blob: 77efe604baa2fed602996c2599d0e5920fbe364e [file] [log] [blame]
//===--- TargetInfo.cpp - Information about Target machine ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInfo and TargetInfoImpl interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/AST/Builtins.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/STLExtras.h"
#include <set>
using namespace clang;
void TargetInfoImpl::ANCHOR() {} // out-of-line virtual method for class.
//===----------------------------------------------------------------------===//
// FIXME: These are temporary hacks, they should revector into the
// TargetInfoImpl.
void TargetInfo::getFloatInfo(uint64_t &Size, unsigned &Align,
const llvm::fltSemantics *&Format,
FullSourceLoc Loc) {
Align = 32; // FIXME: implement correctly.
Size = 32;
Format = &llvm::APFloat::IEEEsingle;
}
void TargetInfo::getDoubleInfo(uint64_t &Size, unsigned &Align,
const llvm::fltSemantics *&Format,
FullSourceLoc Loc) {
Size = Align = 64; // FIXME: implement correctly.
Format = &llvm::APFloat::IEEEdouble;
}
void TargetInfo::getLongDoubleInfo(uint64_t &Size, unsigned &Align,
const llvm::fltSemantics *&Format,
FullSourceLoc Loc) {
Size = Align = 64; // FIXME: implement correctly.
Format = &llvm::APFloat::IEEEdouble;
//Size = 80; Align = 32; // FIXME: implement correctly.
//Format = &llvm::APFloat::x87DoubleExtended;
}
//===----------------------------------------------------------------------===//
const char* TargetInfo::getTargetTriple() const {
return PrimaryTarget->getTargetTriple();
}
const char *TargetInfo::getTargetPrefix() const {
return PrimaryTarget->getTargetPrefix();
}
/// DiagnoseNonPortability - When a use of a non-portable target feature is
/// used, this method emits the diagnostic and marks the translation unit as
/// non-portable.
void TargetInfo::DiagnoseNonPortability(FullSourceLoc Loc,
unsigned DiagKind) {
NonPortable = true;
if (Diag && Loc.isValid()) Diag->Report(Loc, DiagKind);
}
/// GetTargetDefineMap - Get the set of target #defines in an associative
/// collection for easy lookup.
static void GetTargetDefineMap(const TargetInfoImpl *Target,
llvm::StringMap<std::string> &Map) {
std::vector<char> Defines;
Defines.reserve(4096);
Target->getTargetDefines(Defines);
for (const char *DefStr = &Defines[0], *E = DefStr+Defines.size();
DefStr != E;) {
// Skip the '#define ' portion.
assert(memcmp(DefStr, "#define ", strlen("#define ")) == 0 &&
"#define didn't start with #define!");
DefStr += strlen("#define ");
// Find the divider between the key and value.
const char *SpacePos = strchr(DefStr, ' ');
std::string &Entry = Map.GetOrCreateValue(DefStr, SpacePos).getValue();
const char *EndPos = strchr(SpacePos+1, '\n');
Entry = std::string(SpacePos+1, EndPos);
DefStr = EndPos+1;
}
}
/// getTargetDefines - Appends the target-specific #define values for this
/// target set to the specified buffer.
void TargetInfo::getTargetDefines(std::vector<char> &Buffer) {
// If we have no secondary targets, be a bit more efficient.
if (SecondaryTargets.empty()) {
PrimaryTarget->getTargetDefines(Buffer);
return;
}
// This is tricky in the face of secondary targets. Specifically,
// target-specific #defines that are present and identical across all
// secondary targets are turned into #defines, #defines that are present in
// the primary target but are missing or different in the secondary targets
// are turned into #define_target, and #defines that are not defined in the
// primary, but are defined in a secondary are turned into
// #define_other_target. This allows the preprocessor to correctly track uses
// of target-specific macros.
// Get the set of primary #defines.
llvm::StringMap<std::string> PrimaryDefines;
GetTargetDefineMap(PrimaryTarget, PrimaryDefines);
// Get the sets of secondary #defines.
llvm::StringMap<std::string> *SecondaryDefines
= new llvm::StringMap<std::string>[SecondaryTargets.size()];
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i)
GetTargetDefineMap(SecondaryTargets[i], SecondaryDefines[i]);
// Loop over all defines in the primary target, processing them until we run
// out.
for (llvm::StringMap<std::string>::iterator PDI =
PrimaryDefines.begin(), E = PrimaryDefines.end(); PDI != E; ++PDI) {
std::string DefineName(PDI->getKeyData(),
PDI->getKeyData() + PDI->getKeyLength());
std::string DefineValue = PDI->getValue();
// Check to see whether all secondary targets have this #define and whether
// it is to the same value. Remember if not, but remove the #define from
// their collection in any case if they have it.
bool isPortable = true;
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
llvm::StringMap<std::string>::iterator I =
SecondaryDefines[i].find(&DefineName[0],
&DefineName[0]+DefineName.size());
if (I == SecondaryDefines[i].end()) {
// Secondary target doesn't have this #define.
isPortable = false;
} else {
// Secondary target has this define, remember if it disagrees.
if (isPortable)
isPortable = I->getValue() == DefineValue;
// Remove it from the secondary target unconditionally.
SecondaryDefines[i].erase(I);
}
}
// If this define is non-portable, turn it into #define_target, otherwise
// just use #define.
const char *Command = isPortable ? "#define " : "#define_target ";
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
// Insert "defname defvalue\n".
Buffer.insert(Buffer.end(), DefineName.begin(), DefineName.end());
Buffer.push_back(' ');
Buffer.insert(Buffer.end(), DefineValue.begin(), DefineValue.end());
Buffer.push_back('\n');
}
// Now that all of the primary target's defines have been handled and removed
// from the secondary target's define sets, go through the remaining secondary
// target's #defines and taint them.
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
llvm::StringMap<std::string> &Defs = SecondaryDefines[i];
while (!Defs.empty()) {
const char *DefStart = Defs.begin()->getKeyData();
const char *DefEnd = DefStart + Defs.begin()->getKeyLength();
// Insert "#define_other_target defname".
const char *Command = "#define_other_target ";
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
Buffer.insert(Buffer.end(), DefStart, DefEnd);
Buffer.push_back('\n');
// If any other secondary targets have this same define, remove it from
// them to avoid duplicate #define_other_target directives.
for (unsigned j = i+1; j != e; ++j) {
llvm::StringMap<std::string>::iterator I =
SecondaryDefines[j].find(DefStart, DefEnd);
if (I != SecondaryDefines[j].end())
SecondaryDefines[j].erase(I);
}
Defs.erase(Defs.begin());
}
}
delete[] SecondaryDefines;
}
/// ComputeWCharWidth - Determine the width of the wchar_t type for the primary
/// target, diagnosing whether this is non-portable across the secondary
/// targets.
void TargetInfo::ComputeWCharInfo(FullSourceLoc Loc) {
PrimaryTarget->getWCharInfo(WCharWidth, WCharAlign);
// Check whether this is portable across the secondary targets if the T-U is
// portable so far.
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
unsigned Width, Align;
SecondaryTargets[i]->getWCharInfo(Width, Align);
if (Width != WCharWidth || Align != WCharAlign)
return DiagnoseNonPortability(Loc, diag::port_wchar_t);
}
}
/// getTargetBuiltins - Return information about target-specific builtins for
/// the current primary target, and info about which builtins are non-portable
/// across the current set of primary and secondary targets.
void TargetInfo::getTargetBuiltins(const Builtin::Info *&Records,
unsigned &NumRecords,
std::vector<const char *> &NPortable) const {
// Get info about what actual builtins we will expose.
PrimaryTarget->getTargetBuiltins(Records, NumRecords);
if (SecondaryTargets.empty()) return;
// Compute the set of non-portable builtins.
// Start by computing a mapping from the primary target's builtins to their
// info records for efficient lookup.
llvm::StringMap<const Builtin::Info*> PrimaryRecs;
for (unsigned i = 0, e = NumRecords; i != e; ++i) {
const char *BIName = Records[i].Name;
PrimaryRecs.GetOrCreateValue(BIName, BIName+strlen(BIName)).getValue()
= Records+i;
}
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
// Get the builtins for this secondary target.
const Builtin::Info *Records2nd;
unsigned NumRecords2nd;
SecondaryTargets[i]->getTargetBuiltins(Records2nd, NumRecords2nd);
// Remember all of the secondary builtin names.
std::set<std::string> BuiltinNames2nd;
for (unsigned j = 0, e = NumRecords2nd; j != e; ++j) {
BuiltinNames2nd.insert(Records2nd[j].Name);
// Check to see if the primary target has this builtin.
llvm::StringMap<const Builtin::Info*>::iterator I =
PrimaryRecs.find(Records2nd[j].Name,
Records2nd[j].Name+strlen(Records2nd[j].Name));
if (I != PrimaryRecs.end()) {
const Builtin::Info *PrimBI = I->getValue();
// If does. If they are not identical, mark the builtin as being
// non-portable.
if (Records2nd[j] != *PrimBI)
NPortable.push_back(PrimBI->Name);
} else {
// The primary target doesn't have this, it is non-portable.
NPortable.push_back(Records2nd[j].Name);
}
}
// Now that we checked all the secondary builtins, check to see if the
// primary target has any builtins that the secondary one doesn't. If so,
// then those are non-portable.
for (unsigned j = 0, e = NumRecords; j != e; ++j) {
if (!BuiltinNames2nd.count(Records[j].Name))
NPortable.push_back(Records[j].Name);
}
}
}
/// getVAListDeclaration - Return the declaration to use for
/// __builtin_va_list, which is target-specific.
const char *TargetInfo::getVAListDeclaration() const {
return PrimaryTarget->getVAListDeclaration();
}
/// isValidGCCRegisterName - Returns whether the passed in string
/// is a valid register name according to GCC. This is used by Sema for
/// inline asm statements.
bool TargetInfo::isValidGCCRegisterName(const char *Name) const {
const char * const *Names;
unsigned NumNames;
// Get rid of any register prefix.
if (Name[0] == '%' || Name[0] == '#')
Name++;
if (strcmp(Name, "memory") == 0 ||
strcmp(Name, "cc") == 0)
return true;
PrimaryTarget->getGCCRegNames(Names, NumNames);
// If we have a number it maps to an entry in the register name array.
if (isdigit(Name[0])) {
char *End;
int n = (int)strtol(Name, &End, 0);
if (*End == 0)
return n >= 0 && (unsigned)n < NumNames;
}
// Check register names.
for (unsigned i = 0; i < NumNames; i++) {
if (strcmp(Name, Names[i]) == 0)
return true;
}
// Now check aliases.
const TargetInfoImpl::GCCRegAlias *Aliases;
unsigned NumAliases;
PrimaryTarget->getGCCRegAliases(Aliases, NumAliases);
for (unsigned i = 0; i < NumAliases; i++) {
for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
if (!Aliases[i].Aliases[j])
break;
if (strcmp(Aliases[i].Aliases[j], Name) == 0)
return true;
}
}
return false;
}
const char *TargetInfo::getNormalizedGCCRegisterName(const char *Name) const
{
assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
const char * const *Names;
unsigned NumNames;
PrimaryTarget->getGCCRegNames(Names, NumNames);
// First, check if we have a number.
if (isdigit(Name[0])) {
char *End;
int n = (int)strtol(Name, &End, 0);
if (*End == 0) {
assert(n >= 0 && (unsigned)n < NumNames &&
"Out of bounds register number!");
return Names[n];
}
}
// Now check aliases.
const TargetInfoImpl::GCCRegAlias *Aliases;
unsigned NumAliases;
PrimaryTarget->getGCCRegAliases(Aliases, NumAliases);
for (unsigned i = 0; i < NumAliases; i++) {
for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
if (!Aliases[i].Aliases[j])
break;
if (strcmp(Aliases[i].Aliases[j], Name) == 0)
return Aliases[i].Register;
}
}
return Name;
}
bool TargetInfo::validateOutputConstraint(const char *Name,
ConstraintInfo &info) const
{
// An output constraint must start with '=' or '+'
if (*Name != '=' && *Name != '+')
return false;
if (*Name == '+')
info = CI_ReadWrite;
else
info = CI_None;
Name++;
while (*Name) {
switch (*Name) {
default:
if (!PrimaryTarget->validateAsmConstraint(*Name, info)) {
// FIXME: This assert is in place temporarily
// so we can add more constraints as we hit it.
// Eventually, an unknown constraint should just be treated as 'g'.
assert(0 && "Unknown output constraint type!");
}
case '&': // early clobber.
break;
case 'r': // general register.
info = (ConstraintInfo)(info|CI_AllowsRegister);
break;
case 'm': // memory operand.
info = (ConstraintInfo)(info|CI_AllowsMemory);
break;
case 'g': // general register, memory operand or immediate integer.
info = (ConstraintInfo)(info|CI_AllowsMemory|CI_AllowsRegister);
break;
}
Name++;
}
return true;
}
bool TargetInfo::validateInputConstraint(const char *Name,
unsigned NumOutputs,
ConstraintInfo &info) const
{
while (*Name) {
switch (*Name) {
default:
// Check if we have a matching constraint
if (*Name >= '0' && *Name <= '9') {
unsigned i = *Name - '0';
// Check if matching constraint is out of bounds.
if (i >= NumOutputs)
return false;
} else if (!PrimaryTarget->validateAsmConstraint(*Name, info)) {
// FIXME: This assert is in place temporarily
// so we can add more constraints as we hit it.
// Eventually, an unknown constraint should just be treated as 'g'.
assert(0 && "Unknown input constraint type!");
}
case '%': // commutative
// FIXME: Fail if % is used with the last operand.
break;
case 'i': // immediate integer.
break;
case 'r': // general register.
info = (ConstraintInfo)(info|CI_AllowsRegister);
break;
case 'm': // memory operand.
info = (ConstraintInfo)(info|CI_AllowsMemory);
break;
case 'g': // general register, memory operand or immediate integer.
info = (ConstraintInfo)(info|CI_AllowsMemory|CI_AllowsRegister);
break;
}
Name++;
}
return true;
}
const char *TargetInfo::getClobbers() const
{
return PrimaryTarget->getClobbers();
}