *
SubstNestedNameSpecifier(NestedNameSpecifier *NNS,
SourceRange Range,
const TemplateArgumentList &TemplateArgs);
TemplateName
SubstTemplateName(TemplateName Name, SourceLocation Loc,
const TemplateArgumentList &TemplateArgs);
TemplateArgument Subst(TemplateArgument Arg,
const TemplateArgumentList &TemplateArgs);
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
FunctionDecl *Function,
bool Recursive = false);
void InstantiateStaticDataMemberDefinition(
SourceLocation PointOfInstantiation,
VarDecl *Var,
bool Recursive = false);
NamedDecl *FindInstantiatedDecl(NamedDecl *D);
// Objective-C declarations.
virtual DeclPtrTy ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
virtual DeclPtrTy ActOnCompatiblityAlias(
SourceLocation AtCompatibilityAliasLoc,
IdentifierInfo *AliasName, SourceLocation AliasLocation,
IdentifierInfo *ClassName, SourceLocation ClassLocation);
void CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &PLoc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList);
virtual DeclPtrTy ActOnStartProtocolInterface(
SourceLocation AtProtoInterfaceLoc,
IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc,
const DeclPtrTy *ProtoRefNames, unsigned NumProtoRefs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
virtual DeclPtrTy ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
SourceLocation EndProtoLoc);
virtual DeclPtrTy ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc);
virtual DeclPtrTy ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CatName,
SourceLocation CatLoc);
virtual DeclPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
IdentifierInfo **IdentList,
unsigned NumElts);
virtual DeclPtrTy ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
const IdentifierLocPair *IdentList,
unsigned NumElts,
AttributeList *attrList);
virtual void FindProtocolDeclaration(bool WarnOnDeclarations,
const IdentifierLocPair *ProtocolId,
unsigned NumProtocols,
llvm::SmallVectorImpl<DeclPtrTy> &Protocols);
/// Ensure attributes are consistent with type.
/// \param [in, out] Attributes The attributes to check; they will
/// be modified to be consistent with \arg PropertyTy.
void CheckObjCPropertyAttributes(QualType PropertyTy,
SourceLocation Loc,
unsigned &Attributes);
void ProcessPropertyDecl(ObjCPropertyDecl *property, ObjCContainerDecl *DC);
void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *Name);
void ComparePropertiesInBaseAndSuper(ObjCInterfaceDecl *IDecl);
void CompareMethodParamsInBaseAndSuper(Decl *IDecl,
ObjCMethodDecl *MethodDecl,
bool IsInstance);
void MergeProtocolPropertiesIntoClass(Decl *CDecl,
DeclPtrTy MergeProtocols);
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID);
void MergeOneProtocolPropertiesIntoClass(Decl *CDecl,
ObjCProtocolDecl *PDecl);
virtual void ActOnAtEnd(SourceLocation AtEndLoc, DeclPtrTy classDecl,
DeclPtrTy *allMethods = 0, unsigned allNum = 0,
DeclPtrTy *allProperties = 0, unsigned pNum = 0,
DeclGroupPtrTy *allTUVars = 0, unsigned tuvNum = 0);
virtual DeclPtrTy ActOnProperty(Scope *S, SourceLocation AtLoc,
FieldDeclarator &FD, ObjCDeclSpec &ODS,
Selector GetterSel, Selector SetterSel,
DeclPtrTy ClassCategory,
bool *OverridingProperty,
tok::ObjCKeywordKind MethodImplKind);
virtual DeclPtrTy ActOnPropertyImplDecl(SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool ImplKind,DeclPtrTy ClassImplDecl,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar);
virtual DeclPtrTy ActOnMethodDeclaration(
SourceLocation BeginLoc, // location of the + or -.
SourceLocation EndLoc, // location of the ; or {.
tok::TokenKind MethodType,
DeclPtrTy ClassDecl, ObjCDeclSpec &ReturnQT, TypeTy *ReturnType,
Selector Sel,
// optional arguments. The number of types/arguments is obtained
// from the Sel.getNumArgs().
ObjCArgInfo *ArgInfo,
llvm::SmallVectorImpl<Declarator> &Cdecls,
AttributeList *AttrList, tok::ObjCKeywordKind MethodImplKind,
bool isVariadic = false);
// Helper method for ActOnClassMethod/ActOnInstanceMethod.
// Will search "local" class/category implementations for a method decl.
// Will also search in class's root looking for instance method.
// Returns 0 if no method is found.
ObjCMethodDecl *LookupPrivateClassMethod(Selector Sel,
ObjCInterfaceDecl *CDecl);
ObjCMethodDecl *LookupPrivateInstanceMethod(Selector Sel,
ObjCInterfaceDecl *ClassDecl);
virtual OwningExprResult ActOnClassPropertyRefExpr(
IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation &receiverNameLoc,
SourceLocation &propertyNameLoc);
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from NumArgs.
virtual ExprResult ActOnClassMessage(
Scope *S,
IdentifierInfo *receivingClassName, Selector Sel, SourceLocation lbrac,
SourceLocation receiverLoc, SourceLocation selectorLoc,SourceLocation rbrac,
ExprTy **ArgExprs, unsigned NumArgs);
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from NumArgs.
virtual ExprResult ActOnInstanceMessage(
ExprTy *receiver, Selector Sel,
SourceLocation lbrac, SourceLocation receiverLoc, SourceLocation rbrac,
ExprTy **ArgExprs, unsigned NumArgs);
/// ActOnPragmaPack - Called on well formed #pragma pack(...).
virtual void ActOnPragmaPack(PragmaPackKind Kind,
IdentifierInfo *Name,
ExprTy *Alignment,
SourceLocation PragmaLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
/// ActOnPragmaUnused - Called on well-formed '#pragma unused'.
virtual void ActOnPragmaUnused(const Token *Identifiers,
unsigned NumIdentifiers, Scope *curScope,
SourceLocation PragmaLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc);
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II);
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
/// ActOnPragmaWeakID - Called on well formed #pragma weak ident.
virtual void ActOnPragmaWeakID(IdentifierInfo* WeakName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc);
/// ActOnPragmaWeakAlias - Called on well formed #pragma weak ident = ident.
virtual void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc);
/// getPragmaPackAlignment() - Return the current alignment as specified by
/// the current #pragma pack directive, or 0 if none is currently active.
unsigned getPragmaPackAlignment() const;
/// FreePackedContext - Deallocate and null out PackContext.
void FreePackedContext();
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
/// cast. If there is already an implicit cast, merge into the existing one.
/// If isLvalue, the result of the cast is an lvalue.
void ImpCastExprToType(Expr *&Expr, QualType Type,
const CastExpr::CastInfo &Info =
CastExpr::CastInfo(CastExpr::CK_Unknown),
bool isLvalue = false);
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
// functions and arrays to their respective pointers (C99 6.3.2.1).
Expr *UsualUnaryConversions(Expr *&expr);
// DefaultFunctionArrayConversion - converts functions and arrays
// to their respective pointers (C99 6.3.2.1).
void DefaultFunctionArrayConversion(Expr *&expr);
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
// do not have a prototype. Integer promotions are performed on each
// argument, and arguments that have type float are promoted to double.
void DefaultArgumentPromotion(Expr *&Expr);
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
enum VariadicCallType {
VariadicFunction,
VariadicBlock,
VariadicMethod
};
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will warn if the resulting type is not a POD type.
bool DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT);
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
// operands and then handles various conversions that are common to binary
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
// routine returns the first non-arithmetic type found. The client is
// responsible for emitting appropriate error diagnostics.
QualType UsualArithmeticConversions(Expr *&lExpr, Expr *&rExpr,
bool isCompAssign = false);
/// AssignConvertType - All of the 'assignment' semantic checks return this
/// enum to indicate whether the assignment was allowed. These checks are
/// done for simple assignments, as well as initialization, return from
/// function, argument passing, etc. The query is phrased in terms of a
/// source and destination type.
enum AssignConvertType {
/// Compatible - the types are compatible according to the standard.
Compatible,
/// PointerToInt - The assignment converts a pointer to an int, which we
/// accept as an extension.
PointerToInt,
/// IntToPointer - The assignment converts an int to a pointer, which we
/// accept as an extension.
IntToPointer,
/// FunctionVoidPointer - The assignment is between a function pointer and
/// void*, which the standard doesn't allow, but we accept as an extension.
FunctionVoidPointer,
/// IncompatiblePointer - The assignment is between two pointers types that
/// are not compatible, but we accept them as an extension.
IncompatiblePointer,
/// IncompatiblePointer - The assignment is between two pointers types which
/// point to integers which have a different sign, but are otherwise identical.
/// This is a subset of the above, but broken out because it's by far the most
/// common case of incompatible pointers.
IncompatiblePointerSign,
/// CompatiblePointerDiscardsQualifiers - The assignment discards
/// c/v/r qualifiers, which we accept as an extension.
CompatiblePointerDiscardsQualifiers,
/// IncompatibleVectors - The assignment is between two vector types that
/// have the same size, which we accept as an extension.
IncompatibleVectors,
/// IntToBlockPointer - The assignment converts an int to a block
/// pointer. We disallow this.
IntToBlockPointer,
/// IncompatibleBlockPointer - The assignment is between two block
/// pointers types that are not compatible.
IncompatibleBlockPointer,
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
/// id type and something else (that is incompatible with it). For example,
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
IncompatibleObjCQualifiedId,
/// Incompatible - We reject this conversion outright, it is invalid to
/// represent it in the AST.
Incompatible
};
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
/// assignment conversion type specified by ConvTy. This returns true if the
/// conversion was invalid or false if the conversion was accepted.
bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, const char *Flavor);
/// CheckAssignmentConstraints - Perform type checking for assignment,
/// argument passing, variable initialization, and function return values.
/// This routine is only used by the following two methods. C99 6.5.16.
AssignConvertType CheckAssignmentConstraints(QualType lhs, QualType rhs);
// CheckSingleAssignmentConstraints - Currently used by
// CheckAssignmentOperands, and ActOnReturnStmt. Prior to type checking,
// this routine performs the default function/array converions.
AssignConvertType CheckSingleAssignmentConstraints(QualType lhs,
Expr *&rExpr);
// \brief If the lhs type is a transparent union, check whether we
// can initialize the transparent union with the given expression.
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType lhs,
Expr *&rExpr);
// Helper function for CheckAssignmentConstraints (C99 6.5.16.1p1)
AssignConvertType CheckPointerTypesForAssignment(QualType lhsType,
QualType rhsType);
// Helper function for CheckAssignmentConstraints involving two
// block pointer types.
AssignConvertType CheckBlockPointerTypesForAssignment(QualType lhsType,
QualType rhsType);
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const char *Flavor,
bool AllowExplicit = false,
bool Elidable = false);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const ImplicitConversionSequence& ICS,
const char *Flavor);
bool PerformImplicitConversion(Expr *&From, QualType ToType,
const StandardConversionSequence& SCS,
const char *Flavor);
/// the following "Check" methods will return a valid/converted QualType
/// or a null QualType (indicating an error diagnostic was issued).
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
QualType InvalidOperands(SourceLocation l, Expr *&lex, Expr *&rex);
QualType CheckPointerToMemberOperands( // C++ 5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isIndirect);
QualType CheckMultiplyDivideOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
QualType CheckRemainderOperands( // C99 6.5.5
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
QualType CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, QualType* CompLHSTy = 0);
QualType CheckSubtractionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation OpLoc, QualType* CompLHSTy = 0);
QualType CheckShiftOperands( // C99 6.5.7
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
QualType CheckCompareOperands( // C99 6.5.8/9
Expr *&lex, Expr *&rex, SourceLocation OpLoc, unsigned Opc, bool isRelational);
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
Expr *&lex, Expr *&rex, SourceLocation OpLoc, bool isCompAssign = false);
QualType CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation OpLoc);
// CheckAssignmentOperands is used for both simple and compound assignment.
// For simple assignment, pass both expressions and a null converted type.
// For compound assignment, pass both expressions and the converted type.
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
Expr *lex, Expr *&rex, SourceLocation OpLoc, QualType convertedType);
QualType CheckCommaOperands( // C99 6.5.17
Expr *lex, Expr *&rex, SourceLocation OpLoc);
QualType CheckConditionalOperands( // C99 6.5.15
Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc);
QualType CXXCheckConditionalOperands( // C++ 5.16
Expr *&cond, Expr *&lhs, Expr *&rhs, SourceLocation questionLoc);
QualType FindCompositePointerType(Expr *&E1, Expr *&E2); // C++ 5.9
/// type checking for vector binary operators.
inline QualType CheckVectorOperands(SourceLocation l, Expr *&lex, Expr *&rex);
inline QualType CheckVectorCompareOperands(Expr *&lex, Expr *&rx,
SourceLocation l, bool isRel);
/// type checking unary operators (subroutines of ActOnUnaryOp).
/// C99 6.5.3.1, 6.5.3.2, 6.5.3.4
QualType CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc,
bool isInc);
QualType CheckAddressOfOperand(Expr *op, SourceLocation OpLoc);
QualType CheckIndirectionOperand(Expr *op, SourceLocation OpLoc);
QualType CheckRealImagOperand(Expr *&Op, SourceLocation OpLoc, bool isReal);
/// type checking primary expressions.
QualType CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
const IdentifierInfo *Comp,
SourceLocation CmpLoc);
/// type checking declaration initializers (C99 6.7.8)
bool CheckInitializerTypes(Expr *&simpleInit_or_initList, QualType &declType,
SourceLocation InitLoc,DeclarationName InitEntity,
bool DirectInit);
bool CheckInitList(InitListExpr *&InitList, QualType &DeclType);
bool CheckForConstantInitializer(Expr *e, QualType t);
bool CheckValueInitialization(QualType Type, SourceLocation Loc);
// type checking C++ declaration initializers (C++ [dcl.init]).
/// ReferenceCompareResult - Expresses the result of comparing two
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
enum ReferenceCompareResult {
/// Ref_Incompatible - The two types are incompatible, so direct
/// reference binding is not possible.
Ref_Incompatible = 0,
/// Ref_Related - The two types are reference-related, which means
/// that their unqualified forms (T1 and T2) are either the same
/// or T1 is a base class of T2.
Ref_Related,
/// Ref_Compatible_With_Added_Qualification - The two types are
/// reference-compatible with added qualification, meaning that
/// they are reference-compatible and the qualifiers on T1 (cv1)
/// are greater than the qualifiers on T2 (cv2).
Ref_Compatible_With_Added_Qualification,
/// Ref_Compatible - The two types are reference-compatible and
/// have equivalent qualifiers (cv1 == cv2).
Ref_Compatible
};
ReferenceCompareResult CompareReferenceRelationship(QualType T1, QualType T2,
bool& DerivedToBase);
bool CheckReferenceInit(Expr *&simpleInit_or_initList, QualType declType,
ImplicitConversionSequence *ICS = 0,
bool SuppressUserConversions = false,
bool AllowExplicit = false,
bool ForceRValue = false);
/// CheckCastTypes - Check type constraints for casting between types under
/// C semantics, or forward to CXXCheckCStyleCast in C++.
bool CheckCastTypes(SourceRange TyRange, QualType CastTy, Expr *&CastExpr,
CastExpr::CastKind &Kind,
CXXMethodDecl *& ConversionDecl,
bool FunctionalStyle = false);
// CheckVectorCast - check type constraints for vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size.
// returns true if the cast is invalid
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty);
// CheckExtVectorCast - check type constraints for extended vectors.
// Since vectors are an extension, there are no C standard reference for this.
// We allow casting between vectors and integer datatypes of the same size,
// or vectors and the element type of that vector.
// returns true if the cast is invalid
bool CheckExtVectorCast(SourceRange R, QualType VectorTy, QualType Ty);
/// CXXCheckCStyleCast - Check constraints of a C-style or function-style
/// cast under C++ semantics.
bool CXXCheckCStyleCast(SourceRange R, QualType CastTy, Expr *&CastExpr,
CastExpr::CastKind &Kind, bool FunctionalStyle,
CXXMethodDecl *&ConversionDecl);
/// CheckMessageArgumentTypes - Check types in an Obj-C message send.
/// \param Method - May be null.
/// \param [out] ReturnType - The return type of the send.
/// \return true iff there were any incompatible types.
bool CheckMessageArgumentTypes(Expr **Args, unsigned NumArgs, Selector Sel,
ObjCMethodDecl *Method, bool isClassMessage,
SourceLocation lbrac, SourceLocation rbrac,
QualType &ReturnType);
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
bool CheckCXXBooleanCondition(Expr *&CondExpr);
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
unsigned NewWidth, bool NewSign,
SourceLocation Loc, unsigned DiagID);
/// Checks that the Objective-C declaration is declared in the global scope.
/// Emits an error and marks the declaration as invalid if it's not declared
/// in the global scope.
bool CheckObjCDeclScope(Decl *D);
void InitBuiltinVaListType();
/// VerifyIntegerConstantExpression - verifies that an expression is an ICE,
/// and reports the appropriate diagnostics. Returns false on success.
/// Can optionally return the value of the expression.
bool VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result = 0);
/// VerifyBitField - verifies that a bit field expression is an ICE and has
/// the correct width, and that the field type is valid.
/// Returns false on success.
/// Can optionally return whether the bit-field is of width 0
bool VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, const Expr *BitWidth,
bool *ZeroWidth = 0);
//===--------------------------------------------------------------------===//
// Extra semantic analysis beyond the C type system
private:
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall);
bool CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall);
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const;
bool CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall);
bool CheckObjCString(Expr *Arg);
Action::OwningExprResult CheckBuiltinFunctionCall(unsigned BuiltinID,
CallExpr *TheCall);
bool SemaBuiltinVAStart(CallExpr *TheCall);
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
bool SemaBuiltinStackAddress(CallExpr *TheCall);
public:
// Used by C++ template instantiation.
Action::OwningExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
private:
bool SemaBuiltinPrefetch(CallExpr *TheCall);
bool SemaBuiltinObjectSize(CallExpr *TheCall);
bool SemaBuiltinLongjmp(CallExpr *TheCall);
bool SemaBuiltinAtomicOverloaded(CallExpr *TheCall);
bool SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
bool HasVAListArg, unsigned format_idx,
unsigned firstDataArg);
void CheckPrintfString(const StringLiteral *FExpr, const Expr *OrigFormatExpr,
const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg);
void CheckNonNullArguments(const NonNullAttr *NonNull,
const CallExpr *TheCall);
void CheckPrintfArguments(const CallExpr *TheCall, bool HasVAListArg,
unsigned format_idx, unsigned firstDataArg);
void CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc);
void CheckFloatComparison(SourceLocation loc, Expr* lex, Expr* rex);
};
//===--------------------------------------------------------------------===//
// Typed version of Parser::ExprArg (smart pointer for wrapping Expr pointers).
template <typename T>
class ExprOwningPtr : public Action::ExprArg {
public:
ExprOwningPtr(Sema *S, T *expr) : Action::ExprArg(*S, expr) {}
void reset(T* p) { Action::ExprArg::operator=(p); }
T* get() const { return static_cast<T*>(Action::ExprArg::get()); }
T* take() { return static_cast<T*>(Action::ExprArg::take()); }
T* release() { return take(); }
T& operator*() const { return *get(); }
T* operator->() const { return get(); }
};
} // end namespace clang
#endif