| //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for initializers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/Initialization.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <map> |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Sema Initialization Checking |
| //===----------------------------------------------------------------------===// |
| |
| /// \brief Check whether T is compatible with a wide character type (wchar_t, |
| /// char16_t or char32_t). |
| static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
| if (Context.typesAreCompatible(Context.getWideCharType(), T)) |
| return true; |
| if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
| return Context.typesAreCompatible(Context.Char16Ty, T) || |
| Context.typesAreCompatible(Context.Char32Ty, T); |
| } |
| return false; |
| } |
| |
| enum StringInitFailureKind { |
| SIF_None, |
| SIF_NarrowStringIntoWideChar, |
| SIF_WideStringIntoChar, |
| SIF_IncompatWideStringIntoWideChar, |
| SIF_Other |
| }; |
| |
| /// \brief Check whether the array of type AT can be initialized by the Init |
| /// expression by means of string initialization. Returns SIF_None if so, |
| /// otherwise returns a StringInitFailureKind that describes why the |
| /// initialization would not work. |
| static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
| ASTContext &Context) { |
| if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) |
| return SIF_Other; |
| |
| // See if this is a string literal or @encode. |
| Init = Init->IgnoreParens(); |
| |
| // Handle @encode, which is a narrow string. |
| if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) |
| return SIF_None; |
| |
| // Otherwise we can only handle string literals. |
| StringLiteral *SL = dyn_cast<StringLiteral>(Init); |
| if (SL == 0) |
| return SIF_Other; |
| |
| const QualType ElemTy = |
| Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); |
| |
| switch (SL->getKind()) { |
| case StringLiteral::Ascii: |
| case StringLiteral::UTF8: |
| // char array can be initialized with a narrow string. |
| // Only allow char x[] = "foo"; not char x[] = L"foo"; |
| if (ElemTy->isCharType()) |
| return SIF_None; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_NarrowStringIntoWideChar; |
| return SIF_Other; |
| // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
| // "An array with element type compatible with a qualified or unqualified |
| // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
| // string literal with the corresponding encoding prefix (L, u, or U, |
| // respectively), optionally enclosed in braces. |
| case StringLiteral::UTF16: |
| if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) |
| return SIF_None; |
| if (ElemTy->isCharType()) |
| return SIF_WideStringIntoChar; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_IncompatWideStringIntoWideChar; |
| return SIF_Other; |
| case StringLiteral::UTF32: |
| if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) |
| return SIF_None; |
| if (ElemTy->isCharType()) |
| return SIF_WideStringIntoChar; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_IncompatWideStringIntoWideChar; |
| return SIF_Other; |
| case StringLiteral::Wide: |
| if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) |
| return SIF_None; |
| if (ElemTy->isCharType()) |
| return SIF_WideStringIntoChar; |
| if (IsWideCharCompatible(ElemTy, Context)) |
| return SIF_IncompatWideStringIntoWideChar; |
| return SIF_Other; |
| } |
| |
| llvm_unreachable("missed a StringLiteral kind?"); |
| } |
| |
| static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
| ASTContext &Context) { |
| const ArrayType *arrayType = Context.getAsArrayType(declType); |
| if (!arrayType) |
| return SIF_Other; |
| return IsStringInit(init, arrayType, Context); |
| } |
| |
| /// Update the type of a string literal, including any surrounding parentheses, |
| /// to match the type of the object which it is initializing. |
| static void updateStringLiteralType(Expr *E, QualType Ty) { |
| while (true) { |
| E->setType(Ty); |
| if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) |
| break; |
| else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) |
| E = PE->getSubExpr(); |
| else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) |
| E = UO->getSubExpr(); |
| else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) |
| E = GSE->getResultExpr(); |
| else |
| llvm_unreachable("unexpected expr in string literal init"); |
| } |
| } |
| |
| static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
| Sema &S) { |
| // Get the length of the string as parsed. |
| uint64_t StrLength = |
| cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue(); |
| |
| |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
| // C99 6.7.8p14. We have an array of character type with unknown size |
| // being initialized to a string literal. |
| llvm::APInt ConstVal(32, StrLength); |
| // Return a new array type (C99 6.7.8p22). |
| DeclT = S.Context.getConstantArrayType(IAT->getElementType(), |
| ConstVal, |
| ArrayType::Normal, 0); |
| updateStringLiteralType(Str, DeclT); |
| return; |
| } |
| |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); |
| |
| // We have an array of character type with known size. However, |
| // the size may be smaller or larger than the string we are initializing. |
| // FIXME: Avoid truncation for 64-bit length strings. |
| if (S.getLangOpts().CPlusPlus) { |
| if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { |
| // For Pascal strings it's OK to strip off the terminating null character, |
| // so the example below is valid: |
| // |
| // unsigned char a[2] = "\pa"; |
| if (SL->isPascal()) |
| StrLength--; |
| } |
| |
| // [dcl.init.string]p2 |
| if (StrLength > CAT->getSize().getZExtValue()) |
| S.Diag(Str->getLocStart(), |
| diag::err_initializer_string_for_char_array_too_long) |
| << Str->getSourceRange(); |
| } else { |
| // C99 6.7.8p14. |
| if (StrLength-1 > CAT->getSize().getZExtValue()) |
| S.Diag(Str->getLocStart(), |
| diag::warn_initializer_string_for_char_array_too_long) |
| << Str->getSourceRange(); |
| } |
| |
| // Set the type to the actual size that we are initializing. If we have |
| // something like: |
| // char x[1] = "foo"; |
| // then this will set the string literal's type to char[1]. |
| updateStringLiteralType(Str, DeclT); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic checking for initializer lists. |
| //===----------------------------------------------------------------------===// |
| |
| /// @brief Semantic checking for initializer lists. |
| /// |
| /// The InitListChecker class contains a set of routines that each |
| /// handle the initialization of a certain kind of entity, e.g., |
| /// arrays, vectors, struct/union types, scalars, etc. The |
| /// InitListChecker itself performs a recursive walk of the subobject |
| /// structure of the type to be initialized, while stepping through |
| /// the initializer list one element at a time. The IList and Index |
| /// parameters to each of the Check* routines contain the active |
| /// (syntactic) initializer list and the index into that initializer |
| /// list that represents the current initializer. Each routine is |
| /// responsible for moving that Index forward as it consumes elements. |
| /// |
| /// Each Check* routine also has a StructuredList/StructuredIndex |
| /// arguments, which contains the current "structured" (semantic) |
| /// initializer list and the index into that initializer list where we |
| /// are copying initializers as we map them over to the semantic |
| /// list. Once we have completed our recursive walk of the subobject |
| /// structure, we will have constructed a full semantic initializer |
| /// list. |
| /// |
| /// C99 designators cause changes in the initializer list traversal, |
| /// because they make the initialization "jump" into a specific |
| /// subobject and then continue the initialization from that |
| /// point. CheckDesignatedInitializer() recursively steps into the |
| /// designated subobject and manages backing out the recursion to |
| /// initialize the subobjects after the one designated. |
| namespace { |
| class InitListChecker { |
| Sema &SemaRef; |
| bool hadError; |
| bool VerifyOnly; // no diagnostics, no structure building |
| llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; |
| InitListExpr *FullyStructuredList; |
| |
| void CheckImplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *ParentIList, QualType T, |
| unsigned &Index, InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckExplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &T, |
| unsigned &Index, InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject = false); |
| void CheckListElementTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &DeclType, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject = false); |
| void CheckSubElementType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType ElemType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckComplexType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckScalarType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckReferenceType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckVectorType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| void CheckStructUnionTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| RecordDecl::field_iterator Field, |
| bool SubobjectIsDesignatorContext, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject = false); |
| void CheckArrayType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &DeclType, |
| llvm::APSInt elementIndex, |
| bool SubobjectIsDesignatorContext, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex); |
| bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
| InitListExpr *IList, DesignatedInitExpr *DIE, |
| unsigned DesigIdx, |
| QualType &CurrentObjectType, |
| RecordDecl::field_iterator *NextField, |
| llvm::APSInt *NextElementIndex, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool FinishSubobjectInit, |
| bool TopLevelObject); |
| InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
| QualType CurrentObjectType, |
| InitListExpr *StructuredList, |
| unsigned StructuredIndex, |
| SourceRange InitRange); |
| void UpdateStructuredListElement(InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| Expr *expr); |
| int numArrayElements(QualType DeclType); |
| int numStructUnionElements(QualType DeclType); |
| |
| void FillInValueInitForField(unsigned Init, FieldDecl *Field, |
| const InitializedEntity &ParentEntity, |
| InitListExpr *ILE, bool &RequiresSecondPass); |
| void FillInValueInitializations(const InitializedEntity &Entity, |
| InitListExpr *ILE, bool &RequiresSecondPass); |
| bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
| Expr *InitExpr, FieldDecl *Field, |
| bool TopLevelObject); |
| void CheckValueInitializable(const InitializedEntity &Entity); |
| |
| public: |
| InitListChecker(Sema &S, const InitializedEntity &Entity, |
| InitListExpr *IL, QualType &T, bool VerifyOnly); |
| bool HadError() { return hadError; } |
| |
| // @brief Retrieves the fully-structured initializer list used for |
| // semantic analysis and code generation. |
| InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
| }; |
| } // end anonymous namespace |
| |
| void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) { |
| assert(VerifyOnly && |
| "CheckValueInitializable is only inteded for verification mode."); |
| |
| SourceLocation Loc; |
| InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
| true); |
| InitializationSequence InitSeq(SemaRef, Entity, Kind, None); |
| if (InitSeq.Failed()) |
| hadError = true; |
| } |
| |
| void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field, |
| const InitializedEntity &ParentEntity, |
| InitListExpr *ILE, |
| bool &RequiresSecondPass) { |
| SourceLocation Loc = ILE->getLocStart(); |
| unsigned NumInits = ILE->getNumInits(); |
| InitializedEntity MemberEntity |
| = InitializedEntity::InitializeMember(Field, &ParentEntity); |
| if (Init >= NumInits || !ILE->getInit(Init)) { |
| // If there's no explicit initializer but we have a default initializer, use |
| // that. This only happens in C++1y, since classes with default |
| // initializers are not aggregates in C++11. |
| if (Field->hasInClassInitializer()) { |
| Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context, |
| ILE->getRBraceLoc(), Field); |
| if (Init < NumInits) |
| ILE->setInit(Init, DIE); |
| else { |
| ILE->updateInit(SemaRef.Context, Init, DIE); |
| RequiresSecondPass = true; |
| } |
| return; |
| } |
| |
| // FIXME: We probably don't need to handle references |
| // specially here, since value-initialization of references is |
| // handled in InitializationSequence. |
| if (Field->getType()->isReferenceType()) { |
| // C++ [dcl.init.aggr]p9: |
| // If an incomplete or empty initializer-list leaves a |
| // member of reference type uninitialized, the program is |
| // ill-formed. |
| SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
| << Field->getType() |
| << ILE->getSyntacticForm()->getSourceRange(); |
| SemaRef.Diag(Field->getLocation(), |
| diag::note_uninit_reference_member); |
| hadError = true; |
| return; |
| } |
| |
| InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
| true); |
| InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None); |
| if (!InitSeq) { |
| InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None); |
| hadError = true; |
| return; |
| } |
| |
| ExprResult MemberInit |
| = InitSeq.Perform(SemaRef, MemberEntity, Kind, None); |
| if (MemberInit.isInvalid()) { |
| hadError = true; |
| return; |
| } |
| |
| if (hadError) { |
| // Do nothing |
| } else if (Init < NumInits) { |
| ILE->setInit(Init, MemberInit.takeAs<Expr>()); |
| } else if (InitSeq.isConstructorInitialization()) { |
| // Value-initialization requires a constructor call, so |
| // extend the initializer list to include the constructor |
| // call and make a note that we'll need to take another pass |
| // through the initializer list. |
| ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>()); |
| RequiresSecondPass = true; |
| } |
| } else if (InitListExpr *InnerILE |
| = dyn_cast<InitListExpr>(ILE->getInit(Init))) |
| FillInValueInitializations(MemberEntity, InnerILE, |
| RequiresSecondPass); |
| } |
| |
| /// Recursively replaces NULL values within the given initializer list |
| /// with expressions that perform value-initialization of the |
| /// appropriate type. |
| void |
| InitListChecker::FillInValueInitializations(const InitializedEntity &Entity, |
| InitListExpr *ILE, |
| bool &RequiresSecondPass) { |
| assert((ILE->getType() != SemaRef.Context.VoidTy) && |
| "Should not have void type"); |
| SourceLocation Loc = ILE->getLocStart(); |
| if (ILE->getSyntacticForm()) |
| Loc = ILE->getSyntacticForm()->getLocStart(); |
| |
| if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
| const RecordDecl *RDecl = RType->getDecl(); |
| if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) |
| FillInValueInitForField(0, ILE->getInitializedFieldInUnion(), |
| Entity, ILE, RequiresSecondPass); |
| else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && |
| cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { |
| for (RecordDecl::field_iterator Field = RDecl->field_begin(), |
| FieldEnd = RDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Field->hasInClassInitializer()) { |
| FillInValueInitForField(0, *Field, Entity, ILE, RequiresSecondPass); |
| break; |
| } |
| } |
| } else { |
| unsigned Init = 0; |
| for (RecordDecl::field_iterator Field = RDecl->field_begin(), |
| FieldEnd = RDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| if (hadError) |
| return; |
| |
| FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass); |
| if (hadError) |
| return; |
| |
| ++Init; |
| |
| // Only look at the first initialization of a union. |
| if (RDecl->isUnion()) |
| break; |
| } |
| } |
| |
| return; |
| } |
| |
| QualType ElementType; |
| |
| InitializedEntity ElementEntity = Entity; |
| unsigned NumInits = ILE->getNumInits(); |
| unsigned NumElements = NumInits; |
| if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { |
| ElementType = AType->getElementType(); |
| if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) |
| NumElements = CAType->getSize().getZExtValue(); |
| ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
| 0, Entity); |
| } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
| ElementType = VType->getElementType(); |
| NumElements = VType->getNumElements(); |
| ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
| 0, Entity); |
| } else |
| ElementType = ILE->getType(); |
| |
| |
| for (unsigned Init = 0; Init != NumElements; ++Init) { |
| if (hadError) |
| return; |
| |
| if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
| ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
| ElementEntity.setElementIndex(Init); |
| |
| Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0); |
| if (!InitExpr && !ILE->hasArrayFiller()) { |
| InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
| true); |
| InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None); |
| if (!InitSeq) { |
| InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None); |
| hadError = true; |
| return; |
| } |
| |
| ExprResult ElementInit |
| = InitSeq.Perform(SemaRef, ElementEntity, Kind, None); |
| if (ElementInit.isInvalid()) { |
| hadError = true; |
| return; |
| } |
| |
| if (hadError) { |
| // Do nothing |
| } else if (Init < NumInits) { |
| // For arrays, just set the expression used for value-initialization |
| // of the "holes" in the array. |
| if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
| ILE->setArrayFiller(ElementInit.takeAs<Expr>()); |
| else |
| ILE->setInit(Init, ElementInit.takeAs<Expr>()); |
| } else { |
| // For arrays, just set the expression used for value-initialization |
| // of the rest of elements and exit. |
| if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
| ILE->setArrayFiller(ElementInit.takeAs<Expr>()); |
| return; |
| } |
| |
| if (InitSeq.isConstructorInitialization()) { |
| // Value-initialization requires a constructor call, so |
| // extend the initializer list to include the constructor |
| // call and make a note that we'll need to take another pass |
| // through the initializer list. |
| ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>()); |
| RequiresSecondPass = true; |
| } |
| } |
| } else if (InitListExpr *InnerILE |
| = dyn_cast_or_null<InitListExpr>(InitExpr)) |
| FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass); |
| } |
| } |
| |
| |
| InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, |
| InitListExpr *IL, QualType &T, |
| bool VerifyOnly) |
| : SemaRef(S), VerifyOnly(VerifyOnly) { |
| hadError = false; |
| |
| unsigned newIndex = 0; |
| unsigned newStructuredIndex = 0; |
| FullyStructuredList |
| = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange()); |
| CheckExplicitInitList(Entity, IL, T, newIndex, |
| FullyStructuredList, newStructuredIndex, |
| /*TopLevelObject=*/true); |
| |
| if (!hadError && !VerifyOnly) { |
| bool RequiresSecondPass = false; |
| FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass); |
| if (RequiresSecondPass && !hadError) |
| FillInValueInitializations(Entity, FullyStructuredList, |
| RequiresSecondPass); |
| } |
| } |
| |
| int InitListChecker::numArrayElements(QualType DeclType) { |
| // FIXME: use a proper constant |
| int maxElements = 0x7FFFFFFF; |
| if (const ConstantArrayType *CAT = |
| SemaRef.Context.getAsConstantArrayType(DeclType)) { |
| maxElements = static_cast<int>(CAT->getSize().getZExtValue()); |
| } |
| return maxElements; |
| } |
| |
| int InitListChecker::numStructUnionElements(QualType DeclType) { |
| RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); |
| int InitializableMembers = 0; |
| for (RecordDecl::field_iterator |
| Field = structDecl->field_begin(), |
| FieldEnd = structDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (!Field->isUnnamedBitfield()) |
| ++InitializableMembers; |
| } |
| if (structDecl->isUnion()) |
| return std::min(InitializableMembers, 1); |
| return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
| } |
| |
| void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *ParentIList, |
| QualType T, unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| int maxElements = 0; |
| |
| if (T->isArrayType()) |
| maxElements = numArrayElements(T); |
| else if (T->isRecordType()) |
| maxElements = numStructUnionElements(T); |
| else if (T->isVectorType()) |
| maxElements = T->getAs<VectorType>()->getNumElements(); |
| else |
| llvm_unreachable("CheckImplicitInitList(): Illegal type"); |
| |
| if (maxElements == 0) { |
| if (!VerifyOnly) |
| SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), |
| diag::err_implicit_empty_initializer); |
| ++Index; |
| hadError = true; |
| return; |
| } |
| |
| // Build a structured initializer list corresponding to this subobject. |
| InitListExpr *StructuredSubobjectInitList |
| = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, |
| StructuredIndex, |
| SourceRange(ParentIList->getInit(Index)->getLocStart(), |
| ParentIList->getSourceRange().getEnd())); |
| unsigned StructuredSubobjectInitIndex = 0; |
| |
| // Check the element types and build the structural subobject. |
| unsigned StartIndex = Index; |
| CheckListElementTypes(Entity, ParentIList, T, |
| /*SubobjectIsDesignatorContext=*/false, Index, |
| StructuredSubobjectInitList, |
| StructuredSubobjectInitIndex); |
| |
| if (!VerifyOnly) { |
| StructuredSubobjectInitList->setType(T); |
| |
| unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
| // Update the structured sub-object initializer so that it's ending |
| // range corresponds with the end of the last initializer it used. |
| if (EndIndex < ParentIList->getNumInits()) { |
| SourceLocation EndLoc |
| = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); |
| StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
| } |
| |
| // Complain about missing braces. |
| if (T->isArrayType() || T->isRecordType()) { |
| SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), |
| diag::warn_missing_braces) |
| << StructuredSubobjectInitList->getSourceRange() |
| << FixItHint::CreateInsertion( |
| StructuredSubobjectInitList->getLocStart(), "{") |
| << FixItHint::CreateInsertion( |
| SemaRef.PP.getLocForEndOfToken( |
| StructuredSubobjectInitList->getLocEnd()), |
| "}"); |
| } |
| } |
| } |
| |
| void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &T, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject) { |
| assert(IList->isExplicit() && "Illegal Implicit InitListExpr"); |
| if (!VerifyOnly) { |
| SyntacticToSemantic[IList] = StructuredList; |
| StructuredList->setSyntacticForm(IList); |
| } |
| CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, |
| Index, StructuredList, StructuredIndex, TopLevelObject); |
| if (!VerifyOnly) { |
| QualType ExprTy = T; |
| if (!ExprTy->isArrayType()) |
| ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); |
| IList->setType(ExprTy); |
| StructuredList->setType(ExprTy); |
| } |
| if (hadError) |
| return; |
| |
| if (Index < IList->getNumInits()) { |
| // We have leftover initializers |
| if (VerifyOnly) { |
| if (SemaRef.getLangOpts().CPlusPlus || |
| (SemaRef.getLangOpts().OpenCL && |
| IList->getType()->isVectorType())) { |
| hadError = true; |
| } |
| return; |
| } |
| |
| if (StructuredIndex == 1 && |
| IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == |
| SIF_None) { |
| unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| DK = diag::err_excess_initializers_in_char_array_initializer; |
| hadError = true; |
| } |
| // Special-case |
| SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) |
| << IList->getInit(Index)->getSourceRange(); |
| } else if (!T->isIncompleteType()) { |
| // Don't complain for incomplete types, since we'll get an error |
| // elsewhere |
| QualType CurrentObjectType = StructuredList->getType(); |
| int initKind = |
| CurrentObjectType->isArrayType()? 0 : |
| CurrentObjectType->isVectorType()? 1 : |
| CurrentObjectType->isScalarType()? 2 : |
| CurrentObjectType->isUnionType()? 3 : |
| 4; |
| |
| unsigned DK = diag::warn_excess_initializers; |
| if (SemaRef.getLangOpts().CPlusPlus) { |
| DK = diag::err_excess_initializers; |
| hadError = true; |
| } |
| if (SemaRef.getLangOpts().OpenCL && initKind == 1) { |
| DK = diag::err_excess_initializers; |
| hadError = true; |
| } |
| |
| SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) |
| << initKind << IList->getInit(Index)->getSourceRange(); |
| } |
| } |
| |
| if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 && |
| !TopLevelObject) |
| SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) |
| << IList->getSourceRange() |
| << FixItHint::CreateRemoval(IList->getLocStart()) |
| << FixItHint::CreateRemoval(IList->getLocEnd()); |
| } |
| |
| void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| QualType &DeclType, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject) { |
| if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
| // Explicitly braced initializer for complex type can be real+imaginary |
| // parts. |
| CheckComplexType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isScalarType()) { |
| CheckScalarType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isVectorType()) { |
| CheckVectorType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isRecordType()) { |
| assert(DeclType->isAggregateType() && |
| "non-aggregate records should be handed in CheckSubElementType"); |
| RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); |
| CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), |
| SubobjectIsDesignatorContext, Index, |
| StructuredList, StructuredIndex, |
| TopLevelObject); |
| } else if (DeclType->isArrayType()) { |
| llvm::APSInt Zero( |
| SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), |
| false); |
| CheckArrayType(Entity, IList, DeclType, Zero, |
| SubobjectIsDesignatorContext, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
| // This type is invalid, issue a diagnostic. |
| ++Index; |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) |
| << DeclType; |
| hadError = true; |
| } else if (DeclType->isReferenceType()) { |
| CheckReferenceType(Entity, IList, DeclType, Index, |
| StructuredList, StructuredIndex); |
| } else if (DeclType->isObjCObjectType()) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) |
| << DeclType; |
| hadError = true; |
| } else { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) |
| << DeclType; |
| hadError = true; |
| } |
| } |
| |
| void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| QualType ElemType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| Expr *expr = IList->getInit(Index); |
| |
| if (ElemType->isReferenceType()) |
| return CheckReferenceType(Entity, IList, ElemType, Index, |
| StructuredList, StructuredIndex); |
| |
| if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { |
| if (!ElemType->isRecordType() || ElemType->isAggregateType()) { |
| unsigned newIndex = 0; |
| unsigned newStructuredIndex = 0; |
| InitListExpr *newStructuredList |
| = getStructuredSubobjectInit(IList, Index, ElemType, |
| StructuredList, StructuredIndex, |
| SubInitList->getSourceRange()); |
| CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex, |
| newStructuredList, newStructuredIndex); |
| ++StructuredIndex; |
| ++Index; |
| return; |
| } |
| assert(SemaRef.getLangOpts().CPlusPlus && |
| "non-aggregate records are only possible in C++"); |
| // C++ initialization is handled later. |
| } |
| |
| if (ElemType->isScalarType()) |
| return CheckScalarType(Entity, IList, ElemType, Index, |
| StructuredList, StructuredIndex); |
| |
| if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { |
| // arrayType can be incomplete if we're initializing a flexible |
| // array member. There's nothing we can do with the completed |
| // type here, though. |
| |
| if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { |
| if (!VerifyOnly) { |
| CheckStringInit(expr, ElemType, arrayType, SemaRef); |
| UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| } |
| ++Index; |
| return; |
| } |
| |
| // Fall through for subaggregate initialization. |
| |
| } else if (SemaRef.getLangOpts().CPlusPlus) { |
| // C++ [dcl.init.aggr]p12: |
| // All implicit type conversions (clause 4) are considered when |
| // initializing the aggregate member with an initializer from |
| // an initializer-list. If the initializer can initialize a |
| // member, the member is initialized. [...] |
| |
| // FIXME: Better EqualLoc? |
| InitializationKind Kind = |
| InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); |
| InitializationSequence Seq(SemaRef, Entity, Kind, expr); |
| |
| if (Seq) { |
| if (!VerifyOnly) { |
| ExprResult Result = |
| Seq.Perform(SemaRef, Entity, Kind, expr); |
| if (Result.isInvalid()) |
| hadError = true; |
| |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| Result.takeAs<Expr>()); |
| } |
| ++Index; |
| return; |
| } |
| |
| // Fall through for subaggregate initialization |
| } else { |
| // C99 6.7.8p13: |
| // |
| // The initializer for a structure or union object that has |
| // automatic storage duration shall be either an initializer |
| // list as described below, or a single expression that has |
| // compatible structure or union type. In the latter case, the |
| // initial value of the object, including unnamed members, is |
| // that of the expression. |
| ExprResult ExprRes = SemaRef.Owned(expr); |
| if ((ElemType->isRecordType() || ElemType->isVectorType()) && |
| SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes, |
| !VerifyOnly) |
| == Sema::Compatible) { |
| if (ExprRes.isInvalid()) |
| hadError = true; |
| else { |
| ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take()); |
| if (ExprRes.isInvalid()) |
| hadError = true; |
| } |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| ExprRes.takeAs<Expr>()); |
| ++Index; |
| return; |
| } |
| ExprRes.release(); |
| // Fall through for subaggregate initialization |
| } |
| |
| // C++ [dcl.init.aggr]p12: |
| // |
| // [...] Otherwise, if the member is itself a non-empty |
| // subaggregate, brace elision is assumed and the initializer is |
| // considered for the initialization of the first member of |
| // the subaggregate. |
| if (!SemaRef.getLangOpts().OpenCL && |
| (ElemType->isAggregateType() || ElemType->isVectorType())) { |
| CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, |
| StructuredIndex); |
| ++StructuredIndex; |
| } else { |
| if (!VerifyOnly) { |
| // We cannot initialize this element, so let |
| // PerformCopyInitialization produce the appropriate diagnostic. |
| SemaRef.PerformCopyInitialization(Entity, SourceLocation(), |
| SemaRef.Owned(expr), |
| /*TopLevelOfInitList=*/true); |
| } |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| } |
| } |
| |
| void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| assert(Index == 0 && "Index in explicit init list must be zero"); |
| |
| // As an extension, clang supports complex initializers, which initialize |
| // a complex number component-wise. When an explicit initializer list for |
| // a complex number contains two two initializers, this extension kicks in: |
| // it exepcts the initializer list to contain two elements convertible to |
| // the element type of the complex type. The first element initializes |
| // the real part, and the second element intitializes the imaginary part. |
| |
| if (IList->getNumInits() != 2) |
| return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
| StructuredIndex); |
| |
| // This is an extension in C. (The builtin _Complex type does not exist |
| // in the C++ standard.) |
| if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) |
| << IList->getSourceRange(); |
| |
| // Initialize the complex number. |
| QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| ElementEntity.setElementIndex(Index); |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| } |
| } |
| |
| |
| void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| if (Index >= IList->getNumInits()) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), |
| SemaRef.getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_empty_scalar_initializer : |
| diag::err_empty_scalar_initializer) |
| << IList->getSourceRange(); |
| hadError = !SemaRef.getLangOpts().CPlusPlus11; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| Expr *expr = IList->getInit(Index); |
| if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { |
| if (!VerifyOnly) |
| SemaRef.Diag(SubIList->getLocStart(), |
| diag::warn_many_braces_around_scalar_init) |
| << SubIList->getSourceRange(); |
| |
| CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, |
| StructuredIndex); |
| return; |
| } else if (isa<DesignatedInitExpr>(expr)) { |
| if (!VerifyOnly) |
| SemaRef.Diag(expr->getLocStart(), |
| diag::err_designator_for_scalar_init) |
| << DeclType << expr->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| if (VerifyOnly) { |
| if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr))) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| ExprResult Result = |
| SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), |
| SemaRef.Owned(expr), |
| /*TopLevelOfInitList=*/true); |
| |
| Expr *ResultExpr = 0; |
| |
| if (Result.isInvalid()) |
| hadError = true; // types weren't compatible. |
| else { |
| ResultExpr = Result.takeAs<Expr>(); |
| |
| if (ResultExpr != expr) { |
| // The type was promoted, update initializer list. |
| IList->setInit(Index, ResultExpr); |
| } |
| } |
| if (hadError) |
| ++StructuredIndex; |
| else |
| UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
| ++Index; |
| } |
| |
| void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| if (Index >= IList->getNumInits()) { |
| // FIXME: It would be wonderful if we could point at the actual member. In |
| // general, it would be useful to pass location information down the stack, |
| // so that we know the location (or decl) of the "current object" being |
| // initialized. |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), |
| diag::err_init_reference_member_uninitialized) |
| << DeclType |
| << IList->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| Expr *expr = IList->getInit(Index); |
| if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) |
| << DeclType << IList->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| if (VerifyOnly) { |
| if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr))) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| ExprResult Result = |
| SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), |
| SemaRef.Owned(expr), |
| /*TopLevelOfInitList=*/true); |
| |
| if (Result.isInvalid()) |
| hadError = true; |
| |
| expr = Result.takeAs<Expr>(); |
| IList->setInit(Index, expr); |
| |
| if (hadError) |
| ++StructuredIndex; |
| else |
| UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
| ++Index; |
| } |
| |
| void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType DeclType, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| const VectorType *VT = DeclType->getAs<VectorType>(); |
| unsigned maxElements = VT->getNumElements(); |
| unsigned numEltsInit = 0; |
| QualType elementType = VT->getElementType(); |
| |
| if (Index >= IList->getNumInits()) { |
| // Make sure the element type can be value-initialized. |
| if (VerifyOnly) |
| CheckValueInitializable( |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity)); |
| return; |
| } |
| |
| if (!SemaRef.getLangOpts().OpenCL) { |
| // If the initializing element is a vector, try to copy-initialize |
| // instead of breaking it apart (which is doomed to failure anyway). |
| Expr *Init = IList->getInit(Index); |
| if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { |
| if (VerifyOnly) { |
| if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init))) |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| ExprResult Result = |
| SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), |
| SemaRef.Owned(Init), |
| /*TopLevelOfInitList=*/true); |
| |
| Expr *ResultExpr = 0; |
| if (Result.isInvalid()) |
| hadError = true; // types weren't compatible. |
| else { |
| ResultExpr = Result.takeAs<Expr>(); |
| |
| if (ResultExpr != Init) { |
| // The type was promoted, update initializer list. |
| IList->setInit(Index, ResultExpr); |
| } |
| } |
| if (hadError) |
| ++StructuredIndex; |
| else |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| ResultExpr); |
| ++Index; |
| return; |
| } |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
| // Don't attempt to go past the end of the init list |
| if (Index >= IList->getNumInits()) { |
| if (VerifyOnly) |
| CheckValueInitializable(ElementEntity); |
| break; |
| } |
| |
| ElementEntity.setElementIndex(Index); |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| } |
| return; |
| } |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| // OpenCL initializers allows vectors to be constructed from vectors. |
| for (unsigned i = 0; i < maxElements; ++i) { |
| // Don't attempt to go past the end of the init list |
| if (Index >= IList->getNumInits()) |
| break; |
| |
| ElementEntity.setElementIndex(Index); |
| |
| QualType IType = IList->getInit(Index)->getType(); |
| if (!IType->isVectorType()) { |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| ++numEltsInit; |
| } else { |
| QualType VecType; |
| const VectorType *IVT = IType->getAs<VectorType>(); |
| unsigned numIElts = IVT->getNumElements(); |
| |
| if (IType->isExtVectorType()) |
| VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); |
| else |
| VecType = SemaRef.Context.getVectorType(elementType, numIElts, |
| IVT->getVectorKind()); |
| CheckSubElementType(ElementEntity, IList, VecType, Index, |
| StructuredList, StructuredIndex); |
| numEltsInit += numIElts; |
| } |
| } |
| |
| // OpenCL requires all elements to be initialized. |
| if (numEltsInit != maxElements) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IList->getLocStart(), |
| diag::err_vector_incorrect_num_initializers) |
| << (numEltsInit < maxElements) << maxElements << numEltsInit; |
| hadError = true; |
| } |
| } |
| |
| void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
| InitListExpr *IList, QualType &DeclType, |
| llvm::APSInt elementIndex, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex) { |
| const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); |
| |
| // Check for the special-case of initializing an array with a string. |
| if (Index < IList->getNumInits()) { |
| if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == |
| SIF_None) { |
| // We place the string literal directly into the resulting |
| // initializer list. This is the only place where the structure |
| // of the structured initializer list doesn't match exactly, |
| // because doing so would involve allocating one character |
| // constant for each string. |
| if (!VerifyOnly) { |
| CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); |
| UpdateStructuredListElement(StructuredList, StructuredIndex, |
| IList->getInit(Index)); |
| StructuredList->resizeInits(SemaRef.Context, StructuredIndex); |
| } |
| ++Index; |
| return; |
| } |
| } |
| if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { |
| // Check for VLAs; in standard C it would be possible to check this |
| // earlier, but I don't know where clang accepts VLAs (gcc accepts |
| // them in all sorts of strange places). |
| if (!VerifyOnly) |
| SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), |
| diag::err_variable_object_no_init) |
| << VAT->getSizeExpr()->getSourceRange(); |
| hadError = true; |
| ++Index; |
| ++StructuredIndex; |
| return; |
| } |
| |
| // We might know the maximum number of elements in advance. |
| llvm::APSInt maxElements(elementIndex.getBitWidth(), |
| elementIndex.isUnsigned()); |
| bool maxElementsKnown = false; |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { |
| maxElements = CAT->getSize(); |
| elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); |
| elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
| maxElementsKnown = true; |
| } |
| |
| QualType elementType = arrayType->getElementType(); |
| while (Index < IList->getNumInits()) { |
| Expr *Init = IList->getInit(Index); |
| if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
| // If we're not the subobject that matches up with the '{' for |
| // the designator, we shouldn't be handling the |
| // designator. Return immediately. |
| if (!SubobjectIsDesignatorContext) |
| return; |
| |
| // Handle this designated initializer. elementIndex will be |
| // updated to be the next array element we'll initialize. |
| if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
| DeclType, 0, &elementIndex, Index, |
| StructuredList, StructuredIndex, true, |
| false)) { |
| hadError = true; |
| continue; |
| } |
| |
| if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
| maxElements = maxElements.extend(elementIndex.getBitWidth()); |
| else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
| elementIndex = elementIndex.extend(maxElements.getBitWidth()); |
| elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
| |
| // If the array is of incomplete type, keep track of the number of |
| // elements in the initializer. |
| if (!maxElementsKnown && elementIndex > maxElements) |
| maxElements = elementIndex; |
| |
| continue; |
| } |
| |
| // If we know the maximum number of elements, and we've already |
| // hit it, stop consuming elements in the initializer list. |
| if (maxElementsKnown && elementIndex == maxElements) |
| break; |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, |
| Entity); |
| // Check this element. |
| CheckSubElementType(ElementEntity, IList, elementType, Index, |
| StructuredList, StructuredIndex); |
| ++elementIndex; |
| |
| // If the array is of incomplete type, keep track of the number of |
| // elements in the initializer. |
| if (!maxElementsKnown && elementIndex > maxElements) |
| maxElements = elementIndex; |
| } |
| if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
| // If this is an incomplete array type, the actual type needs to |
| // be calculated here. |
| llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
| if (maxElements == Zero) { |
| // Sizing an array implicitly to zero is not allowed by ISO C, |
| // but is supported by GNU. |
| SemaRef.Diag(IList->getLocStart(), |
| diag::ext_typecheck_zero_array_size); |
| } |
| |
| DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, |
| ArrayType::Normal, 0); |
| } |
| if (!hadError && VerifyOnly) { |
| // Check if there are any members of the array that get value-initialized. |
| // If so, check if doing that is possible. |
| // FIXME: This needs to detect holes left by designated initializers too. |
| if (maxElementsKnown && elementIndex < maxElements) |
| CheckValueInitializable(InitializedEntity::InitializeElement( |
| SemaRef.Context, 0, Entity)); |
| } |
| } |
| |
| bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
| Expr *InitExpr, |
| FieldDecl *Field, |
| bool TopLevelObject) { |
| // Handle GNU flexible array initializers. |
| unsigned FlexArrayDiag; |
| if (isa<InitListExpr>(InitExpr) && |
| cast<InitListExpr>(InitExpr)->getNumInits() == 0) { |
| // Empty flexible array init always allowed as an extension |
| FlexArrayDiag = diag::ext_flexible_array_init; |
| } else if (SemaRef.getLangOpts().CPlusPlus) { |
| // Disallow flexible array init in C++; it is not required for gcc |
| // compatibility, and it needs work to IRGen correctly in general. |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else if (!TopLevelObject) { |
| // Disallow flexible array init on non-top-level object |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
| // Disallow flexible array init on anything which is not a variable. |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { |
| // Disallow flexible array init on local variables. |
| FlexArrayDiag = diag::err_flexible_array_init; |
| } else { |
| // Allow other cases. |
| FlexArrayDiag = diag::ext_flexible_array_init; |
| } |
| |
| if (!VerifyOnly) { |
| SemaRef.Diag(InitExpr->getLocStart(), |
| FlexArrayDiag) |
| << InitExpr->getLocStart(); |
| SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| << Field; |
| } |
| |
| return FlexArrayDiag != diag::ext_flexible_array_init; |
| } |
| |
| void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| QualType DeclType, |
| RecordDecl::field_iterator Field, |
| bool SubobjectIsDesignatorContext, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool TopLevelObject) { |
| RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); |
| |
| // If the record is invalid, some of it's members are invalid. To avoid |
| // confusion, we forgo checking the intializer for the entire record. |
| if (structDecl->isInvalidDecl()) { |
| // Assume it was supposed to consume a single initializer. |
| ++Index; |
| hadError = true; |
| return; |
| } |
| |
| if (DeclType->isUnionType() && IList->getNumInits() == 0) { |
| RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); |
| |
| // If there's a default initializer, use it. |
| if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { |
| if (VerifyOnly) |
| return; |
| for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Field->hasInClassInitializer()) { |
| StructuredList->setInitializedFieldInUnion(*Field); |
| // FIXME: Actually build a CXXDefaultInitExpr? |
| return; |
| } |
| } |
| } |
| |
| // Value-initialize the first named member of the union. |
| for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (Field->getDeclName()) { |
| if (VerifyOnly) |
| CheckValueInitializable( |
| InitializedEntity::InitializeMember(*Field, &Entity)); |
| else |
| StructuredList->setInitializedFieldInUnion(*Field); |
| break; |
| } |
| } |
| return; |
| } |
| |
| // If structDecl is a forward declaration, this loop won't do |
| // anything except look at designated initializers; That's okay, |
| // because an error should get printed out elsewhere. It might be |
| // worthwhile to skip over the rest of the initializer, though. |
| RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); |
| RecordDecl::field_iterator FieldEnd = RD->field_end(); |
| bool InitializedSomething = false; |
| bool CheckForMissingFields = true; |
| while (Index < IList->getNumInits()) { |
| Expr *Init = IList->getInit(Index); |
| |
| if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
| // If we're not the subobject that matches up with the '{' for |
| // the designator, we shouldn't be handling the |
| // designator. Return immediately. |
| if (!SubobjectIsDesignatorContext) |
| return; |
| |
| // Handle this designated initializer. Field will be updated to |
| // the next field that we'll be initializing. |
| if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
| DeclType, &Field, 0, Index, |
| StructuredList, StructuredIndex, |
| true, TopLevelObject)) |
| hadError = true; |
| |
| InitializedSomething = true; |
| |
| // Disable check for missing fields when designators are used. |
| // This matches gcc behaviour. |
| CheckForMissingFields = false; |
| continue; |
| } |
| |
| if (Field == FieldEnd) { |
| // We've run out of fields. We're done. |
| break; |
| } |
| |
| // We've already initialized a member of a union. We're done. |
| if (InitializedSomething && DeclType->isUnionType()) |
| break; |
| |
| // If we've hit the flexible array member at the end, we're done. |
| if (Field->getType()->isIncompleteArrayType()) |
| break; |
| |
| if (Field->isUnnamedBitfield()) { |
| // Don't initialize unnamed bitfields, e.g. "int : 20;" |
| ++Field; |
| continue; |
| } |
| |
| // Make sure we can use this declaration. |
| bool InvalidUse; |
| if (VerifyOnly) |
| InvalidUse = !SemaRef.CanUseDecl(*Field); |
| else |
| InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, |
| IList->getInit(Index)->getLocStart()); |
| if (InvalidUse) { |
| ++Index; |
| ++Field; |
| hadError = true; |
| continue; |
| } |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, StructuredIndex); |
| InitializedSomething = true; |
| |
| if (DeclType->isUnionType() && !VerifyOnly) { |
| // Initialize the first field within the union. |
| StructuredList->setInitializedFieldInUnion(*Field); |
| } |
| |
| ++Field; |
| } |
| |
| // Emit warnings for missing struct field initializers. |
| if (!VerifyOnly && InitializedSomething && CheckForMissingFields && |
| Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && |
| !DeclType->isUnionType()) { |
| // It is possible we have one or more unnamed bitfields remaining. |
| // Find first (if any) named field and emit warning. |
| for (RecordDecl::field_iterator it = Field, end = RD->field_end(); |
| it != end; ++it) { |
| if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { |
| SemaRef.Diag(IList->getSourceRange().getEnd(), |
| diag::warn_missing_field_initializers) << it->getName(); |
| break; |
| } |
| } |
| } |
| |
| // Check that any remaining fields can be value-initialized. |
| if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && |
| !Field->getType()->isIncompleteArrayType()) { |
| // FIXME: Should check for holes left by designated initializers too. |
| for (; Field != FieldEnd && !hadError; ++Field) { |
| if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) |
| CheckValueInitializable( |
| InitializedEntity::InitializeMember(*Field, &Entity)); |
| } |
| } |
| |
| if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
| Index >= IList->getNumInits()) |
| return; |
| |
| if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, |
| TopLevelObject)) { |
| hadError = true; |
| ++Index; |
| return; |
| } |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| |
| if (isa<InitListExpr>(IList->getInit(Index))) |
| CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, StructuredIndex); |
| else |
| CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, StructuredIndex); |
| } |
| |
| /// \brief Expand a field designator that refers to a member of an |
| /// anonymous struct or union into a series of field designators that |
| /// refers to the field within the appropriate subobject. |
| /// |
| static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
| DesignatedInitExpr *DIE, |
| unsigned DesigIdx, |
| IndirectFieldDecl *IndirectField) { |
| typedef DesignatedInitExpr::Designator Designator; |
| |
| // Build the replacement designators. |
| SmallVector<Designator, 4> Replacements; |
| for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
| PE = IndirectField->chain_end(); PI != PE; ++PI) { |
| if (PI + 1 == PE) |
| Replacements.push_back(Designator((IdentifierInfo *)0, |
| DIE->getDesignator(DesigIdx)->getDotLoc(), |
| DIE->getDesignator(DesigIdx)->getFieldLoc())); |
| else |
| Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(), |
| SourceLocation())); |
| assert(isa<FieldDecl>(*PI)); |
| Replacements.back().setField(cast<FieldDecl>(*PI)); |
| } |
| |
| // Expand the current designator into the set of replacement |
| // designators, so we have a full subobject path down to where the |
| // member of the anonymous struct/union is actually stored. |
| DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], |
| &Replacements[0] + Replacements.size()); |
| } |
| |
| /// \brief Given an implicit anonymous field, search the IndirectField that |
| /// corresponds to FieldName. |
| static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField, |
| IdentifierInfo *FieldName) { |
| if (!FieldName) |
| return 0; |
| |
| assert(AnonField->isAnonymousStructOrUnion()); |
| Decl *NextDecl = AnonField->getNextDeclInContext(); |
| while (IndirectFieldDecl *IF = |
| dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) { |
| if (FieldName == IF->getAnonField()->getIdentifier()) |
| return IF; |
| NextDecl = NextDecl->getNextDeclInContext(); |
| } |
| return 0; |
| } |
| |
| static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
| DesignatedInitExpr *DIE) { |
| unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
| SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
| for (unsigned I = 0; I < NumIndexExprs; ++I) |
| IndexExprs[I] = DIE->getSubExpr(I + 1); |
| return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), |
| DIE->size(), IndexExprs, |
| DIE->getEqualOrColonLoc(), |
| DIE->usesGNUSyntax(), DIE->getInit()); |
| } |
| |
| namespace { |
| |
| // Callback to only accept typo corrections that are for field members of |
| // the given struct or union. |
| class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { |
| public: |
| explicit FieldInitializerValidatorCCC(RecordDecl *RD) |
| : Record(RD) {} |
| |
| virtual bool ValidateCandidate(const TypoCorrection &candidate) { |
| FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
| return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
| } |
| |
| private: |
| RecordDecl *Record; |
| }; |
| |
| } |
| |
| /// @brief Check the well-formedness of a C99 designated initializer. |
| /// |
| /// Determines whether the designated initializer @p DIE, which |
| /// resides at the given @p Index within the initializer list @p |
| /// IList, is well-formed for a current object of type @p DeclType |
| /// (C99 6.7.8). The actual subobject that this designator refers to |
| /// within the current subobject is returned in either |
| /// @p NextField or @p NextElementIndex (whichever is appropriate). |
| /// |
| /// @param IList The initializer list in which this designated |
| /// initializer occurs. |
| /// |
| /// @param DIE The designated initializer expression. |
| /// |
| /// @param DesigIdx The index of the current designator. |
| /// |
| /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
| /// into which the designation in @p DIE should refer. |
| /// |
| /// @param NextField If non-NULL and the first designator in @p DIE is |
| /// a field, this will be set to the field declaration corresponding |
| /// to the field named by the designator. |
| /// |
| /// @param NextElementIndex If non-NULL and the first designator in @p |
| /// DIE is an array designator or GNU array-range designator, this |
| /// will be set to the last index initialized by this designator. |
| /// |
| /// @param Index Index into @p IList where the designated initializer |
| /// @p DIE occurs. |
| /// |
| /// @param StructuredList The initializer list expression that |
| /// describes all of the subobject initializers in the order they'll |
| /// actually be initialized. |
| /// |
| /// @returns true if there was an error, false otherwise. |
| bool |
| InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
| InitListExpr *IList, |
| DesignatedInitExpr *DIE, |
| unsigned DesigIdx, |
| QualType &CurrentObjectType, |
| RecordDecl::field_iterator *NextField, |
| llvm::APSInt *NextElementIndex, |
| unsigned &Index, |
| InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| bool FinishSubobjectInit, |
| bool TopLevelObject) { |
| if (DesigIdx == DIE->size()) { |
| // Check the actual initialization for the designated object type. |
| bool prevHadError = hadError; |
| |
| // Temporarily remove the designator expression from the |
| // initializer list that the child calls see, so that we don't try |
| // to re-process the designator. |
| unsigned OldIndex = Index; |
| IList->setInit(OldIndex, DIE->getInit()); |
| |
| CheckSubElementType(Entity, IList, CurrentObjectType, Index, |
| StructuredList, StructuredIndex); |
| |
| // Restore the designated initializer expression in the syntactic |
| // form of the initializer list. |
| if (IList->getInit(OldIndex) != DIE->getInit()) |
| DIE->setInit(IList->getInit(OldIndex)); |
| IList->setInit(OldIndex, DIE); |
| |
| return hadError && !prevHadError; |
| } |
| |
| DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); |
| bool IsFirstDesignator = (DesigIdx == 0); |
| if (!VerifyOnly) { |
| assert((IsFirstDesignator || StructuredList) && |
| "Need a non-designated initializer list to start from"); |
| |
| // Determine the structural initializer list that corresponds to the |
| // current subobject. |
| StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList) |
| : getStructuredSubobjectInit(IList, Index, CurrentObjectType, |
| StructuredList, StructuredIndex, |
| SourceRange(D->getLocStart(), |
| DIE->getLocEnd())); |
| assert(StructuredList && "Expected a structured initializer list"); |
| } |
| |
| if (D->isFieldDesignator()) { |
| // C99 6.7.8p7: |
| // |
| // If a designator has the form |
| // |
| // . identifier |
| // |
| // then the current object (defined below) shall have |
| // structure or union type and the identifier shall be the |
| // name of a member of that type. |
| const RecordType *RT = CurrentObjectType->getAs<RecordType>(); |
| if (!RT) { |
| SourceLocation Loc = D->getDotLoc(); |
| if (Loc.isInvalid()) |
| Loc = D->getFieldLoc(); |
| if (!VerifyOnly) |
| SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
| << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
| ++Index; |
| return true; |
| } |
| |
| // Note: we perform a linear search of the fields here, despite |
| // the fact that we have a faster lookup method, because we always |
| // need to compute the field's index. |
| FieldDecl *KnownField = D->getField(); |
| IdentifierInfo *FieldName = D->getFieldName(); |
| unsigned FieldIndex = 0; |
| RecordDecl::field_iterator |
| Field = RT->getDecl()->field_begin(), |
| FieldEnd = RT->getDecl()->field_end(); |
| for (; Field != FieldEnd; ++Field) { |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| // If we find a field representing an anonymous field, look in the |
| // IndirectFieldDecl that follow for the designated initializer. |
| if (!KnownField && Field->isAnonymousStructOrUnion()) { |
| if (IndirectFieldDecl *IF = |
| FindIndirectFieldDesignator(*Field, FieldName)) { |
| // In verify mode, don't modify the original. |
| if (VerifyOnly) |
| DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
| ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF); |
| D = DIE->getDesignator(DesigIdx); |
| break; |
| } |
| } |
| if (KnownField && KnownField == *Field) |
| break; |
| if (FieldName && FieldName == Field->getIdentifier()) |
| break; |
| |
| ++FieldIndex; |
| } |
| |
| if (Field == FieldEnd) { |
| if (VerifyOnly) { |
| ++Index; |
| return true; // No typo correction when just trying this out. |
| } |
| |
| // There was no normal field in the struct with the designated |
| // name. Perform another lookup for this name, which may find |
| // something that we can't designate (e.g., a member function), |
| // may find nothing, or may find a member of an anonymous |
| // struct/union. |
| DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); |
| FieldDecl *ReplacementField = 0; |
| if (Lookup.empty()) { |
| // Name lookup didn't find anything. Determine whether this |
| // was a typo for another field name. |
| FieldInitializerValidatorCCC Validator(RT->getDecl()); |
| TypoCorrection Corrected = SemaRef.CorrectTypo( |
| DeclarationNameInfo(FieldName, D->getFieldLoc()), |
| Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator, |
| RT->getDecl()); |
| if (Corrected) { |
| std::string CorrectedStr( |
| Corrected.getAsString(SemaRef.getLangOpts())); |
| std::string CorrectedQuotedStr( |
| Corrected.getQuoted(SemaRef.getLangOpts())); |
| ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
| SemaRef.Diag(D->getFieldLoc(), |
| diag::err_field_designator_unknown_suggest) |
| << FieldName << CurrentObjectType << CorrectedQuotedStr |
| << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr); |
| SemaRef.Diag(ReplacementField->getLocation(), |
| diag::note_previous_decl) << CorrectedQuotedStr; |
| hadError = true; |
| } else { |
| SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) |
| << FieldName << CurrentObjectType; |
| ++Index; |
| return true; |
| } |
| } |
| |
| if (!ReplacementField) { |
| // Name lookup found something, but it wasn't a field. |
| SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
| << FieldName; |
| SemaRef.Diag(Lookup.front()->getLocation(), |
| diag::note_field_designator_found); |
| ++Index; |
| return true; |
| } |
| |
| if (!KnownField) { |
| // The replacement field comes from typo correction; find it |
| // in the list of fields. |
| FieldIndex = 0; |
| Field = RT->getDecl()->field_begin(); |
| for (; Field != FieldEnd; ++Field) { |
| if (Field->isUnnamedBitfield()) |
| continue; |
| |
| if (ReplacementField == *Field || |
| Field->getIdentifier() == ReplacementField->getIdentifier()) |
| break; |
| |
| ++FieldIndex; |
| } |
| } |
| } |
| |
| // All of the fields of a union are located at the same place in |
| // the initializer list. |
| if (RT->getDecl()->isUnion()) { |
| FieldIndex = 0; |
| if (!VerifyOnly) |
| StructuredList->setInitializedFieldInUnion(*Field); |
| } |
| |
| // Make sure we can use this declaration. |
| bool InvalidUse; |
| if (VerifyOnly) |
| InvalidUse = !SemaRef.CanUseDecl(*Field); |
| else |
| InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
| if (InvalidUse) { |
| ++Index; |
| return true; |
| } |
| |
| if (!VerifyOnly) { |
| // Update the designator with the field declaration. |
| D->setField(*Field); |
| |
| // Make sure that our non-designated initializer list has space |
| // for a subobject corresponding to this field. |
| if (FieldIndex >= StructuredList->getNumInits()) |
| StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); |
| } |
| |
| // This designator names a flexible array member. |
| if (Field->getType()->isIncompleteArrayType()) { |
| bool Invalid = false; |
| if ((DesigIdx + 1) != DIE->size()) { |
| // We can't designate an object within the flexible array |
| // member (because GCC doesn't allow it). |
| if (!VerifyOnly) { |
| DesignatedInitExpr::Designator *NextD |
| = DIE->getDesignator(DesigIdx + 1); |
| SemaRef.Diag(NextD->getLocStart(), |
| diag::err_designator_into_flexible_array_member) |
| << SourceRange(NextD->getLocStart(), |
| DIE->getLocEnd()); |
| SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| << *Field; |
| } |
| Invalid = true; |
| } |
| |
| if (!hadError && !isa<InitListExpr>(DIE->getInit()) && |
| !isa<StringLiteral>(DIE->getInit())) { |
| // The initializer is not an initializer list. |
| if (!VerifyOnly) { |
| SemaRef.Diag(DIE->getInit()->getLocStart(), |
| diag::err_flexible_array_init_needs_braces) |
| << DIE->getInit()->getSourceRange(); |
| SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
| << *Field; |
| } |
| Invalid = true; |
| } |
| |
| // Check GNU flexible array initializer. |
| if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, |
| TopLevelObject)) |
| Invalid = true; |
| |
| if (Invalid) { |
| ++Index; |
| return true; |
| } |
| |
| // Initialize the array. |
| bool prevHadError = hadError; |
| unsigned newStructuredIndex = FieldIndex; |
| unsigned OldIndex = Index; |
| IList->setInit(Index, DIE->getInit()); |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
| StructuredList, newStructuredIndex); |
| |
| IList->setInit(OldIndex, DIE); |
| if (hadError && !prevHadError) { |
| ++Field; |
| ++FieldIndex; |
| if (NextField) |
| *NextField = Field; |
| StructuredIndex = FieldIndex; |
| return true; |
| } |
| } else { |
| // Recurse to check later designated subobjects. |
| QualType FieldType = Field->getType(); |
| unsigned newStructuredIndex = FieldIndex; |
| |
| InitializedEntity MemberEntity = |
| InitializedEntity::InitializeMember(*Field, &Entity); |
| if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, |
| FieldType, 0, 0, Index, |
| StructuredList, newStructuredIndex, |
| true, false)) |
| return true; |
| } |
| |
| // Find the position of the next field to be initialized in this |
| // subobject. |
| ++Field; |
| ++FieldIndex; |
| |
| // If this the first designator, our caller will continue checking |
| // the rest of this struct/class/union subobject. |
| if (IsFirstDesignator) { |
| if (NextField) |
| *NextField = Field; |
| StructuredIndex = FieldIndex; |
| return false; |
| } |
| |
| if (!FinishSubobjectInit) |
| return false; |
| |
| // We've already initialized something in the union; we're done. |
| if (RT->getDecl()->isUnion()) |
| return hadError; |
| |
| // Check the remaining fields within this class/struct/union subobject. |
| bool prevHadError = hadError; |
| |
| CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, |
| StructuredList, FieldIndex); |
| return hadError && !prevHadError; |
| } |
| |
| // C99 6.7.8p6: |
| // |
| // If a designator has the form |
| // |
| // [ constant-expression ] |
| // |
| // then the current object (defined below) shall have array |
| // type and the expression shall be an integer constant |
| // expression. If the array is of unknown size, any |
| // nonnegative value is valid. |
| // |
| // Additionally, cope with the GNU extension that permits |
| // designators of the form |
| // |
| // [ constant-expression ... constant-expression ] |
| const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); |
| if (!AT) { |
| if (!VerifyOnly) |
| SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
| << CurrentObjectType; |
| ++Index; |
| return true; |
| } |
| |
| Expr *IndexExpr = 0; |
| llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
| if (D->isArrayDesignator()) { |
| IndexExpr = DIE->getArrayIndex(*D); |
| DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); |
| DesignatedEndIndex = DesignatedStartIndex; |
| } else { |
| assert(D->isArrayRangeDesignator() && "Need array-range designator"); |
| |
| DesignatedStartIndex = |
| DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); |
| DesignatedEndIndex = |
| DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); |
| IndexExpr = DIE->getArrayRangeEnd(*D); |
| |
| // Codegen can't handle evaluating array range designators that have side |
| // effects, because we replicate the AST value for each initialized element. |
| // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
| // elements with something that has a side effect, so codegen can emit an |
| // "error unsupported" error instead of miscompiling the app. |
| if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
| DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) |
| FullyStructuredList->sawArrayRangeDesignator(); |
| } |
| |
| if (isa<ConstantArrayType>(AT)) { |
| llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); |
| DesignatedStartIndex |
| = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); |
| DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
| DesignatedEndIndex |
| = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); |
| DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
| if (DesignatedEndIndex >= MaxElements) { |
| if (!VerifyOnly) |
| SemaRef.Diag(IndexExpr->getLocStart(), |
| diag::err_array_designator_too_large) |
| << DesignatedEndIndex.toString(10) << MaxElements.toString(10) |
| << IndexExpr->getSourceRange(); |
| ++Index; |
| return true; |
| } |
| } else { |
| // Make sure the bit-widths and signedness match. |
| if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) |
| DesignatedEndIndex |
| = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); |
| else if (DesignatedStartIndex.getBitWidth() < |
| DesignatedEndIndex.getBitWidth()) |
| DesignatedStartIndex |
| = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); |
| DesignatedStartIndex.setIsUnsigned(true); |
| DesignatedEndIndex.setIsUnsigned(true); |
| } |
| |
| if (!VerifyOnly && StructuredList->isStringLiteralInit()) { |
| // We're modifying a string literal init; we have to decompose the string |
| // so we can modify the individual characters. |
| ASTContext &Context = SemaRef.Context; |
| Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); |
| |
| // Compute the character type |
| QualType CharTy = AT->getElementType(); |
| |
| // Compute the type of the integer literals. |
| QualType PromotedCharTy = CharTy; |
| if (CharTy->isPromotableIntegerType()) |
| PromotedCharTy = Context.getPromotedIntegerType(CharTy); |
| unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); |
| |
| if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { |
| // Get the length of the string. |
| uint64_t StrLen = SL->getLength(); |
| if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
| StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
| StructuredList->resizeInits(Context, StrLen); |
| |
| // Build a literal for each character in the string, and put them into |
| // the init list. |
| for (unsigned i = 0, e = StrLen; i != e; ++i) { |
| llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
| Expr *Init = new (Context) IntegerLiteral( |
| Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
| if (CharTy != PromotedCharTy) |
| Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
| Init, 0, VK_RValue); |
| StructuredList->updateInit(Context, i, Init); |
| } |
| } else { |
| ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); |
| std::string Str; |
| Context.getObjCEncodingForType(E->getEncodedType(), Str); |
| |
| // Get the length of the string. |
| uint64_t StrLen = Str.size(); |
| if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
| StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
| StructuredList->resizeInits(Context, StrLen); |
| |
| // Build a literal for each character in the string, and put them into |
| // the init list. |
| for (unsigned i = 0, e = StrLen; i != e; ++i) { |
| llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
| Expr *Init = new (Context) IntegerLiteral( |
| Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
| if (CharTy != PromotedCharTy) |
| Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
| Init, 0, VK_RValue); |
| StructuredList->updateInit(Context, i, Init); |
| } |
| } |
| } |
| |
| // Make sure that our non-designated initializer list has space |
| // for a subobject corresponding to this array element. |
| if (!VerifyOnly && |
| DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
| StructuredList->resizeInits(SemaRef.Context, |
| DesignatedEndIndex.getZExtValue() + 1); |
| |
| // Repeatedly perform subobject initializations in the range |
| // [DesignatedStartIndex, DesignatedEndIndex]. |
| |
| // Move to the next designator |
| unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
| unsigned OldIndex = Index; |
| |
| InitializedEntity ElementEntity = |
| InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
| |
| while (DesignatedStartIndex <= DesignatedEndIndex) { |
| // Recurse to check later designated subobjects. |
| QualType ElementType = AT->getElementType(); |
| Index = OldIndex; |
| |
| ElementEntity.setElementIndex(ElementIndex); |
| if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, |
| ElementType, 0, 0, Index, |
| StructuredList, ElementIndex, |
| (DesignatedStartIndex == DesignatedEndIndex), |
| false)) |
| return true; |
| |
| // Move to the next index in the array that we'll be initializing. |
| ++DesignatedStartIndex; |
| ElementIndex = DesignatedStartIndex.getZExtValue(); |
| } |
| |
| // If this the first designator, our caller will continue checking |
| // the rest of this array subobject. |
| if (IsFirstDesignator) { |
| if (NextElementIndex) |
| *NextElementIndex = DesignatedStartIndex; |
| StructuredIndex = ElementIndex; |
| return false; |
| } |
| |
| if (!FinishSubobjectInit) |
| return false; |
| |
| // Check the remaining elements within this array subobject. |
| bool prevHadError = hadError; |
| CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, |
| /*SubobjectIsDesignatorContext=*/false, Index, |
| StructuredList, ElementIndex); |
| return hadError && !prevHadError; |
| } |
| |
| // Get the structured initializer list for a subobject of type |
| // @p CurrentObjectType. |
| InitListExpr * |
| InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
| QualType CurrentObjectType, |
| InitListExpr *StructuredList, |
| unsigned StructuredIndex, |
| SourceRange InitRange) { |
| if (VerifyOnly) |
| return 0; // No structured list in verification-only mode. |
| Expr *ExistingInit = 0; |
| if (!StructuredList) |
| ExistingInit = SyntacticToSemantic.lookup(IList); |
| else if (StructuredIndex < StructuredList->getNumInits()) |
| ExistingInit = StructuredList->getInit(StructuredIndex); |
| |
| if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) |
| return Result; |
| |
| if (ExistingInit) { |
| // We are creating an initializer list that initializes the |
| // subobjects of the current object, but there was already an |
| // initialization that completely initialized the current |
| // subobject, e.g., by a compound literal: |
| // |
| // struct X { int a, b; }; |
| // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
| // |
| // Here, xs[0].a == 0 and xs[0].b == 3, since the second, |
| // designated initializer re-initializes the whole |
| // subobject [0], overwriting previous initializers. |
| SemaRef.Diag(InitRange.getBegin(), |
| diag::warn_subobject_initializer_overrides) |
| << InitRange; |
| SemaRef.Diag(ExistingInit->getLocStart(), |
| diag::note_previous_initializer) |
| << /*FIXME:has side effects=*/0 |
| << ExistingInit->getSourceRange(); |
| } |
| |
| InitListExpr *Result |
| = new (SemaRef.Context) InitListExpr(SemaRef.Context, |
| InitRange.getBegin(), None, |
| InitRange.getEnd()); |
| |
| QualType ResultType = CurrentObjectType; |
| if (!ResultType->isArrayType()) |
| ResultType = ResultType.getNonLValueExprType(SemaRef.Context); |
| Result->setType(ResultType); |
| |
| // Pre-allocate storage for the structured initializer list. |
| unsigned NumElements = 0; |
| unsigned NumInits = 0; |
| bool GotNumInits = false; |
| if (!StructuredList) { |
| NumInits = IList->getNumInits(); |
| GotNumInits = true; |
| } else if (Index < IList->getNumInits()) { |
| if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { |
| NumInits = SubList->getNumInits(); |
| GotNumInits = true; |
| } |
| } |
| |
| if (const ArrayType *AType |
| = SemaRef.Context.getAsArrayType(CurrentObjectType)) { |
| if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { |
| NumElements = CAType->getSize().getZExtValue(); |
| // Simple heuristic so that we don't allocate a very large |
| // initializer with many empty entries at the end. |
| if (GotNumInits && NumElements > NumInits) |
| NumElements = 0; |
| } |
| } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) |
| NumElements = VType->getNumElements(); |
| else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { |
| RecordDecl *RDecl = RType->getDecl(); |
| if (RDecl->isUnion()) |
| NumElements = 1; |
| else |
| NumElements = std::distance(RDecl->field_begin(), |
| RDecl->field_end()); |
| } |
| |
| Result->reserveInits(SemaRef.Context, NumElements); |
| |
| // Link this new initializer list into the structured initializer |
| // lists. |
| if (StructuredList) |
| StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
| else { |
| Result->setSyntacticForm(IList); |
| SyntacticToSemantic[IList] = Result; |
| } |
| |
| return Result; |
| } |
| |
| /// Update the initializer at index @p StructuredIndex within the |
| /// structured initializer list to the value @p expr. |
| void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
| unsigned &StructuredIndex, |
| Expr *expr) { |
| // No structured initializer list to update |
| if (!StructuredList) |
| return; |
| |
| if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, |
| StructuredIndex, expr)) { |
| // This initializer overwrites a previous initializer. Warn. |
| SemaRef.Diag(expr->getLocStart(), |
| diag::warn_initializer_overrides) |
| << expr->getSourceRange(); |
| SemaRef.Diag(PrevInit->getLocStart(), |
| diag::note_previous_initializer) |
| << /*FIXME:has side effects=*/0 |
| << PrevInit->getSourceRange(); |
| } |
| |
| ++StructuredIndex; |
| } |
| |
| /// Check that the given Index expression is a valid array designator |
| /// value. This is essentially just a wrapper around |
| /// VerifyIntegerConstantExpression that also checks for negative values |
| /// and produces a reasonable diagnostic if there is a |
| /// failure. Returns the index expression, possibly with an implicit cast |
| /// added, on success. If everything went okay, Value will receive the |
| /// value of the constant expression. |
| static ExprResult |
| CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
| SourceLocation Loc = Index->getLocStart(); |
| |
| // Make sure this is an integer constant expression. |
| ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); |
| if (Result.isInvalid()) |
| return Result; |
| |
| if (Value.isSigned() && Value.isNegative()) |
| return S.Diag(Loc, diag::err_array_designator_negative) |
| << Value.toString(10) << Index->getSourceRange(); |
| |
| Value.setIsUnsigned(true); |
| return Result; |
| } |
| |
| ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
| SourceLocation Loc, |
| bool GNUSyntax, |
| ExprResult Init) { |
| typedef DesignatedInitExpr::Designator ASTDesignator; |
| |
| bool Invalid = false; |
| SmallVector<ASTDesignator, 32> Designators; |
| SmallVector<Expr *, 32> InitExpressions; |
| |
| // Build designators and check array designator expressions. |
| for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
| const Designator &D = Desig.getDesignator(Idx); |
| switch (D.getKind()) { |
| case Designator::FieldDesignator: |
| Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), |
| D.getFieldLoc())); |
| break; |
| |
| case Designator::ArrayDesignator: { |
| Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
| llvm::APSInt IndexValue; |
| if (!Index->isTypeDependent() && !Index->isValueDependent()) |
| Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take(); |
| if (!Index) |
| Invalid = true; |
| else { |
| Designators.push_back(ASTDesignator(InitExpressions.size(), |
| D.getLBracketLoc(), |
| D.getRBracketLoc())); |
| InitExpressions.push_back(Index); |
| } |
| break; |
| } |
| |
| case Designator::ArrayRangeDesignator: { |
| Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
| Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
| llvm::APSInt StartValue; |
| llvm::APSInt EndValue; |
| bool StartDependent = StartIndex->isTypeDependent() || |
| StartIndex->isValueDependent(); |
| bool EndDependent = EndIndex->isTypeDependent() || |
| EndIndex->isValueDependent(); |
| if (!StartDependent) |
| StartIndex = |
| CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take(); |
| if (!EndDependent) |
| EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take(); |
| |
| if (!StartIndex || !EndIndex) |
| Invalid = true; |
| else { |
| // Make sure we're comparing values with the same bit width. |
| if (StartDependent || EndDependent) { |
| // Nothing to compute. |
| } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
| EndValue = EndValue.extend(StartValue.getBitWidth()); |
| else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
| StartValue = StartValue.extend(EndValue.getBitWidth()); |
| |
| if (!StartDependent && !EndDependent && EndValue < StartValue) { |
| Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
| << StartValue.toString(10) << EndValue.toString(10) |
| << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
| Invalid = true; |
| } else { |
| Designators.push_back(ASTDesignator(InitExpressions.size(), |
| D.getLBracketLoc(), |
| D.getEllipsisLoc(), |
| D.getRBracketLoc())); |
| InitExpressions.push_back(StartIndex); |
| InitExpressions.push_back(EndIndex); |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| if (Invalid || Init.isInvalid()) |
| return ExprError(); |
| |
| // Clear out the expressions within the designation. |
| Desig.ClearExprs(*this); |
| |
| DesignatedInitExpr *DIE |
| = DesignatedInitExpr::Create(Context, |
| Designators.data(), Designators.size(), |
| InitExpressions, Loc, GNUSyntax, |
| Init.takeAs<Expr>()); |
| |
| if (!getLangOpts().C99) |
| Diag(DIE->getLocStart(), diag::ext_designated_init) |
| << DIE->getSourceRange(); |
| |
| return Owned(DIE); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization entity |
| //===----------------------------------------------------------------------===// |
| |
| InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
| const InitializedEntity &Parent) |
| : Parent(&Parent), Index(Index) |
| { |
| if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { |
| Kind = EK_ArrayElement; |
| Type = AT->getElementType(); |
| } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
| Kind = EK_VectorElement; |
| Type = VT->getElementType(); |
| } else { |
| const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
| assert(CT && "Unexpected type"); |
| Kind = EK_ComplexElement; |
| Type = CT->getElementType(); |
| } |
| } |
| |
| InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context, |
| CXXBaseSpecifier *Base, |
| bool IsInheritedVirtualBase) |
| { |
| InitializedEntity Result; |
| Result.Kind = EK_Base; |
| Result.Parent = 0; |
| Result.Base = reinterpret_cast<uintptr_t>(Base); |
| if (IsInheritedVirtualBase) |
| Result.Base |= 0x01; |
| |
| Result.Type = Base->getType(); |
| return Result; |
| } |
| |
| DeclarationName InitializedEntity::getName() const { |
| switch (getKind()) { |
| case EK_Parameter: { |
| ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
| return (D ? D->getDeclName() : DeclarationName()); |
| } |
| |
| case EK_Variable: |
| case EK_Member: |
| return VariableOrMember->getDeclName(); |
| |
| case EK_LambdaCapture: |
| return Capture.Var->getDeclName(); |
| |
| case EK_Result: |
| case EK_Exception: |
| case EK_New: |
| case EK_Temporary: |
| case EK_Base: |
| case EK_Delegating: |
| case EK_ArrayElement: |
| case EK_VectorElement: |
| case EK_ComplexElement: |
| case EK_BlockElement: |
| case EK_CompoundLiteralInit: |
| return DeclarationName(); |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| DeclaratorDecl *InitializedEntity::getDecl() const { |
| switch (getKind()) { |
| case EK_Variable: |
| case EK_Member: |
| return VariableOrMember; |
| |
| case EK_Parameter: |
| return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); |
| |
| case EK_Result: |
| case EK_Exception: |
| case EK_New: |
| case EK_Temporary: |
| case EK_Base: |
| case EK_Delegating: |
| case EK_ArrayElement: |
| case EK_VectorElement: |
| case EK_ComplexElement: |
| case EK_BlockElement: |
| case EK_LambdaCapture: |
| case EK_CompoundLiteralInit: |
| return 0; |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| bool InitializedEntity::allowsNRVO() const { |
| switch (getKind()) { |
| case EK_Result: |
| case EK_Exception: |
| return LocAndNRVO.NRVO; |
| |
| case EK_Variable: |
| case EK_Parameter: |
| case EK_Member: |
| case EK_New: |
| case EK_Temporary: |
| case EK_CompoundLiteralInit: |
| case EK_Base: |
| case EK_Delegating: |
| case EK_ArrayElement: |
| case EK_VectorElement: |
| case EK_ComplexElement: |
| case EK_BlockElement: |
| case EK_LambdaCapture: |
| break; |
| } |
| |
| return false; |
| } |
| |
| unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
| assert(getParent() != this); |
| unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
| for (unsigned I = 0; I != Depth; ++I) |
| OS << "`-"; |
| |
| switch (getKind()) { |
| case EK_Variable: OS << "Variable"; break; |
| case EK_Parameter: OS << "Parameter"; break; |
| case EK_Result: OS << "Result"; break; |
| case EK_Exception: OS << "Exception"; break; |
| case EK_Member: OS << "Member"; break; |
| case EK_New: OS << "New"; break; |
| case EK_Temporary: OS << "Temporary"; break; |
| case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; |
| case EK_Base: OS << "Base"; break; |
| case EK_Delegating: OS << "Delegating"; break; |
| case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
| case EK_VectorElement: OS << "VectorElement " << Index; break; |
| case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
| case EK_BlockElement: OS << "Block"; break; |
| case EK_LambdaCapture: |
| OS << "LambdaCapture "; |
| getCapturedVar()->printName(OS); |
| break; |
| } |
| |
| if (Decl *D = getDecl()) { |
| OS << " "; |
| cast<NamedDecl>(D)->printQualifiedName(OS); |
| } |
| |
| OS << " '" << getType().getAsString() << "'\n"; |
| |
| return Depth + 1; |
| } |
| |
| void InitializedEntity::dump() const { |
| dumpImpl(llvm::errs()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization sequence |
| //===----------------------------------------------------------------------===// |
| |
| void InitializationSequence::Step::Destroy() { |
| switch (Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| case SK_CastDerivedToBaseRValue: |
| case SK_CastDerivedToBaseXValue: |
| case SK_CastDerivedToBaseLValue: |
| case SK_BindReference: |
| case SK_BindReferenceToTemporary: |
| case SK_ExtraneousCopyToTemporary: |
| case SK_UserConversion: |
| case SK_QualificationConversionRValue: |
| case SK_QualificationConversionXValue: |
| case SK_QualificationConversionLValue: |
| case SK_LValueToRValue: |
| case SK_ListInitialization: |
| case SK_ListConstructorCall: |
| case SK_UnwrapInitList: |
| case SK_RewrapInitList: |
| case SK_ConstructorInitialization: |
| case SK_ZeroInitialization: |
| case SK_CAssignment: |
| case SK_StringInit: |
| case SK_ObjCObjectConversion: |
| case SK_ArrayInit: |
| case SK_ParenthesizedArrayInit: |
| case SK_PassByIndirectCopyRestore: |
| case SK_PassByIndirectRestore: |
| case SK_ProduceObjCObject: |
| case SK_StdInitializerList: |
| case SK_OCLSamplerInit: |
| case SK_OCLZeroEvent: |
| break; |
| |
| case SK_ConversionSequence: |
| delete ICS; |
| } |
| } |
| |
| bool InitializationSequence::isDirectReferenceBinding() const { |
| return !Steps.empty() && Steps.back().Kind == SK_BindReference; |
| } |
| |
| bool InitializationSequence::isAmbiguous() const { |
| if (!Failed()) |
| return false; |
| |
| switch (getFailureKind()) { |
| case FK_TooManyInitsForReference: |
| case FK_ArrayNeedsInitList: |
| case FK_ArrayNeedsInitListOrStringLiteral: |
| case FK_ArrayNeedsInitListOrWideStringLiteral: |
| case FK_NarrowStringIntoWideCharArray: |
| case FK_WideStringIntoCharArray: |
| case FK_IncompatWideStringIntoWideChar: |
| case FK_AddressOfOverloadFailed: // FIXME: Could do better |
| case FK_NonConstLValueReferenceBindingToTemporary: |
| case FK_NonConstLValueReferenceBindingToUnrelated: |
| case FK_RValueReferenceBindingToLValue: |
| case FK_ReferenceInitDropsQualifiers: |
| case FK_ReferenceInitFailed: |
| case FK_ConversionFailed: |
| case FK_ConversionFromPropertyFailed: |
| case FK_TooManyInitsForScalar: |
| case FK_ReferenceBindingToInitList: |
| case FK_InitListBadDestinationType: |
| case FK_DefaultInitOfConst: |
| case FK_Incomplete: |
| case FK_ArrayTypeMismatch: |
| case FK_NonConstantArrayInit: |
| case FK_ListInitializationFailed: |
| case FK_VariableLengthArrayHasInitializer: |
| case FK_PlaceholderType: |
| case FK_ExplicitConstructor: |
| return false; |
| |
| case FK_ReferenceInitOverloadFailed: |
| case FK_UserConversionOverloadFailed: |
| case FK_ConstructorOverloadFailed: |
| case FK_ListConstructorOverloadFailed: |
| return FailedOverloadResult == OR_Ambiguous; |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| bool InitializationSequence::isConstructorInitialization() const { |
| return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
| } |
| |
| void |
| InitializationSequence |
| ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
| DeclAccessPair Found, |
| bool HadMultipleCandidates) { |
| Step S; |
| S.Kind = SK_ResolveAddressOfOverloadedFunction; |
| S.Type = Function->getType(); |
| S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| S.Function.Function = Function; |
| S.Function.FoundDecl = Found; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
| ExprValueKind VK) { |
| Step S; |
| switch (VK) { |
| case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; |
| case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
| case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
| } |
| S.Type = BaseType; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddReferenceBindingStep(QualType T, |
| bool BindingTemporary) { |
| Step S; |
| S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { |
| Step S; |
| S.Kind = SK_ExtraneousCopyToTemporary; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void |
| InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
| DeclAccessPair FoundDecl, |
| QualType T, |
| bool HadMultipleCandidates) { |
| Step S; |
| S.Kind = SK_UserConversion; |
| S.Type = T; |
| S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| S.Function.Function = Function; |
| S.Function.FoundDecl = FoundDecl; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
| ExprValueKind VK) { |
| Step S; |
| S.Kind = SK_QualificationConversionRValue; // work around a gcc warning |
| switch (VK) { |
| case VK_RValue: |
| S.Kind = SK_QualificationConversionRValue; |
| break; |
| case VK_XValue: |
| S.Kind = SK_QualificationConversionXValue; |
| break; |
| case VK_LValue: |
| S.Kind = SK_QualificationConversionLValue; |
| break; |
| } |
| S.Type = Ty; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddLValueToRValueStep(QualType Ty) { |
| assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); |
| |
| Step S; |
| S.Kind = SK_LValueToRValue; |
| S.Type = Ty; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddConversionSequenceStep( |
| const ImplicitConversionSequence &ICS, |
| QualType T) { |
| Step S; |
| S.Kind = SK_ConversionSequence; |
| S.Type = T; |
| S.ICS = new ImplicitConversionSequence(ICS); |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddListInitializationStep(QualType T) { |
| Step S; |
| S.Kind = SK_ListInitialization; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void |
| InitializationSequence |
| ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, |
| AccessSpecifier Access, |
| QualType T, |
| bool HadMultipleCandidates, |
| bool FromInitList, bool AsInitList) { |
| Step S; |
| S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall |
| : SK_ConstructorInitialization; |
| S.Type = T; |
| S.Function.HadMultipleCandidates = HadMultipleCandidates; |
| S.Function.Function = Constructor; |
| S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddZeroInitializationStep(QualType T) { |
| Step S; |
| S.Kind = SK_ZeroInitialization; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddCAssignmentStep(QualType T) { |
| Step S; |
| S.Kind = SK_CAssignment; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddStringInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_StringInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
| Step S; |
| S.Kind = SK_ObjCObjectConversion; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddArrayInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_ArrayInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_ParenthesizedArrayInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
| bool shouldCopy) { |
| Step s; |
| s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
| : SK_PassByIndirectRestore); |
| s.Type = type; |
| Steps.push_back(s); |
| } |
| |
| void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
| Step S; |
| S.Kind = SK_ProduceObjCObject; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
| Step S; |
| S.Kind = SK_StdInitializerList; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
| Step S; |
| S.Kind = SK_OCLSamplerInit; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::AddOCLZeroEventStep(QualType T) { |
| Step S; |
| S.Kind = SK_OCLZeroEvent; |
| S.Type = T; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::RewrapReferenceInitList(QualType T, |
| InitListExpr *Syntactic) { |
| assert(Syntactic->getNumInits() == 1 && |
| "Can only rewrap trivial init lists."); |
| Step S; |
| S.Kind = SK_UnwrapInitList; |
| S.Type = Syntactic->getInit(0)->getType(); |
| Steps.insert(Steps.begin(), S); |
| |
| S.Kind = SK_RewrapInitList; |
| S.Type = T; |
| S.WrappingSyntacticList = Syntactic; |
| Steps.push_back(S); |
| } |
| |
| void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
| OverloadingResult Result) { |
| setSequenceKind(FailedSequence); |
| this->Failure = Failure; |
| this->FailedOverloadResult = Result; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attempt initialization |
| //===----------------------------------------------------------------------===// |
| |
| static void MaybeProduceObjCObject(Sema &S, |
| InitializationSequence &Sequence, |
| const InitializedEntity &Entity) { |
| if (!S.getLangOpts().ObjCAutoRefCount) return; |
| |
| /// When initializing a parameter, produce the value if it's marked |
| /// __attribute__((ns_consumed)). |
| if (Entity.getKind() == InitializedEntity::EK_Parameter) { |
| if (!Entity.isParameterConsumed()) |
| return; |
| |
| assert(Entity.getType()->isObjCRetainableType() && |
| "consuming an object of unretainable type?"); |
| Sequence.AddProduceObjCObjectStep(Entity.getType()); |
| |
| /// When initializing a return value, if the return type is a |
| /// retainable type, then returns need to immediately retain the |
| /// object. If an autorelease is required, it will be done at the |
| /// last instant. |
| } else if (Entity.getKind() == InitializedEntity::EK_Result) { |
| if (!Entity.getType()->isObjCRetainableType()) |
| return; |
| |
| Sequence.AddProduceObjCObjectStep(Entity.getType()); |
| } |
| } |
| |
| static void TryListInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitListExpr *InitList, |
| InitializationSequence &Sequence); |
| |
| /// \brief When initializing from init list via constructor, handle |
| /// initialization of an object of type std::initializer_list<T>. |
| /// |
| /// \return true if we have handled initialization of an object of type |
| /// std::initializer_list<T>, false otherwise. |
| static bool TryInitializerListConstruction(Sema &S, |
| InitListExpr *List, |
| QualType DestType, |
| InitializationSequence &Sequence) { |
| QualType E; |
| if (!S.isStdInitializerList(DestType, &E)) |
| return false; |
| |
| if (S.RequireCompleteType(List->getExprLoc(), E, 0)) { |
| Sequence.setIncompleteTypeFailure(E); |
| return true; |
| } |
| |
| // Try initializing a temporary array from the init list. |
| QualType ArrayType = S.Context.getConstantArrayType( |
| E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
| List->getNumInits()), |
| clang::ArrayType::Normal, 0); |
| InitializedEntity HiddenArray = |
| InitializedEntity::InitializeTemporary(ArrayType); |
| InitializationKind Kind = |
| InitializationKind::CreateDirectList(List->getExprLoc()); |
| TryListInitialization(S, HiddenArray, Kind, List, Sequence); |
| if (Sequence) |
| Sequence.AddStdInitializerListConstructionStep(DestType); |
| return true; |
| } |
| |
| static OverloadingResult |
| ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, |
| MultiExprArg Args, |
| OverloadCandidateSet &CandidateSet, |
| ArrayRef<NamedDecl *> Ctors, |
| OverloadCandidateSet::iterator &Best, |
| bool CopyInitializing, bool AllowExplicit, |
| bool OnlyListConstructors, bool InitListSyntax) { |
| CandidateSet.clear(); |
| |
| for (ArrayRef<NamedDecl *>::iterator |
| Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) { |
| NamedDecl *D = *Con; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); |
| bool SuppressUserConversions = false; |
| |
| // Find the constructor (which may be a template). |
| CXXConstructorDecl *Constructor = 0; |
| FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); |
| if (ConstructorTmpl) |
| Constructor = cast<CXXConstructorDecl>( |
| ConstructorTmpl->getTemplatedDecl()); |
| else { |
| Constructor = cast<CXXConstructorDecl>(D); |
| |
| // If we're performing copy initialization using a copy constructor, we |
| // suppress user-defined conversions on the arguments. We do the same for |
| // move constructors. |
| if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) && |
| Constructor->isCopyOrMoveConstructor()) |
| SuppressUserConversions = true; |
| } |
| |
| if (!Constructor->isInvalidDecl() && |
| (AllowExplicit || !Constructor->isExplicit()) && |
| (!OnlyListConstructors || S.isInitListConstructor(Constructor))) { |
| if (ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, |
| /*ExplicitArgs*/ 0, Args, |
| CandidateSet, SuppressUserConversions); |
| else { |
| // C++ [over.match.copy]p1: |
| // - When initializing a temporary to be bound to the first parameter |
| // of a constructor that takes a reference to possibly cv-qualified |
| // T as its first argument, called with a single argument in the |
| // context of direct-initialization, explicit conversion functions |
| // are also considered. |
| bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
| Args.size() == 1 && |
| Constructor->isCopyOrMoveConstructor(); |
| S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet, |
| SuppressUserConversions, |
| /*PartialOverloading=*/false, |
| /*AllowExplicit=*/AllowExplicitConv); |
| } |
| } |
| } |
| |
| // Perform overload resolution and return the result. |
| return CandidateSet.BestViableFunction(S, DeclLoc, Best); |
| } |
| |
| /// \brief Attempt initialization by constructor (C++ [dcl.init]), which |
| /// enumerates the constructors of the initialized entity and performs overload |
| /// resolution to select the best. |
| /// If InitListSyntax is true, this is list-initialization of a non-aggregate |
| /// class type. |
| static void TryConstructorInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, QualType DestType, |
| InitializationSequence &Sequence, |
| bool InitListSyntax = false) { |
| assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && |
| "InitListSyntax must come with a single initializer list argument."); |
| |
| // The type we're constructing needs to be complete. |
| if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { |
| Sequence.setIncompleteTypeFailure(DestType); |
| return; |
| } |
| |
| const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
| assert(DestRecordType && "Constructor initialization requires record type"); |
| CXXRecordDecl *DestRecordDecl |
| = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
| |
| // Build the candidate set directly in the initialization sequence |
| // structure, so that it will persist if we fail. |
| OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| |
| // Determine whether we are allowed to call explicit constructors or |
| // explicit conversion operators. |
| bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax; |
| bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
| |
| // - Otherwise, if T is a class type, constructors are considered. The |
| // applicable constructors are enumerated, and the best one is chosen |
| // through overload resolution. |
| DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); |
| // The container holding the constructors can under certain conditions |
| // be changed while iterating (e.g. because of deserialization). |
| // To be safe we copy the lookup results to a new container. |
| SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); |
| |
| OverloadingResult Result = OR_No_Viable_Function; |
| OverloadCandidateSet::iterator Best; |
| bool AsInitializerList = false; |
| |
| // C++11 [over.match.list]p1: |
| // When objects of non-aggregate type T are list-initialized, overload |
| // resolution selects the constructor in two phases: |
| // - Initially, the candidate functions are the initializer-list |
| // constructors of the class T and the argument list consists of the |
| // initializer list as a single argument. |
| if (InitListSyntax) { |
| InitListExpr *ILE = cast<InitListExpr>(Args[0]); |
| AsInitializerList = true; |
| |
| // If the initializer list has no elements and T has a default constructor, |
| // the first phase is omitted. |
| if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor()) |
| Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, |
| CandidateSet, Ctors, Best, |
| CopyInitialization, AllowExplicit, |
| /*OnlyListConstructor=*/true, |
| InitListSyntax); |
| |
| // Time to unwrap the init list. |
| Args = MultiExprArg(ILE->getInits(), ILE->getNumInits()); |
| } |
| |
| // C++11 [over.match.list]p1: |
| // - If no viable initializer-list constructor is found, overload resolution |
| // is performed again, where the candidate functions are all the |
| // constructors of the class T and the argument list consists of the |
| // elements of the initializer list. |
| if (Result == OR_No_Viable_Function) { |
| AsInitializerList = false; |
| Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, |
| CandidateSet, Ctors, Best, |
| CopyInitialization, AllowExplicit, |
| /*OnlyListConstructors=*/false, |
| InitListSyntax); |
| } |
| if (Result) { |
| Sequence.SetOverloadFailure(InitListSyntax ? |
| InitializationSequence::FK_ListConstructorOverloadFailed : |
| InitializationSequence::FK_ConstructorOverloadFailed, |
| Result); |
| return; |
| } |
| |
| // C++11 [dcl.init]p6: |
| // If a program calls for the default initialization of an object |
| // of a const-qualified type T, T shall be a class type with a |
| // user-provided default constructor. |
| if (Kind.getKind() == InitializationKind::IK_Default && |
| Entity.getType().isConstQualified() && |
| !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) { |
| Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
| return; |
| } |
| |
| // C++11 [over.match.list]p1: |
| // In copy-list-initialization, if an explicit constructor is chosen, the |
| // initializer is ill-formed. |
| CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
| if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
| Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
| return; |
| } |
| |
| // Add the constructor initialization step. Any cv-qualification conversion is |
| // subsumed by the initialization. |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| Sequence.AddConstructorInitializationStep(CtorDecl, |
| Best->FoundDecl.getAccess(), |
| DestType, HadMultipleCandidates, |
| InitListSyntax, AsInitializerList); |
| } |
| |
| static bool |
| ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
| Expr *Initializer, |
| QualType &SourceType, |
| QualType &UnqualifiedSourceType, |
| QualType UnqualifiedTargetType, |
| InitializationSequence &Sequence) { |
| if (S.Context.getCanonicalType(UnqualifiedSourceType) == |
| S.Context.OverloadTy) { |
| DeclAccessPair Found; |
| bool HadMultipleCandidates = false; |
| if (FunctionDecl *Fn |
| = S.ResolveAddressOfOverloadedFunction(Initializer, |
| UnqualifiedTargetType, |
| false, Found, |
| &HadMultipleCandidates)) { |
| Sequence.AddAddressOverloadResolutionStep(Fn, Found, |
| HadMultipleCandidates); |
| SourceType = Fn->getType(); |
| UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
| } else if (!UnqualifiedTargetType->isRecordType()) { |
| Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static void TryReferenceInitializationCore(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| QualType cv1T1, QualType T1, |
| Qualifiers T1Quals, |
| QualType cv2T2, QualType T2, |
| Qualifiers T2Quals, |
| InitializationSequence &Sequence); |
| |
| static void TryValueInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitializationSequence &Sequence, |
| InitListExpr *InitList = 0); |
| |
| /// \brief Attempt list initialization of a reference. |
| static void TryReferenceListInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitListExpr *InitList, |
| InitializationSequence &Sequence) { |
| // First, catch C++03 where this isn't possible. |
| if (!S.getLangOpts().CPlusPlus11) { |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
| return; |
| } |
| |
| QualType DestType = Entity.getType(); |
| QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); |
| Qualifiers T1Quals; |
| QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
| |
| // Reference initialization via an initializer list works thus: |
| // If the initializer list consists of a single element that is |
| // reference-related to the referenced type, bind directly to that element |
| // (possibly creating temporaries). |
| // Otherwise, initialize a temporary with the initializer list and |
| // bind to that. |
| if (InitList->getNumInits() == 1) { |
| Expr *Initializer = InitList->getInit(0); |
| QualType cv2T2 = Initializer->getType(); |
| Qualifiers T2Quals; |
| QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
| |
| // If this fails, creating a temporary wouldn't work either. |
| if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
| T1, Sequence)) |
| return; |
| |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| bool dummy1, dummy2, dummy3; |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, |
| dummy2, dummy3); |
| if (RefRelationship >= Sema::Ref_Related) { |
| // Try to bind the reference here. |
| TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
| T1Quals, cv2T2, T2, T2Quals, Sequence); |
| if (Sequence) |
| Sequence.RewrapReferenceInitList(cv1T1, InitList); |
| return; |
| } |
| |
| // Update the initializer if we've resolved an overloaded function. |
| if (Sequence.step_begin() != Sequence.step_end()) |
| Sequence.RewrapReferenceInitList(cv1T1, InitList); |
| } |
| |
| // Not reference-related. Create a temporary and bind to that. |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); |
| |
| TryListInitialization(S, TempEntity, Kind, InitList, Sequence); |
| if (Sequence) { |
| if (DestType->isRValueReferenceType() || |
| (T1Quals.hasConst() && !T1Quals.hasVolatile())) |
| Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); |
| else |
| Sequence.SetFailed( |
| InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
| } |
| } |
| |
| /// \brief Attempt list initialization (C++0x [dcl.init.list]) |
| static void TryListInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitListExpr *InitList, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| |
| // C++ doesn't allow scalar initialization with more than one argument. |
| // But C99 complex numbers are scalars and it makes sense there. |
| if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
| !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
| Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
| return; |
| } |
| if (DestType->isReferenceType()) { |
| TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); |
| return; |
| } |
| if (DestType->isRecordType()) { |
| if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) { |
| Sequence.setIncompleteTypeFailure(DestType); |
| return; |
| } |
| |
| // C++11 [dcl.init.list]p3: |
| // - If T is an aggregate, aggregate initialization is performed. |
| if (!DestType->isAggregateType()) { |
| if (S.getLangOpts().CPlusPlus11) { |
| // - Otherwise, if the initializer list has no elements and T is a |
| // class type with a default constructor, the object is |
| // value-initialized. |
| if (InitList->getNumInits() == 0) { |
| CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
| if (RD->hasDefaultConstructor()) { |
| TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
| return; |
| } |
| } |
| |
| // - Otherwise, if T is a specialization of std::initializer_list<E>, |
| // an initializer_list object constructed [...] |
| if (TryInitializerListConstruction(S, InitList, DestType, Sequence)) |
| return; |
| |
| // - Otherwise, if T is a class type, constructors are considered. |
| Expr *InitListAsExpr = InitList; |
| TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
| Sequence, /*InitListSyntax*/true); |
| } else |
| Sequence.SetFailed( |
| InitializationSequence::FK_InitListBadDestinationType); |
| return; |
| } |
| } |
| |
| InitListChecker CheckInitList(S, Entity, InitList, |
| DestType, /*VerifyOnly=*/true); |
| if (CheckInitList.HadError()) { |
| Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
| return; |
| } |
| |
| // Add the list initialization step with the built init list. |
| Sequence.AddListInitializationStep(DestType); |
| } |
| |
| /// \brief Try a reference initialization that involves calling a conversion |
| /// function. |
| static OverloadingResult TryRefInitWithConversionFunction(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| bool AllowRValues, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); |
| QualType T1 = cv1T1.getUnqualifiedType(); |
| QualType cv2T2 = Initializer->getType(); |
| QualType T2 = cv2T2.getUnqualifiedType(); |
| |
| bool DerivedToBase; |
| bool ObjCConversion; |
| bool ObjCLifetimeConversion; |
| assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), |
| T1, T2, DerivedToBase, |
| ObjCConversion, |
| ObjCLifetimeConversion) && |
| "Must have incompatible references when binding via conversion"); |
| (void)DerivedToBase; |
| (void)ObjCConversion; |
| (void)ObjCLifetimeConversion; |
| |
| // Build the candidate set directly in the initialization sequence |
| // structure, so that it will persist if we fail. |
| OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| CandidateSet.clear(); |
| |
| // Determine whether we are allowed to call explicit constructors or |
| // explicit conversion operators. |
| bool AllowExplicit = Kind.AllowExplicit(); |
| bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions(); |
| |
| const RecordType *T1RecordType = 0; |
| if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
| !S.RequireCompleteType(Kind.getLocation(), T1, 0)) { |
| // The type we're converting to is a class type. Enumerate its constructors |
| // to see if there is a suitable conversion. |
| CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); |
| |
| DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl); |
| // The container holding the constructors can under certain conditions |
| // be changed while iterating (e.g. because of deserialization). |
| // To be safe we copy the lookup results to a new container. |
| SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); |
| for (SmallVector<NamedDecl*, 16>::iterator |
| CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { |
| NamedDecl *D = *CI; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); |
| |
| // Find the constructor (which may be a template). |
| CXXConstructorDecl *Constructor = 0; |
| FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); |
| if (ConstructorTmpl) |
| Constructor = cast<CXXConstructorDecl>( |
| ConstructorTmpl->getTemplatedDecl()); |
| else |
| Constructor = cast<CXXConstructorDecl>(D); |
| |
| if (!Constructor->isInvalidDecl() && |
| Constructor->isConvertingConstructor(AllowExplicit)) { |
| if (ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, |
| /*ExplicitArgs*/ 0, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| else |
| S.AddOverloadCandidate(Constructor, FoundDecl, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| } |
| } |
| } |
| if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
| return OR_No_Viable_Function; |
| |
| const RecordType *T2RecordType = 0; |
| if ((T2RecordType = T2->getAs<RecordType>()) && |
| !S.RequireCompleteType(Kind.getLocation(), T2, 0)) { |
| // The type we're converting from is a class type, enumerate its conversion |
| // functions. |
| CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); |
| |
| std::pair<CXXRecordDecl::conversion_iterator, |
| CXXRecordDecl::conversion_iterator> |
| Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
| for (CXXRecordDecl::conversion_iterator |
| I = Conversions.first, E = Conversions.second; I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| // If the conversion function doesn't return a reference type, |
| // it can't be considered for this conversion unless we're allowed to |
| // consider rvalues. |
| // FIXME: Do we need to make sure that we only consider conversion |
| // candidates with reference-compatible results? That might be needed to |
| // break recursion. |
| if ((AllowExplicitConvs || !Conv->isExplicit()) && |
| (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), |
| ActingDC, Initializer, |
| DestType, CandidateSet); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, |
| Initializer, DestType, CandidateSet); |
| } |
| } |
| } |
| if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
| return OR_No_Viable_Function; |
| |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| |
| // Perform overload resolution. If it fails, return the failed result. |
| OverloadCandidateSet::iterator Best; |
| if (OverloadingResult Result |
| = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) |
| return Result; |
| |
| FunctionDecl *Function = Best->Function; |
| // This is the overload that will be used for this initialization step if we |
| // use this initialization. Mark it as referenced. |
| Function->setReferenced(); |
| |
| // Compute the returned type of the conversion. |
| if (isa<CXXConversionDecl>(Function)) |
| T2 = Function->getResultType(); |
| else |
| T2 = cv1T1; |
| |
| // Add the user-defined conversion step. |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, |
| T2.getNonLValueExprType(S.Context), |
| HadMultipleCandidates); |
| |
| // Determine whether we need to perform derived-to-base or |
| // cv-qualification adjustments. |
| ExprValueKind VK = VK_RValue; |
| if (T2->isLValueReferenceType()) |
| VK = VK_LValue; |
| else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) |
| VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
| |
| bool NewDerivedToBase = false; |
| bool NewObjCConversion = false; |
| bool NewObjCLifetimeConversion = false; |
| Sema::ReferenceCompareResult NewRefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, T1, |
| T2.getNonLValueExprType(S.Context), |
| NewDerivedToBase, NewObjCConversion, |
| NewObjCLifetimeConversion); |
| if (NewRefRelationship == Sema::Ref_Incompatible) { |
| // If the type we've converted to is not reference-related to the |
| // type we're looking for, then there is another conversion step |
| // we need to perform to produce a temporary of the right type |
| // that we'll be binding to. |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard = Best->FinalConversion; |
| T2 = ICS.Standard.getToType(2); |
| Sequence.AddConversionSequenceStep(ICS, T2); |
| } else if (NewDerivedToBase) |
| Sequence.AddDerivedToBaseCastStep( |
| S.Context.getQualifiedType(T1, |
| T2.getNonReferenceType().getQualifiers()), |
| VK); |
| else if (NewObjCConversion) |
| Sequence.AddObjCObjectConversionStep( |
| S.Context.getQualifiedType(T1, |
| T2.getNonReferenceType().getQualifiers())); |
| |
| if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) |
| Sequence.AddQualificationConversionStep(cv1T1, VK); |
| |
| Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); |
| return OR_Success; |
| } |
| |
| static void CheckCXX98CompatAccessibleCopy(Sema &S, |
| const InitializedEntity &Entity, |
| Expr *CurInitExpr); |
| |
| /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) |
| static void TryReferenceInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); |
| Qualifiers T1Quals; |
| QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
| QualType cv2T2 = Initializer->getType(); |
| Qualifiers T2Quals; |
| QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
| T1, Sequence)) |
| return; |
| |
| // Delegate everything else to a subfunction. |
| TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
| T1Quals, cv2T2, T2, T2Quals, Sequence); |
| } |
| |
| /// Converts the target of reference initialization so that it has the |
| /// appropriate qualifiers and value kind. |
| /// |
| /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'. |
| /// \code |
| /// int x; |
| /// const int &r = x; |
| /// \endcode |
| /// |
| /// In this case the reference is binding to a bitfield lvalue, which isn't |
| /// valid. Perform a load to create a lifetime-extended temporary instead. |
| /// \code |
| /// const int &r = someStruct.bitfield; |
| /// \endcode |
| static ExprValueKind |
| convertQualifiersAndValueKindIfNecessary(Sema &S, |
| InitializationSequence &Sequence, |
| Expr *Initializer, |
| QualType cv1T1, |
| Qualifiers T1Quals, |
| Qualifiers T2Quals, |
| bool IsLValueRef) { |
| bool IsNonAddressableType = Initializer->refersToBitField() || |
| Initializer->refersToVectorElement(); |
| |
| if (IsNonAddressableType) { |
| // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an |
| // lvalue reference to a non-volatile const type, or the reference shall be |
| // an rvalue reference. |
| // |
| // If not, we can't make a temporary and bind to that. Give up and allow the |
| // error to be diagnosed later. |
| if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) { |
| assert(Initializer->isGLValue()); |
| return Initializer->getValueKind(); |
| } |
| |
| // Force a load so we can materialize a temporary. |
| Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType()); |
| return VK_RValue; |
| } |
| |
| if (T1Quals != T2Quals) { |
| Sequence.AddQualificationConversionStep(cv1T1, |
| Initializer->getValueKind()); |
| } |
| |
| return Initializer->getValueKind(); |
| } |
| |
| |
| /// \brief Reference initialization without resolving overloaded functions. |
| static void TryReferenceInitializationCore(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| QualType cv1T1, QualType T1, |
| Qualifiers T1Quals, |
| QualType cv2T2, QualType T2, |
| Qualifiers T2Quals, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| // Compute some basic properties of the types and the initializer. |
| bool isLValueRef = DestType->isLValueReferenceType(); |
| bool isRValueRef = !isLValueRef; |
| bool DerivedToBase = false; |
| bool ObjCConversion = false; |
| bool ObjCLifetimeConversion = false; |
| Expr::Classification InitCategory = Initializer->Classify(S.Context); |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, |
| ObjCConversion, ObjCLifetimeConversion); |
| |
| // C++0x [dcl.init.ref]p5: |
| // A reference to type "cv1 T1" is initialized by an expression of type |
| // "cv2 T2" as follows: |
| // |
| // - If the reference is an lvalue reference and the initializer |
| // expression |
| // Note the analogous bullet points for rvlaue refs to functions. Because |
| // there are no function rvalues in C++, rvalue refs to functions are treated |
| // like lvalue refs. |
| OverloadingResult ConvOvlResult = OR_Success; |
| bool T1Function = T1->isFunctionType(); |
| if (isLValueRef || T1Function) { |
| if (InitCategory.isLValue() && |
| (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || |
| (Kind.isCStyleOrFunctionalCast() && |
| RefRelationship == Sema::Ref_Related))) { |
| // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
| // reference-compatible with "cv2 T2," or |
| // |
| // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a |
| // bit-field when we're determining whether the reference initialization |
| // can occur. However, we do pay attention to whether it is a bit-field |
| // to decide whether we're actually binding to a temporary created from |
| // the bit-field. |
| if (DerivedToBase) |
| Sequence.AddDerivedToBaseCastStep( |
| S.Context.getQualifiedType(T1, T2Quals), |
| VK_LValue); |
| else if (ObjCConversion) |
| Sequence.AddObjCObjectConversionStep( |
| S.Context.getQualifiedType(T1, T2Quals)); |
| |
| ExprValueKind ValueKind = |
| convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer, |
| cv1T1, T1Quals, T2Quals, |
| isLValueRef); |
| Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); |
| return; |
| } |
| |
| // - has a class type (i.e., T2 is a class type), where T1 is not |
| // reference-related to T2, and can be implicitly converted to an |
| // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
| // with "cv3 T3" (this conversion is selected by enumerating the |
| // applicable conversion functions (13.3.1.6) and choosing the best |
| // one through overload resolution (13.3)), |
| // If we have an rvalue ref to function type here, the rhs must be |
| // an rvalue. |
| if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
| (isLValueRef || InitCategory.isRValue())) { |
| ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind, |
| Initializer, |
| /*AllowRValues=*/isRValueRef, |
| Sequence); |
| if (ConvOvlResult == OR_Success) |
| return; |
| if (ConvOvlResult != OR_No_Viable_Function) { |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| } |
| } |
| } |
| |
| // - Otherwise, the reference shall be an lvalue reference to a |
| // non-volatile const type (i.e., cv1 shall be const), or the reference |
| // shall be an rvalue reference. |
| if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { |
| if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
| Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| else |
| Sequence.SetFailed(InitCategory.isLValue() |
| ? (RefRelationship == Sema::Ref_Related |
| ? InitializationSequence::FK_ReferenceInitDropsQualifiers |
| : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) |
| : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
| |
| return; |
| } |
| |
| // - If the initializer expression |
| // - is an xvalue, class prvalue, array prvalue, or function lvalue and |
| // "cv1 T1" is reference-compatible with "cv2 T2" |
| // Note: functions are handled below. |
| if (!T1Function && |
| (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || |
| (Kind.isCStyleOrFunctionalCast() && |
| RefRelationship == Sema::Ref_Related)) && |
| (InitCategory.isXValue() || |
| (InitCategory.isPRValue() && T2->isRecordType()) || |
| (InitCategory.isPRValue() && T2->isArrayType()))) { |
| ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; |
| if (InitCategory.isPRValue() && T2->isRecordType()) { |
| // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
| // compiler the freedom to perform a copy here or bind to the |
| // object, while C++0x requires that we bind directly to the |
| // object. Hence, we always bind to the object without making an |
| // extra copy. However, in C++03 requires that we check for the |
| // presence of a suitable copy constructor: |
| // |
| // The constructor that would be used to make the copy shall |
| // be callable whether or not the copy is actually done. |
| if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
| Sequence.AddExtraneousCopyToTemporary(cv2T2); |
| else if (S.getLangOpts().CPlusPlus11) |
| CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); |
| } |
| |
| if (DerivedToBase) |
| Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), |
| ValueKind); |
| else if (ObjCConversion) |
| Sequence.AddObjCObjectConversionStep( |
| S.Context.getQualifiedType(T1, T2Quals)); |
| |
| ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence, |
| Initializer, cv1T1, |
| T1Quals, T2Quals, |
| isLValueRef); |
| |
| Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); |
| return; |
| } |
| |
| // - has a class type (i.e., T2 is a class type), where T1 is not |
| // reference-related to T2, and can be implicitly converted to an |
| // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
| // where "cv1 T1" is reference-compatible with "cv3 T3", |
| if (T2->isRecordType()) { |
| if (RefRelationship == Sema::Ref_Incompatible) { |
| ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, |
| Kind, Initializer, |
| /*AllowRValues=*/true, |
| Sequence); |
| if (ConvOvlResult) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| |
| return; |
| } |
| |
| if ((RefRelationship == Sema::Ref_Compatible || |
| RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) && |
| isRValueRef && InitCategory.isLValue()) { |
| Sequence.SetFailed( |
| InitializationSequence::FK_RValueReferenceBindingToLValue); |
| return; |
| } |
| |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| return; |
| } |
| |
| // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
| // from the initializer expression using the rules for a non-reference |
| // copy-initialization (8.5). The reference is then bound to the |
| // temporary. [...] |
| |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); |
| |
| // FIXME: Why do we use an implicit conversion here rather than trying |
| // copy-initialization? |
| ImplicitConversionSequence ICS |
| = S.TryImplicitConversion(Initializer, TempEntity.getType(), |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*FIXME:InOverloadResolution=*/false, |
| /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
| /*AllowObjCWritebackConversion=*/false); |
| |
| if (ICS.isBad()) { |
| // FIXME: Use the conversion function set stored in ICS to turn |
| // this into an overloading ambiguity diagnostic. However, we need |
| // to keep that set as an OverloadCandidateSet rather than as some |
| // other kind of set. |
| if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_ReferenceInitOverloadFailed, |
| ConvOvlResult); |
| else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
| Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| else |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
| return; |
| } else { |
| Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); |
| } |
| |
| // [...] If T1 is reference-related to T2, cv1 must be the |
| // same cv-qualification as, or greater cv-qualification |
| // than, cv2; otherwise, the program is ill-formed. |
| unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
| unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
| if (RefRelationship == Sema::Ref_Related && |
| (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { |
| Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
| return; |
| } |
| |
| // [...] If T1 is reference-related to T2 and the reference is an rvalue |
| // reference, the initializer expression shall not be an lvalue. |
| if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
| InitCategory.isLValue()) { |
| Sequence.SetFailed( |
| InitializationSequence::FK_RValueReferenceBindingToLValue); |
| return; |
| } |
| |
| Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); |
| return; |
| } |
| |
| /// \brief Attempt character array initialization from a string literal |
| /// (C++ [dcl.init.string], C99 6.7.8). |
| static void TryStringLiteralInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| InitializationSequence &Sequence) { |
| Sequence.AddStringInitStep(Entity.getType()); |
| } |
| |
| /// \brief Attempt value initialization (C++ [dcl.init]p7). |
| static void TryValueInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitializationSequence &Sequence, |
| InitListExpr *InitList) { |
| assert((!InitList || InitList->getNumInits() == 0) && |
| "Shouldn't use value-init for non-empty init lists"); |
| |
| // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
| // |
| // To value-initialize an object of type T means: |
| QualType T = Entity.getType(); |
| |
| // -- if T is an array type, then each element is value-initialized; |
| T = S.Context.getBaseElementType(T); |
| |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
| bool NeedZeroInitialization = true; |
| if (!S.getLangOpts().CPlusPlus11) { |
| // C++98: |
| // -- if T is a class type (clause 9) with a user-declared constructor |
| // (12.1), then the default constructor for T is called (and the |
| // initialization is ill-formed if T has no accessible default |
| // constructor); |
| if (ClassDecl->hasUserDeclaredConstructor()) |
| NeedZeroInitialization = false; |
| } else { |
| // C++11: |
| // -- if T is a class type (clause 9) with either no default constructor |
| // (12.1 [class.ctor]) or a default constructor that is user-provided |
| // or deleted, then the object is default-initialized; |
| CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); |
| if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
| NeedZeroInitialization = false; |
| } |
| |
| // -- if T is a (possibly cv-qualified) non-union class type without a |
| // user-provided or deleted default constructor, then the object is |
| // zero-initialized and, if T has a non-trivial default constructor, |
| // default-initialized; |
| // The 'non-union' here was removed by DR1502. The 'non-trivial default |
| // constructor' part was removed by DR1507. |
| if (NeedZeroInitialization) |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| |
| // C++03: |
| // -- if T is a non-union class type without a user-declared constructor, |
| // then every non-static data member and base class component of T is |
| // value-initialized; |
| // [...] A program that calls for [...] value-initialization of an |
| // entity of reference type is ill-formed. |
| // |
| // C++11 doesn't need this handling, because value-initialization does not |
| // occur recursively there, and the implicit default constructor is |
| // defined as deleted in the problematic cases. |
| if (!S.getLangOpts().CPlusPlus11 && |
| ClassDecl->hasUninitializedReferenceMember()) { |
| Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
| return; |
| } |
| |
| // If this is list-value-initialization, pass the empty init list on when |
| // building the constructor call. This affects the semantics of a few |
| // things (such as whether an explicit default constructor can be called). |
| Expr *InitListAsExpr = InitList; |
| MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
| bool InitListSyntax = InitList; |
| |
| return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence, |
| InitListSyntax); |
| } |
| } |
| |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| } |
| |
| /// \brief Attempt default initialization (C++ [dcl.init]p6). |
| static void TryDefaultInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| InitializationSequence &Sequence) { |
| assert(Kind.getKind() == InitializationKind::IK_Default); |
| |
| // C++ [dcl.init]p6: |
| // To default-initialize an object of type T means: |
| // - if T is an array type, each element is default-initialized; |
| QualType DestType = S.Context.getBaseElementType(Entity.getType()); |
| |
| // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
| // constructor for T is called (and the initialization is ill-formed if |
| // T has no accessible default constructor); |
| if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
| TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence); |
| return; |
| } |
| |
| // - otherwise, no initialization is performed. |
| |
| // If a program calls for the default initialization of an object of |
| // a const-qualified type T, T shall be a class type with a user-provided |
| // default constructor. |
| if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
| Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
| return; |
| } |
| |
| // If the destination type has a lifetime property, zero-initialize it. |
| if (DestType.getQualifiers().hasObjCLifetime()) { |
| Sequence.AddZeroInitializationStep(Entity.getType()); |
| return; |
| } |
| } |
| |
| /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), |
| /// which enumerates all conversion functions and performs overload resolution |
| /// to select the best. |
| static void TryUserDefinedConversion(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| Expr *Initializer, |
| InitializationSequence &Sequence) { |
| QualType DestType = Entity.getType(); |
| assert(!DestType->isReferenceType() && "References are handled elsewhere"); |
| QualType SourceType = Initializer->getType(); |
| assert((DestType->isRecordType() || SourceType->isRecordType()) && |
| "Must have a class type to perform a user-defined conversion"); |
| |
| // Build the candidate set directly in the initialization sequence |
| // structure, so that it will persist if we fail. |
| OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
| CandidateSet.clear(); |
| |
| // Determine whether we are allowed to call explicit constructors or |
| // explicit conversion operators. |
| bool AllowExplicit = Kind.AllowExplicit(); |
| |
| if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
| // The type we're converting to is a class type. Enumerate its constructors |
| // to see if there is a suitable conversion. |
| CXXRecordDecl *DestRecordDecl |
| = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
| |
| // Try to complete the type we're converting to. |
| if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { |
| DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); |
| // The container holding the constructors can under certain conditions |
| // be changed while iterating. To be safe we copy the lookup results |
| // to a new container. |
| SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end()); |
| for (SmallVector<NamedDecl*, 8>::iterator |
| Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end(); |
| Con != ConEnd; ++Con) { |
| NamedDecl *D = *Con; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); |
| |
| // Find the constructor (which may be a template). |
| CXXConstructorDecl *Constructor = 0; |
| FunctionTemplateDecl *ConstructorTmpl |
| = dyn_cast<FunctionTemplateDecl>(D); |
| if (ConstructorTmpl) |
| Constructor = cast<CXXConstructorDecl>( |
| ConstructorTmpl->getTemplatedDecl()); |
| else |
| Constructor = cast<CXXConstructorDecl>(D); |
| |
| if (!Constructor->isInvalidDecl() && |
| Constructor->isConvertingConstructor(AllowExplicit)) { |
| if (ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, |
| /*ExplicitArgs*/ 0, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| else |
| S.AddOverloadCandidate(Constructor, FoundDecl, |
| Initializer, CandidateSet, |
| /*SuppressUserConversions=*/true); |
| } |
| } |
| } |
| } |
| |
| SourceLocation DeclLoc = Initializer->getLocStart(); |
| |
| if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
| // The type we're converting from is a class type, enumerate its conversion |
| // functions. |
| |
| // We can only enumerate the conversion functions for a complete type; if |
| // the type isn't complete, simply skip this step. |
| if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) { |
| CXXRecordDecl *SourceRecordDecl |
| = cast<CXXRecordDecl>(SourceRecordType->getDecl()); |
| |
| std::pair<CXXRecordDecl::conversion_iterator, |
| CXXRecordDecl::conversion_iterator> |
| Conversions = SourceRecordDecl->getVisibleConversionFunctions(); |
| for (CXXRecordDecl::conversion_iterator |
| I = Conversions.first, E = Conversions.second; I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| if (AllowExplicit || !Conv->isExplicit()) { |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), |
| ActingDC, Initializer, DestType, |
| CandidateSet); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, |
| Initializer, DestType, CandidateSet); |
| } |
| } |
| } |
| } |
| |
| // Perform overload resolution. If it fails, return the failed result. |
| OverloadCandidateSet::iterator Best; |
| if (OverloadingResult Result |
| = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { |
| Sequence.SetOverloadFailure( |
| InitializationSequence::FK_UserConversionOverloadFailed, |
| Result); |
| return; |
| } |
| |
| FunctionDecl *Function = Best->Function; |
| Function->setReferenced(); |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| if (isa<CXXConstructorDecl>(Function)) { |
| // Add the user-defined conversion step. Any cv-qualification conversion is |
| // subsumed by the initialization. Per DR5, the created temporary is of the |
| // cv-unqualified type of the destination. |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, |
| DestType.getUnqualifiedType(), |
| HadMultipleCandidates); |
| return; |
| } |
| |
| // Add the user-defined conversion step that calls the conversion function. |
| QualType ConvType = Function->getCallResultType(); |
| if (ConvType->getAs<RecordType>()) { |
| // If we're converting to a class type, there may be an copy of |
| // the resulting temporary object (possible to create an object of |
| // a base class type). That copy is not a separate conversion, so |
| // we just make a note of the actual destination type (possibly a |
| // base class of the type returned by the conversion function) and |
| // let the user-defined conversion step handle the conversion. |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, |
| HadMultipleCandidates); |
| return; |
| } |
| |
| Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, |
| HadMultipleCandidates); |
| |
| // If the conversion following the call to the conversion function |
| // is interesting, add it as a separate step. |
| if (Best->FinalConversion.First || Best->FinalConversion.Second || |
| Best->FinalConversion.Third) { |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard = Best->FinalConversion; |
| Sequence.AddConversionSequenceStep(ICS, DestType); |
| } |
| } |
| |
| /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, |
| /// a function with a pointer return type contains a 'return false;' statement. |
| /// In C++11, 'false' is not a null pointer, so this breaks the build of any |
| /// code using that header. |
| /// |
| /// Work around this by treating 'return false;' as zero-initializing the result |
| /// if it's used in a pointer-returning function in a system header. |
| static bool isLibstdcxxPointerReturnFalseHack(Sema &S, |
| const InitializedEntity &Entity, |
| const Expr *Init) { |
| return S.getLangOpts().CPlusPlus11 && |
| Entity.getKind() == InitializedEntity::EK_Result && |
| Entity.getType()->isPointerType() && |
| isa<CXXBoolLiteralExpr>(Init) && |
| !cast<CXXBoolLiteralExpr>(Init)->getValue() && |
| S.getSourceManager().isInSystemHeader(Init->getExprLoc()); |
| } |
| |
| /// The non-zero enum values here are indexes into diagnostic alternatives. |
| enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
| |
| /// Determines whether this expression is an acceptable ICR source. |
| static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
| bool isAddressOf, bool &isWeakAccess) { |
| // Skip parens. |
| e = e->IgnoreParens(); |
| |
| // Skip address-of nodes. |
| if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { |
| if (op->getOpcode() == UO_AddrOf) |
| return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, |
| isWeakAccess); |
| |
| // Skip certain casts. |
| } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { |
| switch (ce->getCastKind()) { |
| case CK_Dependent: |
| case CK_BitCast: |
| case CK_LValueBitCast: |
| case CK_NoOp: |
| return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); |
| |
| case CK_ArrayToPointerDecay: |
| return IIK_nonscalar; |
| |
| case CK_NullToPointer: |
| return IIK_okay; |
| |
| default: |
| break; |
| } |
| |
| // If we have a declaration reference, it had better be a local variable. |
| } else if (isa<DeclRefExpr>(e)) { |
| // set isWeakAccess to true, to mean that there will be an implicit |
| // load which requires a cleanup. |
| if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| isWeakAccess = true; |
| |
| if (!isAddressOf) return IIK_nonlocal; |
| |
| VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); |
| if (!var) return IIK_nonlocal; |
| |
| return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
| |
| // If we have a conditional operator, check both sides. |
| } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { |
| if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, |
| isWeakAccess)) |
| return iik; |
| |
| return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); |
| |
| // These are never scalar. |
| } else if (isa<ArraySubscriptExpr>(e)) { |
| return IIK_nonscalar; |
| |
| // Otherwise, it needs to be a null pointer constant. |
| } else { |
| return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) |
| ? IIK_okay : IIK_nonlocal); |
| } |
| |
| return IIK_nonlocal; |
| } |
| |
| /// Check whether the given expression is a valid operand for an |
| /// indirect copy/restore. |
| static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
| assert(src->isRValue()); |
| bool isWeakAccess = false; |
| InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); |
| // If isWeakAccess to true, there will be an implicit |
| // load which requires a cleanup. |
| if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
| S.ExprNeedsCleanups = true; |
| |
| if (iik == IIK_okay) return; |
| |
| S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
| << ((unsigned) iik - 1) // shift index into diagnostic explanations |
| << src->getSourceRange(); |
| } |
| |
| /// \brief Determine whether we have compatible array types for the |
| /// purposes of GNU by-copy array initialization. |
| static bool hasCompatibleArrayTypes(ASTContext &Context, |
| const ArrayType *Dest, |
| const ArrayType *Source) { |
| // If the source and destination array types are equivalent, we're |
| // done. |
| if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) |
| return true; |
| |
| // Make sure that the element types are the same. |
| if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) |
| return false; |
| |
| // The only mismatch we allow is when the destination is an |
| // incomplete array type and the source is a constant array type. |
| return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
| } |
| |
| static bool tryObjCWritebackConversion(Sema &S, |
| InitializationSequence &Sequence, |
| const InitializedEntity &Entity, |
| Expr *Initializer) { |
| bool ArrayDecay = false; |
| QualType ArgType = Initializer->getType(); |
| QualType ArgPointee; |
| if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { |
| ArrayDecay = true; |
| ArgPointee = ArgArrayType->getElementType(); |
| ArgType = S.Context.getPointerType(ArgPointee); |
| } |
| |
| // Handle write-back conversion. |
| QualType ConvertedArgType; |
| if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), |
| ConvertedArgType)) |
| return false; |
| |
| // We should copy unless we're passing to an argument explicitly |
| // marked 'out'. |
| bool ShouldCopy = true; |
| if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
| ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
| |
| // Do we need an lvalue conversion? |
| if (ArrayDecay || Initializer->isGLValue()) { |
| ImplicitConversionSequence ICS; |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| |
| QualType ResultType; |
| if (ArrayDecay) { |
| ICS.Standard.First = ICK_Array_To_Pointer; |
| ResultType = S.Context.getPointerType(ArgPointee); |
| } else { |
| ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
| ResultType = Initializer->getType().getNonLValueExprType(S.Context); |
| } |
| |
| Sequence.AddConversionSequenceStep(ICS, ResultType); |
| } |
| |
| Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); |
| return true; |
| } |
| |
| static bool TryOCLSamplerInitialization(Sema &S, |
| InitializationSequence &Sequence, |
| QualType DestType, |
| Expr *Initializer) { |
| if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
| !Initializer->isIntegerConstantExpr(S.getASTContext())) |
| return false; |
| |
| Sequence.AddOCLSamplerInitStep(DestType); |
| return true; |
| } |
| |
| // |
| // OpenCL 1.2 spec, s6.12.10 |
| // |
| // The event argument can also be used to associate the |
| // async_work_group_copy with a previous async copy allowing |
| // an event to be shared by multiple async copies; otherwise |
| // event should be zero. |
| // |
| static bool TryOCLZeroEventInitialization(Sema &S, |
| InitializationSequence &Sequence, |
| QualType DestType, |
| Expr *Initializer) { |
| if (!S.getLangOpts().OpenCL || !DestType->isEventT() || |
| !Initializer->isIntegerConstantExpr(S.getASTContext()) || |
| (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) |
| return false; |
| |
| Sequence.AddOCLZeroEventStep(DestType); |
| return true; |
| } |
| |
| InitializationSequence::InitializationSequence(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args) |
| : FailedCandidateSet(Kind.getLocation()) { |
| ASTContext &Context = S.Context; |
| |
| // Eliminate non-overload placeholder types in the arguments. We |
| // need to do this before checking whether types are dependent |
| // because lowering a pseudo-object expression might well give us |
| // something of dependent type. |
| for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
| // FIXME: should we be doing this here? |
| ExprResult result = S.CheckPlaceholderExpr(Args[I]); |
| if (result.isInvalid()) { |
| SetFailed(FK_PlaceholderType); |
| return; |
| } |
| Args[I] = result.take(); |
| } |
| |
| // C++0x [dcl.init]p16: |
| // The semantics of initializers are as follows. The destination type is |
| // the type of the object or reference being initialized and the source |
| // type is the type of the initializer expression. The source type is not |
| // defined when the initializer is a braced-init-list or when it is a |
| // parenthesized list of expressions. |
| QualType DestType = Entity.getType(); |
| |
| if (DestType->isDependentType() || |
| Expr::hasAnyTypeDependentArguments(Args)) { |
| SequenceKind = DependentSequence; |
| return; |
| } |
| |
| // Almost everything is a normal sequence. |
| setSequenceKind(NormalSequence); |
| |
| QualType SourceType; |
| Expr *Initializer = 0; |
| if (Args.size() == 1) { |
| Initializer = Args[0]; |
| if (!isa<InitListExpr>(Initializer)) |
| SourceType = Initializer->getType(); |
| } |
| |
| // - If the initializer is a (non-parenthesized) braced-init-list, the |
| // object is list-initialized (8.5.4). |
| if (Kind.getKind() != InitializationKind::IK_Direct) { |
| if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { |
| TryListInitialization(S, Entity, Kind, InitList, *this); |
| return; |
| } |
| } |
| |
| // - If the destination type is a reference type, see 8.5.3. |
| if (DestType->isReferenceType()) { |
| // C++0x [dcl.init.ref]p1: |
| // A variable declared to be a T& or T&&, that is, "reference to type T" |
| // (8.3.2), shall be initialized by an object, or function, of type T or |
| // by an object that can be converted into a T. |
| // (Therefore, multiple arguments are not permitted.) |
| if (Args.size() != 1) |
| SetFailed(FK_TooManyInitsForReference); |
| else |
| TryReferenceInitialization(S, Entity, Kind, Args[0], *this); |
| return; |
| } |
| |
| // - If the initializer is (), the object is value-initialized. |
| if (Kind.getKind() == InitializationKind::IK_Value || |
| (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
| TryValueInitialization(S, Entity, Kind, *this); |
| return; |
| } |
| |
| // Handle default initialization. |
| if (Kind.getKind() == InitializationKind::IK_Default) { |
| TryDefaultInitialization(S, Entity, Kind, *this); |
| return; |
| } |
| |
| // - If the destination type is an array of characters, an array of |
| // char16_t, an array of char32_t, or an array of wchar_t, and the |
| // initializer is a string literal, see 8.5.2. |
| // - Otherwise, if the destination type is an array, the program is |
| // ill-formed. |
| if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { |
| if (Initializer && isa<VariableArrayType>(DestAT)) { |
| SetFailed(FK_VariableLengthArrayHasInitializer); |
| return; |
| } |
| |
| if (Initializer) { |
| switch (IsStringInit(Initializer, DestAT, Context)) { |
| case SIF_None: |
| TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); |
| return; |
| case SIF_NarrowStringIntoWideChar: |
| SetFailed(FK_NarrowStringIntoWideCharArray); |
| return; |
| case SIF_WideStringIntoChar: |
| SetFailed(FK_WideStringIntoCharArray); |
| return; |
| case SIF_IncompatWideStringIntoWideChar: |
| SetFailed(FK_IncompatWideStringIntoWideChar); |
| return; |
| case SIF_Other: |
| break; |
| } |
| } |
| |
| // Note: as an GNU C extension, we allow initialization of an |
| // array from a compound literal that creates an array of the same |
| // type, so long as the initializer has no side effects. |
| if (!S.getLangOpts().CPlusPlus && Initializer && |
| isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && |
| Initializer->getType()->isArrayType()) { |
| const ArrayType *SourceAT |
| = Context.getAsArrayType(Initializer->getType()); |
| if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) |
| SetFailed(FK_ArrayTypeMismatch); |
| else if (Initializer->HasSideEffects(S.Context)) |
| SetFailed(FK_NonConstantArrayInit); |
| else { |
| AddArrayInitStep(DestType); |
| } |
| } |
| // Note: as a GNU C++ extension, we allow list-initialization of a |
| // class member of array type from a parenthesized initializer list. |
| else if (S.getLangOpts().CPlusPlus && |
| Entity.getKind() == InitializedEntity::EK_Member && |
| Initializer && isa<InitListExpr>(Initializer)) { |
| TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), |
| *this); |
| AddParenthesizedArrayInitStep(DestType); |
| } else if (DestAT->getElementType()->isCharType()) |
| SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
| else if (IsWideCharCompatible(DestAT->getElementType(), Context)) |
| SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
| else |
| SetFailed(FK_ArrayNeedsInitList); |
| |
| return; |
| } |
| |
| // Determine whether we should consider writeback conversions for |
| // Objective-C ARC. |
| bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
| Entity.getKind() == InitializedEntity::EK_Parameter; |
| |
| // We're at the end of the line for C: it's either a write-back conversion |
| // or it's a C assignment. There's no need to check anything else. |
| if (!S.getLangOpts().CPlusPlus) { |
| // If allowed, check whether this is an Objective-C writeback conversion. |
| if (allowObjCWritebackConversion && |
| tryObjCWritebackConversion(S, *this, Entity, Initializer)) { |
| return; |
| } |
| |
| if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) |
| return; |
| |
| if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) |
| return; |
| |
| // Handle initialization in C |
| AddCAssignmentStep(DestType); |
| MaybeProduceObjCObject(S, *this, Entity); |
| return; |
| } |
| |
| assert(S.getLangOpts().CPlusPlus); |
| |
| // - If the destination type is a (possibly cv-qualified) class type: |
| if (DestType->isRecordType()) { |
| // - If the initialization is direct-initialization, or if it is |
| // copy-initialization where the cv-unqualified version of the |
| // source type is the same class as, or a derived class of, the |
| // class of the destination, constructors are considered. [...] |
| if (Kind.getKind() == InitializationKind::IK_Direct || |
| (Kind.getKind() == InitializationKind::IK_Copy && |
| (Context.hasSameUnqualifiedType(SourceType, DestType) || |
| S.IsDerivedFrom(SourceType, DestType)))) |
| TryConstructorInitialization(S, Entity, Kind, Args, |
| Entity.getType(), *this); |
| // - Otherwise (i.e., for the remaining copy-initialization cases), |
| // user-defined conversion sequences that can convert from the source |
| // type to the destination type or (when a conversion function is |
| // used) to a derived class thereof are enumerated as described in |
| // 13.3.1.4, and the best one is chosen through overload resolution |
| // (13.3). |
| else |
| TryUserDefinedConversion(S, Entity, Kind, Initializer, *this); |
| return; |
| } |
| |
| if (Args.size() > 1) { |
| SetFailed(FK_TooManyInitsForScalar); |
| return; |
| } |
| assert(Args.size() == 1 && "Zero-argument case handled above"); |
| |
| // - Otherwise, if the source type is a (possibly cv-qualified) class |
| // type, conversion functions are considered. |
| if (!SourceType.isNull() && SourceType->isRecordType()) { |
| TryUserDefinedConversion(S, Entity, Kind, Initializer, *this); |
| MaybeProduceObjCObject(S, *this, Entity); |
| return; |
| } |
| |
| // - Otherwise, the initial value of the object being initialized is the |
| // (possibly converted) value of the initializer expression. Standard |
| // conversions (Clause 4) will be used, if necessary, to convert the |
| // initializer expression to the cv-unqualified version of the |
| // destination type; no user-defined conversions are considered. |
| |
| ImplicitConversionSequence ICS |
| = S.TryImplicitConversion(Initializer, Entity.getType(), |
| /*SuppressUserConversions*/true, |
| /*AllowExplicitConversions*/ false, |
| /*InOverloadResolution*/ false, |
| /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
| allowObjCWritebackConversion); |
| |
| if (ICS.isStandard() && |
| ICS.Standard.Second == ICK_Writeback_Conversion) { |
| // Objective-C ARC writeback conversion. |
| |
| // We should copy unless we're passing to an argument explicitly |
| // marked 'out'. |
| bool ShouldCopy = true; |
| if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
| ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
| |
| // If there was an lvalue adjustment, add it as a separate conversion. |
| if (ICS.Standard.First == ICK_Array_To_Pointer || |
| ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
| ImplicitConversionSequence LvalueICS; |
| LvalueICS.setStandard(); |
| LvalueICS.Standard.setAsIdentityConversion(); |
| LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); |
| LvalueICS.Standard.First = ICS.Standard.First; |
| AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); |
| } |
| |
| AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); |
| } else if (ICS.isBad()) { |
| DeclAccessPair dap; |
| if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { |
| AddZeroInitializationStep(Entity.getType()); |
| } else if (Initializer->getType() == Context.OverloadTy && |
| !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, |
| false, dap)) |
| SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
| else |
| SetFailed(InitializationSequence::FK_ConversionFailed); |
| } else { |
| AddConversionSequenceStep(ICS, Entity.getType()); |
| |
| MaybeProduceObjCObject(S, *this, Entity); |
| } |
| } |
| |
| InitializationSequence::~InitializationSequence() { |
| for (SmallVectorImpl<Step>::iterator Step = Steps.begin(), |
| StepEnd = Steps.end(); |
| Step != StepEnd; ++Step) |
| Step->Destroy(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Perform initialization |
| //===----------------------------------------------------------------------===// |
| static Sema::AssignmentAction |
| getAssignmentAction(const InitializedEntity &Entity) { |
| switch(Entity.getKind()) { |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| return Sema::AA_Initializing; |
| |
| case InitializedEntity::EK_Parameter: |
| if (Entity.getDecl() && |
| isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
| return Sema::AA_Sending; |
| |
| return Sema::AA_Passing; |
| |
| case InitializedEntity::EK_Result: |
| return Sema::AA_Returning; |
| |
| case InitializedEntity::EK_Temporary: |
| // FIXME: Can we tell apart casting vs. converting? |
| return Sema::AA_Casting; |
| |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| return Sema::AA_Initializing; |
| } |
| |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| /// \brief Whether we should bind a created object as a temporary when |
| /// initializing the given entity. |
| static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| return false; |
| |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Temporary: |
| return true; |
| } |
| |
| llvm_unreachable("missed an InitializedEntity kind?"); |
| } |
| |
| /// \brief Whether the given entity, when initialized with an object |
| /// created for that initialization, requires destruction. |
| static bool shouldDestroyTemporary(const InitializedEntity &Entity) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| return false; |
| |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| return true; |
| } |
| |
| llvm_unreachable("missed an InitializedEntity kind?"); |
| } |
| |
| /// \brief Look for copy and move constructors and constructor templates, for |
| /// copying an object via direct-initialization (per C++11 [dcl.init]p16). |
| static void LookupCopyAndMoveConstructors(Sema &S, |
| OverloadCandidateSet &CandidateSet, |
| CXXRecordDecl *Class, |
| Expr *CurInitExpr) { |
| DeclContext::lookup_result R = S.LookupConstructors(Class); |
| // The container holding the constructors can under certain conditions |
| // be changed while iterating (e.g. because of deserialization). |
| // To be safe we copy the lookup results to a new container. |
| SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); |
| for (SmallVector<NamedDecl*, 16>::iterator |
| CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { |
| NamedDecl *D = *CI; |
| CXXConstructorDecl *Constructor = 0; |
| |
| if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) { |
| // Handle copy/moveconstructors, only. |
| if (!Constructor || Constructor->isInvalidDecl() || |
| !Constructor->isCopyOrMoveConstructor() || |
| !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) |
| continue; |
| |
| DeclAccessPair FoundDecl |
| = DeclAccessPair::make(Constructor, Constructor->getAccess()); |
| S.AddOverloadCandidate(Constructor, FoundDecl, |
| CurInitExpr, CandidateSet); |
| continue; |
| } |
| |
| // Handle constructor templates. |
| FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D); |
| if (ConstructorTmpl->isInvalidDecl()) |
| continue; |
| |
| Constructor = cast<CXXConstructorDecl>( |
| ConstructorTmpl->getTemplatedDecl()); |
| if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) |
| continue; |
| |
| // FIXME: Do we need to limit this to copy-constructor-like |
| // candidates? |
| DeclAccessPair FoundDecl |
| = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); |
| S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0, |
| CurInitExpr, CandidateSet, true); |
| } |
| } |
| |
| /// \brief Get the location at which initialization diagnostics should appear. |
| static SourceLocation getInitializationLoc(const InitializedEntity &Entity, |
| Expr *Initializer) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Result: |
| return Entity.getReturnLoc(); |
| |
| case InitializedEntity::EK_Exception: |
| return Entity.getThrowLoc(); |
| |
| case InitializedEntity::EK_Variable: |
| return Entity.getDecl()->getLocation(); |
| |
| case InitializedEntity::EK_LambdaCapture: |
| return Entity.getCaptureLoc(); |
| |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| return Initializer->getLocStart(); |
| } |
| llvm_unreachable("missed an InitializedEntity kind?"); |
| } |
| |
| /// \brief Make a (potentially elidable) temporary copy of the object |
| /// provided by the given initializer by calling the appropriate copy |
| /// constructor. |
| /// |
| /// \param S The Sema object used for type-checking. |
| /// |
| /// \param T The type of the temporary object, which must either be |
| /// the type of the initializer expression or a superclass thereof. |
| /// |
| /// \param Entity The entity being initialized. |
| /// |
| /// \param CurInit The initializer expression. |
| /// |
| /// \param IsExtraneousCopy Whether this is an "extraneous" copy that |
| /// is permitted in C++03 (but not C++0x) when binding a reference to |
| /// an rvalue. |
| /// |
| /// \returns An expression that copies the initializer expression into |
| /// a temporary object, or an error expression if a copy could not be |
| /// created. |
| static ExprResult CopyObject(Sema &S, |
| QualType T, |
| const InitializedEntity &Entity, |
| ExprResult CurInit, |
| bool IsExtraneousCopy) { |
| // Determine which class type we're copying to. |
| Expr *CurInitExpr = (Expr *)CurInit.get(); |
| CXXRecordDecl *Class = 0; |
| if (const RecordType *Record = T->getAs<RecordType>()) |
| Class = cast<CXXRecordDecl>(Record->getDecl()); |
| if (!Class) |
| return CurInit; |
| |
| // C++0x [class.copy]p32: |
| // When certain criteria are met, an implementation is allowed to |
| // omit the copy/move construction of a class object, even if the |
| // copy/move constructor and/or destructor for the object have |
| // side effects. [...] |
| // - when a temporary class object that has not been bound to a |
| // reference (12.2) would be copied/moved to a class object |
| // with the same cv-unqualified type, the copy/move operation |
| // can be omitted by constructing the temporary object |
| // directly into the target of the omitted copy/move |
| // |
| // Note that the other three bullets are handled elsewhere. Copy |
| // elision for return statements and throw expressions are handled as part |
| // of constructor initialization, while copy elision for exception handlers |
| // is handled by the run-time. |
| bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); |
| SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); |
| |
| // Make sure that the type we are copying is complete. |
| if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) |
| return CurInit; |
| |
| // Perform overload resolution using the class's copy/move constructors. |
| // Only consider constructors and constructor templates. Per |
| // C++0x [dcl.init]p16, second bullet to class types, this initialization |
| // is direct-initialization. |
| OverloadCandidateSet CandidateSet(Loc); |
| LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(S, Loc, Best)) { |
| case OR_Success: |
| break; |
| |
| case OR_No_Viable_Function: |
| S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() |
| ? diag::ext_rvalue_to_reference_temp_copy_no_viable |
| : diag::err_temp_copy_no_viable) |
| << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); |
| if (!IsExtraneousCopy || S.isSFINAEContext()) |
| return ExprError(); |
| return CurInit; |
| |
| case OR_Ambiguous: |
| S.Diag(Loc, diag::err_temp_copy_ambiguous) |
| << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); |
| return ExprError(); |
| |
| case OR_Deleted: |
| S.Diag(Loc, diag::err_temp_copy_deleted) |
| << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| S.NoteDeletedFunction(Best->Function); |
| return ExprError(); |
| } |
| |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
| SmallVector<Expr*, 8> ConstructorArgs; |
| CurInit.release(); // Ownership transferred into MultiExprArg, below. |
| |
| S.CheckConstructorAccess(Loc, Constructor, Entity, |
| Best->FoundDecl.getAccess(), IsExtraneousCopy); |
| |
| if (IsExtraneousCopy) { |
| // If this is a totally extraneous copy for C++03 reference |
| // binding purposes, just return the original initialization |
| // expression. We don't generate an (elided) copy operation here |
| // because doing so would require us to pass down a flag to avoid |
| // infinite recursion, where each step adds another extraneous, |
| // elidable copy. |
| |
| // Instantiate the default arguments of any extra parameters in |
| // the selected copy constructor, as if we were going to create a |
| // proper call to the copy constructor. |
| for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { |
| ParmVarDecl *Parm = Constructor->getParamDecl(I); |
| if (S.RequireCompleteType(Loc, Parm->getType(), |
| diag::err_call_incomplete_argument)) |
| break; |
| |
| // Build the default argument expression; we don't actually care |
| // if this succeeds or not, because this routine will complain |
| // if there was a problem. |
| S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); |
| } |
| |
| return S.Owned(CurInitExpr); |
| } |
| |
| // Determine the arguments required to actually perform the |
| // constructor call (we might have derived-to-base conversions, or |
| // the copy constructor may have default arguments). |
| if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) |
| return ExprError(); |
| |
| // Actually perform the constructor call. |
| CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| /*ListInit*/ false, |
| /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| |
| // If we're supposed to bind temporaries, do so. |
| if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); |
| return CurInit; |
| } |
| |
| /// \brief Check whether elidable copy construction for binding a reference to |
| /// a temporary would have succeeded if we were building in C++98 mode, for |
| /// -Wc++98-compat. |
| static void CheckCXX98CompatAccessibleCopy(Sema &S, |
| const InitializedEntity &Entity, |
| Expr *CurInitExpr) { |
| assert(S.getLangOpts().CPlusPlus11); |
| |
| const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); |
| if (!Record) |
| return; |
| |
| SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); |
| if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc) |
| == DiagnosticsEngine::Ignored) |
| return; |
| |
| // Find constructors which would have been considered. |
| OverloadCandidateSet CandidateSet(Loc); |
| LookupCopyAndMoveConstructors( |
| S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); |
| |
| PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) |
| << OR << (int)Entity.getKind() << CurInitExpr->getType() |
| << CurInitExpr->getSourceRange(); |
| |
| switch (OR) { |
| case OR_Success: |
| S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), |
| Entity, Best->FoundDecl.getAccess(), Diag); |
| // FIXME: Check default arguments as far as that's possible. |
| break; |
| |
| case OR_No_Viable_Function: |
| S.Diag(Loc, Diag); |
| CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); |
| break; |
| |
| case OR_Ambiguous: |
| S.Diag(Loc, Diag); |
| CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); |
| break; |
| |
| case OR_Deleted: |
| S.Diag(Loc, Diag); |
| S.NoteDeletedFunction(Best->Function); |
| break; |
| } |
| } |
| |
| void InitializationSequence::PrintInitLocationNote(Sema &S, |
| const InitializedEntity &Entity) { |
| if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) { |
| if (Entity.getDecl()->getLocation().isInvalid()) |
| return; |
| |
| if (Entity.getDecl()->getDeclName()) |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) |
| << Entity.getDecl()->getDeclName(); |
| else |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); |
| } |
| } |
| |
| static bool isReferenceBinding(const InitializationSequence::Step &s) { |
| return s.Kind == InitializationSequence::SK_BindReference || |
| s.Kind == InitializationSequence::SK_BindReferenceToTemporary; |
| } |
| |
| /// Returns true if the parameters describe a constructor initialization of |
| /// an explicit temporary object, e.g. "Point(x, y)". |
| static bool isExplicitTemporary(const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| unsigned NumArgs) { |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| break; |
| default: |
| return false; |
| } |
| |
| switch (Kind.getKind()) { |
| case InitializationKind::IK_DirectList: |
| return true; |
| // FIXME: Hack to work around cast weirdness. |
| case InitializationKind::IK_Direct: |
| case InitializationKind::IK_Value: |
| return NumArgs != 1; |
| default: |
| return false; |
| } |
| } |
| |
| static ExprResult |
| PerformConstructorInitialization(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, |
| const InitializationSequence::Step& Step, |
| bool &ConstructorInitRequiresZeroInit, |
| bool IsListInitialization) { |
| unsigned NumArgs = Args.size(); |
| CXXConstructorDecl *Constructor |
| = cast<CXXConstructorDecl>(Step.Function.Function); |
| bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; |
| |
| // Build a call to the selected constructor. |
| SmallVector<Expr*, 8> ConstructorArgs; |
| SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) |
| ? Kind.getEqualLoc() |
| : Kind.getLocation(); |
| |
| if (Kind.getKind() == InitializationKind::IK_Default) { |
| // Force even a trivial, implicit default constructor to be |
| // semantically checked. We do this explicitly because we don't build |
| // the definition for completely trivial constructors. |
| assert(Constructor->getParent() && "No parent class for constructor."); |
| if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
| Constructor->isTrivial() && !Constructor->isUsed(false)) |
| S.DefineImplicitDefaultConstructor(Loc, Constructor); |
| } |
| |
| ExprResult CurInit = S.Owned((Expr *)0); |
| |
| // C++ [over.match.copy]p1: |
| // - When initializing a temporary to be bound to the first parameter |
| // of a constructor that takes a reference to possibly cv-qualified |
| // T as its first argument, called with a single argument in the |
| // context of direct-initialization, explicit conversion functions |
| // are also considered. |
| bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() && |
| Args.size() == 1 && |
| Constructor->isCopyOrMoveConstructor(); |
| |
| // Determine the arguments required to actually perform the constructor |
| // call. |
| if (S.CompleteConstructorCall(Constructor, Args, |
| Loc, ConstructorArgs, |
| AllowExplicitConv, |
| IsListInitialization)) |
| return ExprError(); |
| |
| |
| if (isExplicitTemporary(Entity, Kind, NumArgs)) { |
| // An explicitly-constructed temporary, e.g., X(1, 2). |
| S.MarkFunctionReferenced(Loc, Constructor); |
| if (S.DiagnoseUseOfDecl(Constructor, Loc)) |
| return ExprError(); |
| |
| TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
| if (!TSInfo) |
| TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); |
| SourceRange ParenRange; |
| if (Kind.getKind() != InitializationKind::IK_DirectList) |
| ParenRange = Kind.getParenRange(); |
| |
| CurInit = S.Owned( |
| new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor, |
| TSInfo, ConstructorArgs, |
| ParenRange, IsListInitialization, |
| HadMultipleCandidates, |
| ConstructorInitRequiresZeroInit)); |
| } else { |
| CXXConstructExpr::ConstructionKind ConstructKind = |
| CXXConstructExpr::CK_Complete; |
| |
| if (Entity.getKind() == InitializedEntity::EK_Base) { |
| ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? |
| CXXConstructExpr::CK_VirtualBase : |
| CXXConstructExpr::CK_NonVirtualBase; |
| } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { |
| ConstructKind = CXXConstructExpr::CK_Delegating; |
| } |
| |
| // Only get the parenthesis range if it is a direct construction. |
| SourceRange parenRange = |
| Kind.getKind() == InitializationKind::IK_Direct ? |
| Kind.getParenRange() : SourceRange(); |
| |
| // If the entity allows NRVO, mark the construction as elidable |
| // unconditionally. |
| if (Entity.allowsNRVO()) |
| CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), |
| Constructor, /*Elidable=*/true, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| IsListInitialization, |
| ConstructorInitRequiresZeroInit, |
| ConstructKind, |
| parenRange); |
| else |
| CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), |
| Constructor, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| IsListInitialization, |
| ConstructorInitRequiresZeroInit, |
| ConstructKind, |
| parenRange); |
| } |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| // Only check access if all of that succeeded. |
| S.CheckConstructorAccess(Loc, Constructor, Entity, |
| Step.Function.FoundDecl.getAccess()); |
| if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) |
| return ExprError(); |
| |
| if (shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.take()); |
| |
| return CurInit; |
| } |
| |
| /// Determine whether the specified InitializedEntity definitely has a lifetime |
| /// longer than the current full-expression. Conservatively returns false if |
| /// it's unclear. |
| static bool |
| InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) { |
| const InitializedEntity *Top = &Entity; |
| while (Top->getParent()) |
| Top = Top->getParent(); |
| |
| switch (Top->getKind()) { |
| case InitializedEntity::EK_Variable: |
| case InitializedEntity::EK_Result: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_Member: |
| case InitializedEntity::EK_New: |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| return true; |
| |
| case InitializedEntity::EK_ArrayElement: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_ComplexElement: |
| // Could not determine what the full initialization is. Assume it might not |
| // outlive the full-expression. |
| return false; |
| |
| case InitializedEntity::EK_Parameter: |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| // The entity being initialized might not outlive the full-expression. |
| return false; |
| } |
| |
| llvm_unreachable("unknown entity kind"); |
| } |
| |
| /// Determine the declaration which an initialized entity ultimately refers to, |
| /// for the purpose of lifetime-extending a temporary bound to a reference in |
| /// the initialization of \p Entity. |
| static const ValueDecl * |
| getDeclForTemporaryLifetimeExtension(const InitializedEntity &Entity, |
| const ValueDecl *FallbackDecl = 0) { |
| // C++11 [class.temporary]p5: |
| switch (Entity.getKind()) { |
| case InitializedEntity::EK_Variable: |
| // The temporary [...] persists for the lifetime of the reference |
| return Entity.getDecl(); |
| |
| case InitializedEntity::EK_Member: |
| // For subobjects, we look at the complete object. |
| if (Entity.getParent()) |
| return getDeclForTemporaryLifetimeExtension(*Entity.getParent(), |
| Entity.getDecl()); |
| |
| // except: |
| // -- A temporary bound to a reference member in a constructor's |
| // ctor-initializer persists until the constructor exits. |
| return Entity.getDecl(); |
| |
| case InitializedEntity::EK_Parameter: |
| // -- A temporary bound to a reference parameter in a function call |
| // persists until the completion of the full-expression containing |
| // the call. |
| case InitializedEntity::EK_Result: |
| // -- The lifetime of a temporary bound to the returned value in a |
| // function return statement is not extended; the temporary is |
| // destroyed at the end of the full-expression in the return statement. |
| case InitializedEntity::EK_New: |
| // -- A temporary bound to a reference in a new-initializer persists |
| // until the completion of the full-expression containing the |
| // new-initializer. |
| return 0; |
| |
| case InitializedEntity::EK_Temporary: |
| case InitializedEntity::EK_CompoundLiteralInit: |
| // We don't yet know the storage duration of the surrounding temporary. |
| // Assume it's got full-expression duration for now, it will patch up our |
| // storage duration if that's not correct. |
| return 0; |
| |
| case InitializedEntity::EK_ArrayElement: |
| // For subobjects, we look at the complete object. |
| return getDeclForTemporaryLifetimeExtension(*Entity.getParent(), |
| FallbackDecl); |
| |
| case InitializedEntity::EK_Base: |
| case InitializedEntity::EK_Delegating: |
| // We can reach this case for aggregate initialization in a constructor: |
| // struct A { int &&r; }; |
| // struct B : A { B() : A{0} {} }; |
| // In this case, use the innermost field decl as the context. |
| return FallbackDecl; |
| |
| case InitializedEntity::EK_BlockElement: |
| case InitializedEntity::EK_LambdaCapture: |
| case InitializedEntity::EK_Exception: |
| case InitializedEntity::EK_VectorElement: |
| case InitializedEntity::EK_ComplexElement: |
| return 0; |
| } |
| llvm_unreachable("unknown entity kind"); |
| } |
| |
| static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD); |
| |
| /// Update a glvalue expression that is used as the initializer of a reference |
| /// to note that its lifetime is extended. |
| /// \return \c true if any temporary had its lifetime extended. |
| static bool performReferenceExtension(Expr *Init, const ValueDecl *ExtendingD) { |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| if (ILE->getNumInits() == 1 && ILE->isGLValue()) { |
| // This is just redundant braces around an initializer. Step over it. |
| Init = ILE->getInit(0); |
| } |
| } |
| |
| // Walk past any constructs which we can lifetime-extend across. |
| Expr *Old; |
| do { |
| Old = Init; |
| |
| // Step over any subobject adjustments; we may have a materialized |
| // temporary inside them. |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| Init = const_cast<Expr *>( |
| Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); |
| |
| // Per current approach for DR1376, look through casts to reference type |
| // when performing lifetime extension. |
| if (CastExpr *CE = dyn_cast<CastExpr>(Init)) |
| if (CE->getSubExpr()->isGLValue()) |
| Init = CE->getSubExpr(); |
| |
| // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue. |
| // It's unclear if binding a reference to that xvalue extends the array |
| // temporary. |
| } while (Init != Old); |
| |
| if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) { |
| // Update the storage duration of the materialized temporary. |
| // FIXME: Rebuild the expression instead of mutating it. |
| ME->setExtendingDecl(ExtendingD); |
| performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingD); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Update a prvalue expression that is going to be materialized as a |
| /// lifetime-extended temporary. |
| static void performLifetimeExtension(Expr *Init, const ValueDecl *ExtendingD) { |
| // Dig out the expression which constructs the extended temporary. |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| Init = const_cast<Expr *>( |
| Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); |
| |
| if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) |
| Init = BTE->getSubExpr(); |
| |
| if (CXXStdInitializerListExpr *ILE = |
| dyn_cast<CXXStdInitializerListExpr>(Init)) { |
| performReferenceExtension(ILE->getSubExpr(), ExtendingD); |
| return; |
| } |
| |
| if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
| if (ILE->getType()->isArrayType()) { |
| for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) |
| performLifetimeExtension(ILE->getInit(I), ExtendingD); |
| return; |
| } |
| |
| if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { |
| assert(RD->isAggregate() && "aggregate init on non-aggregate"); |
| |
| // If we lifetime-extend a braced initializer which is initializing an |
| // aggregate, and that aggregate contains reference members which are |
| // bound to temporaries, those temporaries are also lifetime-extended. |
| if (RD->isUnion() && ILE->getInitializedFieldInUnion() && |
| ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) |
| performReferenceExtension(ILE->getInit(0), ExtendingD); |
| else { |
| unsigned Index = 0; |
| for (RecordDecl::field_iterator I = RD->field_begin(), |
| E = RD->field_end(); |
| I != E; ++I) { |
| if (Index >= ILE->getNumInits()) |
| break; |
| if (I->isUnnamedBitfield()) |
| continue; |
| Expr *SubInit = ILE->getInit(Index); |
| if (I->getType()->isReferenceType()) |
| performReferenceExtension(SubInit, ExtendingD); |
| else if (isa<InitListExpr>(SubInit) || |
| isa<CXXStdInitializerListExpr>(SubInit)) |
| // This may be either aggregate-initialization of a member or |
| // initialization of a std::initializer_list object. Either way, |
| // we should recursively lifetime-extend that initializer. |
| performLifetimeExtension(SubInit, ExtendingD); |
| ++Index; |
| } |
| } |
| } |
| } |
| } |
| |
| static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity, |
| const Expr *Init, bool IsInitializerList, |
| const ValueDecl *ExtendingDecl) { |
| // Warn if a field lifetime-extends a temporary. |
| if (isa<FieldDecl>(ExtendingDecl)) { |
| if (IsInitializerList) { |
| S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list) |
| << /*at end of constructor*/true; |
| return; |
| } |
| |
| bool IsSubobjectMember = false; |
| for (const InitializedEntity *Ent = Entity.getParent(); Ent; |
| Ent = Ent->getParent()) { |
| if (Ent->getKind() != InitializedEntity::EK_Base) { |
| IsSubobjectMember = true; |
| break; |
| } |
| } |
| S.Diag(Init->getExprLoc(), |
| diag::warn_bind_ref_member_to_temporary) |
| << ExtendingDecl << Init->getSourceRange() |
| << IsSubobjectMember << IsInitializerList; |
| if (IsSubobjectMember) |
| S.Diag(ExtendingDecl->getLocation(), |
| diag::note_ref_subobject_of_member_declared_here); |
| else |
| S.Diag(ExtendingDecl->getLocation(), |
| diag::note_ref_or_ptr_member_declared_here) |
| << /*is pointer*/false; |
| } |
| } |
| |
| ExprResult |
| InitializationSequence::Perform(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| MultiExprArg Args, |
| QualType *ResultType) { |
| if (Failed()) { |
| Diagnose(S, Entity, Kind, Args); |
| return ExprError(); |
| } |
| |
| if (getKind() == DependentSequence) { |
| // If the declaration is a non-dependent, incomplete array type |
| // that has an initializer, then its type will be completed once |
| // the initializer is instantiated. |
| if (ResultType && !Entity.getType()->isDependentType() && |
| Args.size() == 1) { |
| QualType DeclType = Entity.getType(); |
| if (const IncompleteArrayType *ArrayT |
| = S.Context.getAsIncompleteArrayType(DeclType)) { |
| // FIXME: We don't currently have the ability to accurately |
| // compute the length of an initializer list without |
| // performing full type-checking of the initializer list |
| // (since we have to determine where braces are implicitly |
| // introduced and such). So, we fall back to making the array |
| // type a dependently-sized array type with no specified |
| // bound. |
| if (isa<InitListExpr>((Expr *)Args[0])) { |
| SourceRange Brackets; |
| |
| // Scavange the location of the brackets from the entity, if we can. |
| if (DeclaratorDecl *DD = Entity.getDecl()) { |
| if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { |
| TypeLoc TL = TInfo->getTypeLoc(); |
| if (IncompleteArrayTypeLoc ArrayLoc = |
| TL.getAs<IncompleteArrayTypeLoc>()) |
| Brackets = ArrayLoc.getBracketsRange(); |
| } |
| } |
| |
| *ResultType |
| = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), |
| /*NumElts=*/0, |
| ArrayT->getSizeModifier(), |
| ArrayT->getIndexTypeCVRQualifiers(), |
| Brackets); |
| } |
| |
| } |
| } |
| if (Kind.getKind() == InitializationKind::IK_Direct && |
| !Kind.isExplicitCast()) { |
| // Rebuild the ParenListExpr. |
| SourceRange ParenRange = Kind.getParenRange(); |
| return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), |
| Args); |
| } |
| assert(Kind.getKind() == InitializationKind::IK_Copy || |
| Kind.isExplicitCast() || |
| Kind.getKind() == InitializationKind::IK_DirectList); |
| return ExprResult(Args[0]); |
| } |
| |
| // No steps means no initialization. |
| if (Steps.empty()) |
| return S.Owned((Expr *)0); |
| |
| if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && |
| Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
| Entity.getKind() != InitializedEntity::EK_Parameter) { |
| // Produce a C++98 compatibility warning if we are initializing a reference |
| // from an initializer list. For parameters, we produce a better warning |
| // elsewhere. |
| Expr *Init = Args[0]; |
| S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) |
| << Init->getSourceRange(); |
| } |
| |
| // Diagnose cases where we initialize a pointer to an array temporary, and the |
| // pointer obviously outlives the temporary. |
| if (Args.size() == 1 && Args[0]->getType()->isArrayType() && |
| Entity.getType()->isPointerType() && |
| InitializedEntityOutlivesFullExpression(Entity)) { |
| Expr *Init = Args[0]; |
| Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context); |
| if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary) |
| S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay) |
| << Init->getSourceRange(); |
| } |
| |
| QualType DestType = Entity.getType().getNonReferenceType(); |
| // FIXME: Ugly hack around the fact that Entity.getType() is not |
| // the same as Entity.getDecl()->getType() in cases involving type merging, |
| // and we want latter when it makes sense. |
| if (ResultType) |
| *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : |
| Entity.getType(); |
| |
| ExprResult CurInit = S.Owned((Expr *)0); |
| |
| // For initialization steps that start with a single initializer, |
| // grab the only argument out the Args and place it into the "current" |
| // initializer. |
| switch (Steps.front().Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| case SK_CastDerivedToBaseRValue: |
| case SK_CastDerivedToBaseXValue: |
| case SK_CastDerivedToBaseLValue: |
| case SK_BindReference: |
| case SK_BindReferenceToTemporary: |
| case SK_ExtraneousCopyToTemporary: |
| case SK_UserConversion: |
| case SK_QualificationConversionLValue: |
| case SK_QualificationConversionXValue: |
| case SK_QualificationConversionRValue: |
| case SK_LValueToRValue: |
| case SK_ConversionSequence: |
| case SK_ListInitialization: |
| case SK_UnwrapInitList: |
| case SK_RewrapInitList: |
| case SK_CAssignment: |
| case SK_StringInit: |
| case SK_ObjCObjectConversion: |
| case SK_ArrayInit: |
| case SK_ParenthesizedArrayInit: |
| case SK_PassByIndirectCopyRestore: |
| case SK_PassByIndirectRestore: |
| case SK_ProduceObjCObject: |
| case SK_StdInitializerList: |
| case SK_OCLSamplerInit: |
| case SK_OCLZeroEvent: { |
| assert(Args.size() == 1); |
| CurInit = Args[0]; |
| if (!CurInit.get()) return ExprError(); |
| break; |
| } |
| |
| case SK_ConstructorInitialization: |
| case SK_ListConstructorCall: |
| case SK_ZeroInitialization: |
| break; |
| } |
| |
| // Walk through the computed steps for the initialization sequence, |
| // performing the specified conversions along the way. |
| bool ConstructorInitRequiresZeroInit = false; |
| for (step_iterator Step = step_begin(), StepEnd = step_end(); |
| Step != StepEnd; ++Step) { |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); |
| |
| switch (Step->Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| // Overload resolution determined which function invoke; update the |
| // initializer to reflect that choice. |
| S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); |
| if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) |
| return ExprError(); |
| CurInit = S.FixOverloadedFunctionReference(CurInit, |
| Step->Function.FoundDecl, |
| Step->Function.Function); |
| break; |
| |
| case SK_CastDerivedToBaseRValue: |
| case SK_CastDerivedToBaseXValue: |
| case SK_CastDerivedToBaseLValue: { |
| // We have a derived-to-base cast that produces either an rvalue or an |
| // lvalue. Perform that cast. |
| |
| CXXCastPath BasePath; |
| |
| // Casts to inaccessible base classes are allowed with C-style casts. |
| bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); |
| if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, |
| CurInit.get()->getLocStart(), |
| CurInit.get()->getSourceRange(), |
| &BasePath, IgnoreBaseAccess)) |
| return ExprError(); |
| |
| if (S.BasePathInvolvesVirtualBase(BasePath)) { |
| QualType T = SourceType; |
| if (const PointerType *Pointer = T->getAs<PointerType>()) |
| T = Pointer->getPointeeType(); |
| if (const RecordType *RecordTy = T->getAs<RecordType>()) |
| S.MarkVTableUsed(CurInit.get()->getLocStart(), |
| cast<CXXRecordDecl>(RecordTy->getDecl())); |
| } |
| |
| ExprValueKind VK = |
| Step->Kind == SK_CastDerivedToBaseLValue ? |
| VK_LValue : |
| (Step->Kind == SK_CastDerivedToBaseXValue ? |
| VK_XValue : |
| VK_RValue); |
| CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, |
| Step->Type, |
| CK_DerivedToBase, |
| CurInit.get(), |
| &BasePath, VK)); |
| break; |
| } |
| |
| case SK_BindReference: |
| // References cannot bind to bit-fields (C++ [dcl.init.ref]p5). |
| if (CurInit.get()->refersToBitField()) { |
| // We don't necessarily have an unambiguous source bit-field. |
| FieldDecl *BitField = CurInit.get()->getSourceBitField(); |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) |
| << Entity.getType().isVolatileQualified() |
| << (BitField ? BitField->getDeclName() : DeclarationName()) |
| << (BitField != NULL) |
| << CurInit.get()->getSourceRange(); |
| if (BitField) |
| S.Diag(BitField->getLocation(), diag::note_bitfield_decl); |
| |
| return ExprError(); |
| } |
| |
| if (CurInit.get()->refersToVectorElement()) { |
| // References cannot bind to vector elements. |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) |
| << Entity.getType().isVolatileQualified() |
| << CurInit.get()->getSourceRange(); |
| PrintInitLocationNote(S, Entity); |
| return ExprError(); |
| } |
| |
| // Reference binding does not have any corresponding ASTs. |
| |
| // Check exception specifications |
| if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) |
| return ExprError(); |
| |
| // Even though we didn't materialize a temporary, the binding may still |
| // extend the lifetime of a temporary. This happens if we bind a reference |
| // to the result of a cast to reference type. |
| if (const ValueDecl *ExtendingDecl = |
| getDeclForTemporaryLifetimeExtension(Entity)) { |
| if (performReferenceExtension(CurInit.get(), ExtendingDecl)) |
| warnOnLifetimeExtension(S, Entity, CurInit.get(), false, |
| ExtendingDecl); |
| } |
| |
| break; |
| |
| case SK_BindReferenceToTemporary: { |
| // Make sure the "temporary" is actually an rvalue. |
| assert(CurInit.get()->isRValue() && "not a temporary"); |
| |
| // Check exception specifications |
| if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) |
| return ExprError(); |
| |
| // Maybe lifetime-extend the temporary's subobjects to match the |
| // entity's lifetime. |
| const ValueDecl *ExtendingDecl = |
| getDeclForTemporaryLifetimeExtension(Entity); |
| if (ExtendingDecl) { |
| performLifetimeExtension(CurInit.get(), ExtendingDecl); |
| warnOnLifetimeExtension(S, Entity, CurInit.get(), false, ExtendingDecl); |
| } |
| |
| // Materialize the temporary into memory. |
| MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr( |
| Entity.getType().getNonReferenceType(), CurInit.get(), |
| Entity.getType()->isLValueReferenceType(), ExtendingDecl); |
| |
| // If we're binding to an Objective-C object that has lifetime, we |
| // need cleanups. Likewise if we're extending this temporary to automatic |
| // storage duration -- we need to register its cleanup during the |
| // full-expression's cleanups. |
| if ((S.getLangOpts().ObjCAutoRefCount && |
| MTE->getType()->isObjCLifetimeType()) || |
| (MTE->getStorageDuration() == SD_Automatic && |
| MTE->getType().isDestructedType())) |
| S.ExprNeedsCleanups = true; |
| |
| CurInit = S.Owned(MTE); |
| break; |
| } |
| |
| case SK_ExtraneousCopyToTemporary: |
| CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
| /*IsExtraneousCopy=*/true); |
| break; |
| |
| case SK_UserConversion: { |
| // We have a user-defined conversion that invokes either a constructor |
| // or a conversion function. |
| CastKind CastKind; |
| bool IsCopy = false; |
| FunctionDecl *Fn = Step->Function.Function; |
| DeclAccessPair FoundFn = Step->Function.FoundDecl; |
| bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; |
| bool CreatedObject = false; |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { |
| // Build a call to the selected constructor. |
| SmallVector<Expr*, 8> ConstructorArgs; |
| SourceLocation Loc = CurInit.get()->getLocStart(); |
| CurInit.release(); // Ownership transferred into MultiExprArg, below. |
| |
| // Determine the arguments required to actually perform the constructor |
| // call. |
| Expr *Arg = CurInit.get(); |
| if (S.CompleteConstructorCall(Constructor, |
| MultiExprArg(&Arg, 1), |
| Loc, ConstructorArgs)) |
| return ExprError(); |
| |
| // Build an expression that constructs a temporary. |
| CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, |
| ConstructorArgs, |
| HadMultipleCandidates, |
| /*ListInit*/ false, |
| /*ZeroInit*/ false, |
| CXXConstructExpr::CK_Complete, |
| SourceRange()); |
| if (CurInit.isInvalid()) |
| return ExprError(); |
| |
| S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, |
| FoundFn.getAccess()); |
| if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) |
| return ExprError(); |
| |
| CastKind = CK_ConstructorConversion; |
| QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); |
| if (S.Context.hasSameUnqualifiedType(SourceType, Class) || |
| S.IsDerivedFrom(SourceType, Class)) |
| IsCopy = true; |
| |
| CreatedObject = true; |
| } else { |
| // Build a call to the conversion function. |
| CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); |
| S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0, |
| FoundFn); |
| if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) |
| return ExprError(); |
| |
| // FIXME: Should we move this initialization into a separate |
| // derived-to-base conversion? I believe the answer is "no", because |
| // we don't want to turn off access control here for c-style casts. |
| ExprResult CurInitExprRes = |
| S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0, |
| FoundFn, Conversion); |
| if(CurInitExprRes.isInvalid()) |
| return ExprError(); |
| CurInit = CurInitExprRes; |
| |
| // Build the actual call to the conversion function. |
| CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, |
| HadMultipleCandidates); |
| if (CurInit.isInvalid() || !CurInit.get()) |
| return ExprError(); |
| |
| CastKind = CK_UserDefinedConversion; |
| |
| CreatedObject = Conversion->getResultType()->isRecordType(); |
| } |
| |
| bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); |
| bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); |
| |
| if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { |
| QualType T = CurInit.get()->getType(); |
| if (const RecordType *Record = T->getAs<RecordType>()) { |
| CXXDestructorDecl *Destructor |
| = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); |
| S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, |
| S.PDiag(diag::err_access_dtor_temp) << T); |
| S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); |
| if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) |
| return ExprError(); |
| } |
| } |
| |
| CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, |
| CurInit.get()->getType(), |
| CastKind, CurInit.get(), 0, |
| CurInit.get()->getValueKind())); |
| if (MaybeBindToTemp) |
| CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); |
| if (RequiresCopy) |
| CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, |
| CurInit, /*IsExtraneousCopy=*/false); |
| break; |
| } |
| |
| case SK_QualificationConversionLValue: |
| case SK_QualificationConversionXValue: |
| case SK_QualificationConversionRValue: { |
| // Perform a qualification conversion; these can never go wrong. |
| ExprValueKind VK = |
| Step->Kind == SK_QualificationConversionLValue ? |
| VK_LValue : |
| (Step->Kind == SK_QualificationConversionXValue ? |
| VK_XValue : |
| VK_RValue); |
| CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK); |
| break; |
| } |
| |
| case SK_LValueToRValue: { |
| assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); |
| CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type, |
| CK_LValueToRValue, |
| CurInit.take(), |
| /*BasePath=*/0, |
| VK_RValue)); |
| break; |
| } |
| |
| case SK_ConversionSequence: { |
| Sema::CheckedConversionKind CCK |
| = Kind.isCStyleCast()? Sema::CCK_CStyleCast |
| : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast |
| : Kind.isExplicitCast()? Sema::CCK_OtherCast |
| : Sema::CCK_ImplicitConversion; |
| ExprResult CurInitExprRes = |
| S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, |
| getAssignmentAction(Entity), CCK); |
| if (CurInitExprRes.isInvalid()) |
| return ExprError(); |
| CurInit = CurInitExprRes; |
| break; |
| } |
| |
| case SK_ListInitialization: { |
| InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); |
| // If we're not initializing the top-level entity, we need to create an |
| // InitializeTemporary entity for our target type. |
| QualType Ty = Step->Type; |
| bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); |
| InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; |
| InitListChecker PerformInitList(S, InitEntity, |
| InitList, Ty, /*VerifyOnly=*/false); |
| if (PerformInitList.HadError()) |
| return ExprError(); |
| |
| // Hack: We must update *ResultType if available in order to set the |
| // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. |
| // Worst case: 'const int (&arref)[] = {1, 2, 3};'. |
| if (ResultType && |
| ResultType->getNonReferenceType()->isIncompleteArrayType()) { |
| if ((*ResultType)->isRValueReferenceType()) |
| Ty = S.Context.getRValueReferenceType(Ty); |
| else if ((*ResultType)->isLValueReferenceType()) |
| Ty = S.Context.getLValueReferenceType(Ty, |
| (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); |
| *ResultType = Ty; |
| } |
| |
| InitListExpr *StructuredInitList = |
| PerformInitList.getFullyStructuredList(); |
| CurInit.release(); |
| CurInit = shouldBindAsTemporary(InitEntity) |
| ? S.MaybeBindToTemporary(StructuredInitList) |
| : S.Owned(StructuredInitList); |
| break; |
| } |
| |
| case SK_ListConstructorCall: { |
| // When an initializer list is passed for a parameter of type "reference |
| // to object", we don't get an EK_Temporary entity, but instead an |
| // EK_Parameter entity with reference type. |
| // FIXME: This is a hack. What we really should do is create a user |
| // conversion step for this case, but this makes it considerably more |
| // complicated. For now, this will do. |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
| Entity.getType().getNonReferenceType()); |
| bool UseTemporary = Entity.getType()->isReferenceType(); |
| assert(Args.size() == 1 && "expected a single argument for list init"); |
| InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
| S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) |
| << InitList->getSourceRange(); |
| MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); |
| CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : |
| Entity, |
| Kind, Arg, *Step, |
| ConstructorInitRequiresZeroInit, |
| /*IsListInitialization*/ true); |
| break; |
| } |
| |
| case SK_UnwrapInitList: |
| CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0)); |
| break; |
| |
| case SK_RewrapInitList: { |
| Expr *E = CurInit.take(); |
| InitListExpr *Syntactic = Step->WrappingSyntacticList; |
| InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, |
| Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); |
| ILE->setSyntacticForm(Syntactic); |
| ILE->setType(E->getType()); |
| ILE->setValueKind(E->getValueKind()); |
| CurInit = S.Owned(ILE); |
| break; |
| } |
| |
| case SK_ConstructorInitialization: { |
| // When an initializer list is passed for a parameter of type "reference |
| // to object", we don't get an EK_Temporary entity, but instead an |
| // EK_Parameter entity with reference type. |
| // FIXME: This is a hack. What we really should do is create a user |
| // conversion step for this case, but this makes it considerably more |
| // complicated. For now, this will do. |
| InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
| Entity.getType().getNonReferenceType()); |
| bool UseTemporary = Entity.getType()->isReferenceType(); |
| CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity |
| : Entity, |
| Kind, Args, *Step, |
| ConstructorInitRequiresZeroInit, |
| /*IsListInitialization*/ false); |
| break; |
| } |
| |
| case SK_ZeroInitialization: { |
| step_iterator NextStep = Step; |
| ++NextStep; |
| if (NextStep != StepEnd && |
| (NextStep->Kind == SK_ConstructorInitialization || |
| NextStep->Kind == SK_ListConstructorCall)) { |
| // The need for zero-initialization is recorded directly into |
| // the call to the object's constructor within the next step. |
| ConstructorInitRequiresZeroInit = true; |
| } else if (Kind.getKind() == InitializationKind::IK_Value && |
| S.getLangOpts().CPlusPlus && |
| !Kind.isImplicitValueInit()) { |
| TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
| if (!TSInfo) |
| TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, |
| Kind.getRange().getBegin()); |
| |
| CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr( |
| TSInfo->getType().getNonLValueExprType(S.Context), |
| TSInfo, |
| Kind.getRange().getEnd())); |
| } else { |
| CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type)); |
| } |
| break; |
| } |
| |
| case SK_CAssignment: { |
| QualType SourceType = CurInit.get()->getType(); |
| ExprResult Result = CurInit; |
| Sema::AssignConvertType ConvTy = |
| S.CheckSingleAssignmentConstraints(Step->Type, Result); |
| if (Result.isInvalid()) |
| return ExprError(); |
| CurInit = Result; |
| |
| // If this is a call, allow conversion to a transparent union. |
| ExprResult CurInitExprRes = CurInit; |
| if (ConvTy != Sema::Compatible && |
| Entity.getKind() == InitializedEntity::EK_Parameter && |
| S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) |
| == Sema::Compatible) |
| ConvTy = Sema::Compatible; |
| if (CurInitExprRes.isInvalid()) |
| return ExprError(); |
| CurInit = CurInitExprRes; |
| |
| bool Complained; |
| if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), |
| Step->Type, SourceType, |
| CurInit.get(), |
| getAssignmentAction(Entity), |
| &Complained)) { |
| PrintInitLocationNote(S, Entity); |
| return ExprError(); |
| } else if (Complained) |
| PrintInitLocationNote(S, Entity); |
| break; |
| } |
| |
| case SK_StringInit: { |
| QualType Ty = Step->Type; |
| CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, |
| S.Context.getAsArrayType(Ty), S); |
| break; |
| } |
| |
| case SK_ObjCObjectConversion: |
| CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, |
| CK_ObjCObjectLValueCast, |
| CurInit.get()->getValueKind()); |
| break; |
| |
| case SK_ArrayInit: |
| // Okay: we checked everything before creating this step. Note that |
| // this is a GNU extension. |
| S.Diag(Kind.getLocation(), diag::ext_array_init_copy) |
| << Step->Type << CurInit.get()->getType() |
| << CurInit.get()->getSourceRange(); |
| |
| // If the destination type is an incomplete array type, update the |
| // type accordingly. |
| if (ResultType) { |
| if (const IncompleteArrayType *IncompleteDest |
| = S.Context.getAsIncompleteArrayType(Step->Type)) { |
| if (const ConstantArrayType *ConstantSource |
| = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { |
| *ResultType = S.Context.getConstantArrayType( |
| IncompleteDest->getElementType(), |
| ConstantSource->getSize(), |
| ArrayType::Normal, 0); |
| } |
| } |
| } |
| break; |
| |
| case SK_ParenthesizedArrayInit: |
| // Okay: we checked everything before creating this step. Note that |
| // this is a GNU extension. |
| S.Diag(Kind.getLocation(), diag::ext_array_init_parens) |
| << CurInit.get()->getSourceRange(); |
| break; |
| |
| case SK_PassByIndirectCopyRestore: |
| case SK_PassByIndirectRestore: |
| checkIndirectCopyRestoreSource(S, CurInit.get()); |
| CurInit = S.Owned(new (S.Context) |
| ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type, |
| Step->Kind == SK_PassByIndirectCopyRestore)); |
| break; |
| |
| case SK_ProduceObjCObject: |
| CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type, |
| CK_ARCProduceObject, |
| CurInit.take(), 0, VK_RValue)); |
| break; |
| |
| case SK_StdInitializerList: { |
| S.Diag(CurInit.get()->getExprLoc(), |
| diag::warn_cxx98_compat_initializer_list_init) |
| << CurInit.get()->getSourceRange(); |
| |
| // Maybe lifetime-extend the array temporary's subobjects to match the |
| // entity's lifetime. |
| const ValueDecl *ExtendingDecl = |
| getDeclForTemporaryLifetimeExtension(Entity); |
| if (ExtendingDecl) { |
| performLifetimeExtension(CurInit.get(), ExtendingDecl); |
| warnOnLifetimeExtension(S, Entity, CurInit.get(), true, ExtendingDecl); |
| } |
| |
| // Materialize the temporary into memory. |
| MaterializeTemporaryExpr *MTE = new (S.Context) |
| MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(), |
| /*lvalue reference*/ false, ExtendingDecl); |
| |
| // Wrap it in a construction of a std::initializer_list<T>. |
| CurInit = S.Owned( |
| new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE)); |
| |
| // Bind the result, in case the library has given initializer_list a |
| // non-trivial destructor. |
| if (shouldBindAsTemporary(Entity)) |
| CurInit = S.MaybeBindToTemporary(CurInit.take()); |
| break; |
| } |
| |
| case SK_OCLSamplerInit: { |
| assert(Step->Type->isSamplerT() && |
| "Sampler initialization on non sampler type."); |
| |
| QualType SourceType = CurInit.get()->getType(); |
| InitializedEntity::EntityKind EntityKind = Entity.getKind(); |
| |
| if (EntityKind == InitializedEntity::EK_Parameter) { |
| if (!SourceType->isSamplerT()) |
| S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) |
| << SourceType; |
| } else if (EntityKind != InitializedEntity::EK_Variable) { |
| llvm_unreachable("Invalid EntityKind!"); |
| } |
| |
| break; |
| } |
| case SK_OCLZeroEvent: { |
| assert(Step->Type->isEventT() && |
| "Event initialization on non event type."); |
| |
| CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, |
| CK_ZeroToOCLEvent, |
| CurInit.get()->getValueKind()); |
| break; |
| } |
| } |
| } |
| |
| // Diagnose non-fatal problems with the completed initialization. |
| if (Entity.getKind() == InitializedEntity::EK_Member && |
| cast<FieldDecl>(Entity.getDecl())->isBitField()) |
| S.CheckBitFieldInitialization(Kind.getLocation(), |
| cast<FieldDecl>(Entity.getDecl()), |
| CurInit.get()); |
| |
| return CurInit; |
| } |
| |
| /// Somewhere within T there is an uninitialized reference subobject. |
| /// Dig it out and diagnose it. |
| static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, |
| QualType T) { |
| if (T->isReferenceType()) { |
| S.Diag(Loc, diag::err_reference_without_init) |
| << T.getNonReferenceType(); |
| return true; |
| } |
| |
| CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| if (!RD || !RD->hasUninitializedReferenceMember()) |
| return false; |
| |
| for (CXXRecordDecl::field_iterator FI = RD->field_begin(), |
| FE = RD->field_end(); FI != FE; ++FI) { |
| if (FI->isUnnamedBitfield()) |
| continue; |
| |
| if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { |
| S.Diag(Loc, diag::note_value_initialization_here) << RD; |
| return true; |
| } |
| } |
| |
| for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(), |
| BE = RD->bases_end(); |
| BI != BE; ++BI) { |
| if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) { |
| S.Diag(Loc, diag::note_value_initialization_here) << RD; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Diagnose initialization failures |
| //===----------------------------------------------------------------------===// |
| |
| /// Emit notes associated with an initialization that failed due to a |
| /// "simple" conversion failure. |
| static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, |
| Expr *op) { |
| QualType destType = entity.getType(); |
| if (destType.getNonReferenceType()->isObjCObjectPointerType() && |
| op->getType()->isObjCObjectPointerType()) { |
| |
| // Emit a possible note about the conversion failing because the |
| // operand is a message send with a related result type. |
| S.EmitRelatedResultTypeNote(op); |
| |
| // Emit a possible note about a return failing because we're |
| // expecting a related result type. |
| if (entity.getKind() == InitializedEntity::EK_Result) |
| S.EmitRelatedResultTypeNoteForReturn(destType); |
| } |
| } |
| |
| bool InitializationSequence::Diagnose(Sema &S, |
| const InitializedEntity &Entity, |
| const InitializationKind &Kind, |
| ArrayRef<Expr *> Args) { |
| if (!Failed()) |
| return false; |
| |
| QualType DestType = Entity.getType(); |
| switch (Failure) { |
| case FK_TooManyInitsForReference: |
| // FIXME: Customize for the initialized entity? |
| if (Args.empty()) { |
| // Dig out the reference subobject which is uninitialized and diagnose it. |
| // If this is value-initialization, this could be nested some way within |
| // the target type. |
| assert(Kind.getKind() == InitializationKind::IK_Value || |
| DestType->isReferenceType()); |
| bool Diagnosed = |
| DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); |
| assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); |
| (void)Diagnosed; |
| } else // FIXME: diagnostic below could be better! |
| S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) |
| << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); |
| break; |
| |
| case FK_ArrayNeedsInitList: |
| S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; |
| break; |
| case FK_ArrayNeedsInitListOrStringLiteral: |
| S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; |
| break; |
| case FK_ArrayNeedsInitListOrWideStringLiteral: |
| S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; |
| break; |
| case FK_NarrowStringIntoWideCharArray: |
| S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); |
| break; |
| case FK_WideStringIntoCharArray: |
| S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); |
| break; |
| case FK_IncompatWideStringIntoWideChar: |
| S.Diag(Kind.getLocation(), |
| diag::err_array_init_incompat_wide_string_into_wchar); |
| break; |
| case FK_ArrayTypeMismatch: |
| case FK_NonConstantArrayInit: |
| S.Diag(Kind.getLocation(), |
| (Failure == FK_ArrayTypeMismatch |
| ? diag::err_array_init_different_type |
| : diag::err_array_init_non_constant_array)) |
| << DestType.getNonReferenceType() |
| << Args[0]->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_VariableLengthArrayHasInitializer: |
| S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_AddressOfOverloadFailed: { |
| DeclAccessPair Found; |
| S.ResolveAddressOfOverloadedFunction(Args[0], |
| DestType.getNonReferenceType(), |
| true, |
| Found); |
| break; |
| } |
| |
| case FK_ReferenceInitOverloadFailed: |
| case FK_UserConversionOverloadFailed: |
| switch (FailedOverloadResult) { |
| case OR_Ambiguous: |
| if (Failure == FK_UserConversionOverloadFailed) |
| S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) |
| << Args[0]->getType() << DestType |
| << Args[0]->getSourceRange(); |
| else |
| S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) |
| << DestType << Args[0]->getType() |
| << Args[0]->getSourceRange(); |
| |
| FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); |
| break; |
| |
| case OR_No_Viable_Function: |
| if (!S.RequireCompleteType(Kind.getLocation(), |
| DestType.getNonReferenceType(), |
| diag::err_typecheck_nonviable_condition_incomplete, |
| Args[0]->getType(), Args[0]->getSourceRange())) |
| S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) |
| << Args[0]->getType() << Args[0]->getSourceRange() |
| << DestType.getNonReferenceType(); |
| |
| FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); |
| break; |
| |
| case OR_Deleted: { |
| S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) |
| << Args[0]->getType() << DestType.getNonReferenceType() |
| << Args[0]->getSourceRange(); |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult Ovl |
| = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, |
| true); |
| if (Ovl == OR_Deleted) { |
| S.NoteDeletedFunction(Best->Function); |
| } else { |
| llvm_unreachable("Inconsistent overload resolution?"); |
| } |
| break; |
| } |
| |
| case OR_Success: |
| llvm_unreachable("Conversion did not fail!"); |
| } |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToTemporary: |
| if (isa<InitListExpr>(Args[0])) { |
| S.Diag(Kind.getLocation(), |
| diag::err_lvalue_reference_bind_to_initlist) |
| << DestType.getNonReferenceType().isVolatileQualified() |
| << DestType.getNonReferenceType() |
| << Args[0]->getSourceRange(); |
| break; |
| } |
| // Intentional fallthrough |
| |
| case FK_NonConstLValueReferenceBindingToUnrelated: |
| S.Diag(Kind.getLocation(), |
| Failure == FK_NonConstLValueReferenceBindingToTemporary |
| ? diag::err_lvalue_reference_bind_to_temporary |
| : diag::err_lvalue_reference_bind_to_unrelated) |
| << DestType.getNonReferenceType().isVolatileQualified() |
| << DestType.getNonReferenceType() |
| << Args[0]->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_RValueReferenceBindingToLValue: |
| S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) |
| << DestType.getNonReferenceType() << Args[0]->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ReferenceInitDropsQualifiers: |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
| << DestType.getNonReferenceType() |
| << Args[0]->getType() |
| << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ReferenceInitFailed: |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) |
| << DestType.getNonReferenceType() |
| << Args[0]->isLValue() |
| << Args[0]->getType() |
| << Args[0]->getSourceRange(); |
| emitBadConversionNotes(S, Entity, Args[0]); |
| break; |
| |
| case FK_ConversionFailed: { |
| QualType FromType = Args[0]->getType(); |
| PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) |
| << (int)Entity.getKind() |
| << DestType |
| << Args[0]->isLValue() |
| << FromType |
| << Args[0]->getSourceRange(); |
| S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); |
| S.Diag(Kind.getLocation(), PDiag); |
| emitBadConversionNotes(S, Entity, Args[0]); |
| break; |
| } |
| |
| case FK_ConversionFromPropertyFailed: |
| // No-op. This error has already been reported. |
| break; |
| |
| case FK_TooManyInitsForScalar: { |
| SourceRange R; |
| |
| if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0])) |
| R = SourceRange(InitList->getInit(0)->getLocEnd(), |
| InitList->getLocEnd()); |
| else |
| R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); |
| |
| R.setBegin(S.PP.getLocForEndOfToken(R.getBegin())); |
| if (Kind.isCStyleOrFunctionalCast()) |
| S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) |
| << R; |
| else |
| S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
| << /*scalar=*/2 << R; |
| break; |
| } |
| |
| case FK_ReferenceBindingToInitList: |
| S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) |
| << DestType.getNonReferenceType() << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_InitListBadDestinationType: |
| S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) |
| << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); |
| break; |
| |
| case FK_ListConstructorOverloadFailed: |
| case FK_ConstructorOverloadFailed: { |
| SourceRange ArgsRange; |
| if (Args.size()) |
| ArgsRange = SourceRange(Args.front()->getLocStart(), |
| Args.back()->getLocEnd()); |
| |
| if (Failure == FK_ListConstructorOverloadFailed) { |
| assert(Args.size() == 1 && "List construction from other than 1 argument."); |
| InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
| Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
| } |
| |
| // FIXME: Using "DestType" for the entity we're printing is probably |
| // bad. |
| switch (FailedOverloadResult) { |
| case OR_Ambiguous: |
| S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) |
| << DestType << ArgsRange; |
| FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); |
| break; |
| |
| case OR_No_Viable_Function: |
| if (Kind.getKind() == InitializationKind::IK_Default && |
| (Entity.getKind() == InitializedEntity::EK_Base || |
| Entity.getKind() == InitializedEntity::EK_Member) && |
| isa<CXXConstructorDecl>(S.CurContext)) { |
| // This is implicit default initialization of a member or |
| // base within a constructor. If no viable function was |
| // found, notify the user that she needs to explicitly |
| // initialize this base/member. |
| CXXConstructorDecl *Constructor |
| = cast<CXXConstructorDecl>(S.CurContext); |
| if (Entity.getKind() == InitializedEntity::EK_Base) { |
| S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
| << (Constructor->getInheritedConstructor() ? 2 : |
| Constructor->isImplicit() ? 1 : 0) |
| << S.Context.getTypeDeclType(Constructor->getParent()) |
| << /*base=*/0 |
| << Entity.getType(); |
| |
| RecordDecl *BaseDecl |
| = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() |
| ->getDecl(); |
| S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
| << S.Context.getTagDeclType(BaseDecl); |
| } else { |
| S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
| << (Constructor->getInheritedConstructor() ? 2 : |
| Constructor->isImplicit() ? 1 : 0) |
| << S.Context.getTypeDeclType(Constructor->getParent()) |
| << /*member=*/1 |
| << Entity.getName(); |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl); |
| |
| if (const RecordType *Record |
| = Entity.getType()->getAs<RecordType>()) |
| S.Diag(Record->getDecl()->getLocation(), |
| diag::note_previous_decl) |
| << S.Context.getTagDeclType(Record->getDecl()); |
| } |
| break; |
| } |
| |
| S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) |
| << DestType << ArgsRange; |
| FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); |
| break; |
| |
| case OR_Deleted: { |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult Ovl |
| = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
| if (Ovl != OR_Deleted) { |
| S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
| << true << DestType << ArgsRange; |
| llvm_unreachable("Inconsistent overload resolution?"); |
| break; |
| } |
| |
| // If this is a defaulted or implicitly-declared function, then |
| // it was implicitly deleted. Make it clear that the deletion was |
| // implicit. |
| if (S.isImplicitlyDeleted(Best->Function)) |
| S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) |
| << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) |
| << DestType << ArgsRange; |
| else |
| S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
| << true << DestType << ArgsRange; |
| |
| S.NoteDeletedFunction(Best->Function); |
| break; |
| } |
| |
| case OR_Success: |
| llvm_unreachable("Conversion did not fail!"); |
| } |
| } |
| break; |
| |
| case FK_DefaultInitOfConst: |
| if (Entity.getKind() == InitializedEntity::EK_Member && |
| isa<CXXConstructorDecl>(S.CurContext)) { |
| // This is implicit default-initialization of a const member in |
| // a constructor. Complain that it needs to be explicitly |
| // initialized. |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); |
| S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) |
| << (Constructor->getInheritedConstructor() ? 2 : |
| Constructor->isImplicit() ? 1 : 0) |
| << S.Context.getTypeDeclType(Constructor->getParent()) |
| << /*const=*/1 |
| << Entity.getName(); |
| S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) |
| << Entity.getName(); |
| } else { |
| S.Diag(Kind.getLocation(), diag::err_default_init_const) |
| << DestType << (bool)DestType->getAs<RecordType>(); |
| } |
| break; |
| |
| case FK_Incomplete: |
| S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, |
| diag::err_init_incomplete_type); |
| break; |
| |
| case FK_ListInitializationFailed: { |
| // Run the init list checker again to emit diagnostics. |
| InitListExpr* InitList = cast<InitListExpr>(Args[0]); |
| QualType DestType = Entity.getType(); |
| InitListChecker DiagnoseInitList(S, Entity, InitList, |
| DestType, /*VerifyOnly=*/false); |
| assert(DiagnoseInitList.HadError() && |
| "Inconsistent init list check result."); |
| break; |
| } |
| |
| case FK_PlaceholderType: { |
| // FIXME: Already diagnosed! |
| break; |
| } |
| |
| case FK_ExplicitConstructor: { |
| S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) |
| << Args[0]->getSourceRange(); |
| OverloadCandidateSet::iterator Best; |
| OverloadingResult Ovl |
| = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
| (void)Ovl; |
| assert(Ovl == OR_Success && "Inconsistent overload resolution"); |
| CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
| S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here); |
| break; |
| } |
| } |
| |
| PrintInitLocationNote(S, Entity); |
| return true; |
| } |
| |
| void InitializationSequence::dump(raw_ostream &OS) const { |
| switch (SequenceKind) { |
| case FailedSequence: { |
| OS << "Failed sequence: "; |
| switch (Failure) { |
| case FK_TooManyInitsForReference: |
| OS << "too many initializers for reference"; |
| break; |
| |
| case FK_ArrayNeedsInitList: |
| OS << "array requires initializer list"; |
| break; |
| |
| case FK_ArrayNeedsInitListOrStringLiteral: |
| OS << "array requires initializer list or string literal"; |
| break; |
| |
| case FK_ArrayNeedsInitListOrWideStringLiteral: |
| OS << "array requires initializer list or wide string literal"; |
| break; |
| |
| case FK_NarrowStringIntoWideCharArray: |
| OS << "narrow string into wide char array"; |
| break; |
| |
| case FK_WideStringIntoCharArray: |
| OS << "wide string into char array"; |
| break; |
| |
| case FK_IncompatWideStringIntoWideChar: |
| OS << "incompatible wide string into wide char array"; |
| break; |
| |
| case FK_ArrayTypeMismatch: |
| OS << "array type mismatch"; |
| break; |
| |
| case FK_NonConstantArrayInit: |
| OS << "non-constant array initializer"; |
| break; |
| |
| case FK_AddressOfOverloadFailed: |
| OS << "address of overloaded function failed"; |
| break; |
| |
| case FK_ReferenceInitOverloadFailed: |
| OS << "overload resolution for reference initialization failed"; |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToTemporary: |
| OS << "non-const lvalue reference bound to temporary"; |
| break; |
| |
| case FK_NonConstLValueReferenceBindingToUnrelated: |
| OS << "non-const lvalue reference bound to unrelated type"; |
| break; |
| |
| case FK_RValueReferenceBindingToLValue: |
| OS << "rvalue reference bound to an lvalue"; |
| break; |
| |
| case FK_ReferenceInitDropsQualifiers: |
| OS << "reference initialization drops qualifiers"; |
| break; |
| |
| case FK_ReferenceInitFailed: |
| OS << "reference initialization failed"; |
| break; |
| |
| case FK_ConversionFailed: |
| OS << "conversion failed"; |
| break; |
| |
| case FK_ConversionFromPropertyFailed: |
| OS << "conversion from property failed"; |
| break; |
| |
| case FK_TooManyInitsForScalar: |
| OS << "too many initializers for scalar"; |
| break; |
| |
| case FK_ReferenceBindingToInitList: |
| OS << "referencing binding to initializer list"; |
| break; |
| |
| case FK_InitListBadDestinationType: |
| OS << "initializer list for non-aggregate, non-scalar type"; |
| break; |
| |
| case FK_UserConversionOverloadFailed: |
| OS << "overloading failed for user-defined conversion"; |
| break; |
| |
| case FK_ConstructorOverloadFailed: |
| OS << "constructor overloading failed"; |
| break; |
| |
| case FK_DefaultInitOfConst: |
| OS << "default initialization of a const variable"; |
| break; |
| |
| case FK_Incomplete: |
| OS << "initialization of incomplete type"; |
| break; |
| |
| case FK_ListInitializationFailed: |
| OS << "list initialization checker failure"; |
| break; |
| |
| case FK_VariableLengthArrayHasInitializer: |
| OS << "variable length array has an initializer"; |
| break; |
| |
| case FK_PlaceholderType: |
| OS << "initializer expression isn't contextually valid"; |
| break; |
| |
| case FK_ListConstructorOverloadFailed: |
| OS << "list constructor overloading failed"; |
| break; |
| |
| case FK_ExplicitConstructor: |
| OS << "list copy initialization chose explicit constructor"; |
| break; |
| } |
| OS << '\n'; |
| return; |
| } |
| |
| case DependentSequence: |
| OS << "Dependent sequence\n"; |
| return; |
| |
| case NormalSequence: |
| OS << "Normal sequence: "; |
| break; |
| } |
| |
| for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { |
| if (S != step_begin()) { |
| OS << " -> "; |
| } |
| |
| switch (S->Kind) { |
| case SK_ResolveAddressOfOverloadedFunction: |
| OS << "resolve address of overloaded function"; |
| break; |
| |
| case SK_CastDerivedToBaseRValue: |
| OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; |
| break; |
| |
| case SK_CastDerivedToBaseXValue: |
| OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; |
| break; |
| |
| case SK_CastDerivedToBaseLValue: |
| OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; |
| break; |
| |
| case SK_BindReference: |
| OS << "bind reference to lvalue"; |
| break; |
| |
| case SK_BindReferenceToTemporary: |
| OS << "bind reference to a temporary"; |
| break; |
| |
| case SK_ExtraneousCopyToTemporary: |
| OS << "extraneous C++03 copy to temporary"; |
| break; |
| |
| case SK_UserConversion: |
| OS << "user-defined conversion via " << *S->Function.Function; |
| break; |
| |
| case SK_QualificationConversionRValue: |
| OS << "qualification conversion (rvalue)"; |
| break; |
| |
| case SK_QualificationConversionXValue: |
| OS << "qualification conversion (xvalue)"; |
| break; |
| |
| case SK_QualificationConversionLValue: |
| OS << "qualification conversion (lvalue)"; |
| break; |
| |
| case SK_LValueToRValue: |
| OS << "load (lvalue to rvalue)"; |
| break; |
| |
| case SK_ConversionSequence: |
| OS << "implicit conversion sequence ("; |
| S->ICS->DebugPrint(); // FIXME: use OS |
| OS << ")"; |
| break; |
| |
| case SK_ListInitialization: |
| OS << "list aggregate initialization"; |
| break; |
| |
| case SK_ListConstructorCall: |
| OS << "list initialization via constructor"; |
| break; |
| |
| case SK_UnwrapInitList: |
| OS << "unwrap reference initializer list"; |
| break; |
| |
| case SK_RewrapInitList: |
| OS << "rewrap reference initializer list"; |
| break; |
| |
| case SK_ConstructorInitialization: |
| OS << "constructor initialization"; |
| break; |
| |
| case SK_ZeroInitialization: |
| OS << "zero initialization"; |
| break; |
| |
| case SK_CAssignment: |
| OS << "C assignment"; |
| break; |
| |
| case SK_StringInit: |
| OS << "string initialization"; |
| break; |
| |
| case SK_ObjCObjectConversion: |
| OS << "Objective-C object conversion"; |
| break; |
| |
| case SK_ArrayInit: |
| OS << "array initialization"; |
| break; |
| |
| case SK_ParenthesizedArrayInit: |
| OS << "parenthesized array initialization"; |
| break; |
| |
| case SK_PassByIndirectCopyRestore: |
| OS << "pass by indirect copy and restore"; |
| break; |
| |
| case SK_PassByIndirectRestore: |
| OS << "pass by indirect restore"; |
| break; |
| |
| case SK_ProduceObjCObject: |
| OS << "Objective-C object retension"; |
| break; |
| |
| case SK_StdInitializerList: |
| OS << "std::initializer_list from initializer list"; |
| break; |
| |
| case SK_OCLSamplerInit: |
| OS << "OpenCL sampler_t from integer constant"; |
| break; |
| |
| case SK_OCLZeroEvent: |
| OS << "OpenCL event_t from zero"; |
| break; |
| } |
| |
| OS << " [" << S->Type.getAsString() << ']'; |
| } |
| |
| OS << '\n'; |
| } |
| |
| void InitializationSequence::dump() const { |
| dump(llvm::errs()); |
| } |
| |
| static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq, |
| QualType EntityType, |
| const Expr *PreInit, |
| const Expr *PostInit) { |
| if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent()) |
| return; |
| |
| // A narrowing conversion can only appear as the final implicit conversion in |
| // an initialization sequence. |
| const InitializationSequence::Step &LastStep = Seq.step_end()[-1]; |
| if (LastStep.Kind != InitializationSequence::SK_ConversionSequence) |
| return; |
| |
| const ImplicitConversionSequence &ICS = *LastStep.ICS; |
| const StandardConversionSequence *SCS = 0; |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: |
| SCS = &ICS.Standard; |
| break; |
| case ImplicitConversionSequence::UserDefinedConversion: |
| SCS = &ICS.UserDefined.After; |
| break; |
| case ImplicitConversionSequence::AmbiguousConversion: |
| case ImplicitConversionSequence::EllipsisConversion: |
| case ImplicitConversionSequence::BadConversion: |
| return; |
| } |
| |
| // Determine the type prior to the narrowing conversion. If a conversion |
| // operator was used, this may be different from both the type of the entity |
| // and of the pre-initialization expression. |
| QualType PreNarrowingType = PreInit->getType(); |
| if (Seq.step_begin() + 1 != Seq.step_end()) |
| PreNarrowingType = Seq.step_end()[-2].Type; |
| |
| // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. |
| APValue ConstantValue; |
| QualType ConstantType; |
| switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, |
| ConstantType)) { |
| case NK_Not_Narrowing: |
| // No narrowing occurred. |
| return; |
| |
| case NK_Type_Narrowing: |
| // This was a floating-to-integer conversion, which is always considered a |
| // narrowing conversion even if the value is a constant and can be |
| // represented exactly as an integer. |
| S.Diag(PostInit->getLocStart(), |
| S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? |
| diag::warn_init_list_type_narrowing |
| : S.isSFINAEContext()? |
| diag::err_init_list_type_narrowing_sfinae |
| : diag::err_init_list_type_narrowing) |
| << PostInit->getSourceRange() |
| << PreNarrowingType.getLocalUnqualifiedType() |
| << EntityType.getLocalUnqualifiedType(); |
| break; |
| |
| case NK_Constant_Narrowing: |
| // A constant value was narrowed. |
| S.Diag(PostInit->getLocStart(), |
| S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? |
| diag::warn_init_list_constant_narrowing |
| : S.isSFINAEContext()? |
| diag::err_init_list_constant_narrowing_sfinae |
| : diag::err_init_list_constant_narrowing) |
| << PostInit->getSourceRange() |
| << ConstantValue.getAsString(S.getASTContext(), ConstantType) |
| << EntityType.getLocalUnqualifiedType(); |
| break; |
| |
| case NK_Variable_Narrowing: |
| // A variable's value may have been narrowed. |
| S.Diag(PostInit->getLocStart(), |
| S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11? |
| diag::warn_init_list_variable_narrowing |
| : S.isSFINAEContext()? |
| diag::err_init_list_variable_narrowing_sfinae |
| : diag::err_init_list_variable_narrowing) |
| << PostInit->getSourceRange() |
| << PreNarrowingType.getLocalUnqualifiedType() |
| << EntityType.getLocalUnqualifiedType(); |
| break; |
| } |
| |
| SmallString<128> StaticCast; |
| llvm::raw_svector_ostream OS(StaticCast); |
| OS << "static_cast<"; |
| if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { |
| // It's important to use the typedef's name if there is one so that the |
| // fixit doesn't break code using types like int64_t. |
| // |
| // FIXME: This will break if the typedef requires qualification. But |
| // getQualifiedNameAsString() includes non-machine-parsable components. |
| OS << *TT->getDecl(); |
| } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) |
| OS << BT->getName(S.getLangOpts()); |
| else { |
| // Oops, we didn't find the actual type of the variable. Don't emit a fixit |
| // with a broken cast. |
| return; |
| } |
| OS << ">("; |
| S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override) |
| << PostInit->getSourceRange() |
| << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) |
| << FixItHint::CreateInsertion( |
| S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Initialization helper functions |
| //===----------------------------------------------------------------------===// |
| bool |
| Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, |
| ExprResult Init) { |
| if (Init.isInvalid()) |
| return false; |
| |
| Expr *InitE = Init.get(); |
| assert(InitE && "No initialization expression"); |
| |
| InitializationKind Kind |
| = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); |
| InitializationSequence Seq(*this, Entity, Kind, InitE); |
| return !Seq.Failed(); |
| } |
| |
| ExprResult |
| Sema::PerformCopyInitialization(const InitializedEntity &Entity, |
| SourceLocation EqualLoc, |
| ExprResult Init, |
| bool TopLevelOfInitList, |
| bool AllowExplicit) { |
| if (Init.isInvalid()) |
| return ExprError(); |
| |
| Expr *InitE = Init.get(); |
| assert(InitE && "No initialization expression?"); |
| |
| if (EqualLoc.isInvalid()) |
| EqualLoc = InitE->getLocStart(); |
| |
| InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), |
| EqualLoc, |
| AllowExplicit); |
| InitializationSequence Seq(*this, Entity, Kind, InitE); |
| Init.release(); |
| |
| ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); |
| |
| if (!Result.isInvalid() && TopLevelOfInitList) |
| DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(), |
| InitE, Result.get()); |
| |
| return Result; |
| } |