blob: 44cd5e6bc0c05f7649d60be316a7c5cdafda63d0 [file] [log] [blame]
//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/OperatorKinds.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
#include "ExtensionRAIIObject.h"
using namespace clang;
/// ParseNamespace - We know that the current token is a namespace keyword. This
/// may either be a top level namespace or a block-level namespace alias.
///
/// namespace-definition: [C++ 7.3: basic.namespace]
/// named-namespace-definition
/// unnamed-namespace-definition
///
/// unnamed-namespace-definition:
/// 'namespace' attributes[opt] '{' namespace-body '}'
///
/// named-namespace-definition:
/// original-namespace-definition
/// extension-namespace-definition
///
/// original-namespace-definition:
/// 'namespace' identifier attributes[opt] '{' namespace-body '}'
///
/// extension-namespace-definition:
/// 'namespace' original-namespace-name '{' namespace-body '}'
///
/// namespace-alias-definition: [C++ 7.3.2: namespace.alias]
/// 'namespace' identifier '=' qualified-namespace-specifier ';'
///
Parser::DeclPtrTy Parser::ParseNamespace(unsigned Context,
SourceLocation &DeclEnd) {
assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
SourceLocation NamespaceLoc = ConsumeToken(); // eat the 'namespace'.
SourceLocation IdentLoc;
IdentifierInfo *Ident = 0;
Token attrTok;
if (Tok.is(tok::identifier)) {
Ident = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken(); // eat the identifier.
}
// Read label attributes, if present.
Action::AttrTy *AttrList = 0;
if (Tok.is(tok::kw___attribute)) {
attrTok = Tok;
// FIXME: save these somewhere.
AttrList = ParseAttributes();
}
if (Tok.is(tok::equal)) {
if (AttrList)
Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
}
if (Tok.isNot(tok::l_brace)) {
Diag(Tok, Ident ? diag::err_expected_lbrace :
diag::err_expected_ident_lbrace);
return DeclPtrTy();
}
SourceLocation LBrace = ConsumeBrace();
// Enter a scope for the namespace.
ParseScope NamespaceScope(this, Scope::DeclScope);
DeclPtrTy NamespcDecl =
Actions.ActOnStartNamespaceDef(CurScope, IdentLoc, Ident, LBrace);
PrettyStackTraceActionsDecl CrashInfo(NamespcDecl, NamespaceLoc, Actions,
PP.getSourceManager(),
"parsing namespace");
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof))
ParseExternalDeclaration();
// Leave the namespace scope.
NamespaceScope.Exit();
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBrace);
Actions.ActOnFinishNamespaceDef(NamespcDecl, RBraceLoc);
DeclEnd = RBraceLoc;
return NamespcDecl;
}
/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
/// alias definition.
///
Parser::DeclPtrTy Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
SourceLocation &DeclEnd) {
assert(Tok.is(tok::equal) && "Not equal token");
ConsumeToken(); // eat the '='.
CXXScopeSpec SS;
// Parse (optional) nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS);
if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_namespace_name);
// Skip to end of the definition and eat the ';'.
SkipUntil(tok::semi);
return DeclPtrTy();
}
// Parse identifier.
IdentifierInfo *Ident = Tok.getIdentifierInfo();
SourceLocation IdentLoc = ConsumeToken();
// Eat the ';'.
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
"", tok::semi);
return Actions.ActOnNamespaceAliasDef(CurScope, NamespaceLoc, AliasLoc, Alias,
SS, IdentLoc, Ident);
}
/// ParseLinkage - We know that the current token is a string_literal
/// and just before that, that extern was seen.
///
/// linkage-specification: [C++ 7.5p2: dcl.link]
/// 'extern' string-literal '{' declaration-seq[opt] '}'
/// 'extern' string-literal declaration
///
Parser::DeclPtrTy Parser::ParseLinkage(unsigned Context) {
assert(Tok.is(tok::string_literal) && "Not a string literal!");
llvm::SmallVector<char, 8> LangBuffer;
// LangBuffer is guaranteed to be big enough.
LangBuffer.resize(Tok.getLength());
const char *LangBufPtr = &LangBuffer[0];
unsigned StrSize = PP.getSpelling(Tok, LangBufPtr);
SourceLocation Loc = ConsumeStringToken();
ParseScope LinkageScope(this, Scope::DeclScope);
DeclPtrTy LinkageSpec
= Actions.ActOnStartLinkageSpecification(CurScope,
/*FIXME: */SourceLocation(),
Loc, LangBufPtr, StrSize,
Tok.is(tok::l_brace)? Tok.getLocation()
: SourceLocation());
if (Tok.isNot(tok::l_brace)) {
ParseDeclarationOrFunctionDefinition();
return Actions.ActOnFinishLinkageSpecification(CurScope, LinkageSpec,
SourceLocation());
}
SourceLocation LBrace = ConsumeBrace();
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
ParseExternalDeclaration();
}
SourceLocation RBrace = MatchRHSPunctuation(tok::r_brace, LBrace);
return Actions.ActOnFinishLinkageSpecification(CurScope, LinkageSpec, RBrace);
}
/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
/// using-directive. Assumes that current token is 'using'.
Parser::DeclPtrTy Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
SourceLocation &DeclEnd) {
assert(Tok.is(tok::kw_using) && "Not using token");
// Eat 'using'.
SourceLocation UsingLoc = ConsumeToken();
if (Tok.is(tok::kw_namespace))
// Next token after 'using' is 'namespace' so it must be using-directive
return ParseUsingDirective(Context, UsingLoc, DeclEnd);
// Otherwise, it must be using-declaration.
return ParseUsingDeclaration(Context, UsingLoc, DeclEnd);
}
/// ParseUsingDirective - Parse C++ using-directive, assumes
/// that current token is 'namespace' and 'using' was already parsed.
///
/// using-directive: [C++ 7.3.p4: namespace.udir]
/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
/// namespace-name ;
/// [GNU] using-directive:
/// 'using' 'namespace' ::[opt] nested-name-specifier[opt]
/// namespace-name attributes[opt] ;
///
Parser::DeclPtrTy Parser::ParseUsingDirective(unsigned Context,
SourceLocation UsingLoc,
SourceLocation &DeclEnd) {
assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
// Eat 'namespace'.
SourceLocation NamespcLoc = ConsumeToken();
CXXScopeSpec SS;
// Parse (optional) nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS);
AttributeList *AttrList = 0;
IdentifierInfo *NamespcName = 0;
SourceLocation IdentLoc = SourceLocation();
// Parse namespace-name.
if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_namespace_name);
// If there was invalid namespace name, skip to end of decl, and eat ';'.
SkipUntil(tok::semi);
// FIXME: Are there cases, when we would like to call ActOnUsingDirective?
return DeclPtrTy();
}
// Parse identifier.
NamespcName = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken();
// Parse (optional) attributes (most likely GNU strong-using extension).
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes();
// Eat ';'.
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi,
AttrList ? diag::err_expected_semi_after_attribute_list :
diag::err_expected_semi_after_namespace_name, "", tok::semi);
return Actions.ActOnUsingDirective(CurScope, UsingLoc, NamespcLoc, SS,
IdentLoc, NamespcName, AttrList);
}
/// ParseUsingDeclaration - Parse C++ using-declaration. Assumes that
/// 'using' was already seen.
///
/// using-declaration: [C++ 7.3.p3: namespace.udecl]
/// 'using' 'typename'[opt] ::[opt] nested-name-specifier
/// unqualified-id
/// 'using' :: unqualified-id
///
Parser::DeclPtrTy Parser::ParseUsingDeclaration(unsigned Context,
SourceLocation UsingLoc,
SourceLocation &DeclEnd) {
CXXScopeSpec SS;
bool IsTypeName;
// Ignore optional 'typename'.
if (Tok.is(tok::kw_typename)) {
ConsumeToken();
IsTypeName = true;
}
else
IsTypeName = false;
// Parse nested-name-specifier.
ParseOptionalCXXScopeSpecifier(SS);
AttributeList *AttrList = 0;
// Check nested-name specifier.
if (SS.isInvalid()) {
SkipUntil(tok::semi);
return DeclPtrTy();
}
if (Tok.is(tok::annot_template_id)) {
Diag(Tok, diag::err_unexpected_template_spec_in_using);
SkipUntil(tok::semi);
return DeclPtrTy();
}
IdentifierInfo *TargetName = 0;
OverloadedOperatorKind Op = OO_None;
SourceLocation IdentLoc;
if (Tok.is(tok::kw_operator)) {
IdentLoc = Tok.getLocation();
Op = TryParseOperatorFunctionId();
if (!Op) {
// If there was an invalid operator, skip to end of decl, and eat ';'.
SkipUntil(tok::semi);
return DeclPtrTy();
}
} else if (Tok.is(tok::identifier)) {
// Parse identifier.
TargetName = Tok.getIdentifierInfo();
IdentLoc = ConsumeToken();
} else {
// FIXME: Use a better diagnostic here.
Diag(Tok, diag::err_expected_ident_in_using);
// If there was invalid identifier, skip to end of decl, and eat ';'.
SkipUntil(tok::semi);
return DeclPtrTy();
}
// Parse (optional) attributes (most likely GNU strong-using extension).
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes();
// Eat ';'.
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
AttrList ? "attributes list" : "namespace name", tok::semi);
return Actions.ActOnUsingDeclaration(CurScope, UsingLoc, SS,
IdentLoc, TargetName, Op,
AttrList, IsTypeName);
}
/// ParseStaticAssertDeclaration - Parse C++0x static_assert-declaratoion.
///
/// static_assert-declaration:
/// static_assert ( constant-expression , string-literal ) ;
///
Parser::DeclPtrTy Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
assert(Tok.is(tok::kw_static_assert) && "Not a static_assert declaration");
SourceLocation StaticAssertLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen);
return DeclPtrTy();
}
SourceLocation LParenLoc = ConsumeParen();
OwningExprResult AssertExpr(ParseConstantExpression());
if (AssertExpr.isInvalid()) {
SkipUntil(tok::semi);
return DeclPtrTy();
}
if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
return DeclPtrTy();
if (Tok.isNot(tok::string_literal)) {
Diag(Tok, diag::err_expected_string_literal);
SkipUntil(tok::semi);
return DeclPtrTy();
}
OwningExprResult AssertMessage(ParseStringLiteralExpression());
if (AssertMessage.isInvalid())
return DeclPtrTy();
MatchRHSPunctuation(tok::r_paren, LParenLoc);
DeclEnd = Tok.getLocation();
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_static_assert);
return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc, move(AssertExpr),
move(AssertMessage));
}
/// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
///
/// 'decltype' ( expression )
///
void Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
assert(Tok.is(tok::kw_decltype) && "Not a decltype specifier");
SourceLocation StartLoc = ConsumeToken();
SourceLocation LParenLoc = Tok.getLocation();
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"decltype")) {
SkipUntil(tok::r_paren);
return;
}
// Parse the expression
// C++0x [dcl.type.simple]p4:
// The operand of the decltype specifier is an unevaluated operand.
EnterExpressionEvaluationContext Unevaluated(Actions,
Action::Unevaluated);
OwningExprResult Result = ParseExpression();
if (Result.isInvalid()) {
SkipUntil(tok::r_paren);
return;
}
// Match the ')'
SourceLocation RParenLoc;
if (Tok.is(tok::r_paren))
RParenLoc = ConsumeParen();
else
MatchRHSPunctuation(tok::r_paren, LParenLoc);
if (RParenLoc.isInvalid())
return;
const char *PrevSpec = 0;
// Check for duplicate type specifiers (e.g. "int decltype(a)").
if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
Result.release()))
Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
}
/// ParseClassName - Parse a C++ class-name, which names a class. Note
/// that we only check that the result names a type; semantic analysis
/// will need to verify that the type names a class. The result is
/// either a type or NULL, depending on whether a type name was
/// found.
///
/// class-name: [C++ 9.1]
/// identifier
/// simple-template-id
///
Parser::TypeResult Parser::ParseClassName(SourceLocation &EndLocation,
const CXXScopeSpec *SS) {
// Check whether we have a template-id that names a type.
if (Tok.is(tok::annot_template_id)) {
TemplateIdAnnotation *TemplateId
= static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
if (TemplateId->Kind == TNK_Type_template) {
AnnotateTemplateIdTokenAsType(SS);
assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
TypeTy *Type = Tok.getAnnotationValue();
EndLocation = Tok.getAnnotationEndLoc();
ConsumeToken();
if (Type)
return Type;
return true;
}
// Fall through to produce an error below.
}
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_class_name);
return true;
}
// We have an identifier; check whether it is actually a type.
TypeTy *Type = Actions.getTypeName(*Tok.getIdentifierInfo(),
Tok.getLocation(), CurScope, SS);
if (!Type) {
Diag(Tok, diag::err_expected_class_name);
return true;
}
// Consume the identifier.
EndLocation = ConsumeToken();
return Type;
}
/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
/// until we reach the start of a definition or see a token that
/// cannot start a definition.
///
/// class-specifier: [C++ class]
/// class-head '{' member-specification[opt] '}'
/// class-head '{' member-specification[opt] '}' attributes[opt]
/// class-head:
/// class-key identifier[opt] base-clause[opt]
/// class-key nested-name-specifier identifier base-clause[opt]
/// class-key nested-name-specifier[opt] simple-template-id
/// base-clause[opt]
/// [GNU] class-key attributes[opt] identifier[opt] base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier
/// identifier base-clause[opt]
/// [GNU] class-key attributes[opt] nested-name-specifier[opt]
/// simple-template-id base-clause[opt]
/// class-key:
/// 'class'
/// 'struct'
/// 'union'
///
/// elaborated-type-specifier: [C++ dcl.type.elab]
/// class-key ::[opt] nested-name-specifier[opt] identifier
/// class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
/// simple-template-id
///
/// Note that the C++ class-specifier and elaborated-type-specifier,
/// together, subsume the C99 struct-or-union-specifier:
///
/// struct-or-union-specifier: [C99 6.7.2.1]
/// struct-or-union identifier[opt] '{' struct-contents '}'
/// struct-or-union identifier
/// [GNU] struct-or-union attributes[opt] identifier[opt] '{' struct-contents
/// '}' attributes[opt]
/// [GNU] struct-or-union attributes[opt] identifier
/// struct-or-union:
/// 'struct'
/// 'union'
void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
SourceLocation StartLoc, DeclSpec &DS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS) {
DeclSpec::TST TagType;
if (TagTokKind == tok::kw_struct)
TagType = DeclSpec::TST_struct;
else if (TagTokKind == tok::kw_class)
TagType = DeclSpec::TST_class;
else {
assert(TagTokKind == tok::kw_union && "Not a class specifier");
TagType = DeclSpec::TST_union;
}
AttributeList *Attr = 0;
// If attributes exist after tag, parse them.
if (Tok.is(tok::kw___attribute))
Attr = ParseAttributes();
// If declspecs exist after tag, parse them.
if (Tok.is(tok::kw___declspec))
Attr = ParseMicrosoftDeclSpec(Attr);
// Parse the (optional) nested-name-specifier.
CXXScopeSpec SS;
if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS))
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
Diag(Tok, diag::err_expected_ident);
// Parse the (optional) class name or simple-template-id.
IdentifierInfo *Name = 0;
SourceLocation NameLoc;
TemplateIdAnnotation *TemplateId = 0;
if (Tok.is(tok::identifier)) {
Name = Tok.getIdentifierInfo();
NameLoc = ConsumeToken();
} else if (Tok.is(tok::annot_template_id)) {
TemplateId = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
NameLoc = ConsumeToken();
if (TemplateId->Kind != TNK_Type_template) {
// The template-name in the simple-template-id refers to
// something other than a class template. Give an appropriate
// error message and skip to the ';'.
SourceRange Range(NameLoc);
if (SS.isNotEmpty())
Range.setBegin(SS.getBeginLoc());
Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
<< Name << static_cast<int>(TemplateId->Kind) << Range;
DS.SetTypeSpecError();
SkipUntil(tok::semi, false, true);
TemplateId->Destroy();
return;
}
}
// There are three options here. If we have 'struct foo;', then
// this is a forward declaration. If we have 'struct foo {...' or
// 'struct foo :...' then this is a definition. Otherwise we have
// something like 'struct foo xyz', a reference.
Action::TagKind TK;
if (Tok.is(tok::l_brace) || (getLang().CPlusPlus && Tok.is(tok::colon)))
TK = Action::TK_Definition;
else if (Tok.is(tok::semi) && !DS.isFriendSpecified())
TK = Action::TK_Declaration;
else
TK = Action::TK_Reference;
if (!Name && !TemplateId && TK != Action::TK_Definition) {
// We have a declaration or reference to an anonymous class.
Diag(StartLoc, diag::err_anon_type_definition)
<< DeclSpec::getSpecifierName(TagType);
// Skip the rest of this declarator, up until the comma or semicolon.
SkipUntil(tok::comma, true);
if (TemplateId)
TemplateId->Destroy();
return;
}
// Create the tag portion of the class or class template.
Action::DeclResult TagOrTempResult;
TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
// FIXME: When TK == TK_Reference and we have a template-id, we need
// to turn that template-id into a type.
bool Owned = false;
if (TemplateId && TK != Action::TK_Reference) {
// Explicit specialization, class template partial specialization,
// or explicit instantiation.
ASTTemplateArgsPtr TemplateArgsPtr(Actions,
TemplateId->getTemplateArgs(),
TemplateId->getTemplateArgIsType(),
TemplateId->NumArgs);
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TK == Action::TK_Declaration) {
// This is an explicit instantiation of a class template.
TagOrTempResult
= Actions.ActOnExplicitInstantiation(CurScope,
TemplateInfo.TemplateLoc,
TagType,
StartLoc,
SS,
TemplateTy::make(TemplateId->Template),
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->getTemplateArgLocations(),
TemplateId->RAngleLoc,
Attr);
} else {
// This is an explicit specialization or a class template
// partial specialization.
TemplateParameterLists FakedParamLists;
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
// This looks like an explicit instantiation, because we have
// something like
//
// template class Foo<X>
//
// but it actually has a definition. Most likely, this was
// meant to be an explicit specialization, but the user forgot
// the '<>' after 'template'.
assert(TK == Action::TK_Definition && "Expected a definition here");
SourceLocation LAngleLoc
= PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(TemplateId->TemplateNameLoc,
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< CodeModificationHint::CreateInsertion(LAngleLoc, "<>");
// Create a fake template parameter list that contains only
// "template<>", so that we treat this construct as a class
// template specialization.
FakedParamLists.push_back(
Actions.ActOnTemplateParameterList(0, SourceLocation(),
TemplateInfo.TemplateLoc,
LAngleLoc,
0, 0,
LAngleLoc));
TemplateParams = &FakedParamLists;
}
// Build the class template specialization.
TagOrTempResult
= Actions.ActOnClassTemplateSpecialization(CurScope, TagType, TK,
StartLoc, SS,
TemplateTy::make(TemplateId->Template),
TemplateId->TemplateNameLoc,
TemplateId->LAngleLoc,
TemplateArgsPtr,
TemplateId->getTemplateArgLocations(),
TemplateId->RAngleLoc,
Attr,
Action::MultiTemplateParamsArg(Actions,
TemplateParams? &(*TemplateParams)[0] : 0,
TemplateParams? TemplateParams->size() : 0));
}
TemplateId->Destroy();
} else if (TemplateParams && TK != Action::TK_Reference) {
// Class template declaration or definition.
TagOrTempResult = Actions.ActOnClassTemplate(CurScope, TagType, TK,
StartLoc, SS, Name, NameLoc,
Attr,
Action::MultiTemplateParamsArg(Actions,
&(*TemplateParams)[0],
TemplateParams->size()),
AS);
} else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TK == Action::TK_Declaration) {
// Explicit instantiation of a member of a class template
// specialization, e.g.,
//
// template struct Outer<int>::Inner;
//
TagOrTempResult
= Actions.ActOnExplicitInstantiation(CurScope,
TemplateInfo.TemplateLoc,
TagType, StartLoc, SS, Name,
NameLoc, Attr);
} else {
if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
TK == Action::TK_Definition) {
// FIXME: Diagnose this particular error.
}
// Declaration or definition of a class type
TagOrTempResult = Actions.ActOnTag(CurScope, TagType, TK, StartLoc, SS,
Name, NameLoc, Attr, AS, Owned);
}
// Parse the optional base clause (C++ only).
if (getLang().CPlusPlus && Tok.is(tok::colon))
ParseBaseClause(TagOrTempResult.get());
// If there is a body, parse it and inform the actions module.
if (Tok.is(tok::l_brace))
if (getLang().CPlusPlus)
ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
else
ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
else if (TK == Action::TK_Definition) {
// FIXME: Complain that we have a base-specifier list but no
// definition.
Diag(Tok, diag::err_expected_lbrace);
}
const char *PrevSpec = 0;
if (TagOrTempResult.isInvalid()) {
DS.SetTypeSpecError();
return;
}
if (DS.SetTypeSpecType(TagType, StartLoc, PrevSpec,
TagOrTempResult.get().getAs<void>(), Owned))
Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
if (DS.isFriendSpecified())
Actions.ActOnFriendDecl(CurScope, DS.getFriendSpecLoc(),
TagOrTempResult.get());
}
/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
///
/// base-clause : [C++ class.derived]
/// ':' base-specifier-list
/// base-specifier-list:
/// base-specifier '...'[opt]
/// base-specifier-list ',' base-specifier '...'[opt]
void Parser::ParseBaseClause(DeclPtrTy ClassDecl) {
assert(Tok.is(tok::colon) && "Not a base clause");
ConsumeToken();
// Build up an array of parsed base specifiers.
llvm::SmallVector<BaseTy *, 8> BaseInfo;
while (true) {
// Parse a base-specifier.
BaseResult Result = ParseBaseSpecifier(ClassDecl);
if (Result.isInvalid()) {
// Skip the rest of this base specifier, up until the comma or
// opening brace.
SkipUntil(tok::comma, tok::l_brace, true, true);
} else {
// Add this to our array of base specifiers.
BaseInfo.push_back(Result.get());
}
// If the next token is a comma, consume it and keep reading
// base-specifiers.
if (Tok.isNot(tok::comma)) break;
// Consume the comma.
ConsumeToken();
}
// Attach the base specifiers
Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
}
/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
/// one entry in the base class list of a class specifier, for example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
///
/// base-specifier: [C++ class.derived]
/// ::[opt] nested-name-specifier[opt] class-name
/// 'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
/// class-name
/// access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
/// class-name
Parser::BaseResult Parser::ParseBaseSpecifier(DeclPtrTy ClassDecl) {
bool IsVirtual = false;
SourceLocation StartLoc = Tok.getLocation();
// Parse the 'virtual' keyword.
if (Tok.is(tok::kw_virtual)) {
ConsumeToken();
IsVirtual = true;
}
// Parse an (optional) access specifier.
AccessSpecifier Access = getAccessSpecifierIfPresent();
if (Access)
ConsumeToken();
// Parse the 'virtual' keyword (again!), in case it came after the
// access specifier.
if (Tok.is(tok::kw_virtual)) {
SourceLocation VirtualLoc = ConsumeToken();
if (IsVirtual) {
// Complain about duplicate 'virtual'
Diag(VirtualLoc, diag::err_dup_virtual)
<< CodeModificationHint::CreateRemoval(SourceRange(VirtualLoc));
}
IsVirtual = true;
}
// Parse optional '::' and optional nested-name-specifier.
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS);
// The location of the base class itself.
SourceLocation BaseLoc = Tok.getLocation();
// Parse the class-name.
SourceLocation EndLocation;
TypeResult BaseType = ParseClassName(EndLocation, &SS);
if (BaseType.isInvalid())
return true;
// Find the complete source range for the base-specifier.
SourceRange Range(StartLoc, EndLocation);
// Notify semantic analysis that we have parsed a complete
// base-specifier.
return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
BaseType.get(), BaseLoc);
}
/// getAccessSpecifierIfPresent - Determine whether the next token is
/// a C++ access-specifier.
///
/// access-specifier: [C++ class.derived]
/// 'private'
/// 'protected'
/// 'public'
AccessSpecifier Parser::getAccessSpecifierIfPresent() const
{
switch (Tok.getKind()) {
default: return AS_none;
case tok::kw_private: return AS_private;
case tok::kw_protected: return AS_protected;
case tok::kw_public: return AS_public;
}
}
/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
///
/// member-declaration:
/// decl-specifier-seq[opt] member-declarator-list[opt] ';'
/// function-definition ';'[opt]
/// ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
/// using-declaration [TODO]
/// [C++0x] static_assert-declaration
/// template-declaration
/// [GNU] '__extension__' member-declaration
///
/// member-declarator-list:
/// member-declarator
/// member-declarator-list ',' member-declarator
///
/// member-declarator:
/// declarator pure-specifier[opt]
/// declarator constant-initializer[opt]
/// identifier[opt] ':' constant-expression
///
/// pure-specifier:
/// '= 0'
///
/// constant-initializer:
/// '=' constant-expression
///
void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS) {
// static_assert-declaration
if (Tok.is(tok::kw_static_assert)) {
SourceLocation DeclEnd;
ParseStaticAssertDeclaration(DeclEnd);
return;
}
if (Tok.is(tok::kw_template)) {
SourceLocation DeclEnd;
ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
AS);
return;
}
// Handle: member-declaration ::= '__extension__' member-declaration
if (Tok.is(tok::kw___extension__)) {
// __extension__ silences extension warnings in the subexpression.
ExtensionRAIIObject O(Diags); // Use RAII to do this.
ConsumeToken();
return ParseCXXClassMemberDeclaration(AS);
}
if (Tok.is(tok::kw_using)) {
// Eat 'using'.
SourceLocation UsingLoc = ConsumeToken();
if (Tok.is(tok::kw_namespace)) {
Diag(UsingLoc, diag::err_using_namespace_in_class);
SkipUntil(tok::semi, true, true);
}
else {
SourceLocation DeclEnd;
// Otherwise, it must be using-declaration.
ParseUsingDeclaration(Declarator::MemberContext, UsingLoc, DeclEnd);
}
return;
}
SourceLocation DSStart = Tok.getLocation();
// decl-specifier-seq:
// Parse the common declaration-specifiers piece.
DeclSpec DS;
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS);
if (Tok.is(tok::semi)) {
ConsumeToken();
// C++ 9.2p7: The member-declarator-list can be omitted only after a
// class-specifier or an enum-specifier or in a friend declaration.
// FIXME: Friend declarations.
switch (DS.getTypeSpecType()) {
case DeclSpec::TST_struct:
case DeclSpec::TST_union:
case DeclSpec::TST_class:
case DeclSpec::TST_enum:
Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
return;
default:
Diag(DSStart, diag::err_no_declarators);
return;
}
}
Declarator DeclaratorInfo(DS, Declarator::MemberContext);
if (Tok.isNot(tok::colon)) {
// Parse the first declarator.
ParseDeclarator(DeclaratorInfo);
// Error parsing the declarator?
if (!DeclaratorInfo.hasName()) {
// If so, skip until the semi-colon or a }.
SkipUntil(tok::r_brace, true);
if (Tok.is(tok::semi))
ConsumeToken();
return;
}
// function-definition:
if (Tok.is(tok::l_brace)
|| (DeclaratorInfo.isFunctionDeclarator() &&
(Tok.is(tok::colon) || Tok.is(tok::kw_try)))) {
if (!DeclaratorInfo.isFunctionDeclarator()) {
Diag(Tok, diag::err_func_def_no_params);
ConsumeBrace();
SkipUntil(tok::r_brace, true);
return;
}
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(Tok, diag::err_function_declared_typedef);
// This recovery skips the entire function body. It would be nice
// to simply call ParseCXXInlineMethodDef() below, however Sema
// assumes the declarator represents a function, not a typedef.
ConsumeBrace();
SkipUntil(tok::r_brace, true);
return;
}
ParseCXXInlineMethodDef(AS, DeclaratorInfo);
return;
}
}
// member-declarator-list:
// member-declarator
// member-declarator-list ',' member-declarator
llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
OwningExprResult BitfieldSize(Actions);
OwningExprResult Init(Actions);
bool Deleted = false;
while (1) {
// member-declarator:
// declarator pure-specifier[opt]
// declarator constant-initializer[opt]
// identifier[opt] ':' constant-expression
if (Tok.is(tok::colon)) {
ConsumeToken();
BitfieldSize = ParseConstantExpression();
if (BitfieldSize.isInvalid())
SkipUntil(tok::comma, true, true);
}
// pure-specifier:
// '= 0'
//
// constant-initializer:
// '=' constant-expression
//
// defaulted/deleted function-definition:
// '=' 'default' [TODO]
// '=' 'delete'
if (Tok.is(tok::equal)) {
ConsumeToken();
if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
ConsumeToken();
Deleted = true;
} else {
Init = ParseInitializer();
if (Init.isInvalid())
SkipUntil(tok::comma, true, true);
}
}
// If attributes exist after the declarator, parse them.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
DeclaratorInfo.AddAttributes(AttrList, Loc);
}
// NOTE: If Sema is the Action module and declarator is an instance field,
// this call will *not* return the created decl; It will return null.
// See Sema::ActOnCXXMemberDeclarator for details.
DeclPtrTy ThisDecl = Actions.ActOnCXXMemberDeclarator(CurScope, AS,
DeclaratorInfo,
BitfieldSize.release(),
Init.release(),
Deleted);
if (ThisDecl)
DeclsInGroup.push_back(ThisDecl);
if (DeclaratorInfo.isFunctionDeclarator() &&
DeclaratorInfo.getDeclSpec().getStorageClassSpec()
!= DeclSpec::SCS_typedef) {
// We just declared a member function. If this member function
// has any default arguments, we'll need to parse them later.
LateParsedMethodDeclaration *LateMethod = 0;
DeclaratorChunk::FunctionTypeInfo &FTI
= DeclaratorInfo.getTypeObject(0).Fun;
for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
if (!LateMethod) {
// Push this method onto the stack of late-parsed method
// declarations.
getCurrentClass().MethodDecls.push_back(
LateParsedMethodDeclaration(ThisDecl));
LateMethod = &getCurrentClass().MethodDecls.back();
// Add all of the parameters prior to this one (they don't
// have default arguments).
LateMethod->DefaultArgs.reserve(FTI.NumArgs);
for (unsigned I = 0; I < ParamIdx; ++I)
LateMethod->DefaultArgs.push_back(
LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param));
}
// Add this parameter to the list of parameters (it or may
// not have a default argument).
LateMethod->DefaultArgs.push_back(
LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
FTI.ArgInfo[ParamIdx].DefaultArgTokens));
}
}
}
// If we don't have a comma, it is either the end of the list (a ';')
// or an error, bail out.
if (Tok.isNot(tok::comma))
break;
// Consume the comma.
ConsumeToken();
// Parse the next declarator.
DeclaratorInfo.clear();
BitfieldSize = 0;
Init = 0;
Deleted = false;
// Attributes are only allowed on the second declarator.
if (Tok.is(tok::kw___attribute)) {
SourceLocation Loc;
AttributeList *AttrList = ParseAttributes(&Loc);
DeclaratorInfo.AddAttributes(AttrList, Loc);
}
if (Tok.isNot(tok::colon))
ParseDeclarator(DeclaratorInfo);
}
if (Tok.is(tok::semi)) {
ConsumeToken();
Actions.FinalizeDeclaratorGroup(CurScope, DS, DeclsInGroup.data(),
DeclsInGroup.size());
return;
}
Diag(Tok, diag::err_expected_semi_decl_list);
// Skip to end of block or statement
SkipUntil(tok::r_brace, true, true);
if (Tok.is(tok::semi))
ConsumeToken();
return;
}
/// ParseCXXMemberSpecification - Parse the class definition.
///
/// member-specification:
/// member-declaration member-specification[opt]
/// access-specifier ':' member-specification[opt]
///
void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
unsigned TagType, DeclPtrTy TagDecl) {
assert((TagType == DeclSpec::TST_struct ||
TagType == DeclSpec::TST_union ||
TagType == DeclSpec::TST_class) && "Invalid TagType!");
PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
PP.getSourceManager(),
"parsing struct/union/class body");
SourceLocation LBraceLoc = ConsumeBrace();
// Determine whether this is a top-level (non-nested) class.
bool TopLevelClass = ClassStack.empty() ||
CurScope->isInCXXInlineMethodScope();
// Enter a scope for the class.
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
// Note that we are parsing a new (potentially-nested) class definition.
ParsingClassDefinition ParsingDef(*this, TagDecl, TopLevelClass);
if (TagDecl)
Actions.ActOnTagStartDefinition(CurScope, TagDecl);
else {
SkipUntil(tok::r_brace, false, false);
return;
}
// C++ 11p3: Members of a class defined with the keyword class are private
// by default. Members of a class defined with the keywords struct or union
// are public by default.
AccessSpecifier CurAS;
if (TagType == DeclSpec::TST_class)
CurAS = AS_private;
else
CurAS = AS_public;
// While we still have something to read, read the member-declarations.
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
// Each iteration of this loop reads one member-declaration.
// Check for extraneous top-level semicolon.
if (Tok.is(tok::semi)) {
Diag(Tok, diag::ext_extra_struct_semi);
ConsumeToken();
continue;
}
AccessSpecifier AS = getAccessSpecifierIfPresent();
if (AS != AS_none) {
// Current token is a C++ access specifier.
CurAS = AS;
ConsumeToken();
ExpectAndConsume(tok::colon, diag::err_expected_colon);
continue;
}
// Parse all the comma separated declarators.
ParseCXXClassMemberDeclaration(CurAS);
}
SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
AttributeList *AttrList = 0;
// If attributes exist after class contents, parse them.
if (Tok.is(tok::kw___attribute))
AttrList = ParseAttributes(); // FIXME: where should I put them?
Actions.ActOnFinishCXXMemberSpecification(CurScope, RecordLoc, TagDecl,
LBraceLoc, RBraceLoc);
// C++ 9.2p2: Within the class member-specification, the class is regarded as
// complete within function bodies, default arguments,
// exception-specifications, and constructor ctor-initializers (including
// such things in nested classes).
//
// FIXME: Only function bodies and constructor ctor-initializers are
// parsed correctly, fix the rest.
if (TopLevelClass) {
// We are not inside a nested class. This class and its nested classes
// are complete and we can parse the delayed portions of method
// declarations and the lexed inline method definitions.
ParseLexedMethodDeclarations(getCurrentClass());
ParseLexedMethodDefs(getCurrentClass());
}
// Leave the class scope.
ParsingDef.Pop();
ClassScope.Exit();
Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
}
/// ParseConstructorInitializer - Parse a C++ constructor initializer,
/// which explicitly initializes the members or base classes of a
/// class (C++ [class.base.init]). For example, the three initializers
/// after the ':' in the Derived constructor below:
///
/// @code
/// class Base { };
/// class Derived : Base {
/// int x;
/// float f;
/// public:
/// Derived(float f) : Base(), x(17), f(f) { }
/// };
/// @endcode
///
/// [C++] ctor-initializer:
/// ':' mem-initializer-list
///
/// [C++] mem-initializer-list:
/// mem-initializer
/// mem-initializer , mem-initializer-list
void Parser::ParseConstructorInitializer(DeclPtrTy ConstructorDecl) {
assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
SourceLocation ColonLoc = ConsumeToken();
llvm::SmallVector<MemInitTy*, 4> MemInitializers;
do {
MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
if (!MemInit.isInvalid())
MemInitializers.push_back(MemInit.get());
if (Tok.is(tok::comma))
ConsumeToken();
else if (Tok.is(tok::l_brace))
break;
else {
// Skip over garbage, until we get to '{'. Don't eat the '{'.
Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
SkipUntil(tok::l_brace, true, true);
break;
}
} while (true);
Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
MemInitializers.data(), MemInitializers.size());
}
/// ParseMemInitializer - Parse a C++ member initializer, which is
/// part of a constructor initializer that explicitly initializes one
/// member or base class (C++ [class.base.init]). See
/// ParseConstructorInitializer for an example.
///
/// [C++] mem-initializer:
/// mem-initializer-id '(' expression-list[opt] ')'
///
/// [C++] mem-initializer-id:
/// '::'[opt] nested-name-specifier[opt] class-name
/// identifier
Parser::MemInitResult Parser::ParseMemInitializer(DeclPtrTy ConstructorDecl) {
// parse '::'[opt] nested-name-specifier[opt]
CXXScopeSpec SS;
ParseOptionalCXXScopeSpecifier(SS);
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_member_or_base_name);
return true;
}
// Get the identifier. This may be a member name or a class name,
// but we'll let the semantic analysis determine which it is.
IdentifierInfo *II = Tok.getIdentifierInfo();
SourceLocation IdLoc = ConsumeToken();
// Parse the '('.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen);
return true;
}
SourceLocation LParenLoc = ConsumeParen();
// Parse the optional expression-list.
ExprVector ArgExprs(Actions);
CommaLocsTy CommaLocs;
if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
SkipUntil(tok::r_paren);
return true;
}
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
return Actions.ActOnMemInitializer(ConstructorDecl, CurScope, SS, II, IdLoc,
LParenLoc, ArgExprs.take(),
ArgExprs.size(), CommaLocs.data(),
RParenLoc);
}
/// ParseExceptionSpecification - Parse a C++ exception-specification
/// (C++ [except.spec]).
///
/// exception-specification:
/// 'throw' '(' type-id-list [opt] ')'
/// [MS] 'throw' '(' '...' ')'
///
/// type-id-list:
/// type-id
/// type-id-list ',' type-id
///
bool Parser::ParseExceptionSpecification(SourceLocation &EndLoc,
llvm::SmallVector<TypeTy*, 2>
&Exceptions,
llvm::SmallVector<SourceRange, 2>
&Ranges,
bool &hasAnyExceptionSpec) {
assert(Tok.is(tok::kw_throw) && "expected throw");
SourceLocation ThrowLoc = ConsumeToken();
if (!Tok.is(tok::l_paren)) {
return Diag(Tok, diag::err_expected_lparen_after) << "throw";
}
SourceLocation LParenLoc = ConsumeParen();
// Parse throw(...), a Microsoft extension that means "this function
// can throw anything".
if (Tok.is(tok::ellipsis)) {
hasAnyExceptionSpec = true;
SourceLocation EllipsisLoc = ConsumeToken();
if (!getLang().Microsoft)
Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
return false;
}
// Parse the sequence of type-ids.
SourceRange Range;
while (Tok.isNot(tok::r_paren)) {
TypeResult Res(ParseTypeName(&Range));
if (!Res.isInvalid()) {
Exceptions.push_back(Res.get());
Ranges.push_back(Range);
}
if (Tok.is(tok::comma))
ConsumeToken();
else
break;
}
EndLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
return false;
}
/// \brief We have just started parsing the definition of a new class,
/// so push that class onto our stack of classes that is currently
/// being parsed.
void Parser::PushParsingClass(DeclPtrTy ClassDecl, bool TopLevelClass) {
assert((TopLevelClass || !ClassStack.empty()) &&
"Nested class without outer class");
ClassStack.push(new ParsingClass(ClassDecl, TopLevelClass));
}
/// \brief Deallocate the given parsed class and all of its nested
/// classes.
void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
for (unsigned I = 0, N = Class->NestedClasses.size(); I != N; ++I)
DeallocateParsedClasses(Class->NestedClasses[I]);
delete Class;
}
/// \brief Pop the top class of the stack of classes that are
/// currently being parsed.
///
/// This routine should be called when we have finished parsing the
/// definition of a class, but have not yet popped the Scope
/// associated with the class's definition.
///
/// \returns true if the class we've popped is a top-level class,
/// false otherwise.
void Parser::PopParsingClass() {
assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
ParsingClass *Victim = ClassStack.top();
ClassStack.pop();
if (Victim->TopLevelClass) {
// Deallocate all of the nested classes of this class,
// recursively: we don't need to keep any of this information.
DeallocateParsedClasses(Victim);
return;
}
assert(!ClassStack.empty() && "Missing top-level class?");
if (Victim->MethodDecls.empty() && Victim->MethodDefs.empty() &&
Victim->NestedClasses.empty()) {
// The victim is a nested class, but we will not need to perform
// any processing after the definition of this class since it has
// no members whose handling was delayed. Therefore, we can just
// remove this nested class.
delete Victim;
return;
}
// This nested class has some members that will need to be processed
// after the top-level class is completely defined. Therefore, add
// it to the list of nested classes within its parent.
assert(CurScope->isClassScope() && "Nested class outside of class scope?");
ClassStack.top()->NestedClasses.push_back(Victim);
Victim->TemplateScope = CurScope->getParent()->isTemplateParamScope();
}