blob: 03466f02a24beb43a4fb11578568d4ed830a4ee6 [file] [log] [blame]
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template argument deduction.
//
//===----------------------------------------------------------------------===/
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
static Sema::TemplateDeductionResult
DeduceTemplateArguments(ASTContext &Context,
TemplateParameterList *TemplateParams,
const TemplateArgument &Param,
const TemplateArgument &Arg,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced);
/// \brief If the given expression is of a form that permits the deduction
/// of a non-type template parameter, return the declaration of that
/// non-type template parameter.
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
E = IC->getSubExpr();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
return 0;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given constant.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(ASTContext &Context,
NonTypeTemplateParmDecl *NTTP,
llvm::APSInt Value,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
if (Deduced[NTTP->getIndex()].isNull()) {
QualType T = NTTP->getType();
// FIXME: Make sure we didn't overflow our data type!
unsigned AllowedBits = Context.getTypeSize(T);
if (Value.getBitWidth() != AllowedBits)
Value.extOrTrunc(AllowedBits);
Value.setIsSigned(T->isSignedIntegerType());
Deduced[NTTP->getIndex()] = TemplateArgument(SourceLocation(), Value, T);
return Sema::TDK_Success;
}
assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral);
// If the template argument was previously deduced to a negative value,
// then our deduction fails.
const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
if (PrevValuePtr->isNegative()) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = TemplateArgument(SourceLocation(), Value, NTTP->getType());
return Sema::TDK_Inconsistent;
}
llvm::APSInt PrevValue = *PrevValuePtr;
if (Value.getBitWidth() > PrevValue.getBitWidth())
PrevValue.zext(Value.getBitWidth());
else if (Value.getBitWidth() < PrevValue.getBitWidth())
Value.zext(PrevValue.getBitWidth());
if (Value != PrevValue) {
Info.Param = NTTP;
Info.FirstArg = Deduced[NTTP->getIndex()];
Info.SecondArg = TemplateArgument(SourceLocation(), Value, NTTP->getType());
return Sema::TDK_Inconsistent;
}
return Sema::TDK_Success;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given type- or value-dependent expression.
///
/// \returns true if deduction succeeded, false otherwise.
static Sema::TemplateDeductionResult
DeduceNonTypeTemplateArgument(ASTContext &Context,
NonTypeTemplateParmDecl *NTTP,
Expr *Value,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
"Expression template argument must be type- or value-dependent.");
if (Deduced[NTTP->getIndex()].isNull()) {
// FIXME: Clone the Value?
Deduced[NTTP->getIndex()] = TemplateArgument(Value);
return Sema::TDK_Success;
}
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
// Okay, we deduced a constant in one case and a dependent expression
// in another case. FIXME: Later, we will check that instantiating the
// dependent expression gives us the constant value.
return Sema::TDK_Success;
}
// FIXME: Compare the expressions for equality!
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(ASTContext &Context,
TemplateName Param,
TemplateName Arg,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
// FIXME: Implement template argument deduction for template
// template parameters.
// FIXME: this routine does not have enough information to produce
// good diagnostics.
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
TemplateDecl *ArgDecl = Arg.getAsTemplateDecl();
if (!ParamDecl || !ArgDecl) {
// FIXME: fill in Info.Param/Info.FirstArg
return Sema::TDK_Inconsistent;
}
ParamDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ParamDecl));
ArgDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ArgDecl));
if (ParamDecl != ArgDecl) {
// FIXME: fill in Info.Param/Info.FirstArg
return Sema::TDK_Inconsistent;
}
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(ASTContext &Context,
TemplateParameterList *TemplateParams,
QualType ParamIn, QualType ArgIn,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
// We only want to look at the canonical types, since typedefs and
// sugar are not part of template argument deduction.
QualType Param = Context.getCanonicalType(ParamIn);
QualType Arg = Context.getCanonicalType(ArgIn);
// If the parameter type is not dependent, just compare the types
// directly.
if (!Param->isDependentType()) {
if (Param == Arg)
return Sema::TDK_Success;
Info.FirstArg = TemplateArgument(SourceLocation(), ParamIn);
Info.SecondArg = TemplateArgument(SourceLocation(), ArgIn);
return Sema::TDK_NonDeducedMismatch;
}
// C++ [temp.deduct.type]p9:
// A template type argument T, a template template argument TT or a
// template non-type argument i can be deduced if P and A have one of
// the following forms:
//
// T
// cv-list T
if (const TemplateTypeParmType *TemplateTypeParm
= Param->getAsTemplateTypeParmType()) {
unsigned Index = TemplateTypeParm->getIndex();
// The argument type can not be less qualified than the parameter
// type.
if (Param.isMoreQualifiedThan(Arg)) {
Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = Deduced[Index];
Info.SecondArg = TemplateArgument(SourceLocation(), Arg);
return Sema::TDK_InconsistentQuals;
}
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
QualType DeducedType = Arg.getQualifiedType(Quals);
if (Deduced[Index].isNull())
Deduced[Index] = TemplateArgument(SourceLocation(), DeducedType);
else {
// C++ [temp.deduct.type]p2:
// [...] If type deduction cannot be done for any P/A pair, or if for
// any pair the deduction leads to more than one possible set of
// deduced values, or if different pairs yield different deduced
// values, or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
if (Deduced[Index].getAsType() != DeducedType) {
Info.Param
= cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
Info.FirstArg = Deduced[Index];
Info.SecondArg = TemplateArgument(SourceLocation(), Arg);
return Sema::TDK_Inconsistent;
}
}
return Sema::TDK_Success;
}
// Set up the template argument deduction information for a failure.
Info.FirstArg = TemplateArgument(SourceLocation(), ParamIn);
Info.SecondArg = TemplateArgument(SourceLocation(), ArgIn);
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
return Sema::TDK_NonDeducedMismatch;
switch (Param->getTypeClass()) {
// No deduction possible for these types
case Type::Builtin:
return Sema::TDK_NonDeducedMismatch;
// T *
case Type::Pointer: {
const PointerType *PointerArg = Arg->getAsPointerType();
if (!PointerArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(Context, TemplateParams,
cast<PointerType>(Param)->getPointeeType(),
PointerArg->getPointeeType(),
Info, Deduced);
}
// T &
case Type::LValueReference: {
const LValueReferenceType *ReferenceArg = Arg->getAsLValueReferenceType();
if (!ReferenceArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(Context, TemplateParams,
cast<LValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Info, Deduced);
}
// T && [C++0x]
case Type::RValueReference: {
const RValueReferenceType *ReferenceArg = Arg->getAsRValueReferenceType();
if (!ReferenceArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(Context, TemplateParams,
cast<RValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Info, Deduced);
}
// T [] (implied, but not stated explicitly)
case Type::IncompleteArray: {
const IncompleteArrayType *IncompleteArrayArg =
Context.getAsIncompleteArrayType(Arg);
if (!IncompleteArrayArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(Context, TemplateParams,
Context.getAsIncompleteArrayType(Param)->getElementType(),
IncompleteArrayArg->getElementType(),
Info, Deduced);
}
// T [integer-constant]
case Type::ConstantArray: {
const ConstantArrayType *ConstantArrayArg =
Context.getAsConstantArrayType(Arg);
if (!ConstantArrayArg)
return Sema::TDK_NonDeducedMismatch;
const ConstantArrayType *ConstantArrayParm =
Context.getAsConstantArrayType(Param);
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(Context, TemplateParams,
ConstantArrayParm->getElementType(),
ConstantArrayArg->getElementType(),
Info, Deduced);
}
// type [i]
case Type::DependentSizedArray: {
const ArrayType *ArrayArg = dyn_cast<ArrayType>(Arg);
if (!ArrayArg)
return Sema::TDK_NonDeducedMismatch;
// Check the element type of the arrays
const DependentSizedArrayType *DependentArrayParm
= cast<DependentSizedArrayType>(Param);
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
DependentArrayParm->getElementType(),
ArrayArg->getElementType(),
Info, Deduced))
return Result;
// Determine the array bound is something we can deduce.
NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
if (!NTTP)
return Sema::TDK_Success;
// We can perform template argument deduction for the given non-type
// template parameter.
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument at depth > 0");
if (const ConstantArrayType *ConstantArrayArg
= dyn_cast<ConstantArrayType>(ArrayArg)) {
llvm::APSInt Size(ConstantArrayArg->getSize());
return DeduceNonTypeTemplateArgument(Context, NTTP, Size,
Info, Deduced);
}
if (const DependentSizedArrayType *DependentArrayArg
= dyn_cast<DependentSizedArrayType>(ArrayArg))
return DeduceNonTypeTemplateArgument(Context, NTTP,
DependentArrayArg->getSizeExpr(),
Info, Deduced);
// Incomplete type does not match a dependently-sized array type
return Sema::TDK_NonDeducedMismatch;
}
// type(*)(T)
// T(*)()
// T(*)(T)
case Type::FunctionProto: {
const FunctionProtoType *FunctionProtoArg =
dyn_cast<FunctionProtoType>(Arg);
if (!FunctionProtoArg)
return Sema::TDK_NonDeducedMismatch;
const FunctionProtoType *FunctionProtoParam =
cast<FunctionProtoType>(Param);
if (FunctionProtoParam->getTypeQuals() !=
FunctionProtoArg->getTypeQuals())
return Sema::TDK_NonDeducedMismatch;
if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
return Sema::TDK_NonDeducedMismatch;
if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
return Sema::TDK_NonDeducedMismatch;
// Check return types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
FunctionProtoParam->getResultType(),
FunctionProtoArg->getResultType(),
Info, Deduced))
return Result;
for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
// Check argument types.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
FunctionProtoParam->getArgType(I),
FunctionProtoArg->getArgType(I),
Info, Deduced))
return Result;
}
return Sema::TDK_Success;
}
// template-name<T> (wheretemplate-name refers to a class template)
// template-name<i>
// TT<T> (TODO)
// TT<i> (TODO)
// TT<> (TODO)
case Type::TemplateSpecialization: {
const TemplateSpecializationType *SpecParam
= cast<TemplateSpecializationType>(Param);
// Check whether the template argument is a dependent template-id.
// FIXME: This is untested code; it can be tested when we implement
// partial ordering of class template partial specializations.
if (const TemplateSpecializationType *SpecArg
= dyn_cast<TemplateSpecializationType>(Arg)) {
// Perform template argument deduction for the template name.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context,
SpecParam->getTemplateName(),
SpecArg->getTemplateName(),
Info, Deduced))
return Result;
unsigned NumArgs = SpecParam->getNumArgs();
// FIXME: When one of the template-names refers to a
// declaration with default template arguments, do we need to
// fill in those default template arguments here? Most likely,
// the answer is "yes", but I don't see any references. This
// issue may be resolved elsewhere, because we may want to
// instantiate default template arguments when
if (SpecArg->getNumArgs() != NumArgs)
return Sema::TDK_NonDeducedMismatch;
// Perform template argument deduction on each template
// argument.
for (unsigned I = 0; I != NumArgs; ++I)
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
SpecParam->getArg(I),
SpecArg->getArg(I),
Info, Deduced))
return Result;
return Sema::TDK_Success;
}
// If the argument type is a class template specialization, we
// perform template argument deduction using its template
// arguments.
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
if (!RecordArg)
return Sema::TDK_NonDeducedMismatch;
ClassTemplateSpecializationDecl *SpecArg
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
if (!SpecArg)
return Sema::TDK_NonDeducedMismatch;
// Perform template argument deduction for the template name.
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context,
SpecParam->getTemplateName(),
TemplateName(SpecArg->getSpecializedTemplate()),
Info, Deduced))
return Result;
// FIXME: Can the # of arguments in the parameter and the argument differ?
unsigned NumArgs = SpecParam->getNumArgs();
const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
if (NumArgs != ArgArgs.size())
return Sema::TDK_NonDeducedMismatch;
for (unsigned I = 0; I != NumArgs; ++I)
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
SpecParam->getArg(I),
ArgArgs.get(I),
Info, Deduced))
return Result;
return Sema::TDK_Success;
}
// T type::*
// T T::*
// T (type::*)()
// type (T::*)()
// type (type::*)(T)
// type (T::*)(T)
// T (type::*)(T)
// T (T::*)()
// T (T::*)(T)
case Type::MemberPointer: {
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
if (!MemPtrArg)
return Sema::TDK_NonDeducedMismatch;
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
MemPtrParam->getPointeeType(),
MemPtrArg->getPointeeType(),
Info, Deduced))
return Result;
return DeduceTemplateArguments(Context, TemplateParams,
QualType(MemPtrParam->getClass(), 0),
QualType(MemPtrArg->getClass(), 0),
Info, Deduced);
}
// (clang extension)
//
// type(^)(T)
// T(^)()
// T(^)(T)
case Type::BlockPointer: {
const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
if (!BlockPtrArg)
return Sema::TDK_NonDeducedMismatch;
return DeduceTemplateArguments(Context, TemplateParams,
BlockPtrParam->getPointeeType(),
BlockPtrArg->getPointeeType(), Info,
Deduced);
}
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Typename:
// No template argument deduction for these types
return Sema::TDK_Success;
default:
break;
}
// FIXME: Many more cases to go (to go).
return Sema::TDK_NonDeducedMismatch;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(ASTContext &Context,
TemplateParameterList *TemplateParams,
const TemplateArgument &Param,
const TemplateArgument &Arg,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
switch (Param.getKind()) {
case TemplateArgument::Null:
assert(false && "Null template argument in parameter list");
break;
case TemplateArgument::Type:
assert(Arg.getKind() == TemplateArgument::Type && "Type/value mismatch");
return DeduceTemplateArguments(Context, TemplateParams,
Param.getAsType(),
Arg.getAsType(), Info, Deduced);
case TemplateArgument::Declaration:
// FIXME: Implement this check
assert(false && "Unimplemented template argument deduction case");
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Integral:
if (Arg.getKind() == TemplateArgument::Integral) {
// FIXME: Zero extension + sign checking here?
if (*Param.getAsIntegral() == *Arg.getAsIntegral())
return Sema::TDK_Success;
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
if (Arg.getKind() == TemplateArgument::Expression) {
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
assert(false && "Type/value mismatch");
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
case TemplateArgument::Expression: {
if (NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(Param.getAsExpr())) {
if (Arg.getKind() == TemplateArgument::Integral)
// FIXME: Sign problems here
return DeduceNonTypeTemplateArgument(Context, NTTP,
*Arg.getAsIntegral(),
Info, Deduced);
if (Arg.getKind() == TemplateArgument::Expression)
return DeduceNonTypeTemplateArgument(Context, NTTP, Arg.getAsExpr(),
Info, Deduced);
assert(false && "Type/value mismatch");
Info.FirstArg = Param;
Info.SecondArg = Arg;
return Sema::TDK_NonDeducedMismatch;
}
// Can't deduce anything, but that's okay.
return Sema::TDK_Success;
}
case TemplateArgument::Pack:
assert(0 && "FIXME: Implement!");
break;
}
return Sema::TDK_Success;
}
static Sema::TemplateDeductionResult
DeduceTemplateArguments(ASTContext &Context,
TemplateParameterList *TemplateParams,
const TemplateArgumentList &ParamList,
const TemplateArgumentList &ArgList,
Sema::TemplateDeductionInfo &Info,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
assert(ParamList.size() == ArgList.size());
for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
if (Sema::TemplateDeductionResult Result
= DeduceTemplateArguments(Context, TemplateParams,
ParamList[I], ArgList[I],
Info, Deduced))
return Result;
}
return Sema::TDK_Success;
}
/// \brief Perform template argument deduction to determine whether
/// the given template arguments match the given class template
/// partial specialization per C++ [temp.class.spec.match].
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs,
TemplateDeductionInfo &Info) {
// C++ [temp.class.spec.match]p2:
// A partial specialization matches a given actual template
// argument list if the template arguments of the partial
// specialization can be deduced from the actual template argument
// list (14.8.2).
SFINAETrap Trap(*this);
llvm::SmallVector<TemplateArgument, 4> Deduced;
Deduced.resize(Partial->getTemplateParameters()->size());
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(Context,
Partial->getTemplateParameters(),
Partial->getTemplateArgs(),
TemplateArgs, Info, Deduced))
return Result;
InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
Deduced.data(), Deduced.size());
if (Inst)
return TDK_InstantiationDepth;
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
Deduced.size());
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
if (Deduced[I].isNull()) {
Decl *Param
= const_cast<Decl *>(Partial->getTemplateParameters()->getParam(I));
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
Info.Param = TTP;
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
Info.Param = NTTP;
else
Info.Param = cast<TemplateTemplateParmDecl>(Param);
return TDK_Incomplete;
}
Builder.Append(Deduced[I]);
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
Info.reset(DeducedArgumentList);
// Substitute the deduced template arguments into the template
// arguments of the class template partial specialization, and
// verify that the instantiated template arguments are both valid
// and are equivalent to the template arguments originally provided
// to the class template.
ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
const TemplateArgumentList &PartialTemplateArgs = Partial->getTemplateArgs();
for (unsigned I = 0, N = PartialTemplateArgs.flat_size(); I != N; ++I) {
Decl *Param = const_cast<Decl *>(
ClassTemplate->getTemplateParameters()->getParam(I));
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
TemplateArgument InstArg = Instantiate(PartialTemplateArgs[I],
*DeducedArgumentList);
if (InstArg.getKind() != TemplateArgument::Type) {
Info.Param = TTP;
Info.FirstArg = PartialTemplateArgs[I];
return TDK_SubstitutionFailure;
}
if (Context.getCanonicalType(InstArg.getAsType())
!= Context.getCanonicalType(TemplateArgs[I].getAsType())) {
Info.Param = TTP;
Info.FirstArg = TemplateArgs[I];
Info.SecondArg = InstArg;
return TDK_NonDeducedMismatch;
}
continue;
}
// FIXME: Check template template arguments?
}
if (Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
return TDK_Success;
}
/// \brief Perform template argument deduction from a function call
/// (C++ [temp.deduct.call]).
///
/// \param FunctionTemplate the function template for which we are performing
/// template argument deduction.
///
/// \param Args the function call arguments
///
/// \param NumArgs the number of arguments in Args
///
/// \param Specialization if template argument deduction was successful,
/// this will be set to the function template specialization produced by
/// template argument deduction.
///
/// \param Info the argument will be updated to provide additional information
/// about template argument deduction.
///
/// \returns the result of template argument deduction.
///
/// FIXME: We will also need to pass in any explicitly-specified template
/// arguments.
Sema::TemplateDeductionResult
Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
Expr **Args, unsigned NumArgs,
FunctionDecl *&Specialization,
TemplateDeductionInfo &Info) {
FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
// C++ [temp.deduct.call]p1:
// Template argument deduction is done by comparing each function template
// parameter type (call it P) with the type of the corresponding argument
// of the call (call it A) as described below.
unsigned CheckArgs = NumArgs;
if (NumArgs < Function->getNumParams())
return TDK_TooFewArguments;
else if (NumArgs > Function->getNumParams()) {
const FunctionProtoType *Proto
= Function->getType()->getAsFunctionProtoType();
if (!Proto->isVariadic())
return TDK_TooManyArguments;
CheckArgs = Function->getNumParams();
}
SFINAETrap Trap(*this);
llvm::SmallVector<TemplateArgument, 4> Deduced;
Deduced.resize(FunctionTemplate->getTemplateParameters()->size());
TemplateParameterList *TemplateParams
= FunctionTemplate->getTemplateParameters();
for (unsigned I = 0; I != CheckArgs; ++I) {
QualType ParamType = Function->getParamDecl(I)->getType();
QualType ArgType = Args[I]->getType();
// C++ [temp.deduct.call]p2:
// If P is not a reference type:
QualType CanonParamType = Context.getCanonicalType(ParamType);
if (!isa<ReferenceType>(CanonParamType)) {
// - If A is an array type, the pointer type produced by the
// array-to-pointer standard conversion (4.2) is used in place of
// A for type deduction; otherwise,
if (ArgType->isArrayType())
ArgType = Context.getArrayDecayedType(ArgType);
// - If A is a function type, the pointer type produced by the
// function-to-pointer standard conversion (4.3) is used in place
// of A for type deduction; otherwise,
else if (ArgType->isFunctionType())
ArgType = Context.getPointerType(ArgType);
else {
// - If A is a cv-qualified type, the top level cv-qualifiers of A’s
// type are ignored for type deduction.
QualType CanonArgType = Context.getCanonicalType(ArgType);
if (CanonArgType.getCVRQualifiers())
ArgType = CanonArgType.getUnqualifiedType();
}
}
// C++0x [temp.deduct.call]p3:
// If P is a cv-qualified type, the top level cv-qualifiers of P’s type
// are ignored for type deduction.
if (CanonParamType.getCVRQualifiers())
ParamType = CanonParamType.getUnqualifiedType();
if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
// [...] If P is a reference type, the type referred to by P is used
// for type deduction.
ParamType = ParamRefType->getPointeeType();
// [...] If P is of the form T&&, where T is a template parameter, and
// the argument is an lvalue, the type A& is used in place of A for
// type deduction.
if (isa<RValueReferenceType>(ParamRefType) &&
ParamRefType->getAsTemplateTypeParmType() &&
Args[I]->isLvalue(Context) == Expr::LV_Valid)
ArgType = Context.getLValueReferenceType(ArgType);
}
// C++0x [temp.deduct.call]p4:
// In general, the deduction process attempts to find template argument
// values that will make the deduced A identical to A (after the type A
// is transformed as described above). [...]
//
// FIXME: we'll pass down a flag to indicate when these cases may apply,
// and then deal with them in the code that deduces template
// arguments from a type.
if (TemplateDeductionResult Result
= ::DeduceTemplateArguments(Context, TemplateParams,
ParamType, ArgType, Info, Deduced))
return Result;
// FIXME: C++ [temp.deduct.call] paragraphs 6-9 deal with function
// pointer parameters.
}
InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
FunctionTemplate, Deduced.data(), Deduced.size());
if (Inst)
return TDK_InstantiationDepth;
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
if (Deduced[I].isNull()) {
Decl *Param
= const_cast<Decl *>(TemplateParams->getParam(I));
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
Info.Param = TTP;
else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param))
Info.Param = NTTP;
else
Info.Param = cast<TemplateTemplateParmDecl>(Param);
return TDK_Incomplete;
}
Builder.Append(Deduced[I]);
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
Info.reset(DeducedArgumentList);
// Substitute the deduced template arguments into the function template
// declaration to produce the function template specialization.
Specialization = cast_or_null<FunctionDecl>(
InstantiateDecl(FunctionTemplate->getTemplatedDecl(),
FunctionTemplate->getDeclContext(),
*DeducedArgumentList));
if (!Specialization || Trap.hasErrorOccurred())
return TDK_SubstitutionFailure;
// Turn the specialization into an actual function template specialization.
Specialization->setFunctionTemplateSpecialization(Context,
FunctionTemplate,
Info.take());
return TDK_Success;
}
static void
MarkDeducedTemplateParameters(Sema &SemaRef,
const TemplateArgument &TemplateArg,
llvm::SmallVectorImpl<bool> &Deduced);
/// \brief Mark the template arguments that are deduced by the given
/// expression.
static void
MarkDeducedTemplateParameters(const Expr *E,
llvm::SmallVectorImpl<bool> &Deduced) {
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (!E)
return;
const NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
if (!NTTP)
return;
Deduced[NTTP->getIndex()] = true;
}
/// \brief Mark the template parameters that are deduced by the given
/// type.
static void
MarkDeducedTemplateParameters(Sema &SemaRef, QualType T,
llvm::SmallVectorImpl<bool> &Deduced) {
// Non-dependent types have nothing deducible
if (!T->isDependentType())
return;
T = SemaRef.Context.getCanonicalType(T);
switch (T->getTypeClass()) {
case Type::ExtQual:
MarkDeducedTemplateParameters(SemaRef,
QualType(cast<ExtQualType>(T)->getBaseType(), 0),
Deduced);
break;
case Type::Pointer:
MarkDeducedTemplateParameters(SemaRef,
cast<PointerType>(T)->getPointeeType(),
Deduced);
break;
case Type::BlockPointer:
MarkDeducedTemplateParameters(SemaRef,
cast<BlockPointerType>(T)->getPointeeType(),
Deduced);
break;
case Type::LValueReference:
case Type::RValueReference:
MarkDeducedTemplateParameters(SemaRef,
cast<ReferenceType>(T)->getPointeeType(),
Deduced);
break;
case Type::MemberPointer: {
const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
MarkDeducedTemplateParameters(SemaRef, MemPtr->getPointeeType(), Deduced);
MarkDeducedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
Deduced);
break;
}
case Type::DependentSizedArray:
MarkDeducedTemplateParameters(cast<DependentSizedArrayType>(T)->getSizeExpr(),
Deduced);
// Fall through to check the element type
case Type::ConstantArray:
case Type::IncompleteArray:
MarkDeducedTemplateParameters(SemaRef,
cast<ArrayType>(T)->getElementType(),
Deduced);
break;
case Type::Vector:
case Type::ExtVector:
MarkDeducedTemplateParameters(SemaRef,
cast<VectorType>(T)->getElementType(),
Deduced);
break;
case Type::DependentSizedExtVector: {
const DependentSizedExtVectorType *VecType
= cast<DependentSizedExtVectorType>(T);
MarkDeducedTemplateParameters(SemaRef, VecType->getElementType(), Deduced);
MarkDeducedTemplateParameters(VecType->getSizeExpr(), Deduced);
break;
}
case Type::FunctionProto: {
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
MarkDeducedTemplateParameters(SemaRef, Proto->getResultType(), Deduced);
for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
MarkDeducedTemplateParameters(SemaRef, Proto->getArgType(I), Deduced);
break;
}
case Type::TemplateTypeParm:
Deduced[cast<TemplateTypeParmType>(T)->getIndex()] = true;
break;
case Type::TemplateSpecialization: {
const TemplateSpecializationType *Spec
= cast<TemplateSpecializationType>(T);
if (TemplateDecl *Template = Spec->getTemplateName().getAsTemplateDecl())
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(Template))
Deduced[TTP->getIndex()] = true;
for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
MarkDeducedTemplateParameters(SemaRef, Spec->getArg(I), Deduced);
break;
}
// None of these types have any deducible parts.
case Type::Builtin:
case Type::FixedWidthInt:
case Type::Complex:
case Type::VariableArray:
case Type::FunctionNoProto:
case Type::Record:
case Type::Enum:
case Type::Typename:
case Type::ObjCInterface:
case Type::ObjCQualifiedInterface:
case Type::ObjCObjectPointer:
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
break;
}
}
/// \brief Mark the template parameters that are deduced by this
/// template argument.
static void
MarkDeducedTemplateParameters(Sema &SemaRef,
const TemplateArgument &TemplateArg,
llvm::SmallVectorImpl<bool> &Deduced) {
switch (TemplateArg.getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
break;
case TemplateArgument::Type:
MarkDeducedTemplateParameters(SemaRef, TemplateArg.getAsType(), Deduced);
break;
case TemplateArgument::Declaration:
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(TemplateArg.getAsDecl()))
Deduced[TTP->getIndex()] = true;
break;
case TemplateArgument::Expression:
MarkDeducedTemplateParameters(TemplateArg.getAsExpr(), Deduced);
break;
case TemplateArgument::Pack:
assert(0 && "FIXME: Implement!");
break;
}
}
/// \brief Mark the template parameters can be deduced by the given
/// template argument list.
///
/// \param TemplateArgs the template argument list from which template
/// parameters will be deduced.
///
/// \param Deduced a bit vector whose elements will be set to \c true
/// to indicate when the corresponding template parameter will be
/// deduced.
void
Sema::MarkDeducedTemplateParameters(const TemplateArgumentList &TemplateArgs,
llvm::SmallVectorImpl<bool> &Deduced) {
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
::MarkDeducedTemplateParameters(*this, TemplateArgs[I], Deduced);
}