blob: 850e65e3b63d9cdf70a29c18ba3fddaf0c2735a1 [file] [log] [blame]
//= RValues.cpp - Abstract RValues for Path-Sens. Value Tracking -*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines SVal, Loc, and NonLoc, classes that represent
// abstract r-values for use with path-sensitive value tracking.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRState.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/Support/Streams.h"
using namespace clang;
using llvm::dyn_cast;
using llvm::cast;
using llvm::APSInt;
//===----------------------------------------------------------------------===//
// Symbol iteration within an SVal.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Utility methods.
//===----------------------------------------------------------------------===//
/// getAsLocSymbol - If this SVal is a location (subclasses Loc) and
/// wraps a symbol, return that SymbolRef. Otherwise return a SymbolRef
/// where 'isValid()' returns false.
SymbolRef SVal::getAsLocSymbol() const {
if (const loc::SymbolVal *X = dyn_cast<loc::SymbolVal>(this))
return X->getSymbol();
if (const loc::MemRegionVal *X = dyn_cast<loc::MemRegionVal>(this)) {
const MemRegion *R = X->getRegion();
while (R) {
// Blast through region views.
if (const TypedViewRegion *View = dyn_cast<TypedViewRegion>(R)) {
R = View->getSuperRegion();
continue;
}
if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(R))
return SymR->getSymbol();
break;
}
}
return 0;
}
/// getAsSymbol - If this Sval wraps a symbol return that SymbolRef.
/// Otherwise return a SymbolRef where 'isValid()' returns false.
SymbolRef SVal::getAsSymbol() const {
if (const nonloc::SymbolVal *X = dyn_cast<nonloc::SymbolVal>(this))
return X->getSymbol();
if (const nonloc::SymExprVal *X = dyn_cast<nonloc::SymExprVal>(this))
if (SymbolRef Y = dyn_cast<SymbolData>(X->getSymbolicExpression()))
return Y;
return getAsLocSymbol();
}
/// getAsSymbolicExpression - If this Sval wraps a symbolic expression then
/// return that expression. Otherwise return NULL.
const SymExpr *SVal::getAsSymbolicExpression() const {
if (const nonloc::SymExprVal *X = dyn_cast<nonloc::SymExprVal>(this))
return X->getSymbolicExpression();
return getAsSymbol();
}
bool SVal::symbol_iterator::operator==(const symbol_iterator &X) const {
return itr == X.itr;
}
bool SVal::symbol_iterator::operator!=(const symbol_iterator &X) const {
return itr != X.itr;
}
SVal::symbol_iterator::symbol_iterator(const SymExpr *SE) {
itr.push_back(SE);
while (!isa<SymbolData>(itr.back())) expand();
}
SVal::symbol_iterator& SVal::symbol_iterator::operator++() {
assert(!itr.empty() && "attempting to iterate on an 'end' iterator");
assert(isa<SymbolData>(itr.back()));
itr.pop_back();
if (!itr.empty())
while (!isa<SymbolData>(itr.back())) expand();
return *this;
}
SymbolRef SVal::symbol_iterator::operator*() {
assert(!itr.empty() && "attempting to dereference an 'end' iterator");
return cast<SymbolData>(itr.back());
}
void SVal::symbol_iterator::expand() {
const SymExpr *SE = itr.back();
itr.pop_back();
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
itr.push_back(SIE->getLHS());
return;
}
else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
itr.push_back(SSE->getLHS());
itr.push_back(SSE->getRHS());
return;
}
assert(false && "unhandled expansion case");
}
//===----------------------------------------------------------------------===//
// Other Iterators.
//===----------------------------------------------------------------------===//
nonloc::CompoundVal::iterator nonloc::CompoundVal::begin() const {
return getValue()->begin();
}
nonloc::CompoundVal::iterator nonloc::CompoundVal::end() const {
return getValue()->end();
}
//===----------------------------------------------------------------------===//
// Useful predicates.
//===----------------------------------------------------------------------===//
bool SVal::isZeroConstant() const {
if (isa<loc::ConcreteInt>(*this))
return cast<loc::ConcreteInt>(*this).getValue() == 0;
else if (isa<nonloc::ConcreteInt>(*this))
return cast<nonloc::ConcreteInt>(*this).getValue() == 0;
else
return false;
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Non-Locs.
//===----------------------------------------------------------------------===//
SVal nonloc::ConcreteInt::EvalBinOp(BasicValueFactory& BasicVals,
BinaryOperator::Opcode Op,
const nonloc::ConcreteInt& R) const {
const llvm::APSInt* X =
BasicVals.EvaluateAPSInt(Op, getValue(), R.getValue());
if (X)
return nonloc::ConcreteInt(*X);
else
return UndefinedVal();
}
// Bitwise-Complement.
nonloc::ConcreteInt
nonloc::ConcreteInt::EvalComplement(BasicValueFactory& BasicVals) const {
return BasicVals.getValue(~getValue());
}
// Unary Minus.
nonloc::ConcreteInt
nonloc::ConcreteInt::EvalMinus(BasicValueFactory& BasicVals, UnaryOperator* U) const {
assert (U->getType() == U->getSubExpr()->getType());
assert (U->getType()->isIntegerType());
return BasicVals.getValue(-getValue());
}
//===----------------------------------------------------------------------===//
// Transfer function dispatch for Locs.
//===----------------------------------------------------------------------===//
SVal loc::ConcreteInt::EvalBinOp(BasicValueFactory& BasicVals,
BinaryOperator::Opcode Op,
const loc::ConcreteInt& R) const {
assert (Op == BinaryOperator::Add || Op == BinaryOperator::Sub ||
(Op >= BinaryOperator::LT && Op <= BinaryOperator::NE));
const llvm::APSInt* X = BasicVals.EvaluateAPSInt(Op, getValue(), R.getValue());
if (X)
return loc::ConcreteInt(*X);
else
return UndefinedVal();
}
//===----------------------------------------------------------------------===//
// Utility methods for constructing Non-Locs.
//===----------------------------------------------------------------------===//
NonLoc NonLoc::MakeVal(SymbolRef sym) {
return nonloc::SymbolVal(sym);
}
NonLoc NonLoc::MakeVal(SymbolManager& SymMgr, const SymExpr *lhs,
BinaryOperator::Opcode op, const APSInt& v, QualType T) {
// The Environment ensures we always get a persistent APSInt in
// BasicValueFactory, so we don't need to get the APSInt from
// BasicValueFactory again.
assert(!Loc::IsLocType(T));
return nonloc::SymExprVal(SymMgr.getSymIntExpr(lhs, op, v, T));
}
NonLoc NonLoc::MakeVal(SymbolManager& SymMgr, const SymExpr *lhs,
BinaryOperator::Opcode op, const SymExpr *rhs,
QualType T) {
assert(SymMgr.getType(lhs) == SymMgr.getType(rhs));
assert(!Loc::IsLocType(T));
return nonloc::SymExprVal(SymMgr.getSymSymExpr(lhs, op, rhs, T));
}
NonLoc NonLoc::MakeIntVal(BasicValueFactory& BasicVals, uint64_t X,
bool isUnsigned) {
return nonloc::ConcreteInt(BasicVals.getIntValue(X, isUnsigned));
}
NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, uint64_t X,
unsigned BitWidth, bool isUnsigned) {
return nonloc::ConcreteInt(BasicVals.getValue(X, BitWidth, isUnsigned));
}
NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, uint64_t X, QualType T) {
return nonloc::ConcreteInt(BasicVals.getValue(X, T));
}
NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, IntegerLiteral* I) {
return nonloc::ConcreteInt(BasicVals.getValue(APSInt(I->getValue(),
I->getType()->isUnsignedIntegerType())));
}
NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, const llvm::APInt& I,
bool isUnsigned) {
return nonloc::ConcreteInt(BasicVals.getValue(I, isUnsigned));
}
NonLoc NonLoc::MakeVal(BasicValueFactory& BasicVals, const llvm::APSInt& I) {
return nonloc::ConcreteInt(BasicVals.getValue(I));
}
NonLoc NonLoc::MakeIntTruthVal(BasicValueFactory& BasicVals, bool b) {
return nonloc::ConcreteInt(BasicVals.getTruthValue(b));
}
NonLoc NonLoc::MakeCompoundVal(QualType T, llvm::ImmutableList<SVal> Vals,
BasicValueFactory& BasicVals) {
return nonloc::CompoundVal(BasicVals.getCompoundValData(T, Vals));
}
SVal SVal::GetRValueSymbolVal(SymbolManager& SymMgr, const MemRegion* R) {
SymbolRef sym = SymMgr.getRegionRValueSymbol(R);
if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) {
QualType T = TR->getRValueType(SymMgr.getContext());
if (Loc::IsLocType(T))
return Loc::MakeVal(sym);
// Only handle integers for now.
if (T->isIntegerType())
return NonLoc::MakeVal(sym);
}
return UnknownVal();
}
SVal SVal::GetConjuredSymbolVal(SymbolManager &SymMgr, const Expr* E,
unsigned Count) {
QualType T = E->getType();
if (Loc::IsLocType(T)) {
SymbolRef Sym = SymMgr.getConjuredSymbol(E, Count);
return loc::SymbolVal(Sym);
}
else if (T->isIntegerType() && T->isScalarType()) {
SymbolRef Sym = SymMgr.getConjuredSymbol(E, Count);
return nonloc::SymbolVal(Sym);
}
return UnknownVal();
}
nonloc::LocAsInteger nonloc::LocAsInteger::Make(BasicValueFactory& Vals, Loc V,
unsigned Bits) {
return LocAsInteger(Vals.getPersistentSValWithData(V, Bits));
}
//===----------------------------------------------------------------------===//
// Utility methods for constructing Locs.
//===----------------------------------------------------------------------===//
Loc Loc::MakeVal(const MemRegion* R) { return loc::MemRegionVal(R); }
Loc Loc::MakeVal(AddrLabelExpr* E) { return loc::GotoLabel(E->getLabel()); }
Loc Loc::MakeVal(SymbolRef sym) { return loc::SymbolVal(sym); }
//===----------------------------------------------------------------------===//
// Pretty-Printing.
//===----------------------------------------------------------------------===//
void SVal::printStdErr() const { print(llvm::errs()); }
void SVal::print(std::ostream& Out) const {
llvm::raw_os_ostream out(Out);
print(out);
}
void SVal::print(llvm::raw_ostream& Out) const {
switch (getBaseKind()) {
case UnknownKind:
Out << "Invalid"; break;
case NonLocKind:
cast<NonLoc>(this)->print(Out); break;
case LocKind:
cast<Loc>(this)->print(Out); break;
case UndefinedKind:
Out << "Undefined"; break;
default:
assert (false && "Invalid SVal.");
}
}
void NonLoc::print(llvm::raw_ostream& Out) const {
switch (getSubKind()) {
case nonloc::ConcreteIntKind:
Out << cast<nonloc::ConcreteInt>(this)->getValue().getZExtValue();
if (cast<nonloc::ConcreteInt>(this)->getValue().isUnsigned())
Out << 'U';
break;
case nonloc::SymbolValKind:
Out << '$' << cast<nonloc::SymbolVal>(this)->getSymbol();
break;
case nonloc::SymExprValKind: {
const nonloc::SymExprVal& C = *cast<nonloc::SymExprVal>(this);
const SymExpr *SE = C.getSymbolicExpression();
Out << SE;
break;
}
case nonloc::LocAsIntegerKind: {
const nonloc::LocAsInteger& C = *cast<nonloc::LocAsInteger>(this);
C.getLoc().print(Out);
Out << " [as " << C.getNumBits() << " bit integer]";
break;
}
case nonloc::CompoundValKind: {
const nonloc::CompoundVal& C = *cast<nonloc::CompoundVal>(this);
Out << " {";
bool first = true;
for (nonloc::CompoundVal::iterator I=C.begin(), E=C.end(); I!=E; ++I) {
if (first) { Out << ' '; first = false; }
else Out << ", ";
(*I).print(Out);
}
Out << " }";
break;
}
default:
assert (false && "Pretty-printed not implemented for this NonLoc.");
break;
}
}
void Loc::print(llvm::raw_ostream& Out) const {
switch (getSubKind()) {
case loc::ConcreteIntKind:
Out << cast<loc::ConcreteInt>(this)->getValue().getZExtValue()
<< " (Loc)";
break;
case loc::SymbolValKind:
Out << '$' << cast<loc::SymbolVal>(this)->getSymbol();
break;
case loc::GotoLabelKind:
Out << "&&"
<< cast<loc::GotoLabel>(this)->getLabel()->getID()->getName();
break;
case loc::MemRegionKind:
Out << '&' << cast<loc::MemRegionVal>(this)->getRegion()->getString();
break;
case loc::FuncValKind:
Out << "function "
<< cast<loc::FuncVal>(this)->getDecl()->getIdentifier()->getName();
break;
default:
assert (false && "Pretty-printing not implemented for this Loc.");
break;
}
}