blob: bf04042ef8a991d56f204dbf7799e74ad96ad7d7 [file] [log] [blame]
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Designator.h"
#include "clang/Parse/Scope.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
if (Ty->isFunctionType())
ImpCastExprToType(E, Context.getPointerType(Ty));
else if (Ty->isArrayType()) {
// In C90 mode, arrays only promote to pointers if the array expression is
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
// type 'array of type' is converted to an expression that has type 'pointer
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
// that has type 'array of type' ...". The relevant change is "an lvalue"
// (C90) to "an expression" (C99).
//
// C++ 4.2p1:
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
E->isLvalue(Context) == Expr::LV_Valid)
ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
}
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
ImpCastExprToType(Expr, Context.IntTy);
else
DefaultFunctionArrayConversion(Expr);
return Expr;
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (const BuiltinType *BT = Ty->getAsBuiltinType())
if (BT->getKind() == BuiltinType::Float)
return ImpCastExprToType(Expr, Context.DoubleTy);
UsualUnaryConversions(Expr);
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
bool isCompAssign) {
if (!isCompAssign) {
UsualUnaryConversions(lhsExpr);
UsualUnaryConversions(rhsExpr);
}
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhs =
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
QualType rhs =
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
QualType destType = UsualArithmeticConversionsType(lhs, rhs);
if (!isCompAssign) {
ImpCastExprToType(lhsExpr, destType);
ImpCastExprToType(rhsExpr, destType);
}
return destType;
}
QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
// Perform the usual unary conversions. We do this early so that
// integral promotions to "int" can allow us to exit early, in the
// lhs == rhs check. Also, for conversion purposes, we ignore any
// qualifiers. For example, "const float" and "float" are
// equivalent.
if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
else lhs = lhs.getUnqualifiedType();
if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
else rhs = rhs.getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
if (lhs->isComplexType() || rhs->isComplexType()) {
// if we have an integer operand, the result is the complex type.
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
// convert the rhs to the lhs complex type.
return lhs;
}
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
// convert the lhs to the rhs complex type.
return rhs;
}
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
int result = Context.getFloatingTypeOrder(lhs, rhs);
if (result > 0) { // The left side is bigger, convert rhs.
rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
} else if (result < 0) { // The right side is bigger, convert lhs.
lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
}
// At this point, lhs and rhs have the same rank/size. Now, make sure the
// domains match. This is a requirement for our implementation, C99
// does not require this promotion.
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
return rhs;
} else { // handle "_Complex double, double".
return lhs;
}
}
return lhs; // The domain/size match exactly.
}
// Now handle "real" floating types (i.e. float, double, long double).
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
// if we have an integer operand, the result is the real floating type.
if (rhs->isIntegerType()) {
// convert rhs to the lhs floating point type.
return lhs;
}
if (rhs->isComplexIntegerType()) {
// convert rhs to the complex floating point type.
return Context.getComplexType(lhs);
}
if (lhs->isIntegerType()) {
// convert lhs to the rhs floating point type.
return rhs;
}
if (lhs->isComplexIntegerType()) {
// convert lhs to the complex floating point type.
return Context.getComplexType(rhs);
}
// We have two real floating types, float/complex combos were handled above.
// Convert the smaller operand to the bigger result.
int result = Context.getFloatingTypeOrder(lhs, rhs);
if (result > 0) { // convert the rhs
return lhs;
}
if (result < 0) { // convert the lhs
return rhs;
}
assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
}
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
// Handle GCC complex int extension.
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
if (lhsComplexInt && rhsComplexInt) {
if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
rhsComplexInt->getElementType()) >= 0) {
// convert the rhs
return lhs;
}
return rhs;
} else if (lhsComplexInt && rhs->isIntegerType()) {
// convert the rhs to the lhs complex type.
return lhs;
} else if (rhsComplexInt && lhs->isIntegerType()) {
// convert the lhs to the rhs complex type.
return rhs;
}
}
// Finally, we have two differing integer types.
// The rules for this case are in C99 6.3.1.8
int compare = Context.getIntegerTypeOrder(lhs, rhs);
bool lhsSigned = lhs->isSignedIntegerType(),
rhsSigned = rhs->isSignedIntegerType();
QualType destType;
if (lhsSigned == rhsSigned) {
// Same signedness; use the higher-ranked type
destType = compare >= 0 ? lhs : rhs;
} else if (compare != (lhsSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
destType = lhsSigned ? rhs : lhs;
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
destType = lhsSigned ? lhs : rhs;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
}
return destType;
}
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
Action::ExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
assert(NumStringToks && "Must have at least one string!");
StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
if (Literal.hadError)
return ExprResult(true);
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
// Verify that pascal strings aren't too large.
if (Literal.Pascal && Literal.GetStringLength() > 256)
return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
<< SourceRange(StringToks[0].getLocation(),
StringToks[NumStringToks-1].getLocation());
QualType StrTy = Context.CharTy;
if (Literal.AnyWide) StrTy = Context.getWCharType();
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus)
StrTy.addConst();
// Get an array type for the string, according to C99 6.4.5. This includes
// the nul terminator character as well as the string length for pascal
// strings.
StrTy = Context.getConstantArrayType(StrTy,
llvm::APInt(32, Literal.GetStringLength()+1),
ArrayType::Normal, 0);
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
Literal.AnyWide, StrTy,
StringToks[0].getLocation(),
StringToks[NumStringToks-1].getLocation());
}
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
/// variables defined outside the block) or false if this is not needed (e.g.
/// for values inside the block or for globals).
///
/// FIXME: This will create BlockDeclRefExprs for global variables,
/// function references, etc which is suboptimal :) and breaks
/// things like "integer constant expression" tests.
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
ValueDecl *VD) {
// If the value is defined inside the block, we couldn't snapshot it even if
// we wanted to.
if (CurBlock->TheDecl == VD->getDeclContext())
return false;
// If this is an enum constant or function, it is constant, don't snapshot.
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
return false;
// If this is a reference to an extern, static, or global variable, no need to
// snapshot it.
// FIXME: What about 'const' variables in C++?
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
return Var->hasLocalStorage();
return true;
}
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
/// identifier is used in a function call context.
/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
/// class or namespace that the identifier must be a member of.
Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen,
const CXXScopeSpec *SS) {
return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
}
/// BuildDeclRefExpr - Build either a DeclRefExpr or a
/// QualifiedDeclRefExpr based on whether or not SS is a
/// nested-name-specifier.
DeclRefExpr *Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
bool TypeDependent, bool ValueDependent,
const CXXScopeSpec *SS) {
if (SS && !SS->isEmpty())
return new QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent,
SS->getRange().getBegin());
else
return new DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
}
/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
/// variable corresponding to the anonymous union or struct whose type
/// is Record.
static ScopedDecl *getObjectForAnonymousRecordDecl(RecordDecl *Record) {
assert(Record->isAnonymousStructOrUnion() &&
"Record must be an anonymous struct or union!");
// FIXME: Once ScopedDecls are directly linked together, this will
// be an O(1) operation rather than a slow walk through DeclContext's
// vector (which itself will be eliminated). DeclGroups might make
// this even better.
DeclContext *Ctx = Record->getDeclContext();
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
DEnd = Ctx->decls_end();
D != DEnd; ++D) {
if (*D == Record) {
// The object for the anonymous struct/union directly
// follows its type in the list of declarations.
++D;
assert(D != DEnd && "Missing object for anonymous record");
assert(!cast<ScopedDecl>(*D)->getDeclName() && "Decl should be unnamed");
return *D;
}
}
assert(false && "Missing object for anonymous record");
return 0;
}
Sema::ExprResult
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
FieldDecl *Field,
Expr *BaseObjectExpr,
SourceLocation OpLoc) {
assert(Field->getDeclContext()->isRecord() &&
cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
&& "Field must be stored inside an anonymous struct or union");
// Construct the sequence of field member references
// we'll have to perform to get to the field in the anonymous
// union/struct. The list of members is built from the field
// outward, so traverse it backwards to go from an object in
// the current context to the field we found.
llvm::SmallVector<FieldDecl *, 4> AnonFields;
AnonFields.push_back(Field);
VarDecl *BaseObject = 0;
DeclContext *Ctx = Field->getDeclContext();
do {
RecordDecl *Record = cast<RecordDecl>(Ctx);
ScopedDecl *AnonObject = getObjectForAnonymousRecordDecl(Record);
if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
AnonFields.push_back(AnonField);
else {
BaseObject = cast<VarDecl>(AnonObject);
break;
}
Ctx = Ctx->getParent();
} while (Ctx->isRecord() &&
cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
// Build the expression that refers to the base object, from
// which we will build a sequence of member references to each
// of the anonymous union objects and, eventually, the field we
// found via name lookup.
bool BaseObjectIsPointer = false;
unsigned ExtraQuals = 0;
if (BaseObject) {
// BaseObject is an anonymous struct/union variable (and is,
// therefore, not part of another non-anonymous record).
delete BaseObjectExpr;
BaseObjectExpr = new DeclRefExpr(BaseObject, BaseObject->getType(),
SourceLocation());
ExtraQuals
= Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
} else if (BaseObjectExpr) {
// The caller provided the base object expression. Determine
// whether its a pointer and whether it adds any qualifiers to the
// anonymous struct/union fields we're looking into.
QualType ObjectType = BaseObjectExpr->getType();
if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
BaseObjectIsPointer = true;
ObjectType = ObjectPtr->getPointeeType();
}
ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
} else {
// We've found a member of an anonymous struct/union that is
// inside a non-anonymous struct/union, so in a well-formed
// program our base object expression is "this".
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (!MD->isStatic()) {
QualType AnonFieldType
= Context.getTagDeclType(
cast<RecordDecl>(AnonFields.back()->getDeclContext()));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(AnonFieldType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, AnonFieldType)) {
// Our base object expression is "this".
BaseObjectExpr = new CXXThisExpr(SourceLocation(),
MD->getThisType(Context));
BaseObjectIsPointer = true;
}
} else {
return Diag(Loc, diag::err_invalid_member_use_in_static_method)
<< Field->getDeclName();
}
ExtraQuals = MD->getTypeQualifiers();
}
if (!BaseObjectExpr)
return Diag(Loc, diag::err_invalid_non_static_member_use)
<< Field->getDeclName();
}
// Build the implicit member references to the field of the
// anonymous struct/union.
Expr *Result = BaseObjectExpr;
for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
FI != FIEnd; ++FI) {
QualType MemberType = (*FI)->getType();
if (!(*FI)->isMutable()) {
unsigned combinedQualifiers
= MemberType.getCVRQualifiers() | ExtraQuals;
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
Result = new MemberExpr(Result, BaseObjectIsPointer, *FI,
OpLoc, MemberType);
BaseObjectIsPointer = false;
ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
OpLoc = SourceLocation();
}
return Result;
}
/// ActOnDeclarationNameExpr - The parser has read some kind of name
/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
/// performs lookup on that name and returns an expression that refers
/// to that name. This routine isn't directly called from the parser,
/// because the parser doesn't know about DeclarationName. Rather,
/// this routine is called by ActOnIdentifierExpr,
/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
/// which form the DeclarationName from the corresponding syntactic
/// forms.
///
/// HasTrailingLParen indicates whether this identifier is used in a
/// function call context. LookupCtx is only used for a C++
/// qualified-id (foo::bar) to indicate the class or namespace that
/// the identifier must be a member of.
///
/// If ForceResolution is true, then we will attempt to resolve the
/// name even if it looks like a dependent name. This option is off by
/// default.
Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
DeclarationName Name,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool ForceResolution) {
if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
HasTrailingLParen && !SS && !ForceResolution) {
// We've seen something of the form
// identifier(
// and we are in a template, so it is likely that 's' is a
// dependent name. However, we won't know until we've parsed all
// of the call arguments. So, build a CXXDependentNameExpr node
// to represent this name. Then, if it turns out that none of the
// arguments are type-dependent, we'll force the resolution of the
// dependent name at that point.
return new CXXDependentNameExpr(Name.getAsIdentifierInfo(),
Context.DependentTy, Loc);
}
// Could be enum-constant, value decl, instance variable, etc.
Decl *D;
if (SS && !SS->isEmpty()) {
DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
if (DC == 0)
return true;
D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
} else
D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
// If this reference is in an Objective-C method, then ivar lookup happens as
// well.
IdentifierInfo *II = Name.getAsIdentifierInfo();
if (II && getCurMethodDecl()) {
ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
// There are two cases to handle here. 1) scoped lookup could have failed,
// in which case we should look for an ivar. 2) scoped lookup could have
// found a decl, but that decl is outside the current method (i.e. a global
// variable). In these two cases, we do a lookup for an ivar with this
// name, if the lookup suceeds, we replace it our current decl.
if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
// FIXME: This should use a new expr for a direct reference, don't turn
// this into Self->ivar, just return a BareIVarExpr or something.
IdentifierInfo &II = Context.Idents.get("self");
ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), Loc,
static_cast<Expr*>(SelfExpr.Val), true, true);
Context.setFieldDecl(IFace, IV, MRef);
return MRef;
}
}
// Needed to implement property "super.method" notation.
if (SD == 0 && II->isStr("super")) {
QualType T = Context.getPointerType(Context.getObjCInterfaceType(
getCurMethodDecl()->getClassInterface()));
return new ObjCSuperExpr(Loc, T);
}
}
if (D == 0) {
// Otherwise, this could be an implicitly declared function reference (legal
// in C90, extension in C99).
if (HasTrailingLParen && II &&
!getLangOptions().CPlusPlus) // Not in C++.
D = ImplicitlyDefineFunction(Loc, *II, S);
else {
// If this name wasn't predeclared and if this is not a function call,
// diagnose the problem.
if (SS && !SS->isEmpty())
return Diag(Loc, diag::err_typecheck_no_member)
<< Name << SS->getRange();
else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
else
return Diag(Loc, diag::err_undeclared_var_use) << Name;
}
}
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(Loc, FD);
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (!MD->isStatic()) {
// C++ [class.mfct.nonstatic]p2:
// [...] if name lookup (3.4.1) resolves the name in the
// id-expression to a nonstatic nontype member of class X or of
// a base class of X, the id-expression is transformed into a
// class member access expression (5.2.5) using (*this) (9.3.2)
// as the postfix-expression to the left of the '.' operator.
DeclContext *Ctx = 0;
QualType MemberType;
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
Ctx = FD->getDeclContext();
MemberType = FD->getType();
if (const ReferenceType *RefType = MemberType->getAsReferenceType())
MemberType = RefType->getPointeeType();
else if (!FD->isMutable()) {
unsigned combinedQualifiers
= MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (!Method->isStatic()) {
Ctx = Method->getParent();
MemberType = Method->getType();
}
} else if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(D)) {
for (OverloadedFunctionDecl::function_iterator
Func = Ovl->function_begin(),
FuncEnd = Ovl->function_end();
Func != FuncEnd; ++Func) {
if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
if (!DMethod->isStatic()) {
Ctx = Ovl->getDeclContext();
MemberType = Context.OverloadTy;
break;
}
}
}
if (Ctx && Ctx->isRecord()) {
QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(CtxType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, CtxType)) {
// Build the implicit member access expression.
Expr *This = new CXXThisExpr(SourceLocation(),
MD->getThisType(Context));
return new MemberExpr(This, true, cast<NamedDecl>(D),
SourceLocation(), MemberType);
}
}
}
}
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (MD->isStatic())
// "invalid use of member 'x' in static member function"
return Diag(Loc, diag::err_invalid_member_use_in_static_method)
<< FD->getDeclName();
}
// Any other ways we could have found the field in a well-formed
// program would have been turned into implicit member expressions
// above.
return Diag(Loc, diag::err_invalid_non_static_member_use)
<< FD->getDeclName();
}
if (isa<TypedefDecl>(D))
return Diag(Loc, diag::err_unexpected_typedef) << Name;
if (isa<ObjCInterfaceDecl>(D))
return Diag(Loc, diag::err_unexpected_interface) << Name;
if (isa<NamespaceDecl>(D))
return Diag(Loc, diag::err_unexpected_namespace) << Name;
// Make the DeclRefExpr or BlockDeclRefExpr for the decl.
if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc, false, false, SS);
ValueDecl *VD = cast<ValueDecl>(D);
// check if referencing an identifier with __attribute__((deprecated)).
if (VD->getAttr<DeprecatedAttr>())
Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
Scope *CheckS = S;
while (CheckS) {
if (CheckS->isWithinElse() &&
CheckS->getControlParent()->isDeclScope(Var)) {
if (Var->getType()->isBooleanType())
Diag(Loc, diag::warn_value_always_false) << Var->getDeclName();
else
Diag(Loc, diag::warn_value_always_zero) << Var->getDeclName();
break;
}
// Move up one more control parent to check again.
CheckS = CheckS->getControlParent();
if (CheckS)
CheckS = CheckS->getParent();
}
}
}
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return true;
// If the identifier reference is inside a block, and it refers to a value
// that is outside the block, create a BlockDeclRefExpr instead of a
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
// the block is formed.
//
// We do not do this for things like enum constants, global variables, etc,
// as they do not get snapshotted.
//
if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
// The BlocksAttr indicates the variable is bound by-reference.
if (VD->getAttr<BlocksAttr>())
return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
Loc, true);
// Variable will be bound by-copy, make it const within the closure.
VD->getType().addConst();
return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
Loc, false);
}
// If this reference is not in a block or if the referenced variable is
// within the block, create a normal DeclRefExpr.
bool TypeDependent = false;
bool ValueDependent = false;
if (getLangOptions().CPlusPlus) {
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// - an identifier that was declared with a dependent type,
if (VD->getType()->isDependentType())
TypeDependent = true;
// - FIXME: a template-id that is dependent,
// - a conversion-function-id that specifies a dependent type,
else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
Name.getCXXNameType()->isDependentType())
TypeDependent = true;
// - a nested-name-specifier that contains a class-name that
// names a dependent type.
else if (SS && !SS->isEmpty()) {
for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
DC; DC = DC->getParent()) {
// FIXME: could stop early at namespace scope.
if (DC->isRecord()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
if (Context.getTypeDeclType(Record)->isDependentType()) {
TypeDependent = true;
break;
}
}
}
}
// C++ [temp.dep.constexpr]p2:
//
// An identifier is value-dependent if it is:
// - a name declared with a dependent type,
if (TypeDependent)
ValueDependent = true;
// - the name of a non-type template parameter,
else if (isa<NonTypeTemplateParmDecl>(VD))
ValueDependent = true;
// - a constant with integral or enumeration type and is
// initialized with an expression that is value-dependent
// (FIXME!).
}
return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
TypeDependent, ValueDependent, SS);
}
Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind) {
PredefinedExpr::IdentType IT;
switch (Kind) {
default: assert(0 && "Unknown simple primary expr!");
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
}
// Pre-defined identifiers are of type char[x], where x is the length of the
// string.
unsigned Length;
if (FunctionDecl *FD = getCurFunctionDecl())
Length = FD->getIdentifier()->getLength();
else if (ObjCMethodDecl *MD = getCurMethodDecl())
Length = MD->getSynthesizedMethodSize();
else {
Diag(Loc, diag::ext_predef_outside_function);
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
}
llvm::APInt LengthI(32, Length + 1);
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
return new PredefinedExpr(Loc, ResTy, IT);
}
Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
CharBuffer.resize(Tok.getLength());
const char *ThisTokBegin = &CharBuffer[0];
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError())
return ExprResult(true);
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
Tok.getLocation());
}
Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
Context.IntTy,
Tok.getLocation()));
}
llvm::SmallString<512> IntegerBuffer;
// Add padding so that NumericLiteralParser can overread by one character.
IntegerBuffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &IntegerBuffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError)
return ExprResult(true);
Expr *Res;
if (Literal.isFloatingLiteral()) {
QualType Ty;
if (Literal.isFloat)
Ty = Context.FloatTy;
else if (!Literal.isLong)
Ty = Context.DoubleTy;
else
Ty = Context.LongDoubleTy;
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
// isExact will be set by GetFloatValue().
bool isExact = false;
Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
Ty, Tok.getLocation());
} else if (!Literal.isIntegerLiteral()) {
return ExprResult(true);
} else {
QualType Ty;
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Literal.isLongLong)
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
Diag(Tok.getLocation(), diag::warn_integer_too_large);
Ty = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
unsigned Width = 0;
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize = Context.Target.getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
Ty = Context.IntTy;
else if (AllowUnsigned)
Ty = Context.UnsignedIntTy;
Width = IntSize;
}
}
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
unsigned LongSize = Context.Target.getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
Ty = Context.LongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongTy;
Width = LongSize;
}
}
// Finally, check long long if needed.
if (Ty.isNull()) {
unsigned LongLongSize = Context.Target.getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
Width = LongLongSize;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
Width = Context.Target.getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
ResultVal.trunc(Width);
}
Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary)
Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
return Res;
}
Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
ExprTy *Val) {
Expr *E = (Expr *)Val;
assert((E != 0) && "ActOnParenExpr() missing expr");
return new ParenExpr(L, R, E);
}
/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc,
const SourceRange &ExprRange,
bool isSizeof) {
// C99 6.5.3.4p1:
if (isa<FunctionType>(exprType) && isSizeof)
// alignof(function) is allowed.
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
else if (exprType->isVoidType())
Diag(OpLoc, diag::ext_sizeof_void_type)
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
else if (exprType->isIncompleteType())
return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
diag::err_alignof_incomplete_type)
<< exprType << ExprRange;
return false;
}
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
/// the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
Action::ExprResult
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return true;
QualType ArgTy;
SourceRange Range;
if (isType) {
ArgTy = QualType::getFromOpaquePtr(TyOrEx);
Range = ArgRange;
} else {
// Get the end location.
Expr *ArgEx = (Expr *)TyOrEx;
Range = ArgEx->getSourceRange();
ArgTy = ArgEx->getType();
}
// Verify that the operand is valid.
if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
return true;
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
OpLoc, Range.getEnd());
}
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
DefaultFunctionArrayConversion(V);
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAsComplexType())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V->getType()->isArithmeticType())
return V->getType();
// Reject anything else.
Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
return QualType();
}
Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprTy *Input) {
Expr *Arg = (Expr *)Input;
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
}
if (getLangOptions().CPlusPlus &&
(Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
// Which overloaded operator?
OverloadedOperatorKind OverOp =
(Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
// C++ [over.inc]p1:
//
// [...] If the function is a member function with one
// parameter (which shall be of type int) or a non-member
// function with two parameters (the second of which shall be
// of type int), it defines the postfix increment operator ++
// for objects of that type. When the postfix increment is
// called as a result of using the ++ operator, the int
// argument will have value zero.
Expr *Args[2] = {
Arg,
new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
/*isSigned=*/true),
Context.IntTy, SourceLocation())
};
// Build the candidate set for overloading
OverloadCandidateSet CandidateSet;
AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(Arg, Method))
return true;
} else {
// Convert the arguments.
if (PerformCopyInitialization(Arg,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
"passing"))
return true;
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
<< UnaryOperator::getOpcodeStr(Opc)
<< Arg->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
Opc == UnaryOperator::PostInc);
if (result.isNull())
return true;
return new UnaryOperator(Arg, Opc, result, OpLoc);
}
Action::ExprResult Sema::
ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
ExprTy *Idx, SourceLocation RLoc) {
Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
if (getLangOptions().CPlusPlus &&
(LHSExp->getType()->isRecordType() ||
LHSExp->getType()->isEnumeralType() ||
RHSExp->getType()->isRecordType() ||
RHSExp->getType()->isEnumeralType())) {
// Add the appropriate overloaded operators (C++ [over.match.oper])
// to the candidate set.
OverloadCandidateSet CandidateSet;
Expr *Args[2] = { LHSExp, RHSExp };
AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(LHSExp, Method) ||
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
} else {
// Convert the arguments.
if (PerformCopyInitialization(LHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing") ||
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(1)->getType(),
"passing"))
return true;
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
"passing") ||
PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
"passing"))
return true;
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(LLoc, diag::err_ovl_ambiguous_oper)
<< "[]"
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
// Perform default conversions.
DefaultFunctionArrayConversion(LHSExp);
DefaultFunctionArrayConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (const PointerType *PTy = LHSTy->getAsPointerType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
// FIXME: need to deal with const...
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
// FIXME: need to deal with const...
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
// Component access limited to variables (reject vec4.rg[1]).
if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
!isa<ExtVectorElementExpr>(BaseExpr))
return Diag(LLoc, diag::err_ext_vector_component_access)
<< SourceRange(LLoc, RLoc);
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else {
return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
<< RHSExp->getSourceRange();
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType())
return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
<< IndexExpr->getSourceRange();
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
// the following check catches trying to index a pointer to a function (e.g.
// void (*)(int)) and pointers to incomplete types. Functions are not
// objects in C99.
if (!ResultType->isObjectType())
return Diag(BaseExpr->getLocStart(),
diag::err_typecheck_subscript_not_object)
<< BaseExpr->getType() << BaseExpr->getSourceRange();
return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
}
QualType Sema::
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &CompName, SourceLocation CompLoc) {
const ExtVectorType *vecType = baseType->getAsExtVectorType();
// This flag determines whether or not the component is to be treated as a
// special name, or a regular GLSL-style component access.
bool SpecialComponent = false;
// The vector accessor can't exceed the number of elements.
const char *compStr = CompName.getName();
if (strlen(compStr) > vecType->getNumElements()) {
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
<< baseType << SourceRange(CompLoc);
return QualType();
}
// Check that we've found one of the special components, or that the component
// names must come from the same set.
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
!strcmp(compStr, "e") || !strcmp(compStr, "o")) {
SpecialComponent = true;
} else if (vecType->getPointAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
} else if (vecType->getColorAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
} else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
}
if (!SpecialComponent && *compStr) {
// We didn't get to the end of the string. This means the component names
// didn't come from the same set *or* we encountered an illegal name.
Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
<< std::string(compStr,compStr+1) << SourceRange(CompLoc);
return QualType();
}
// Each component accessor can't exceed the vector type.
compStr = CompName.getName();
while (*compStr) {
if (vecType->isAccessorWithinNumElements(*compStr))
compStr++;
else
break;
}
if (!SpecialComponent && *compStr) {
// We didn't get to the end of the string. This means a component accessor
// exceeds the number of elements in the vector.
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
<< baseType << SourceRange(CompLoc);
return QualType();
}
// If we have a special component name, verify that the current vector length
// is an even number, since all special component names return exactly half
// the elements.
if (SpecialComponent && (vecType->getNumElements() & 1U)) {
Diag(OpLoc, diag::err_ext_vector_component_requires_even)
<< baseType << SourceRange(CompLoc);
return QualType();
}
// The component accessor looks fine - now we need to compute the actual type.
// The vector type is implied by the component accessor. For example,
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
: CompName.getLength();
if (CompSize == 1)
return vecType->getElementType();
QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
// Now look up the TypeDefDecl from the vector type. Without this,
// diagostics look bad. We want extended vector types to appear built-in.
for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
if (ExtVectorDecls[i]->getUnderlyingType() == VT)
return Context.getTypedefType(ExtVectorDecls[i]);
}
return VT; // should never get here (a typedef type should always be found).
}
/// constructSetterName - Return the setter name for the given
/// identifier, i.e. "set" + Name where the initial character of Name
/// has been capitalized.
// FIXME: Merge with same routine in Parser. But where should this
// live?
static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
const IdentifierInfo *Name) {
llvm::SmallString<100> SelectorName;
SelectorName = "set";
SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
SelectorName[3] = toupper(SelectorName[3]);
return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
}
Action::ExprResult Sema::
ActOnMemberReferenceExpr(Scope *S, ExprTy *Base, SourceLocation OpLoc,
tok::TokenKind OpKind, SourceLocation MemberLoc,
IdentifierInfo &Member) {
Expr *BaseExpr = static_cast<Expr *>(Base);
assert(BaseExpr && "no record expression");
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
assert(!BaseType.isNull() && "no type for member expression");
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
// must have pointer type, and the accessed type is the pointee.
if (OpKind == tok::arrow) {
if (const PointerType *PT = BaseType->getAsPointerType())
BaseType = PT->getPointeeType();
else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
return BuildOverloadedArrowExpr(S, BaseExpr, OpLoc, MemberLoc, Member);
else
return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
<< BaseType << BaseExpr->getSourceRange();
}
// Handle field access to simple records. This also handles access to fields
// of the ObjC 'id' struct.
if (const RecordType *RTy = BaseType->getAsRecordType()) {
RecordDecl *RDecl = RTy->getDecl();
if (RTy->isIncompleteType())
return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
<< RDecl->getDeclName() << BaseExpr->getSourceRange();
// The record definition is complete, now make sure the member is valid.
// FIXME: Qualified name lookup for C++ is a bit more complicated
// than this.
Decl *MemberDecl = LookupDecl(DeclarationName(&Member), Decl::IDNS_Ordinary,
S, RDecl, false, false);
if (!MemberDecl)
return Diag(MemberLoc, diag::err_typecheck_no_member)
<< &Member << BaseExpr->getSourceRange();
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
BaseExpr, OpLoc);
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
// FIXME: Handle address space modifiers
QualType MemberType = FD->getType();
if (const ReferenceType *Ref = MemberType->getAsReferenceType())
MemberType = Ref->getPointeeType();
else {
unsigned combinedQualifiers =
MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
if (FD->isMutable())
combinedQualifiers &= ~QualType::Const;
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
return new MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
MemberLoc, MemberType);
} else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Var, MemberLoc,
Var->getType().getNonReferenceType());
else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn, MemberLoc,
MemberFn->getType());
else if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, MemberLoc,
Context.OverloadTy);
else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl))
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, MemberLoc,
Enum->getType());
else if (isa<TypeDecl>(MemberDecl))
return Diag(MemberLoc, diag::err_typecheck_member_reference_type)
<< DeclarationName(&Member) << int(OpKind == tok::arrow);
// We found a declaration kind that we didn't expect. This is a
// generic error message that tells the user that she can't refer
// to this member with '.' or '->'.
return Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
<< DeclarationName(&Member) << int(OpKind == tok::arrow);
}
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
// (*Obj).ivar.
if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
BaseExpr,
OpKind == tok::arrow);
Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
return MRef;
}
return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
<< IFTy->getDecl()->getDeclName() << &Member
<< BaseExpr->getSourceRange();
}
// Handle Objective-C property access, which is "Obj.property" where Obj is a
// pointer to a (potentially qualified) interface type.
const PointerType *PTy;
const ObjCInterfaceType *IFTy;
if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
(IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
ObjCInterfaceDecl *IFace = IFTy->getDecl();
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
// Check protocols on qualified interfaces.
for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
E = IFTy->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl =
ObjCImplementations[ClassDecl->getIdentifier()])
Getter = ImpDecl->getInstanceMethod(Sel);
// Look through local category implementations associated with the class.
if (!Getter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
}
}
if (Getter) {
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
&Member);
Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
if (ObjCImplementationDecl *ImpDecl =
ObjCImplementations[ClassDecl->getIdentifier()])
Setter = ImpDecl->getInstanceMethod(SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
}
}
// FIXME: we must check that the setter has property type.
return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
MemberLoc, BaseExpr);
}
return Diag(MemberLoc, diag::err_property_not_found) <<
&Member << BaseType;
}
// Handle properties on qualified "id" protocols.
const ObjCQualifiedIdType *QIdTy;
if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
// Check protocols on qualified interfaces.
for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
// Also must look for a getter name which uses property syntax.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
OpLoc, MemberLoc, NULL, 0);
}
}
return Diag(MemberLoc, diag::err_property_not_found) <<
&Member << BaseType;
}
// Handle 'field access' to vectors, such as 'V.xx'.
if (BaseType->isExtVectorType() && OpKind == tok::period) {
// Component access limited to variables (reject vec4.rg.g).
if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
!isa<ExtVectorElementExpr>(BaseExpr))
return Diag(MemberLoc, diag::err_ext_vector_component_access)
<< BaseExpr->getSourceRange();
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
if (ret.isNull())
return true;
return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
}
return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange();
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionTypeProto *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (NumArgs < NumArgsInProto) {
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
// Use default arguments for missing arguments
NumArgsToCheck = NumArgsInProto;
Call->setNumArgs(NumArgsInProto);
}
// If too many are passed and not variadic, error on the extras and drop
// them.
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
// This deletes the extra arguments.
Call->setNumArgs(NumArgsInProto);
}
NumArgsToCheck = NumArgsInProto;
}
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = 0; i != NumArgsToCheck; i++) {
QualType ProtoArgType = Proto->getArgType(i);
Expr *Arg;
if (i < NumArgs) {
Arg = Args[i];
// Pass the argument.
if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
return true;
} else
// We already type-checked the argument, so we know it works.
Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
QualType ArgType = Arg->getType();
Call->setArg(i, Arg);
}
// If this is a variadic call, handle args passed through "...".
if (Proto->isVariadic()) {
// Promote the arguments (C99 6.5.2.2p7).
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
Expr *Arg = Args[i];
DefaultArgumentPromotion(Arg);
Call->setArg(i, Arg);
}
}
return false;
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::ExprResult
Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
ExprTy **args, unsigned NumArgs,
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
Expr *Fn = static_cast<Expr *>(fn);
Expr **Args = reinterpret_cast<Expr**>(args);
assert(Fn && "no function call expression");
FunctionDecl *FDecl = NULL;
OverloadedFunctionDecl *Ovl = NULL;
// Determine whether this is a dependent call inside a C++ template,
// in which case we won't do any semantic analysis now.
bool Dependent = false;
if (Fn->isTypeDependent()) {
if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
Dependent = true;
else {
// Resolve the CXXDependentNameExpr to an actual identifier;
// it wasn't really a dependent name after all.
ExprResult Resolved
= ActOnDeclarationNameExpr(S, FnName->getLocation(), FnName->getName(),
/*HasTrailingLParen=*/true,
/*SS=*/0,
/*ForceResolution=*/true);
if (Resolved.isInvalid)
return true;
else {
delete Fn;
Fn = (Expr *)Resolved.Val;
}
}
} else
Dependent = true;
} else
Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
// FIXME: Will need to cache the results of name lookup (including
// ADL) in Fn.
if (Dependent)
return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
// Determine whether this is a call to an object (C++ [over.call.object]).
if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc);
// Determine whether this is a call to a member function.
if (getLangOptions().CPlusPlus) {
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc);
}
// If we're directly calling a function or a set of overloaded
// functions, get the appropriate declaration.
DeclRefExpr *DRExpr = NULL;
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
else
DRExpr = dyn_cast<DeclRefExpr>(Fn);
if (DRExpr) {
FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
}
if (Ovl) {
FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
RParenLoc);
if (!FDecl)
return true;
// Update Fn to refer to the actual function selected.
Expr *NewFn = 0;
if (QualifiedDeclRefExpr *QDRExpr = dyn_cast<QualifiedDeclRefExpr>(DRExpr))
NewFn = new QualifiedDeclRefExpr(FDecl, FDecl->getType(),
QDRExpr->getLocation(), false, false,
QDRExpr->getSourceRange().getBegin());
else
NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
Fn->getSourceRange().getBegin());
Fn->Destroy(Context);
Fn = NewFn;
}
// Promote the function operand.
UsualUnaryConversions(Fn);
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
Context.BoolTy, RParenLoc));
const FunctionType *FuncT;
if (!Fn->getType()->isBlockPointerType()) {
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
// have type pointer to function".
const PointerType *PT = Fn->getType()->getAsPointerType();
if (PT == 0)
return Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange();
FuncT = PT->getPointeeType()->getAsFunctionType();
} else { // This is a block call.
FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
getAsFunctionType();
}
if (FuncT == 0)
return Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange();
// We know the result type of the call, set it.
TheCall->setType(FuncT->getResultType().getNonReferenceType());
if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
RParenLoc))
return true;
} else {
assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
DefaultArgumentPromotion(Arg);
TheCall->setArg(i, Arg);
}
}
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (!Method->isStatic())
return Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange();
// Do special checking on direct calls to functions.
if (FDecl)
return CheckFunctionCall(FDecl, TheCall.take());
return TheCall.take();
}
Action::ExprResult Sema::
ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *InitExpr) {
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
QualType literalType = QualType::getFromOpaquePtr(Ty);
// FIXME: put back this assert when initializers are worked out.
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
Expr *literalExpr = static_cast<Expr*>(InitExpr);
if (literalType->isArrayType()) {
if (literalType->isVariableArrayType())
return Diag(LParenLoc, diag::err_variable_object_no_init)
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
} else if (literalType->isIncompleteType()) {
return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
<< literalType
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
}
if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
DeclarationName()))
return true;
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
if (isFileScope) { // 6.5.2.5p3
if (CheckForConstantInitializer(literalExpr, literalType))
return true;
}
return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
isFileScope);
}
Action::ExprResult Sema::
ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
InitListDesignations &Designators,
SourceLocation RBraceLoc) {
Expr **InitList = reinterpret_cast<Expr**>(initlist);
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being intialized.
InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
Designators.hasAnyDesignators());
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
return E;
}
/// CheckCastTypes - Check type constraints for casting between types.
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
UsualUnaryConversions(castExpr);
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
// type needs to be scalar.
if (castType->isVoidType()) {
// Cast to void allows any expr type.
} else if (castType->isDependentType() || castExpr->isTypeDependent()) {
// We can't check any more until template instantiation time.
} else if (!castType->isScalarType() && !castType->isVectorType()) {
// GCC struct/union extension: allow cast to self.
if (Context.getCanonicalType(castType) !=
Context.getCanonicalType(castExpr->getType()) ||
(!castType->isStructureType() && !castType->isUnionType())) {
// Reject any other conversions to non-scalar types.
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
<< castType << castExpr->getSourceRange();
}
// accept this, but emit an ext-warn.
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
<< castType << castExpr->getSourceRange();
} else if (!castExpr->getType()->isScalarType() &&
!castExpr->getType()->isVectorType()) {
return Diag(castExpr->getLocStart(),
diag::err_typecheck_expect_scalar_operand)
<< castExpr->getType() << castExpr->getSourceRange();
} else if (castExpr->getType()->isVectorType()) {
if (CheckVectorCast(TyR, castExpr->getType(), castType))
return true;
} else if (castType->isVectorType()) {
if (CheckVectorCast(TyR, castType, castExpr->getType()))
return true;
}
return false;
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
assert(VectorTy->isVectorType() && "Not a vector type!");
if (Ty->isVectorType() || Ty->isIntegerType()) {
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
return Diag(R.getBegin(),
Ty->isVectorType() ?
diag::err_invalid_conversion_between_vectors :
diag::err_invalid_conversion_between_vector_and_integer)
<< VectorTy << Ty << R;
} else
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< VectorTy << Ty << R;
return false;
}
Action::ExprResult Sema::
ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprTy *Op) {
assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
Expr *castExpr = static_cast<Expr*>(Op);
QualType castType = QualType::getFromOpaquePtr(Ty);
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
return true;
return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
}
/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lex = cond.
inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
UsualUnaryConversions(cond);
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
QualType condT = cond->getType();
QualType lexT = lex->getType();
QualType rexT = rex->getType();
// first, check the condition.
if (!cond->isTypeDependent()) {
if (!condT->isScalarType()) { // C99 6.5.15p2
Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
return QualType();
}
}
// Now check the two expressions.
if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
return Context.DependentTy;
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
UsualArithmeticConversions(lex, rex);
return lex->getType();
}
// If both operands are the same structure or union type, the result is that
// type.
if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
if (const RecordType *RHSRT = rexT->getAsRecordType())
if (LHSRT->getDecl() == RHSRT->getDecl())
// "If both the operands have structure or union type, the result has
// that type." This implies that CV qualifiers are dropped.
return lexT.getUnqualifiedType();
}
// C99 6.5.15p5: "If both operands have void type, the result has void type."
// The following || allows only one side to be void (a GCC-ism).
if (lexT->isVoidType() || rexT->isVoidType()) {
if (!lexT->isVoidType())
Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
<< rex->getSourceRange();
if (!rexT->isVoidType())
Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
<< lex->getSourceRange();
ImpCastExprToType(lex, Context.VoidTy);
ImpCastExprToType(rex, Context.VoidTy);
return Context.VoidTy;
}
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
Context.isObjCObjectPointerType(lexT)) &&
rex->isNullPointerConstant(Context)) {
ImpCastExprToType(rex, lexT); // promote the null to a pointer.
return lexT;
}
if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
Context.isObjCObjectPointerType(rexT)) &&
lex->isNullPointerConstant(Context)) {
ImpCastExprToType(lex, rexT); // promote the null to a pointer.
return rexT;
}
// Handle the case where both operands are pointers before we handle null
// pointer constants in case both operands are null pointer constants.
if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
if (const PointerType *RHSPT = rexT->getAsPointerType()) {
// get the "pointed to" types
QualType lhptee = LHSPT->getPointeeType();
QualType rhptee = RHSPT->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
if (lhptee->isVoidType() &&
rhptee->isIncompleteOrObjectType()) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(lex, destType); // add qualifiers if necessary
ImpCastExprToType(rex, destType); // promote to void*
return destType;
}
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(lex, destType); // add qualifiers if necessary
ImpCastExprToType(rex, destType); // promote to void*
return destType;
}
QualType compositeType = lexT;
// If either type is an Objective-C object type then check
// compatibility according to Objective-C.
if (Context.isObjCObjectPointerType(lexT) ||
Context.isObjCObjectPointerType(rexT)) {
// If both operands are interfaces and either operand can be
// assigned to the other, use that type as the composite
// type. This allows
// xxx ? (A*) a : (B*) b
// where B is a subclass of A.
//
// Additionally, as for assignment, if either type is 'id'
// allow silent coercion. Finally, if the types are
// incompatible then make sure to use 'id' as the composite
// type so the result is acceptable for sending messages to.
// FIXME: This code should not be localized to here. Also this
// should use a compatible check instead of abusing the
// canAssignObjCInterfaces code.
const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
if (LHSIface && RHSIface &&
Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
compositeType = lexT;
} else if (LHSIface && RHSIface &&
Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
compositeType = rexT;
} else if (Context.isObjCIdType(lhptee) ||
Context.isObjCIdType(rhptee)) {
// FIXME: This code looks wrong, because isObjCIdType checks
// the struct but getObjCIdType returns the pointer to
// struct. This is horrible and should be fixed.
compositeType = Context.getObjCIdType();
} else {
QualType incompatTy = Context.getObjCIdType();
ImpCastExprToType(lex, incompatTy);
ImpCastExprToType(rex, incompatTy);
return incompatTy;
}
} else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(lex, incompatTy);
ImpCastExprToType(rex, incompatTy);
return incompatTy;
}
// The pointer types are compatible.
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
// differently qualified versions of compatible types, the result type is
// a pointer to an appropriately qualified version of the *composite*
// type.
// FIXME: Need to calculate the composite type.
// FIXME: Need to add qualifiers
ImpCastExprToType(lex, compositeType);
ImpCastExprToType(rex, compositeType);
return compositeType;
}
}
// Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
// evaluates to "struct objc_object *" (and is handled above when comparing
// id with statically typed objects).
if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
// GCC allows qualified id and any Objective-C type to devolve to
// id. Currently localizing to here until clear this should be
// part of ObjCQualifiedIdTypesAreCompatible.
if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
(lexT->isObjCQualifiedIdType() &&
Context.isObjCObjectPointerType(rexT)) ||
(rexT->isObjCQualifiedIdType() &&
Context.isObjCObjectPointerType(lexT))) {
// FIXME: This is not the correct composite type. This only
// happens to work because id can more or less be used anywhere,
// however this may change the type of method sends.
// FIXME: gcc adds some type-checking of the arguments and emits
// (confusing) incompatible comparison warnings in some
// cases. Investigate.
QualType compositeType = Context.getObjCIdType();
ImpCastExprToType(lex, compositeType);
ImpCastExprToType(rex, compositeType);
return compositeType;
}
}
// Selection between block pointer types is ok as long as they are the same.
if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
return lexT;
// Otherwise, the operands are not compatible.
Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
<< lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprTy *Cond, ExprTy *LHS,
ExprTy *RHS) {
Expr *CondExpr = (Expr *) Cond;
Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
bool isLHSNull = LHSExpr == 0;
if (isLHSNull)
LHSExpr = CondExpr;
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
RHSExpr, QuestionLoc);
if (result.isNull())
return true;
return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
RHSExpr, result);
}
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
Sema::AssignConvertType
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAsPointerType()->getPointeeType();
rhptee = rhsType->getAsPointerType()->getPointeeType();
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
AssignConvertType ConvTy = Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
// FIXME: Handle ASQualType
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
ConvTy = CompatiblePointerDiscardsQualifiers;
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
// version of void...
if (lhptee->isVoidType()) {
if (rhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(rhptee->isFunctionType());
return FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
if (lhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(lhptee->isFunctionType());
return FunctionVoidPointer;
}
// Check for ObjC interfaces
const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
if (LHSIface && RHSIface &&
Context.canAssignObjCInterfaces(LHSIface, RHSIface))
return ConvTy;
// ID acts sort of like void* for ObjC interfaces
if (LHSIface && Context.isObjCIdType(rhptee))
return ConvTy;
if (RHSIface && Context.isObjCIdType(lhptee))
return ConvTy;
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType()))
return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
return ConvTy;
}
/// CheckBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
Sema::AssignConvertType
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
QualType rhsType) {
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
AssignConvertType ConvTy = Compatible;
// For blocks we enforce that qualifiers are identical.
if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
ConvTy = CompatiblePointerDiscardsQualifiers;
if (!Context.typesAreBlockCompatible(lhptee, rhptee))
return IncompatibleBlockPointer;
return ConvTy;
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
// Get canonical types. We're not formatting these types, just comparing
// them.
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
if (lhsType == rhsType)
return Compatible; // Common case: fast path an exact match.
// If the left-hand side is a reference type, then we are in a
// (rare!) case where we've allowed the use of references in C,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
// lhsType so that the resulting expression does not have reference
// type.
if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
return Compatible;
return Incompatible;
}
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
return Compatible;
// Relax integer conversions like we do for pointers below.
if (rhsType->isIntegerType())
return IntToPointer;
if (lhsType->isIntegerType())
return PointerToInt;
return IncompatibleObjCQualifiedId;
}
if (lhsType->isVectorType() || rhsType->isVectorType()) {
// For ExtVector, allow vector splats; float -> <n x float>
if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
if (LV->getElementType() == rhsType)
return Compatible;
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOptions().LaxVectorConversions &&
lhsType->isVectorType() && rhsType->isVectorType()) {
if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
return Compatible;
}
return Incompatible;
}
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
return Compatible;
if (isa<PointerType>(lhsType)) {
if (rhsType->isIntegerType())
return IntToPointer;
if (isa<PointerType>(rhsType))
return CheckPointerTypesForAssignment(lhsType, rhsType);
if (rhsType->getAsBlockPointerType()) {
if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
return Compatible;
// Treat block pointers as objects.
if (getLangOptions().ObjC1 &&
lhsType == Context.getCanonicalType(Context.getObjCIdType()))
return Compatible;
}
return Incompatible;
}
if (isa<BlockPointerType>(lhsType)) {
if (rhsType->isIntegerType())
return IntToPointer;
// Treat block pointers as objects.
if (getLangOptions().ObjC1 &&
rhsType == Context.getCanonicalType(Context.getObjCIdType()))
return Compatible;
if (rhsType->isBlockPointerType())
return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
if (RHSPT->getPointeeType()->isVoidType())
return Compatible;
}
return Incompatible;
}
if (isa<PointerType>(rhsType)) {
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
if (lhsType == Context.BoolTy)
return Compatible;
if (lhsType->isIntegerType())
return PointerToInt;
if (isa<PointerType>(lhsType))
return CheckPointerTypesForAssignment(lhsType, rhsType);
if (isa<BlockPointerType>(lhsType) &&
rhsType->getAsPointerType()->getPointeeType()->isVoidType())
return Compatible;
return Incompatible;
}
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
if (Context.typesAreCompatible(lhsType, rhsType))
return Compatible;
}
return Incompatible;
}
Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
if (getLangOptions().CPlusPlus) {
if (!lhsType->isRecordType()) {
// C++ 5.17p3: If the left operand is not of class type, the
// expression is implicitly converted (C++ 4) to the
// cv-unqualified type of the left operand.
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
"assigning"))
return Incompatible;
else
return Compatible;
}
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
}
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
lhsType->isBlockPointerType())
&& rExpr->isNullPointerConstant(Context)) {
ImpCastExprToType(rExpr, lhsType);
return Compatible;
}
// We don't allow conversion of non-null-pointer constants to integers.
if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
return IntToBlockPointer;
// This check seems unnatural, however it is necessary to ensure the proper
// conversion of functions/arrays. If the conversion were done for all
// DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
// expressions that surpress this implicit conversion (&, sizeof).
//
// Suppress this for references: C++ 8.5.3p5.
if (!lhsType->isReferenceType())
DefaultFunctionArrayConversion(rExpr);
Sema::AssignConvertType result =
CheckAssignmentConstraints(lhsType, rExpr->getType());
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
// CheckAssignmentConstraints allows the left-hand side to be a reference,
// so that we can use references in built-in functions even in C.
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
if (rExpr->getType() != lhsType)
ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
return result;
}
Sema::AssignConvertType
Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
return CheckAssignmentConstraints(lhsType, rhsType);
}
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
Diag(Loc, diag::err_typecheck_invalid_operands)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
Expr *&rex) {
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhsType =
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
QualType rhsType =
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
// If the vector types are identical, return.
if (lhsType == rhsType)
return lhsType;
// Handle the case of a vector & extvector type of the same size and element
// type. It would be nice if we only had one vector type someday.
if (getLangOptions().LaxVectorConversions)
if (const VectorType *LV = lhsType->getAsVectorType())
if (const VectorType *RV = rhsType->getAsVectorType())
if (LV->getElementType() == RV->getElementType() &&
LV->getNumElements() == RV->getNumElements())
return lhsType->isExtVectorType() ? lhsType : rhsType;
// If the lhs is an extended vector and the rhs is a scalar of the same type
// or a literal, promote the rhs to the vector type.
if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
QualType eltType = V->getElementType();
if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
(eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
(eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
ImpCastExprToType(rex, lhsType);
return lhsType;
}
}
// If the rhs is an extended vector and the lhs is a scalar of the same type,
// promote the lhs to the vector type.
if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
QualType eltType = V->getElementType();
if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
(eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
(eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
ImpCastExprToType(lex, rhsType);
return rhsType;
}
}
// You cannot convert between vector values of different size.
Diag(Loc, diag::err_typecheck_vector_not_convertable)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
inline QualType Sema::CheckMultiplyDivideOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckRemainderOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return CheckVectorOperands(Loc, lex, rex);
return InvalidOperands(Loc, lex, rex);
}
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
// handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
// Put any potential pointer into PExp
Expr* PExp = lex, *IExp = rex;
if (IExp->getType()->isPointerType())
std::swap(PExp, IExp);
if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
if (IExp->getType()->isIntegerType()) {
// Check for arithmetic on pointers to incomplete types
if (!PTy->getPointeeType()->isObjectType()) {
if (PTy->getPointeeType()->isVoidType()) {
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
} else {
Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
<< lex->getType() << lex->getSourceRange();
return QualType();
}
}
return PExp->getType();
}
}
return InvalidOperands(Loc, lex, rex);
}
// C99 6.5.6
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
SourceLocation Loc, bool isCompAssign) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
// Either ptr - int or ptr - ptr.
if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
QualType lpointee = LHSPTy->getPointeeType();
// The LHS must be an object type, not incomplete, function, etc.
if (!lpointee->isObjectType()) {
// Handle the GNU void* extension.
if (lpointee->isVoidType()) {
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
} else {
Diag(Loc, diag::err_typecheck_sub_ptr_object)
<< lex->getType() << lex->getSourceRange();
return QualType();
}
}
// The result type of a pointer-int computation is the pointer type.
if (rex->getType()->isIntegerType())
return lex->getType();
// Handle pointer-pointer subtractions.
if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
QualType rpointee = RHSPTy->getPointeeType();
// RHS must be an object type, unless void (GNU).
if (!rpointee->isObjectType()) {
// Handle the GNU void* extension.
if (rpointee->isVoidType()) {
if (!lpointee->isVoidType())
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
} else {
Diag(Loc, diag::err_typecheck_sub_ptr_object)
<< rex->getType() << rex->getSourceRange();
return QualType();
}
}
// Pointee types must be compatible.
if (!Context.typesAreCompatible(
Context.getCanonicalType(lpointee).getUnqualifiedType(),
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
return Context.getPointerDiffType();
}
}
return InvalidOperands(Loc, lex, rex);
}
// C99 6.5.7
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
bool isCompAssign) {
// C99 6.5.7p2: Each of the operands shall have integer type.
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
return InvalidOperands(Loc, lex, rex);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
if (!isCompAssign)
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
// "The type of the result is that of the promoted left operand."
return lex->getType();
}
static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
ASTContext& Context) {
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
// ID acts sort of like void* for ObjC interfaces
if (LHSIface && Context.isObjCIdType(RHS))
return true;
if (RHSIface && Context.isObjCIdType(LHS))
return true;
if (!LHSIface || !RHSIface)
return false;
return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
Context.canAssignObjCInterfaces(RHSIface, LHSIface);
}
// C99 6.5.8
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
bool isRelational) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
// C99 6.5.8p3 / C99 6.5.9p4
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
UsualArithmeticConversions(lex, rex);
else {
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
}
QualType lType = lex->getType();
QualType rType = rex->getType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
if (!lType->isFloatingType()) {
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
Diag(Loc, diag::warn_selfcomparison);
}
// The result of comparisons is 'bool' in C++, 'int' in C.
QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
if (isRelational) {
if (lType->isRealType() && rType->isRealType())
return ResultTy;
} else {
// Check for comparisons of floating point operands using != and ==.
if (lType->isFloatingType()) {
assert (rType->isFloatingType());
CheckFloatComparison(Loc,lex,rex);
}
if (lType->isArithmeticType() && rType->isArithmeticType())
return ResultTy;
}
bool LHSIsNull = lex->isNullPointerConstant(Context);
bool RHSIsNull = rex->isNullPointerConstant(Context);
// All of the following pointer related warnings are GCC extensions, except
// when handling null pointer constants. One day, we can consider making them
// errors (when -pedantic-errors is enabled).
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
QualType LCanPointeeTy =
Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
QualType RCanPointeeTy =
Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
!LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
!Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
RCanPointeeTy.getUnqualifiedType()) &&
!areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return ResultTy;
}
// Handle block pointer types.
if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
if (!LHSIsNull && !RHSIsNull &&
!Context.typesAreBlockCompatible(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return ResultTy;
}
// Allow block pointers to be compared with null pointer constants.
if ((lType->isBlockPointerType() && rType->isPointerType()) ||
(lType->isPointerType() && rType->isBlockPointerType())) {
if (!LHSIsNull && !RHSIsNull) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return ResultTy;
}
if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
if (lType->isPointerType() || rType->isPointerType()) {
const PointerType *LPT = lType->getAsPointerType();
const PointerType *RPT = rType->getAsPointerType();
bool LPtrToVoid = LPT ?
Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
bool RPtrToVoid = RPT ?
Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
if (!LPtrToVoid && !RPtrToVoid &&
!Context.typesAreCompatible(lType, rType)) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType);
return ResultTy;
}
ImpCastExprToType(rex, lType);
return ResultTy;
}
if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
ImpCastExprToType(rex, lType);
return ResultTy;
} else {
if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
Diag(Loc, diag::warn_incompatible_qualified_id_operands)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType);
return ResultTy;
}
}
}
if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
rType->isIntegerType()) {
if (!RHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType); // promote the integer to pointer
return ResultTy;
}
if (lType->isIntegerType() &&
(rType->isPointerType() || rType->isObjCQualifiedIdType())) {
if (!LHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(lex, rType); // promote the integer to pointer
return ResultTy;
}
// Handle block pointers.
if (lType->isBlockPointerType() && rType->isIntegerType()) {
if (!RHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType); // promote the integer to pointer
return ResultTy;
}
if (lType->isIntegerType() && rType->isBlockPointerType()) {
if (!LHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(lex, rType); // promote the integer to pointer
return ResultTy;
}
return InvalidOperands(Loc, lex, rex);
}
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
SourceLocation Loc,
bool isRelational) {
// Check to make sure we're operating on vectors of the same type and width,
// Allowing one side to be a scalar of element type.
QualType vType = CheckVectorOperands(Loc, lex, rex);
if (vType.isNull())
return vType;
QualType lType = lex->getType();
QualType rType = rex->getType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
if (!lType->isFloatingType()) {
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
Diag(Loc, diag::warn_selfcomparison);
}
// Check for comparisons of floating point operands using != and ==.
if (!isRelational && lType->isFloatingType()) {
assert (rType->isFloatingType());
CheckFloatComparison(Loc,lex,rex);
}
// Return the type for the comparison, which is the same as vector type for
// integer vectors, or an integer type of identical size and number of
// elements for floating point vectors.
if (lType->isIntegerType())
return lType;
const VectorType *VTy = lType->getAsVectorType();
// FIXME: need to deal with non-32b int / non-64b long long
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (TypeSize == 32) {
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
}
assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}
inline QualType Sema::CheckBitwiseOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation Loc)
{
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
return Context.IntTy;
return InvalidOperands(Loc, lex, rex);
}
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
/// emit an error and return true. If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
if (IsLV == Expr::MLV_Valid)
return false;
unsigned Diag = 0;
bool NeedType = false;
switch (IsLV) { // C99 6.5.16p2
default: assert(0 && "Unknown result from isModifiableLvalue!");
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
case Expr::MLV_ArrayType:
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_NotObjectType:
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_LValueCast:
Diag = diag::err_typecheck_lvalue_casts_not_supported;
break;
case Expr::MLV_InvalidExpression:
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
break;
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_DuplicateVectorComponents:
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
break;
case Expr::MLV_NotBlockQualified:
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
break;
case Expr::MLV_ReadonlyProperty:
Diag = diag::error_readonly_property_assignment;
break;
case Expr::MLV_NoSetterProperty:
Diag = diag::error_nosetter_property_assignment;
break;
}
if (NeedType)
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
else
S.Diag(Loc, Diag) << E->getSourceRange();
return true;
}
// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
SourceLocation Loc,
QualType CompoundType) {
// Verify that LHS is a modifiable lvalue, and emit error if not.
if (CheckForModifiableLvalue(LHS, Loc, *this))
return QualType();
QualType LHSType = LHS->getType();
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
AssignConvertType ConvTy;
if (CompoundType.isNull()) {
// Simple assignment "x = y".
ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
// If the RHS is a unary plus or minus, check to see if they = and + are
// right next to each other. If so, the user may have typo'd "x =+ 4"
// instead of "x += 4".
Expr *RHSCheck = RHS;
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
RHSCheck = ICE->getSubExpr();
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
if ((UO->getOpcode() == UnaryOperator::Plus ||
UO->getOpcode() == UnaryOperator::Minus) &&
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
// Only if the two operators are exactly adjacent.
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
Diag(Loc, diag::warn_not_compound_assign)
<< (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
}
} else {
// Compound assignment "x += y"
ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
}
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
RHS, "assigning"))
return QualType();
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// oprdu.
return LHSType.getUnqualifiedType();
}
// C99 6.5.17
QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
// FIXME: what is required for LHS?
// Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
DefaultFunctionArrayConversion(RHS);
return RHS->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
bool isInc) {
QualType ResType = Op->getType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
if (!isInc) {
Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
// Increment of bool sets it to true, but is deprecated.
Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
} else if (ResType->isRealType()) {
// OK!
} else if (const PointerType *PT = ResType->getAsPointerType()) {
// C99 6.5.2.4p2, 6.5.6p2
if (PT->getPointeeType()->isObjectType()) {
// Pointer to object is ok!
} else if (PT->getPointeeType()->isVoidType()) {
// Pointer to void is extension.
Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
} else {
Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
<< ResType << Op->getSourceRange();
return QualType();
}
} else if (ResType->isComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
Diag(OpLoc, diag::ext_integer_increment_complex)
<< ResType << Op->getSourceRange();
} else {
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
<< ResType << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
if (CheckForModifiableLvalue(Op, OpLoc, *this))
return QualType();
return ResType;
}
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
/// - &(x) => x
/// - &*****f => f for f a function designator.
/// - &s.xx => s
/// - &s.zz[1].yy -> s, if zz is an array
/// - *(x + 1) -> x, if x is an array
/// - &"123"[2] -> 0
/// - & __real__ x -> x
static NamedDecl *getPrimaryDecl(Expr *E) {
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
case Stmt::QualifiedDeclRefExprClass:
return cast<DeclRefExpr>(E)->getDecl();
case Stmt::MemberExprClass:
// Fields cannot be declared with a 'register' storage class.
// &X->f is always ok, even if X is declared register.
if (cast<MemberExpr>(E)->isArrow())
return 0;
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
case Stmt::ArraySubscriptExprClass: {
// &X[4] and &4[X] refers to X if X is not a pointer.
NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
if (!VD || VD->getType()->isPointerType())
return 0;
else
return VD;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator *UO = cast<UnaryOperator>(E);
switch(UO->getOpcode()) {
case UnaryOperator::Deref: {
// *(X + 1) refers to X if X is not a pointer.
if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD || VD->getType()->isPointerType())
return 0;
return VD;
}
return 0;
}
case UnaryOperator::Real:
case UnaryOperator::Imag:
case UnaryOperator::Extension:
return getPrimaryDecl(UO->getSubExpr());
default:
return 0;
}
}
case Stmt::BinaryOperatorClass: {
BinaryOperator *BO = cast<BinaryOperator>(E);
// Handle cases involving pointer arithmetic. The result of an
// Assign or AddAssign is not an lvalue so they can be ignored.
// (x + n) or (n + x) => x
if (BO->getOpcode() == BinaryOperator::Add) {
if (BO->getLHS()->getType()->isPointerType()) {
return getPrimaryDecl(BO->getLHS());
} else if (BO->getRHS()->getType()->isPointerType()) {
return getPrimaryDecl(BO->getRHS());
}
}
return 0;
}
case Stmt::ParenExprClass:
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
case Stmt::ImplicitCastExprClass:
// &X[4] when X is an array, has an implicit cast from array to pointer.
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
default:
return 0;
}
}
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
if (op->isTypeDependent())
return Context.DependentTy;
if (getLangOptions().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UnaryOperator::Deref)
// Per C99 6.5.3.2, the address of a deref always returns a valid result
// (assuming the deref expression is valid).
return uOp->getSubExpr()->getType();
}
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
NamedDecl *dcl = getPrimaryDecl(op);
Expr::isLvalueResult lval = op->isLvalue(Context);
if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
// FIXME: emit more specific diag...
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
<< op->getSourceRange();
return QualType();
}
} else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
if (Field->isBitField()) {
Diag(OpLoc, diag::err_typecheck_address_of)
<< "bit-field" << op->getSourceRange();
return QualType();
}
}
// Check for Apple extension for accessing vector components.
} else if (isa<ArraySubscriptExpr>(op) &&
cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
Diag(OpLoc, diag::err_typecheck_address_of)
<< "vector" << op->getSourceRange();
return QualType();
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
if (vd->getStorageClass() == VarDecl::Register) {
Diag(OpLoc, diag::err_typecheck_address_of)
<< "register variable" << op->getSourceRange();
return QualType();
}
} else if (isa<OverloadedFunctionDecl>(dcl)) {
return Context.OverloadTy;
} else if (isa<FieldDecl>(dcl)) {
// Okay: we can take the address of a field.
} else if (isa<FunctionDecl>(dcl)) {
// Okay: we can take the address of a function.
}
else
assert(0 && "Unknown/unexpected decl type");
}
// If the operand has type "type", the result has type "pointer to type".
return Context.getPointerType(op->getType());
}
QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
UsualUnaryConversions(Op);
QualType Ty = Op->getType();
// Note that per both C89 and C99, this is always legal, even if ptype is an
// incomplete type or void. It would be possible to warn about dereferencing
// a void pointer, but it's completely well-defined, and such a warning is
// unlikely to catch any mistakes.
if (const PointerType *PT = Ty->getAsPointerType())
return PT->getPointeeType();
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
<< Ty << Op->getSourceRange();
return QualType();
}
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
tok::TokenKind Kind) {
BinaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown binop!");
case tok::star: Opc = BinaryOperator::Mul; break;
case tok::slash: Opc = BinaryOperator::Div; break;
case tok::percent: Opc = BinaryOperator::Rem; break;
case tok::plus: Opc = BinaryOperator::Add; break;
case tok::minus: Opc = BinaryOperator::Sub; break;
case tok::lessless: Opc = BinaryOperator::Shl; break;
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
case tok::lessequal: Opc = BinaryOperator::LE; break;
case tok::less: Opc = BinaryOperator::LT; break;
case tok::greaterequal: Opc = BinaryOperator::GE; break;
case tok::greater: Opc = BinaryOperator::GT; break;
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
case tok::equalequal: Opc = BinaryOperator::EQ; break;
case tok::amp: Opc = BinaryOperator::And; break;
case tok::caret: Opc = BinaryOperator::Xor; break;
case tok::pipe: Opc = BinaryOperator::Or; break;
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
case tok::equal: Opc = BinaryOperator::Assign; break;
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
case tok::comma: Opc = BinaryOperator::Comma; break;
}
return Opc;
}
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
case tok::amp: Opc = UnaryOperator::AddrOf; break;
case tok::star: Opc = UnaryOperator::Deref; break;
case tok::plus: Opc = UnaryOperator::Plus; break;
case tok::minus: Opc = UnaryOperator::Minus; break;
case tok::tilde: Opc = UnaryOperator::Not; break;
case tok::exclaim: Opc = UnaryOperator::LNot; break;
case tok::kw___real: Opc = UnaryOperator::Real; break;
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
}
return Opc;
}
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
unsigned Op,
Expr *lhs, Expr *rhs) {
QualType ResultTy; // Result type of the binary operator.
QualType CompTy; // Computation type for compound assignments (e.g. '+=')
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
switch (Opc) {
default:
assert(0 && "Unknown binary expr!");
case BinaryOperator::Assign:
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
break;
case BinaryOperator::Mul:
case BinaryOperator::Div:
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Rem:
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Add:
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Sub:
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Shl:
case BinaryOperator::Shr:
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::LE:
case BinaryOperator::LT:
case BinaryOperator::GE:
case BinaryOperator::GT:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
break;
case BinaryOperator::EQ:
case BinaryOperator::NE:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
break;
case BinaryOperator::And:
case BinaryOperator::Xor:
case BinaryOperator::Or:
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::LAnd:
case BinaryOperator::LOr:
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::MulAssign:
case BinaryOperator::DivAssign:
CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
break;
case BinaryOperator::RemAssign:
CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
break;
case BinaryOperator::AddAssign:
CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
break;
case BinaryOperator::SubAssign:
CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
break;
case BinaryOperator::ShlAssign:
case BinaryOperator::ShrAssign:
CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
break;
case BinaryOperator::AndAssign:
case BinaryOperator::XorAssign:
case BinaryOperator::OrAssign:
CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
if (!CompTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
break;
case BinaryOperator::Comma:
ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
break;
}
if (ResultTy.isNull())
return true;
if (CompTy.isNull())
return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
else
return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
}
// Binary Operators. 'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
ExprTy *LHS, ExprTy *RHS) {
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
// If either expression is type-dependent, just build the AST.
// FIXME: We'll need to perform some caching of the result of name
// lookup for operator+.
if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
return new CompoundAssignOperator(lhs, rhs, Opc, Context.DependentTy,
Context.DependentTy, TokLoc);
else
return new BinaryOperator(lhs, rhs, Opc, Context.DependentTy, TokLoc);
}
if (getLangOptions().CPlusPlus &&
(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
// If this is one of the assignment operators, we only perform
// overload resolution if the left-hand side is a class or
// enumeration type (C++ [expr.ass]p3).
if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
!(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
}
// Determine which overloaded operator we're dealing with.
static const OverloadedOperatorKind OverOps[] = {
OO_Star, OO_Slash, OO_Percent,
OO_Plus, OO_Minus,
OO_LessLess, OO_GreaterGreater,
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
OO_EqualEqual, OO_ExclaimEqual,
OO_Amp,
OO_Caret,
OO_Pipe,
OO_AmpAmp,
OO_PipePipe,
OO_Equal, OO_StarEqual,
OO_SlashEqual, OO_PercentEqual,
OO_PlusEqual, OO_MinusEqual,
OO_LessLessEqual, OO_GreaterGreaterEqual,
OO_AmpEqual, OO_CaretEqual,
OO_PipeEqual,
OO_Comma
};
OverloadedOperatorKind OverOp = OverOps[Opc];
// Add the appropriate overloaded operators (C++ [over.match.oper])
// to the candidate set.
OverloadCandidateSet CandidateSet;
Expr *Args[2] = { lhs, rhs };
AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(lhs, Method) ||
PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
} else {
// Convert the arguments.
if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
"passing") ||
PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
"passing"))
return true;
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
"passing") ||
PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
"passing"))
return true;
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(TokLoc, diag::err_ovl_ambiguous_oper)
<< BinaryOperator::getOpcodeStr(Opc)
<< lhs->getSourceRange() << rhs->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
// Build a built-in binary operation.
return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
}
// Unary Operators. 'Tok' is the token for the operator.
Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprTy *input) {
Expr *Input = (Expr*)input;
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
if (getLangOptions().CPlusPlus &&
(Input->getType()->isRecordType()
|| Input->getType()->isEnumeralType())) {
// Determine which overloaded operator we're dealing with.
static const OverloadedOperatorKind OverOps[] = {
OO_None, OO_None,
OO_PlusPlus, OO_MinusMinus,
OO_Amp, OO_Star,
OO_Plus, OO_Minus,
OO_Tilde, OO_Exclaim,
OO_None, OO_None,
OO_None,
OO_None
};
OverloadedOperatorKind OverOp = OverOps[Opc];
// Add the appropriate overloaded operators (C++ [over.match.oper])
// to the candidate set.
OverloadCandidateSet CandidateSet;
if (OverOp != OO_None)
AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(Input, Method))
return true;
} else {
// Convert the arguments.
if (PerformCopyInitialization(Input,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return true;
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
"passing"))
return true;
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
<< UnaryOperator::getOpcodeStr(Opc)
<< Input->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return true;
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
QualType resultType;
switch (Opc) {
default:
assert(0 && "Unimplemented unary expr!");
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
resultType = CheckIncrementDecrementOperand(Input, OpLoc,
Opc == UnaryOperator::PreInc);
break;
case UnaryOperator::AddrOf:
resultType = CheckAddressOfOperand(Input, OpLoc);
break;
case UnaryOperator::Deref:
DefaultFunctionArrayConversion(Input);
resultType = CheckIndirectionOperand(Input, OpLoc);
break;
case UnaryOperator::Plus:
case UnaryOperator::Minus:
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
resultType->isEnumeralType())
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
Opc == UnaryOperator::Plus &&
resultType->isPointerType())
break;
return Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange();
case UnaryOperator::Not: // bitwise complement
UsualUnaryConversions(Input);
resultType = Input->getType();
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
if (resultType->isComplexType() || resultType->isComplexIntegerType())
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input->getSourceRange();
else if (!resultType->isIntegerType())
return Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange();
break;
case UnaryOperator::LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
DefaultFunctionArrayConversion(Input);
resultType = Input->getType();
if (!resultType->isScalarType()) // C99 6.5.3.3p1
return Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange();
// LNot always has type int. C99 6.5.3.3p5.
resultType = Context.IntTy;
break;
case UnaryOperator::Real:
case UnaryOperator::Imag:
resultType = CheckRealImagOperand(Input, OpLoc);
break;
case UnaryOperator::Extension:
resultType = Input->getType();
break;
}
if (resultType.isNull())
return true;
return new UnaryOperator(Input, Opc, resultType, OpLoc);
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
SourceLocation LabLoc,
IdentifierInfo *LabelII) {
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = LabelMap[LabelII];
// If we haven't seen this label yet, create a forward reference. It
// will be validated and/or cleaned up in ActOnFinishFunctionBody.
if (LabelDecl == 0)
LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
// Create the AST node. The address of a label always has type 'void*'.
return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
Context.getPointerType(Context.VoidTy));
}
Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
SourceLocation RPLoc) { // "({..})"
Stmt *SubStmt = static_cast<Stmt*>(substmt);
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
// FIXME: there are a variety of strange constraints to enforce here, for
// example, it is not possible to goto into a stmt expression apparently.
// More semantic analysis is needed.
// FIXME: the last statement in the compount stmt has its value used. We
// should not warn about it being unused.
// If there are sub stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
if (!Compound->body_empty()) {
Stmt *LastStmt = Compound->body_back();
// If LastStmt is a label, skip down through into the body.
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
LastStmt = Label->getSubStmt();
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
Ty = LastExpr->getType();
}
return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
}
Sema::ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
TypeTy *argty,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RPLoc) {
QualType ArgTy = QualType::getFromOpaquePtr(argty);
assert(!ArgTy.isNull() && "Missing type argument!");
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!ArgTy->isRecordType())
return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
// Otherwise, create a compound literal expression as the base, and
// iteratively process the offsetof designators.
Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
// GCC extension, diagnose them.
if (NumComponents != 1)
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
const ArrayType *AT = Context.getAsArrayType(Res->getType());
if (!AT) {
delete Res;
return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
}
// FIXME: C++: Verify that operator[] isn't overloaded.
// C99 6.5.2.1p1
Expr *Idx = static_cast<Expr*>(OC.U.E);
if (!Idx->getType()->isIntegerType())
return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
<< Idx->getSourceRange();
Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
continue;
}
const RecordType *RC = Res->getType()->getAsRecordType();
if (!RC) {
delete Res;
return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
}
// Get the decl corresponding to this.
RecordDecl *RD = RC->getDecl();
FieldDecl *MemberDecl
= dyn_cast_or_null<FieldDecl>(LookupDecl(OC.U.IdentInfo,
Decl::IDNS_Ordinary,
S, RD, false, false));
if (!MemberDecl)
return Diag(BuiltinLoc, diag::err_typecheck_no_member)
<< OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
// FIXME: C++: Verify that MemberDecl isn't a static field.
// FIXME: Verify that MemberDecl isn't a bitfield.
// MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
// matter here.
Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
MemberDecl->getType().getNonReferenceType());
}
return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
BuiltinLoc);
}
Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc) {
QualType argT1 = QualType::getFromOpaquePtr(arg1);
QualType argT2 = QualType::getFromOpaquePtr(arg2);
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
}
Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
ExprTy *expr1, ExprTy *expr2,
SourceLocation RPLoc) {
Expr *CondExpr = static_cast<Expr*>(cond);
Expr *LHSExpr = static_cast<Expr*>(expr1);
Expr *RHSExpr = static_cast<Expr*>(expr2);
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
<< CondExpr->getSourceRange();
// If the condition is > zero, then the AST type is the same as the LSHExpr.
QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
RHSExpr->getType();
return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
}
//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
// Analyze block parameters.
BlockSemaInfo *BSI = new BlockSemaInfo();
// Add BSI to CurBlock.
BSI->PrevBlockInfo = CurBlock;
CurBlock = BSI;
BSI->ReturnType = 0;
BSI->TheScope = BlockScope;
BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
PushDeclContext(BlockScope, BSI->TheDecl);
}
void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
// Analyze arguments to block.
assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
CurBlock->hasPrototype = FTI.hasPrototype;
CurBlock->isVariadic = true;
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
// no arguments, not a function that takes a single void argument.
if (FTI.hasPrototype &&
FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
(!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
// empty arg list, don't push any params.
CurBlock->isVariadic = false;
} else if (FTI.hasPrototype) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
CurBlock->isVariadic = FTI.isVariadic;
}
CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
// If this has an identifier, add it to the scope stack.
if ((*AI)->getIdentifier())
PushOnScopeChains(*AI, CurBlock->TheScope);
}
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
// Ensure that CurBlock is deleted.
llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
// Pop off CurBlock, handle nested blocks.
CurBlock = CurBlock->PrevBlockInfo;
// FIXME: Delete the ParmVarDecl objects as well???
}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
Scope *CurScope) {
// Ensure that CurBlock is deleted.
llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
PopDeclContext();
// Pop off CurBlock, handle nested blocks.
CurBlock = CurBlock->PrevBlockInfo;
QualType RetTy = Context.VoidTy;
if (BSI->ReturnType)
RetTy = QualType(BSI->ReturnType, 0);
llvm::SmallVector<QualType, 8> ArgTypes;
for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
ArgTypes.push_back(BSI->Params[i]->getType());
QualType BlockTy;
if (!BSI->hasPrototype)
BlockTy = Context.getFunctionTypeNoProto(RetTy);
else
BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
BSI->isVariadic, 0);
BlockTy = Context.getBlockPointerType(BlockTy);
BSI->TheDecl->setBody(Body.take());
return new BlockExpr(BSI->TheDecl, BlockTy);
}
/// ExprsMatchFnType - return true if the Exprs in array Args have
/// QualTypes that match the QualTypes of the arguments of the FnType.
/// The number of arguments has already been validated to match the number of
/// arguments in FnType.
static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
ASTContext &Context) {
unsigned NumParams = FnType->getNumArgs();
for (unsigned i = 0; i != NumParams; ++i) {
QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
return false;
}
return true;
}
Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
// __builtin_overload requires at least 2 arguments
if (NumArgs < 2)
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< SourceRange(BuiltinLoc, RParenLoc);
// The first argument is required to be a constant expression. It tells us
// the number of arguments to pass to each of the functions to be overloaded.
Expr **Args = reinterpret_cast<Expr**>(args);
Expr *NParamsExpr = Args[0];
llvm::APSInt constEval(32);
SourceLocation ExpLoc;
if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
<< NParamsExpr->getSourceRange();
// Verify that the number of parameters is > 0
unsigned NumParams = constEval.getZExtValue();
if (NumParams == 0)
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
<< NParamsExpr->getSourceRange();
// Verify that we have at least 1 + NumParams arguments to the builtin.
if ((NumParams + 1) > NumArgs)
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< SourceRange(BuiltinLoc, RParenLoc);
// Figure out the return type, by matching the args to one of the functions
// listed after the parameters.
OverloadExpr *OE = 0;
for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
// UsualUnaryConversions will convert the function DeclRefExpr into a
// pointer to function.
Expr *Fn = UsualUnaryConversions(Args[i]);
const FunctionTypeProto *FnType = 0;
if (const PointerType *PT = Fn->getType()->getAsPointerType())
FnType = PT->getPointeeType()->getAsFunctionTypeProto();
// The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
// parameters, and the number of parameters must match the value passed to
// the builtin.
if (!FnType || (FnType->getNumArgs() != NumParams))
return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
<< Fn->getSourceRange();
// Scan the parameter list for the FunctionType, checking the QualType of
// each parameter against the QualTypes of the arguments to the builtin.
// If they match, return a new OverloadExpr.
if (ExprsMatchFnType(Args+1, FnType, Context)) {
if (OE)
return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
<< OE->getFn()->getSourceRange();
// Remember our match, and continue processing the remaining arguments
// to catch any errors.
OE = new OverloadExpr(Args, NumArgs, i,
FnType->getResultType().getNonReferenceType(),
BuiltinLoc, RParenLoc);
}
}
// Return the newly created OverloadExpr node, if we succeded in matching
// exactly one of the candidate functions.
if (OE)
return OE;
// If we didn't find a matching function Expr in the __builtin_overload list
// the return an error.
std::string typeNames;
for (unsigned i = 0; i != NumParams; ++i) {
if (i != 0) typeNames += ", ";
typeNames += Args[i+1]->getType().getAsString();
}
return Diag(BuiltinLoc, diag::err_overload_no_match)
<< typeNames << SourceRange(BuiltinLoc, RParenLoc);
}
Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
ExprTy *expr, TypeTy *type,
SourceLocation RPLoc) {
Expr *E = static_cast<Expr*>(expr);
QualType T = QualType::getFromOpaquePtr(type);
InitBuiltinVaListType();
// Get the va_list type
QualType VaListType = Context.getBuiltinVaListType();
// Deal with implicit array decay; for example, on x86-64,
// va_list is an array, but it's supposed to decay to
// a pointer for va_arg.
if (VaListType->isArrayType())
VaListType = Context.getArrayDecayedType(VaListType);
// Make sure the input expression also decays appropriately.
UsualUnaryConversions(E);
if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
return Diag(E->getLocStart(),
diag::err_first_argument_to_va_arg_not_of_type_va_list)
<< E->getType() << E->getSourceRange();
// FIXME: Warn if a non-POD type is passed in.
return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
}
Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
Ty = Context.IntTy;
else
Ty = Context.LongTy;
return new GNUNullExpr(Ty, TokenLoc);
}
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, const char *Flavor) {
// Decode the result (notice that AST's are still created for extensions).
bool isInvalid = false;
unsigned DiagKind;
switch (ConvTy) {
default: assert(0 && "Unknown conversion type");
case Compatible: return false;
case PointerToInt:
DiagKind = diag::ext_typecheck_convert_pointer_int;
break;
case IntToPointer:
DiagKind = diag::ext_typecheck_convert_int_pointer;
break;
case IncompatiblePointer:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
break;
case FunctionVoidPointer:
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
break;
case CompatiblePointerDiscardsQualifiers:
// If the qualifiers lost were because we were applying the
// (deprecated) C++ conversion from a string literal to a char*
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
// Ideally, this check would be performed in
// CheckPointerTypesForAssignment. However, that would require a
// bit of refactoring (so that the second argument is an
// expression, rather than a type), which should be done as part
// of a larger effort to fix CheckPointerTypesForAssignment for
// C++ semantics.
if (getLangOptions().CPlusPlus &&
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
return false;
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
break;
case IntToBlockPointer:
DiagKind = diag::err_int_to_block_pointer;
break;
case IncompatibleBlockPointer:
DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
break;
case IncompatibleObjCQualifiedId:
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
// it can give a more specific diagnostic.
DiagKind = diag::warn_incompatible_qualified_id;
break;
case Incompatible:
DiagKind = diag::err_typecheck_convert_incompatible;
isInvalid = true;
break;
}
Diag(Loc, DiagKind) << DstType << SrcType << Flavor
<< SrcExpr->getSourceRange();
return isInvalid;
}
bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
{
Expr::EvalResult EvalResult;
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
EvalResult.HasSideEffects) {
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
if (EvalResult.Diag) {
// We only show the note if it's not the usual "invalid subexpression"
// or if it's actually in a subexpression.
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
Diag(EvalResult.DiagLoc, EvalResult.Diag);
}
return true;
}
if (EvalResult.Diag) {
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
E->getSourceRange();
// Print the reason it's not a constant.
if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
Diag(EvalResult.DiagLoc, EvalResult.Diag);
}
if (Result)
*Result = EvalResult.Val.getInt();
return false;
}