| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExternalASTSource.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Capacity.h" |
| #include "CXXABI.h" |
| #include <map> |
| |
| using namespace clang; |
| |
| unsigned ASTContext::NumImplicitDefaultConstructors; |
| unsigned ASTContext::NumImplicitDefaultConstructorsDeclared; |
| unsigned ASTContext::NumImplicitCopyConstructors; |
| unsigned ASTContext::NumImplicitCopyConstructorsDeclared; |
| unsigned ASTContext::NumImplicitMoveConstructors; |
| unsigned ASTContext::NumImplicitMoveConstructorsDeclared; |
| unsigned ASTContext::NumImplicitCopyAssignmentOperators; |
| unsigned ASTContext::NumImplicitCopyAssignmentOperatorsDeclared; |
| unsigned ASTContext::NumImplicitMoveAssignmentOperators; |
| unsigned ASTContext::NumImplicitMoveAssignmentOperatorsDeclared; |
| unsigned ASTContext::NumImplicitDestructors; |
| unsigned ASTContext::NumImplicitDestructorsDeclared; |
| |
| enum FloatingRank { |
| HalfRank, FloatRank, DoubleRank, LongDoubleRank |
| }; |
| |
| void |
| ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
| TemplateTemplateParmDecl *Parm) { |
| ID.AddInteger(Parm->getDepth()); |
| ID.AddInteger(Parm->getPosition()); |
| ID.AddBoolean(Parm->isParameterPack()); |
| |
| TemplateParameterList *Params = Parm->getTemplateParameters(); |
| ID.AddInteger(Params->size()); |
| for (TemplateParameterList::const_iterator P = Params->begin(), |
| PEnd = Params->end(); |
| P != PEnd; ++P) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| ID.AddInteger(0); |
| ID.AddBoolean(TTP->isParameterPack()); |
| continue; |
| } |
| |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| ID.AddInteger(1); |
| ID.AddBoolean(NTTP->isParameterPack()); |
| ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); |
| if (NTTP->isExpandedParameterPack()) { |
| ID.AddBoolean(true); |
| ID.AddInteger(NTTP->getNumExpansionTypes()); |
| for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| QualType T = NTTP->getExpansionType(I); |
| ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); |
| } |
| } else |
| ID.AddBoolean(false); |
| continue; |
| } |
| |
| TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); |
| ID.AddInteger(2); |
| Profile(ID, TTP); |
| } |
| } |
| |
| TemplateTemplateParmDecl * |
| ASTContext::getCanonicalTemplateTemplateParmDecl( |
| TemplateTemplateParmDecl *TTP) const { |
| // Check if we already have a canonical template template parameter. |
| llvm::FoldingSetNodeID ID; |
| CanonicalTemplateTemplateParm::Profile(ID, TTP); |
| void *InsertPos = 0; |
| CanonicalTemplateTemplateParm *Canonical |
| = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| if (Canonical) |
| return Canonical->getParam(); |
| |
| // Build a canonical template parameter list. |
| TemplateParameterList *Params = TTP->getTemplateParameters(); |
| SmallVector<NamedDecl *, 4> CanonParams; |
| CanonParams.reserve(Params->size()); |
| for (TemplateParameterList::const_iterator P = Params->begin(), |
| PEnd = Params->end(); |
| P != PEnd; ++P) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) |
| CanonParams.push_back( |
| TemplateTypeParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| TTP->getDepth(), |
| TTP->getIndex(), 0, false, |
| TTP->isParameterPack())); |
| else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| QualType T = getCanonicalType(NTTP->getType()); |
| TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| NonTypeTemplateParmDecl *Param; |
| if (NTTP->isExpandedParameterPack()) { |
| SmallVector<QualType, 2> ExpandedTypes; |
| SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
| for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); |
| ExpandedTInfos.push_back( |
| getTrivialTypeSourceInfo(ExpandedTypes.back())); |
| } |
| |
| Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| NTTP->getDepth(), |
| NTTP->getPosition(), 0, |
| T, |
| TInfo, |
| ExpandedTypes.data(), |
| ExpandedTypes.size(), |
| ExpandedTInfos.data()); |
| } else { |
| Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| NTTP->getDepth(), |
| NTTP->getPosition(), 0, |
| T, |
| NTTP->isParameterPack(), |
| TInfo); |
| } |
| CanonParams.push_back(Param); |
| |
| } else |
| CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( |
| cast<TemplateTemplateParmDecl>(*P))); |
| } |
| |
| TemplateTemplateParmDecl *CanonTTP |
| = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), TTP->getDepth(), |
| TTP->getPosition(), |
| TTP->isParameterPack(), |
| 0, |
| TemplateParameterList::Create(*this, SourceLocation(), |
| SourceLocation(), |
| CanonParams.data(), |
| CanonParams.size(), |
| SourceLocation())); |
| |
| // Get the new insert position for the node we care about. |
| Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| assert(Canonical == 0 && "Shouldn't be in the map!"); |
| (void)Canonical; |
| |
| // Create the canonical template template parameter entry. |
| Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
| CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); |
| return CanonTTP; |
| } |
| |
| CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
| if (!LangOpts.CPlusPlus) return 0; |
| |
| switch (T.getCXXABI()) { |
| case CXXABI_ARM: |
| return CreateARMCXXABI(*this); |
| case CXXABI_Itanium: |
| return CreateItaniumCXXABI(*this); |
| case CXXABI_Microsoft: |
| return CreateMicrosoftCXXABI(*this); |
| } |
| llvm_unreachable("Invalid CXXABI type!"); |
| } |
| |
| static const LangAS::Map *getAddressSpaceMap(const TargetInfo &T, |
| const LangOptions &LOpts) { |
| if (LOpts.FakeAddressSpaceMap) { |
| // The fake address space map must have a distinct entry for each |
| // language-specific address space. |
| static const unsigned FakeAddrSpaceMap[] = { |
| 1, // opencl_global |
| 2, // opencl_local |
| 3, // opencl_constant |
| 4, // cuda_device |
| 5, // cuda_constant |
| 6 // cuda_shared |
| }; |
| return &FakeAddrSpaceMap; |
| } else { |
| return &T.getAddressSpaceMap(); |
| } |
| } |
| |
| ASTContext::ASTContext(LangOptions& LOpts, SourceManager &SM, |
| const TargetInfo *t, |
| IdentifierTable &idents, SelectorTable &sels, |
| Builtin::Context &builtins, |
| unsigned size_reserve, |
| bool DelayInitialization) |
| : FunctionProtoTypes(this_()), |
| TemplateSpecializationTypes(this_()), |
| DependentTemplateSpecializationTypes(this_()), |
| SubstTemplateTemplateParmPacks(this_()), |
| GlobalNestedNameSpecifier(0), |
| Int128Decl(0), UInt128Decl(0), |
| ObjCIdDecl(0), ObjCSelDecl(0), ObjCClassDecl(0), ObjCProtocolClassDecl(0), |
| CFConstantStringTypeDecl(0), ObjCInstanceTypeDecl(0), |
| FILEDecl(0), |
| jmp_bufDecl(0), sigjmp_bufDecl(0), ucontext_tDecl(0), |
| BlockDescriptorType(0), BlockDescriptorExtendedType(0), |
| cudaConfigureCallDecl(0), |
| NullTypeSourceInfo(QualType()), |
| FirstLocalImport(), LastLocalImport(), |
| SourceMgr(SM), LangOpts(LOpts), |
| AddrSpaceMap(0), Target(t), PrintingPolicy(LOpts), |
| Idents(idents), Selectors(sels), |
| BuiltinInfo(builtins), |
| DeclarationNames(*this), |
| ExternalSource(0), Listener(0), |
| LastSDM(0, 0), |
| UniqueBlockByRefTypeID(0) |
| { |
| if (size_reserve > 0) Types.reserve(size_reserve); |
| TUDecl = TranslationUnitDecl::Create(*this); |
| |
| if (!DelayInitialization) { |
| assert(t && "No target supplied for ASTContext initialization"); |
| InitBuiltinTypes(*t); |
| } |
| } |
| |
| ASTContext::~ASTContext() { |
| // Release the DenseMaps associated with DeclContext objects. |
| // FIXME: Is this the ideal solution? |
| ReleaseDeclContextMaps(); |
| |
| // Call all of the deallocation functions. |
| for (unsigned I = 0, N = Deallocations.size(); I != N; ++I) |
| Deallocations[I].first(Deallocations[I].second); |
| |
| // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
| // because they can contain DenseMaps. |
| for (llvm::DenseMap<const ObjCContainerDecl*, |
| const ASTRecordLayout*>::iterator |
| I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) |
| // Increment in loop to prevent using deallocated memory. |
| if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) |
| R->Destroy(*this); |
| |
| for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
| I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
| // Increment in loop to prevent using deallocated memory. |
| if (ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second)) |
| R->Destroy(*this); |
| } |
| |
| for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
| AEnd = DeclAttrs.end(); |
| A != AEnd; ++A) |
| A->second->~AttrVec(); |
| } |
| |
| void ASTContext::AddDeallocation(void (*Callback)(void*), void *Data) { |
| Deallocations.push_back(std::make_pair(Callback, Data)); |
| } |
| |
| void |
| ASTContext::setExternalSource(OwningPtr<ExternalASTSource> &Source) { |
| ExternalSource.reset(Source.take()); |
| } |
| |
| void ASTContext::PrintStats() const { |
| llvm::errs() << "\n*** AST Context Stats:\n"; |
| llvm::errs() << " " << Types.size() << " types total.\n"; |
| |
| unsigned counts[] = { |
| #define TYPE(Name, Parent) 0, |
| #define ABSTRACT_TYPE(Name, Parent) |
| #include "clang/AST/TypeNodes.def" |
| 0 // Extra |
| }; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| counts[(unsigned)T->getTypeClass()]++; |
| } |
| |
| unsigned Idx = 0; |
| unsigned TotalBytes = 0; |
| #define TYPE(Name, Parent) \ |
| if (counts[Idx]) \ |
| llvm::errs() << " " << counts[Idx] << " " << #Name \ |
| << " types\n"; \ |
| TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
| ++Idx; |
| #define ABSTRACT_TYPE(Name, Parent) |
| #include "clang/AST/TypeNodes.def" |
| |
| llvm::errs() << "Total bytes = " << TotalBytes << "\n"; |
| |
| // Implicit special member functions. |
| llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
| << NumImplicitDefaultConstructors |
| << " implicit default constructors created\n"; |
| llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
| << NumImplicitCopyConstructors |
| << " implicit copy constructors created\n"; |
| if (getLangOpts().CPlusPlus) |
| llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
| << NumImplicitMoveConstructors |
| << " implicit move constructors created\n"; |
| llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
| << NumImplicitCopyAssignmentOperators |
| << " implicit copy assignment operators created\n"; |
| if (getLangOpts().CPlusPlus) |
| llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
| << NumImplicitMoveAssignmentOperators |
| << " implicit move assignment operators created\n"; |
| llvm::errs() << NumImplicitDestructorsDeclared << "/" |
| << NumImplicitDestructors |
| << " implicit destructors created\n"; |
| |
| if (ExternalSource.get()) { |
| llvm::errs() << "\n"; |
| ExternalSource->PrintStats(); |
| } |
| |
| BumpAlloc.PrintStats(); |
| } |
| |
| TypedefDecl *ASTContext::getInt128Decl() const { |
| if (!Int128Decl) { |
| TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(Int128Ty); |
| Int128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this), |
| getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| &Idents.get("__int128_t"), |
| TInfo); |
| } |
| |
| return Int128Decl; |
| } |
| |
| TypedefDecl *ASTContext::getUInt128Decl() const { |
| if (!UInt128Decl) { |
| TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(UnsignedInt128Ty); |
| UInt128Decl = TypedefDecl::Create(const_cast<ASTContext &>(*this), |
| getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| &Idents.get("__uint128_t"), |
| TInfo); |
| } |
| |
| return UInt128Decl; |
| } |
| |
| void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
| BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K); |
| R = CanQualType::CreateUnsafe(QualType(Ty, 0)); |
| Types.push_back(Ty); |
| } |
| |
| void ASTContext::InitBuiltinTypes(const TargetInfo &Target) { |
| assert((!this->Target || this->Target == &Target) && |
| "Incorrect target reinitialization"); |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| this->Target = &Target; |
| |
| ABI.reset(createCXXABI(Target)); |
| AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (LangOpts.CharIsSigned) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| // GNU extension, 128-bit integers. |
| InitBuiltinType(Int128Ty, BuiltinType::Int128); |
| InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); |
| |
| if (LangOpts.CPlusPlus) { // C++ 3.9.1p5 |
| if (TargetInfo::isTypeSigned(Target.getWCharType())) |
| InitBuiltinType(WCharTy, BuiltinType::WChar_S); |
| else // -fshort-wchar makes wchar_t be unsigned. |
| InitBuiltinType(WCharTy, BuiltinType::WChar_U); |
| } else // C99 |
| WCharTy = getFromTargetType(Target.getWCharType()); |
| |
| WIntTy = getFromTargetType(Target.getWIntType()); |
| |
| if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| InitBuiltinType(Char16Ty, BuiltinType::Char16); |
| else // C99 |
| Char16Ty = getFromTargetType(Target.getChar16Type()); |
| |
| if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| InitBuiltinType(Char32Ty, BuiltinType::Char32); |
| else // C99 |
| Char32Ty = getFromTargetType(Target.getChar32Type()); |
| |
| // Placeholder type for type-dependent expressions whose type is |
| // completely unknown. No code should ever check a type against |
| // DependentTy and users should never see it; however, it is here to |
| // help diagnose failures to properly check for type-dependent |
| // expressions. |
| InitBuiltinType(DependentTy, BuiltinType::Dependent); |
| |
| // Placeholder type for functions. |
| InitBuiltinType(OverloadTy, BuiltinType::Overload); |
| |
| // Placeholder type for bound members. |
| InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); |
| |
| // Placeholder type for pseudo-objects. |
| InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); |
| |
| // "any" type; useful for debugger-like clients. |
| InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); |
| |
| // Placeholder type for unbridged ARC casts. |
| InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| |
| BuiltinVaListType = QualType(); |
| |
| // Builtin types for 'id', 'Class', and 'SEL'. |
| InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); |
| InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); |
| InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); |
| |
| // Builtin type for __objc_yes and __objc_no |
| ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
| SignedCharTy : BoolTy); |
| |
| ObjCConstantStringType = QualType(); |
| |
| // void * type |
| VoidPtrTy = getPointerType(VoidTy); |
| |
| // nullptr type (C++0x 2.14.7) |
| InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); |
| |
| // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
| InitBuiltinType(HalfTy, BuiltinType::Half); |
| } |
| |
| DiagnosticsEngine &ASTContext::getDiagnostics() const { |
| return SourceMgr.getDiagnostics(); |
| } |
| |
| AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
| AttrVec *&Result = DeclAttrs[D]; |
| if (!Result) { |
| void *Mem = Allocate(sizeof(AttrVec)); |
| Result = new (Mem) AttrVec; |
| } |
| |
| return *Result; |
| } |
| |
| /// \brief Erase the attributes corresponding to the given declaration. |
| void ASTContext::eraseDeclAttrs(const Decl *D) { |
| llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); |
| if (Pos != DeclAttrs.end()) { |
| Pos->second->~AttrVec(); |
| DeclAttrs.erase(Pos); |
| } |
| } |
| |
| MemberSpecializationInfo * |
| ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
| assert(Var->isStaticDataMember() && "Not a static data member"); |
| llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos |
| = InstantiatedFromStaticDataMember.find(Var); |
| if (Pos == InstantiatedFromStaticDataMember.end()) |
| return 0; |
| |
| return Pos->second; |
| } |
| |
| void |
| ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
| TemplateSpecializationKind TSK, |
| SourceLocation PointOfInstantiation) { |
| assert(Inst->isStaticDataMember() && "Not a static data member"); |
| assert(Tmpl->isStaticDataMember() && "Not a static data member"); |
| assert(!InstantiatedFromStaticDataMember[Inst] && |
| "Already noted what static data member was instantiated from"); |
| InstantiatedFromStaticDataMember[Inst] |
| = new (*this) MemberSpecializationInfo(Tmpl, TSK, PointOfInstantiation); |
| } |
| |
| FunctionDecl *ASTContext::getClassScopeSpecializationPattern( |
| const FunctionDecl *FD){ |
| assert(FD && "Specialization is 0"); |
| llvm::DenseMap<const FunctionDecl*, FunctionDecl *>::const_iterator Pos |
| = ClassScopeSpecializationPattern.find(FD); |
| if (Pos == ClassScopeSpecializationPattern.end()) |
| return 0; |
| |
| return Pos->second; |
| } |
| |
| void ASTContext::setClassScopeSpecializationPattern(FunctionDecl *FD, |
| FunctionDecl *Pattern) { |
| assert(FD && "Specialization is 0"); |
| assert(Pattern && "Class scope specialization pattern is 0"); |
| ClassScopeSpecializationPattern[FD] = Pattern; |
| } |
| |
| NamedDecl * |
| ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) { |
| llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos |
| = InstantiatedFromUsingDecl.find(UUD); |
| if (Pos == InstantiatedFromUsingDecl.end()) |
| return 0; |
| |
| return Pos->second; |
| } |
| |
| void |
| ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) { |
| assert((isa<UsingDecl>(Pattern) || |
| isa<UnresolvedUsingValueDecl>(Pattern) || |
| isa<UnresolvedUsingTypenameDecl>(Pattern)) && |
| "pattern decl is not a using decl"); |
| assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); |
| InstantiatedFromUsingDecl[Inst] = Pattern; |
| } |
| |
| UsingShadowDecl * |
| ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
| llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos |
| = InstantiatedFromUsingShadowDecl.find(Inst); |
| if (Pos == InstantiatedFromUsingShadowDecl.end()) |
| return 0; |
| |
| return Pos->second; |
| } |
| |
| void |
| ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
| UsingShadowDecl *Pattern) { |
| assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); |
| InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
| } |
| |
| FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { |
| llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos |
| = InstantiatedFromUnnamedFieldDecl.find(Field); |
| if (Pos == InstantiatedFromUnnamedFieldDecl.end()) |
| return 0; |
| |
| return Pos->second; |
| } |
| |
| void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
| FieldDecl *Tmpl) { |
| assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); |
| assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); |
| assert(!InstantiatedFromUnnamedFieldDecl[Inst] && |
| "Already noted what unnamed field was instantiated from"); |
| |
| InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
| } |
| |
| bool ASTContext::ZeroBitfieldFollowsNonBitfield(const FieldDecl *FD, |
| const FieldDecl *LastFD) const { |
| return (FD->isBitField() && LastFD && !LastFD->isBitField() && |
| FD->getBitWidthValue(*this) == 0); |
| } |
| |
| bool ASTContext::ZeroBitfieldFollowsBitfield(const FieldDecl *FD, |
| const FieldDecl *LastFD) const { |
| return (FD->isBitField() && LastFD && LastFD->isBitField() && |
| FD->getBitWidthValue(*this) == 0 && |
| LastFD->getBitWidthValue(*this) != 0); |
| } |
| |
| bool ASTContext::BitfieldFollowsBitfield(const FieldDecl *FD, |
| const FieldDecl *LastFD) const { |
| return (FD->isBitField() && LastFD && LastFD->isBitField() && |
| FD->getBitWidthValue(*this) && |
| LastFD->getBitWidthValue(*this)); |
| } |
| |
| bool ASTContext::NonBitfieldFollowsBitfield(const FieldDecl *FD, |
| const FieldDecl *LastFD) const { |
| return (!FD->isBitField() && LastFD && LastFD->isBitField() && |
| LastFD->getBitWidthValue(*this)); |
| } |
| |
| bool ASTContext::BitfieldFollowsNonBitfield(const FieldDecl *FD, |
| const FieldDecl *LastFD) const { |
| return (FD->isBitField() && LastFD && !LastFD->isBitField() && |
| FD->getBitWidthValue(*this)); |
| } |
| |
| ASTContext::overridden_cxx_method_iterator |
| ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
| llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos |
| = OverriddenMethods.find(Method); |
| if (Pos == OverriddenMethods.end()) |
| return 0; |
| |
| return Pos->second.begin(); |
| } |
| |
| ASTContext::overridden_cxx_method_iterator |
| ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
| llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos |
| = OverriddenMethods.find(Method); |
| if (Pos == OverriddenMethods.end()) |
| return 0; |
| |
| return Pos->second.end(); |
| } |
| |
| unsigned |
| ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
| llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos |
| = OverriddenMethods.find(Method); |
| if (Pos == OverriddenMethods.end()) |
| return 0; |
| |
| return Pos->second.size(); |
| } |
| |
| void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
| const CXXMethodDecl *Overridden) { |
| OverriddenMethods[Method].push_back(Overridden); |
| } |
| |
| void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
| assert(!Import->NextLocalImport && "Import declaration already in the chain"); |
| assert(!Import->isFromASTFile() && "Non-local import declaration"); |
| if (!FirstLocalImport) { |
| FirstLocalImport = Import; |
| LastLocalImport = Import; |
| return; |
| } |
| |
| LastLocalImport->NextLocalImport = Import; |
| LastLocalImport = Import; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Sizing and Analysis |
| //===----------------------------------------------------------------------===// |
| |
| /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
| /// scalar floating point type. |
| const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
| const BuiltinType *BT = T->getAs<BuiltinType>(); |
| assert(BT && "Not a floating point type!"); |
| switch (BT->getKind()) { |
| default: llvm_unreachable("Not a floating point type!"); |
| case BuiltinType::Half: return Target->getHalfFormat(); |
| case BuiltinType::Float: return Target->getFloatFormat(); |
| case BuiltinType::Double: return Target->getDoubleFormat(); |
| case BuiltinType::LongDouble: return Target->getLongDoubleFormat(); |
| } |
| } |
| |
| /// getDeclAlign - Return a conservative estimate of the alignment of the |
| /// specified decl. Note that bitfields do not have a valid alignment, so |
| /// this method will assert on them. |
| /// If @p RefAsPointee, references are treated like their underlying type |
| /// (for alignof), else they're treated like pointers (for CodeGen). |
| CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) const { |
| unsigned Align = Target->getCharWidth(); |
| |
| bool UseAlignAttrOnly = false; |
| if (unsigned AlignFromAttr = D->getMaxAlignment()) { |
| Align = AlignFromAttr; |
| |
| // __attribute__((aligned)) can increase or decrease alignment |
| // *except* on a struct or struct member, where it only increases |
| // alignment unless 'packed' is also specified. |
| // |
| // It is an error for alignas to decrease alignment, so we can |
| // ignore that possibility; Sema should diagnose it. |
| if (isa<FieldDecl>(D)) { |
| UseAlignAttrOnly = D->hasAttr<PackedAttr>() || |
| cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); |
| } else { |
| UseAlignAttrOnly = true; |
| } |
| } |
| else if (isa<FieldDecl>(D)) |
| UseAlignAttrOnly = |
| D->hasAttr<PackedAttr>() || |
| cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); |
| |
| // If we're using the align attribute only, just ignore everything |
| // else about the declaration and its type. |
| if (UseAlignAttrOnly) { |
| // do nothing |
| |
| } else if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) { |
| QualType T = VD->getType(); |
| if (const ReferenceType* RT = T->getAs<ReferenceType>()) { |
| if (RefAsPointee) |
| T = RT->getPointeeType(); |
| else |
| T = getPointerType(RT->getPointeeType()); |
| } |
| if (!T->isIncompleteType() && !T->isFunctionType()) { |
| // Adjust alignments of declarations with array type by the |
| // large-array alignment on the target. |
| unsigned MinWidth = Target->getLargeArrayMinWidth(); |
| const ArrayType *arrayType; |
| if (MinWidth && (arrayType = getAsArrayType(T))) { |
| if (isa<VariableArrayType>(arrayType)) |
| Align = std::max(Align, Target->getLargeArrayAlign()); |
| else if (isa<ConstantArrayType>(arrayType) && |
| MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) |
| Align = std::max(Align, Target->getLargeArrayAlign()); |
| |
| // Walk through any array types while we're at it. |
| T = getBaseElementType(arrayType); |
| } |
| Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); |
| } |
| |
| // Fields can be subject to extra alignment constraints, like if |
| // the field is packed, the struct is packed, or the struct has a |
| // a max-field-alignment constraint (#pragma pack). So calculate |
| // the actual alignment of the field within the struct, and then |
| // (as we're expected to) constrain that by the alignment of the type. |
| if (const FieldDecl *field = dyn_cast<FieldDecl>(VD)) { |
| // So calculate the alignment of the field. |
| const ASTRecordLayout &layout = getASTRecordLayout(field->getParent()); |
| |
| // Start with the record's overall alignment. |
| unsigned fieldAlign = toBits(layout.getAlignment()); |
| |
| // Use the GCD of that and the offset within the record. |
| uint64_t offset = layout.getFieldOffset(field->getFieldIndex()); |
| if (offset > 0) { |
| // Alignment is always a power of 2, so the GCD will be a power of 2, |
| // which means we get to do this crazy thing instead of Euclid's. |
| uint64_t lowBitOfOffset = offset & (~offset + 1); |
| if (lowBitOfOffset < fieldAlign) |
| fieldAlign = static_cast<unsigned>(lowBitOfOffset); |
| } |
| |
| Align = std::min(Align, fieldAlign); |
| } |
| } |
| |
| return toCharUnitsFromBits(Align); |
| } |
| |
| std::pair<CharUnits, CharUnits> |
| ASTContext::getTypeInfoInChars(const Type *T) const { |
| std::pair<uint64_t, unsigned> Info = getTypeInfo(T); |
| return std::make_pair(toCharUnitsFromBits(Info.first), |
| toCharUnitsFromBits(Info.second)); |
| } |
| |
| std::pair<CharUnits, CharUnits> |
| ASTContext::getTypeInfoInChars(QualType T) const { |
| return getTypeInfoInChars(T.getTypePtr()); |
| } |
| |
| std::pair<uint64_t, unsigned> ASTContext::getTypeInfo(const Type *T) const { |
| TypeInfoMap::iterator it = MemoizedTypeInfo.find(T); |
| if (it != MemoizedTypeInfo.end()) |
| return it->second; |
| |
| std::pair<uint64_t, unsigned> Info = getTypeInfoImpl(T); |
| MemoizedTypeInfo.insert(std::make_pair(T, Info)); |
| return Info; |
| } |
| |
| /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
| /// method does not work on incomplete types. |
| /// |
| /// FIXME: Pointers into different addr spaces could have different sizes and |
| /// alignment requirements: getPointerInfo should take an AddrSpace, this |
| /// should take a QualType, &c. |
| std::pair<uint64_t, unsigned> |
| ASTContext::getTypeInfoImpl(const Type *T) const { |
| uint64_t Width=0; |
| unsigned Align=8; |
| switch (T->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("Should not see dependent types"); |
| |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| // GCC extension: alignof(function) = 32 bits |
| Width = 0; |
| Align = 32; |
| break; |
| |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| Width = 0; |
| Align = getTypeAlign(cast<ArrayType>(T)->getElementType()); |
| break; |
| |
| case Type::ConstantArray: { |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(T); |
| |
| std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType()); |
| uint64_t Size = CAT->getSize().getZExtValue(); |
| assert((Size == 0 || EltInfo.first <= (uint64_t)(-1)/Size) && |
| "Overflow in array type bit size evaluation"); |
| Width = EltInfo.first*Size; |
| Align = EltInfo.second; |
| Width = llvm::RoundUpToAlignment(Width, Align); |
| break; |
| } |
| case Type::ExtVector: |
| case Type::Vector: { |
| const VectorType *VT = cast<VectorType>(T); |
| std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType()); |
| Width = EltInfo.first*VT->getNumElements(); |
| Align = Width; |
| // If the alignment is not a power of 2, round up to the next power of 2. |
| // This happens for non-power-of-2 length vectors. |
| if (Align & (Align-1)) { |
| Align = llvm::NextPowerOf2(Align); |
| Width = llvm::RoundUpToAlignment(Width, Align); |
| } |
| break; |
| } |
| |
| case Type::Builtin: |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: llvm_unreachable("Unknown builtin type!"); |
| case BuiltinType::Void: |
| // GCC extension: alignof(void) = 8 bits. |
| Width = 0; |
| Align = 8; |
| break; |
| |
| case BuiltinType::Bool: |
| Width = Target->getBoolWidth(); |
| Align = Target->getBoolAlign(); |
| break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: |
| Width = Target->getCharWidth(); |
| Align = Target->getCharAlign(); |
| break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| Width = Target->getWCharWidth(); |
| Align = Target->getWCharAlign(); |
| break; |
| case BuiltinType::Char16: |
| Width = Target->getChar16Width(); |
| Align = Target->getChar16Align(); |
| break; |
| case BuiltinType::Char32: |
| Width = Target->getChar32Width(); |
| Align = Target->getChar32Align(); |
| break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: |
| Width = Target->getShortWidth(); |
| Align = Target->getShortAlign(); |
| break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: |
| Width = Target->getIntWidth(); |
| Align = Target->getIntAlign(); |
| break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: |
| Width = Target->getLongWidth(); |
| Align = Target->getLongAlign(); |
| break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: |
| Width = Target->getLongLongWidth(); |
| Align = Target->getLongLongAlign(); |
| break; |
| case BuiltinType::Int128: |
| case BuiltinType::UInt128: |
| Width = 128; |
| Align = 128; // int128_t is 128-bit aligned on all targets. |
| break; |
| case BuiltinType::Half: |
| Width = Target->getHalfWidth(); |
| Align = Target->getHalfAlign(); |
| break; |
| case BuiltinType::Float: |
| Width = Target->getFloatWidth(); |
| Align = Target->getFloatAlign(); |
| break; |
| case BuiltinType::Double: |
| Width = Target->getDoubleWidth(); |
| Align = Target->getDoubleAlign(); |
| break; |
| case BuiltinType::LongDouble: |
| Width = Target->getLongDoubleWidth(); |
| Align = Target->getLongDoubleAlign(); |
| break; |
| case BuiltinType::NullPtr: |
| Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) |
| Align = Target->getPointerAlign(0); // == sizeof(void*) |
| break; |
| case BuiltinType::ObjCId: |
| case BuiltinType::ObjCClass: |
| case BuiltinType::ObjCSel: |
| Width = Target->getPointerWidth(0); |
| Align = Target->getPointerAlign(0); |
| break; |
| } |
| break; |
| case Type::ObjCObjectPointer: |
| Width = Target->getPointerWidth(0); |
| Align = Target->getPointerAlign(0); |
| break; |
| case Type::BlockPointer: { |
| unsigned AS = getTargetAddressSpace( |
| cast<BlockPointerType>(T)->getPointeeType()); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| } |
| case Type::LValueReference: |
| case Type::RValueReference: { |
| // alignof and sizeof should never enter this code path here, so we go |
| // the pointer route. |
| unsigned AS = getTargetAddressSpace( |
| cast<ReferenceType>(T)->getPointeeType()); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| } |
| case Type::Pointer: { |
| unsigned AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); |
| Width = Target->getPointerWidth(AS); |
| Align = Target->getPointerAlign(AS); |
| break; |
| } |
| case Type::MemberPointer: { |
| const MemberPointerType *MPT = cast<MemberPointerType>(T); |
| std::pair<uint64_t, unsigned> PtrDiffInfo = |
| getTypeInfo(getPointerDiffType()); |
| Width = PtrDiffInfo.first * ABI->getMemberPointerSize(MPT); |
| Align = PtrDiffInfo.second; |
| break; |
| } |
| case Type::Complex: { |
| // Complex types have the same alignment as their elements, but twice the |
| // size. |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<ComplexType>(T)->getElementType()); |
| Width = EltInfo.first*2; |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::ObjCObject: |
| return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); |
| case Type::ObjCInterface: { |
| const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T); |
| const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| Width = toBits(Layout.getSize()); |
| Align = toBits(Layout.getAlignment()); |
| break; |
| } |
| case Type::Record: |
| case Type::Enum: { |
| const TagType *TT = cast<TagType>(T); |
| |
| if (TT->getDecl()->isInvalidDecl()) { |
| Width = 8; |
| Align = 8; |
| break; |
| } |
| |
| if (const EnumType *ET = dyn_cast<EnumType>(TT)) |
| return getTypeInfo(ET->getDecl()->getIntegerType()); |
| |
| const RecordType *RT = cast<RecordType>(TT); |
| const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl()); |
| Width = toBits(Layout.getSize()); |
| Align = toBits(Layout.getAlignment()); |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParm: |
| return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> |
| getReplacementType().getTypePtr()); |
| |
| case Type::Auto: { |
| const AutoType *A = cast<AutoType>(T); |
| assert(A->isDeduced() && "Cannot request the size of a dependent type"); |
| return getTypeInfo(A->getDeducedType().getTypePtr()); |
| } |
| |
| case Type::Paren: |
| return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); |
| |
| case Type::Typedef: { |
| const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); |
| std::pair<uint64_t, unsigned> Info |
| = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); |
| // If the typedef has an aligned attribute on it, it overrides any computed |
| // alignment we have. This violates the GCC documentation (which says that |
| // attribute(aligned) can only round up) but matches its implementation. |
| if (unsigned AttrAlign = Typedef->getMaxAlignment()) |
| Align = AttrAlign; |
| else |
| Align = Info.second; |
| Width = Info.first; |
| break; |
| } |
| |
| case Type::TypeOfExpr: |
| return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType() |
| .getTypePtr()); |
| |
| case Type::TypeOf: |
| return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr()); |
| |
| case Type::Decltype: |
| return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType() |
| .getTypePtr()); |
| |
| case Type::UnaryTransform: |
| return getTypeInfo(cast<UnaryTransformType>(T)->getUnderlyingType()); |
| |
| case Type::Elaborated: |
| return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); |
| |
| case Type::Attributed: |
| return getTypeInfo( |
| cast<AttributedType>(T)->getEquivalentType().getTypePtr()); |
| |
| case Type::TemplateSpecialization: { |
| assert(getCanonicalType(T) != T && |
| "Cannot request the size of a dependent type"); |
| const TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T); |
| // A type alias template specialization may refer to a typedef with the |
| // aligned attribute on it. |
| if (TST->isTypeAlias()) |
| return getTypeInfo(TST->getAliasedType().getTypePtr()); |
| else |
| return getTypeInfo(getCanonicalType(T)); |
| } |
| |
| case Type::Atomic: { |
| std::pair<uint64_t, unsigned> Info |
| = getTypeInfo(cast<AtomicType>(T)->getValueType()); |
| Width = Info.first; |
| Align = Info.second; |
| if (Width != 0 && Width <= Target->getMaxAtomicPromoteWidth() && |
| llvm::isPowerOf2_64(Width)) { |
| // We can potentially perform lock-free atomic operations for this |
| // type; promote the alignment appropriately. |
| // FIXME: We could potentially promote the width here as well... |
| // is that worthwhile? (Non-struct atomic types generally have |
| // power-of-two size anyway, but structs might not. Requires a bit |
| // of implementation work to make sure we zero out the extra bits.) |
| Align = static_cast<unsigned>(Width); |
| } |
| } |
| |
| } |
| |
| assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); |
| return std::make_pair(Width, Align); |
| } |
| |
| /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
| CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
| return CharUnits::fromQuantity(BitSize / getCharWidth()); |
| } |
| |
| /// toBits - Convert a size in characters to a size in characters. |
| int64_t ASTContext::toBits(CharUnits CharSize) const { |
| return CharSize.getQuantity() * getCharWidth(); |
| } |
| |
| /// getTypeSizeInChars - Return the size of the specified type, in characters. |
| /// This method does not work on incomplete types. |
| CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
| return toCharUnitsFromBits(getTypeSize(T)); |
| } |
| CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
| return toCharUnitsFromBits(getTypeSize(T)); |
| } |
| |
| /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
| /// characters. This method does not work on incomplete types. |
| CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
| return toCharUnitsFromBits(getTypeAlign(T)); |
| } |
| CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
| return toCharUnitsFromBits(getTypeAlign(T)); |
| } |
| |
| /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
| /// type for the current target in bits. This can be different than the ABI |
| /// alignment in cases where it is beneficial for performance to overalign |
| /// a data type. |
| unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
| unsigned ABIAlign = getTypeAlign(T); |
| |
| // Double and long long should be naturally aligned if possible. |
| if (const ComplexType* CT = T->getAs<ComplexType>()) |
| T = CT->getElementType().getTypePtr(); |
| if (T->isSpecificBuiltinType(BuiltinType::Double) || |
| T->isSpecificBuiltinType(BuiltinType::LongLong) || |
| T->isSpecificBuiltinType(BuiltinType::ULongLong)) |
| return std::max(ABIAlign, (unsigned)getTypeSize(T)); |
| |
| return ABIAlign; |
| } |
| |
| /// DeepCollectObjCIvars - |
| /// This routine first collects all declared, but not synthesized, ivars in |
| /// super class and then collects all ivars, including those synthesized for |
| /// current class. This routine is used for implementation of current class |
| /// when all ivars, declared and synthesized are known. |
| /// |
| void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
| bool leafClass, |
| SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
| if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
| DeepCollectObjCIvars(SuperClass, false, Ivars); |
| if (!leafClass) { |
| for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(), |
| E = OI->ivar_end(); I != E; ++I) |
| Ivars.push_back(*I); |
| } else { |
| ObjCInterfaceDecl *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
| for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
| Iv= Iv->getNextIvar()) |
| Ivars.push_back(Iv); |
| } |
| } |
| |
| /// CollectInheritedProtocols - Collect all protocols in current class and |
| /// those inherited by it. |
| void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
| llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
| if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { |
| // We can use protocol_iterator here instead of |
| // all_referenced_protocol_iterator since we are walking all categories. |
| for (ObjCInterfaceDecl::all_protocol_iterator P = OI->all_referenced_protocol_begin(), |
| PE = OI->all_referenced_protocol_end(); P != PE; ++P) { |
| ObjCProtocolDecl *Proto = (*P); |
| Protocols.insert(Proto->getCanonicalDecl()); |
| for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(), |
| PE = Proto->protocol_end(); P != PE; ++P) { |
| Protocols.insert((*P)->getCanonicalDecl()); |
| CollectInheritedProtocols(*P, Protocols); |
| } |
| } |
| |
| // Categories of this Interface. |
| for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList(); |
| CDeclChain; CDeclChain = CDeclChain->getNextClassCategory()) |
| CollectInheritedProtocols(CDeclChain, Protocols); |
| if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
| while (SD) { |
| CollectInheritedProtocols(SD, Protocols); |
| SD = SD->getSuperClass(); |
| } |
| } else if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { |
| for (ObjCCategoryDecl::protocol_iterator P = OC->protocol_begin(), |
| PE = OC->protocol_end(); P != PE; ++P) { |
| ObjCProtocolDecl *Proto = (*P); |
| Protocols.insert(Proto->getCanonicalDecl()); |
| for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(), |
| PE = Proto->protocol_end(); P != PE; ++P) |
| CollectInheritedProtocols(*P, Protocols); |
| } |
| } else if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { |
| for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(), |
| PE = OP->protocol_end(); P != PE; ++P) { |
| ObjCProtocolDecl *Proto = (*P); |
| Protocols.insert(Proto->getCanonicalDecl()); |
| for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(), |
| PE = Proto->protocol_end(); P != PE; ++P) |
| CollectInheritedProtocols(*P, Protocols); |
| } |
| } |
| } |
| |
| unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
| unsigned count = 0; |
| // Count ivars declared in class extension. |
| for (const ObjCCategoryDecl *CDecl = OI->getFirstClassExtension(); CDecl; |
| CDecl = CDecl->getNextClassExtension()) |
| count += CDecl->ivar_size(); |
| |
| // Count ivar defined in this class's implementation. This |
| // includes synthesized ivars. |
| if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
| count += ImplDecl->ivar_size(); |
| |
| return count; |
| } |
| |
| bool ASTContext::isSentinelNullExpr(const Expr *E) { |
| if (!E) |
| return false; |
| |
| // nullptr_t is always treated as null. |
| if (E->getType()->isNullPtrType()) return true; |
| |
| if (E->getType()->isAnyPointerType() && |
| E->IgnoreParenCasts()->isNullPointerConstant(*this, |
| Expr::NPC_ValueDependentIsNull)) |
| return true; |
| |
| // Unfortunately, __null has type 'int'. |
| if (isa<GNUNullExpr>(E)) return true; |
| |
| return false; |
| } |
| |
| /// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists. |
| ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
| llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| I = ObjCImpls.find(D); |
| if (I != ObjCImpls.end()) |
| return cast<ObjCImplementationDecl>(I->second); |
| return 0; |
| } |
| /// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists. |
| ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
| llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| I = ObjCImpls.find(D); |
| if (I != ObjCImpls.end()) |
| return cast<ObjCCategoryImplDecl>(I->second); |
| return 0; |
| } |
| |
| /// \brief Set the implementation of ObjCInterfaceDecl. |
| void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
| ObjCImplementationDecl *ImplD) { |
| assert(IFaceD && ImplD && "Passed null params"); |
| ObjCImpls[IFaceD] = ImplD; |
| } |
| /// \brief Set the implementation of ObjCCategoryDecl. |
| void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
| ObjCCategoryImplDecl *ImplD) { |
| assert(CatD && ImplD && "Passed null params"); |
| ObjCImpls[CatD] = ImplD; |
| } |
| |
| ObjCInterfaceDecl *ASTContext::getObjContainingInterface(NamedDecl *ND) const { |
| if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) |
| return ID; |
| if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) |
| return CD->getClassInterface(); |
| if (ObjCImplDecl *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) |
| return IMD->getClassInterface(); |
| |
| return 0; |
| } |
| |
| /// \brief Get the copy initialization expression of VarDecl,or NULL if |
| /// none exists. |
| Expr *ASTContext::getBlockVarCopyInits(const VarDecl*VD) { |
| assert(VD && "Passed null params"); |
| assert(VD->hasAttr<BlocksAttr>() && |
| "getBlockVarCopyInits - not __block var"); |
| llvm::DenseMap<const VarDecl*, Expr*>::iterator |
| I = BlockVarCopyInits.find(VD); |
| return (I != BlockVarCopyInits.end()) ? cast<Expr>(I->second) : 0; |
| } |
| |
| /// \brief Set the copy inialization expression of a block var decl. |
| void ASTContext::setBlockVarCopyInits(VarDecl*VD, Expr* Init) { |
| assert(VD && Init && "Passed null params"); |
| assert(VD->hasAttr<BlocksAttr>() && |
| "setBlockVarCopyInits - not __block var"); |
| BlockVarCopyInits[VD] = Init; |
| } |
| |
| /// \brief Allocate an uninitialized TypeSourceInfo. |
| /// |
| /// The caller should initialize the memory held by TypeSourceInfo using |
| /// the TypeLoc wrappers. |
| /// |
| /// \param T the type that will be the basis for type source info. This type |
| /// should refer to how the declarator was written in source code, not to |
| /// what type semantic analysis resolved the declarator to. |
| TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
| unsigned DataSize) const { |
| if (!DataSize) |
| DataSize = TypeLoc::getFullDataSizeForType(T); |
| else |
| assert(DataSize == TypeLoc::getFullDataSizeForType(T) && |
| "incorrect data size provided to CreateTypeSourceInfo!"); |
| |
| TypeSourceInfo *TInfo = |
| (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); |
| new (TInfo) TypeSourceInfo(T); |
| return TInfo; |
| } |
| |
| TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
| SourceLocation L) const { |
| TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
| DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); |
| return DI; |
| } |
| |
| const ASTRecordLayout & |
| ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
| return getObjCLayout(D, 0); |
| } |
| |
| const ASTRecordLayout & |
| ASTContext::getASTObjCImplementationLayout( |
| const ObjCImplementationDecl *D) const { |
| return getObjCLayout(D->getClassInterface(), D); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| QualType |
| ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
| unsigned fastQuals = quals.getFastQualifiers(); |
| quals.removeFastQualifiers(); |
| |
| // Check if we've already instantiated this type. |
| llvm::FoldingSetNodeID ID; |
| ExtQuals::Profile(ID, baseType, quals); |
| void *insertPos = 0; |
| if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { |
| assert(eq->getQualifiers() == quals); |
| return QualType(eq, fastQuals); |
| } |
| |
| // If the base type is not canonical, make the appropriate canonical type. |
| QualType canon; |
| if (!baseType->isCanonicalUnqualified()) { |
| SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
| canonSplit.Quals.addConsistentQualifiers(quals); |
| canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); |
| |
| // Re-find the insert position. |
| (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); |
| } |
| |
| ExtQuals *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); |
| ExtQualNodes.InsertNode(eq, insertPos); |
| return QualType(eq, fastQuals); |
| } |
| |
| QualType |
| ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) const { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getAddressSpace() == AddressSpace) |
| return T; |
| |
| // If we are composing extended qualifiers together, merge together |
| // into one ExtQuals node. |
| QualifierCollector Quals; |
| const Type *TypeNode = Quals.strip(T); |
| |
| // If this type already has an address space specified, it cannot get |
| // another one. |
| assert(!Quals.hasAddressSpace() && |
| "Type cannot be in multiple addr spaces!"); |
| Quals.addAddressSpace(AddressSpace); |
| |
| return getExtQualType(TypeNode, Quals); |
| } |
| |
| QualType ASTContext::getObjCGCQualType(QualType T, |
| Qualifiers::GC GCAttr) const { |
| QualType CanT = getCanonicalType(T); |
| if (CanT.getObjCGCAttr() == GCAttr) |
| return T; |
| |
| if (const PointerType *ptr = T->getAs<PointerType>()) { |
| QualType Pointee = ptr->getPointeeType(); |
| if (Pointee->isAnyPointerType()) { |
| QualType ResultType = getObjCGCQualType(Pointee, GCAttr); |
| return getPointerType(ResultType); |
| } |
| } |
| |
| // If we are composing extended qualifiers together, merge together |
| // into one ExtQuals node. |
| QualifierCollector Quals; |
| const Type *TypeNode = Quals.strip(T); |
| |
| // If this type already has an ObjCGC specified, it cannot get |
| // another one. |
| assert(!Quals.hasObjCGCAttr() && |
| "Type cannot have multiple ObjCGCs!"); |
| Quals.addObjCGCAttr(GCAttr); |
| |
| return getExtQualType(TypeNode, Quals); |
| } |
| |
| const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
| FunctionType::ExtInfo Info) { |
| if (T->getExtInfo() == Info) |
| return T; |
| |
| QualType Result; |
| if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(T)) { |
| Result = getFunctionNoProtoType(FNPT->getResultType(), Info); |
| } else { |
| const FunctionProtoType *FPT = cast<FunctionProtoType>(T); |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.ExtInfo = Info; |
| Result = getFunctionType(FPT->getResultType(), FPT->arg_type_begin(), |
| FPT->getNumArgs(), EPI); |
| } |
| |
| return cast<FunctionType>(Result.getTypePtr()); |
| } |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getComplexType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getBlockPointerType - Return the uniqued reference to the type for |
| /// a pointer to the specified block. |
| QualType ASTContext::getBlockPointerType(QualType T) const { |
| assert(T->isFunctionType() && "block of function types only"); |
| // Unique pointers, to guarantee there is only one block of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| BlockPointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (BlockPointerType *PT = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the block pointee type isn't canonical, this won't be a canonical |
| // type either so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getBlockPointerType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| BlockPointerType *NewIP = |
| BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| BlockPointerType *New |
| = new (*this, TypeAlignment) BlockPointerType(T, Canonical); |
| Types.push_back(New); |
| BlockPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getLValueReferenceType - Return the uniqued reference to the type for an |
| /// lvalue reference to the specified type. |
| QualType |
| ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
| assert(getCanonicalType(T) != OverloadTy && |
| "Unresolved overloaded function type"); |
| |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T, SpelledAsLValue); |
| |
| void *InsertPos = 0; |
| if (LValueReferenceType *RT = |
| LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| const ReferenceType *InnerRef = T->getAs<ReferenceType>(); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
| QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); |
| |
| // Get the new insert position for the node we care about. |
| LValueReferenceType *NewIP = |
| LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| LValueReferenceType *New |
| = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, |
| SpelledAsLValue); |
| Types.push_back(New); |
| LValueReferenceTypes.InsertNode(New, InsertPos); |
| |
| return QualType(New, 0); |
| } |
| |
| /// getRValueReferenceType - Return the uniqued reference to the type for an |
| /// rvalue reference to the specified type. |
| QualType ASTContext::getRValueReferenceType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T, false); |
| |
| void *InsertPos = 0; |
| if (RValueReferenceType *RT = |
| RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| const ReferenceType *InnerRef = T->getAs<ReferenceType>(); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (InnerRef || !T.isCanonical()) { |
| QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); |
| |
| // Get the new insert position for the node we care about. |
| RValueReferenceType *NewIP = |
| RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| RValueReferenceType *New |
| = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); |
| Types.push_back(New); |
| RValueReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getMemberPointerType - Return the uniqued reference to the type for a |
| /// member pointer to the specified type, in the specified class. |
| QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| MemberPointerType::Profile(ID, T, Cls); |
| |
| void *InsertPos = 0; |
| if (MemberPointerType *PT = |
| MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee or class type isn't canonical, this won't be a canonical |
| // type either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { |
| Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); |
| |
| // Get the new insert position for the node we care about. |
| MemberPointerType *NewIP = |
| MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| MemberPointerType *New |
| = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); |
| Types.push_back(New); |
| MemberPointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getConstantArrayType - Return the unique reference to the type for an |
| /// array of the specified element type. |
| QualType ASTContext::getConstantArrayType(QualType EltTy, |
| const llvm::APInt &ArySizeIn, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned IndexTypeQuals) const { |
| assert((EltTy->isDependentType() || |
| EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && |
| "Constant array of VLAs is illegal!"); |
| |
| // Convert the array size into a canonical width matching the pointer size for |
| // the target. |
| llvm::APInt ArySize(ArySizeIn); |
| ArySize = |
| ArySize.zextOrTrunc(Target->getPointerWidth(getTargetAddressSpace(EltTy))); |
| |
| llvm::FoldingSetNodeID ID; |
| ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, IndexTypeQuals); |
| |
| void *InsertPos = 0; |
| if (ConstantArrayType *ATP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical or has qualifiers, this won't |
| // be a canonical type either, so fill in the canonical type field. |
| QualType Canon; |
| if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
| SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
| Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, |
| ASM, IndexTypeQuals); |
| Canon = getQualifiedType(Canon, canonSplit.Quals); |
| |
| // Get the new insert position for the node we care about. |
| ConstantArrayType *NewIP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| ConstantArrayType *New = new(*this,TypeAlignment) |
| ConstantArrayType(EltTy, Canon, ArySize, ASM, IndexTypeQuals); |
| ConstantArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVariableArrayDecayedType - Turns the given type, which may be |
| /// variably-modified, into the corresponding type with all the known |
| /// sizes replaced with [*]. |
| QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
| // Vastly most common case. |
| if (!type->isVariablyModifiedType()) return type; |
| |
| QualType result; |
| |
| SplitQualType split = type.getSplitDesugaredType(); |
| const Type *ty = split.Ty; |
| switch (ty->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("didn't desugar past all non-canonical types?"); |
| |
| // These types should never be variably-modified. |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::DependentSizedExtVector: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::Record: |
| case Type::Enum: |
| case Type::UnresolvedUsing: |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::Decltype: |
| case Type::UnaryTransform: |
| case Type::DependentName: |
| case Type::InjectedClassName: |
| case Type::TemplateSpecialization: |
| case Type::DependentTemplateSpecialization: |
| case Type::TemplateTypeParm: |
| case Type::SubstTemplateTypeParmPack: |
| case Type::Auto: |
| case Type::PackExpansion: |
| llvm_unreachable("type should never be variably-modified"); |
| |
| // These types can be variably-modified but should never need to |
| // further decay. |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| case Type::BlockPointer: |
| case Type::MemberPointer: |
| return type; |
| |
| // These types can be variably-modified. All these modifications |
| // preserve structure except as noted by comments. |
| // TODO: if we ever care about optimizing VLAs, there are no-op |
| // optimizations available here. |
| case Type::Pointer: |
| result = getPointerType(getVariableArrayDecayedType( |
| cast<PointerType>(ty)->getPointeeType())); |
| break; |
| |
| case Type::LValueReference: { |
| const LValueReferenceType *lv = cast<LValueReferenceType>(ty); |
| result = getLValueReferenceType( |
| getVariableArrayDecayedType(lv->getPointeeType()), |
| lv->isSpelledAsLValue()); |
| break; |
| } |
| |
| case Type::RValueReference: { |
| const RValueReferenceType *lv = cast<RValueReferenceType>(ty); |
| result = getRValueReferenceType( |
| getVariableArrayDecayedType(lv->getPointeeType())); |
| break; |
| } |
| |
| case Type::Atomic: { |
| const AtomicType *at = cast<AtomicType>(ty); |
| result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); |
| break; |
| } |
| |
| case Type::ConstantArray: { |
| const ConstantArrayType *cat = cast<ConstantArrayType>(ty); |
| result = getConstantArrayType( |
| getVariableArrayDecayedType(cat->getElementType()), |
| cat->getSize(), |
| cat->getSizeModifier(), |
| cat->getIndexTypeCVRQualifiers()); |
| break; |
| } |
| |
| case Type::DependentSizedArray: { |
| const DependentSizedArrayType *dat = cast<DependentSizedArrayType>(ty); |
| result = getDependentSizedArrayType( |
| getVariableArrayDecayedType(dat->getElementType()), |
| dat->getSizeExpr(), |
| dat->getSizeModifier(), |
| dat->getIndexTypeCVRQualifiers(), |
| dat->getBracketsRange()); |
| break; |
| } |
| |
| // Turn incomplete types into [*] types. |
| case Type::IncompleteArray: { |
| const IncompleteArrayType *iat = cast<IncompleteArrayType>(ty); |
| result = getVariableArrayType( |
| getVariableArrayDecayedType(iat->getElementType()), |
| /*size*/ 0, |
| ArrayType::Normal, |
| iat->getIndexTypeCVRQualifiers(), |
| SourceRange()); |
| break; |
| } |
| |
| // Turn VLA types into [*] types. |
| case Type::VariableArray: { |
| const VariableArrayType *vat = cast<VariableArrayType>(ty); |
| result = getVariableArrayType( |
| getVariableArrayDecayedType(vat->getElementType()), |
| /*size*/ 0, |
| ArrayType::Star, |
| vat->getIndexTypeCVRQualifiers(), |
| vat->getBracketsRange()); |
| break; |
| } |
| } |
| |
| // Apply the top-level qualifiers from the original. |
| return getQualifiedType(result, split.Quals); |
| } |
| |
| /// getVariableArrayType - Returns a non-unique reference to the type for a |
| /// variable array of the specified element type. |
| QualType ASTContext::getVariableArrayType(QualType EltTy, |
| Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned IndexTypeQuals, |
| SourceRange Brackets) const { |
| // Since we don't unique expressions, it isn't possible to unique VLA's |
| // that have an expression provided for their size. |
| QualType Canon; |
| |
| // Be sure to pull qualifiers off the element type. |
| if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
| SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
| Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, |
| IndexTypeQuals, Brackets); |
| Canon = getQualifiedType(Canon, canonSplit.Quals); |
| } |
| |
| VariableArrayType *New = new(*this, TypeAlignment) |
| VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); |
| |
| VariableArrayTypes.push_back(New); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getDependentSizedArrayType - Returns a non-unique reference to |
| /// the type for a dependently-sized array of the specified element |
| /// type. |
| QualType ASTContext::getDependentSizedArrayType(QualType elementType, |
| Expr *numElements, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned elementTypeQuals, |
| SourceRange brackets) const { |
| assert((!numElements || numElements->isTypeDependent() || |
| numElements->isValueDependent()) && |
| "Size must be type- or value-dependent!"); |
| |
| // Dependently-sized array types that do not have a specified number |
| // of elements will have their sizes deduced from a dependent |
| // initializer. We do no canonicalization here at all, which is okay |
| // because they can't be used in most locations. |
| if (!numElements) { |
| DependentSizedArrayType *newType |
| = new (*this, TypeAlignment) |
| DependentSizedArrayType(*this, elementType, QualType(), |
| numElements, ASM, elementTypeQuals, |
| brackets); |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| // Otherwise, we actually build a new type every time, but we |
| // also build a canonical type. |
| |
| SplitQualType canonElementType = getCanonicalType(elementType).split(); |
| |
| void *insertPos = 0; |
| llvm::FoldingSetNodeID ID; |
| DependentSizedArrayType::Profile(ID, *this, |
| QualType(canonElementType.Ty, 0), |
| ASM, elementTypeQuals, numElements); |
| |
| // Look for an existing type with these properties. |
| DependentSizedArrayType *canonTy = |
| DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
| |
| // If we don't have one, build one. |
| if (!canonTy) { |
| canonTy = new (*this, TypeAlignment) |
| DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), |
| QualType(), numElements, ASM, elementTypeQuals, |
| brackets); |
| DependentSizedArrayTypes.InsertNode(canonTy, insertPos); |
| Types.push_back(canonTy); |
| } |
| |
| // Apply qualifiers from the element type to the array. |
| QualType canon = getQualifiedType(QualType(canonTy,0), |
| canonElementType.Quals); |
| |
| // If we didn't need extra canonicalization for the element type, |
| // then just use that as our result. |
| if (QualType(canonElementType.Ty, 0) == elementType) |
| return canon; |
| |
| // Otherwise, we need to build a type which follows the spelling |
| // of the element type. |
| DependentSizedArrayType *sugaredType |
| = new (*this, TypeAlignment) |
| DependentSizedArrayType(*this, elementType, canon, numElements, |
| ASM, elementTypeQuals, brackets); |
| Types.push_back(sugaredType); |
| return QualType(sugaredType, 0); |
| } |
| |
| QualType ASTContext::getIncompleteArrayType(QualType elementType, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned elementTypeQuals) const { |
| llvm::FoldingSetNodeID ID; |
| IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); |
| |
| void *insertPos = 0; |
| if (IncompleteArrayType *iat = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) |
| return QualType(iat, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. We also have to pull |
| // qualifiers off the element type. |
| QualType canon; |
| |
| if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
| SplitQualType canonSplit = getCanonicalType(elementType).split(); |
| canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), |
| ASM, elementTypeQuals); |
| canon = getQualifiedType(canon, canonSplit.Quals); |
| |
| // Get the new insert position for the node we care about. |
| IncompleteArrayType *existing = |
| IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
| assert(!existing && "Shouldn't be in the map!"); (void) existing; |
| } |
| |
| IncompleteArrayType *newType = new (*this, TypeAlignment) |
| IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
| |
| IncompleteArrayTypes.InsertNode(newType, insertPos); |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| /// getVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
| VectorType::VectorKind VecKind) const { |
| assert(vecType->isBuiltinType()); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); |
| |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType.isCanonical()) { |
| Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| VectorType *New = new (*this, TypeAlignment) |
| VectorType(vecType, NumElts, Canonical, VecKind); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getExtVectorType - Return the unique reference to an extended vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType |
| ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { |
| assert(vecType->isBuiltinType() || vecType->isDependentType()); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, |
| VectorType::GenericVector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType.isCanonical()) { |
| Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| ExtVectorType *New = new (*this, TypeAlignment) |
| ExtVectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| QualType |
| ASTContext::getDependentSizedExtVectorType(QualType vecType, |
| Expr *SizeExpr, |
| SourceLocation AttrLoc) const { |
| llvm::FoldingSetNodeID ID; |
| DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), |
| SizeExpr); |
| |
| void *InsertPos = 0; |
| DependentSizedExtVectorType *Canon |
| = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| DependentSizedExtVectorType *New; |
| if (Canon) { |
| // We already have a canonical version of this array type; use it as |
| // the canonical type for a newly-built type. |
| New = new (*this, TypeAlignment) |
| DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), |
| SizeExpr, AttrLoc); |
| } else { |
| QualType CanonVecTy = getCanonicalType(vecType); |
| if (CanonVecTy == vecType) { |
| New = new (*this, TypeAlignment) |
| DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, |
| AttrLoc); |
| |
| DependentSizedExtVectorType *CanonCheck |
| = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); |
| (void)CanonCheck; |
| DependentSizedExtVectorTypes.InsertNode(New, InsertPos); |
| } else { |
| QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, |
| SourceLocation()); |
| New = new (*this, TypeAlignment) |
| DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc); |
| } |
| } |
| |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
| /// |
| QualType |
| ASTContext::getFunctionNoProtoType(QualType ResultTy, |
| const FunctionType::ExtInfo &Info) const { |
| const CallingConv DefaultCC = Info.getCC(); |
| const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ? |
| CC_X86StdCall : DefaultCC; |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionNoProtoType::Profile(ID, ResultTy, Info); |
| |
| void *InsertPos = 0; |
| if (FunctionNoProtoType *FT = |
| FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!ResultTy.isCanonical() || |
| getCanonicalCallConv(CallConv) != CallConv) { |
| Canonical = |
| getFunctionNoProtoType(getCanonicalType(ResultTy), |
| Info.withCallingConv(getCanonicalCallConv(CallConv))); |
| |
| // Get the new insert position for the node we care about. |
| FunctionNoProtoType *NewIP = |
| FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| FunctionProtoType::ExtInfo newInfo = Info.withCallingConv(CallConv); |
| FunctionNoProtoType *New = new (*this, TypeAlignment) |
| FunctionNoProtoType(ResultTy, Canonical, newInfo); |
| Types.push_back(New); |
| FunctionNoProtoTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionType - Return a normal function type with a typed argument |
| /// list. isVariadic indicates whether the argument list includes '...'. |
| QualType |
| ASTContext::getFunctionType(QualType ResultTy, |
| const QualType *ArgArray, unsigned NumArgs, |
| const FunctionProtoType::ExtProtoInfo &EPI) const { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, EPI, *this); |
| |
| void *InsertPos = 0; |
| if (FunctionProtoType *FTP = |
| FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FTP, 0); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = |
| EPI.ExceptionSpecType == EST_None && ResultTy.isCanonical() && |
| !EPI.HasTrailingReturn; |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i].isCanonicalAsParam()) |
| isCanonical = false; |
| |
| const CallingConv DefaultCC = EPI.ExtInfo.getCC(); |
| const CallingConv CallConv = (LangOpts.MRTD && DefaultCC == CC_Default) ? |
| CC_X86StdCall : DefaultCC; |
| |
| // If this type isn't canonical, get the canonical version of it. |
| // The exception spec is not part of the canonical type. |
| QualType Canonical; |
| if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) { |
| SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); |
| |
| FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
| CanonicalEPI.HasTrailingReturn = false; |
| CanonicalEPI.ExceptionSpecType = EST_None; |
| CanonicalEPI.NumExceptions = 0; |
| CanonicalEPI.ExtInfo |
| = CanonicalEPI.ExtInfo.withCallingConv(getCanonicalCallConv(CallConv)); |
| |
| Canonical = getFunctionType(getCanonicalType(ResultTy), |
| CanonicalArgs.data(), NumArgs, |
| CanonicalEPI); |
| |
| // Get the new insert position for the node we care about. |
| FunctionProtoType *NewIP = |
| FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| |
| // FunctionProtoType objects are allocated with extra bytes after |
| // them for three variable size arrays at the end: |
| // - parameter types |
| // - exception types |
| // - consumed-arguments flags |
| // Instead of the exception types, there could be a noexcept |
| // expression. |
| size_t Size = sizeof(FunctionProtoType) + |
| NumArgs * sizeof(QualType); |
| if (EPI.ExceptionSpecType == EST_Dynamic) |
| Size += EPI.NumExceptions * sizeof(QualType); |
| else if (EPI.ExceptionSpecType == EST_ComputedNoexcept) { |
| Size += sizeof(Expr*); |
| } else if (EPI.ExceptionSpecType == EST_Uninstantiated) { |
| Size += 2 * sizeof(FunctionDecl*); |
| } |
| if (EPI.ConsumedArguments) |
| Size += NumArgs * sizeof(bool); |
| |
| FunctionProtoType *FTP = (FunctionProtoType*) Allocate(Size, TypeAlignment); |
| FunctionProtoType::ExtProtoInfo newEPI = EPI; |
| newEPI.ExtInfo = EPI.ExtInfo.withCallingConv(CallConv); |
| new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, Canonical, newEPI); |
| Types.push_back(FTP); |
| FunctionProtoTypes.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| #ifndef NDEBUG |
| static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
| if (!isa<CXXRecordDecl>(D)) return false; |
| const CXXRecordDecl *RD = cast<CXXRecordDecl>(D); |
| if (isa<ClassTemplatePartialSpecializationDecl>(RD)) |
| return true; |
| if (RD->getDescribedClassTemplate() && |
| !isa<ClassTemplateSpecializationDecl>(RD)) |
| return true; |
| return false; |
| } |
| #endif |
| |
| /// getInjectedClassNameType - Return the unique reference to the |
| /// injected class name type for the specified templated declaration. |
| QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
| QualType TST) const { |
| assert(NeedsInjectedClassNameType(Decl)); |
| if (Decl->TypeForDecl) { |
| assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
| } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
| assert(PrevDecl->TypeForDecl && "previous declaration has no type"); |
| Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
| } else { |
| Type *newType = |
| new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| } |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypeDeclType - Return the unique reference to the type for the |
| /// specified type declaration. |
| QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
| assert(Decl && "Passed null for Decl param"); |
| assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); |
| |
| if (const TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Decl)) |
| return getTypedefType(Typedef); |
| |
| assert(!isa<TemplateTypeParmDecl>(Decl) && |
| "Template type parameter types are always available."); |
| |
| if (const RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) { |
| assert(!Record->getPreviousDecl() && |
| "struct/union has previous declaration"); |
| assert(!NeedsInjectedClassNameType(Record)); |
| return getRecordType(Record); |
| } else if (const EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) { |
| assert(!Enum->getPreviousDecl() && |
| "enum has previous declaration"); |
| return getEnumType(Enum); |
| } else if (const UnresolvedUsingTypenameDecl *Using = |
| dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { |
| Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| } else |
| llvm_unreachable("TypeDecl without a type?"); |
| |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typedef name decl. |
| QualType |
| ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
| QualType Canonical) const { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (Canonical.isNull()) |
| Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| TypedefType *newType = new(*this, TypeAlignment) |
| TypedefType(Type::Typedef, Decl, Canonical); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
| if (PrevDecl->TypeForDecl) |
| return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| |
| RecordType *newType = new (*this, TypeAlignment) RecordType(Decl); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
| if (PrevDecl->TypeForDecl) |
| return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| |
| EnumType *newType = new (*this, TypeAlignment) EnumType(Decl); |
| Decl->TypeForDecl = newType; |
| Types.push_back(newType); |
| return QualType(newType, 0); |
| } |
| |
| QualType ASTContext::getAttributedType(AttributedType::Kind attrKind, |
| QualType modifiedType, |
| QualType equivalentType) { |
| llvm::FoldingSetNodeID id; |
| AttributedType::Profile(id, attrKind, modifiedType, equivalentType); |
| |
| void *insertPos = 0; |
| AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); |
| if (type) return QualType(type, 0); |
| |
| QualType canon = getCanonicalType(equivalentType); |
| type = new (*this, TypeAlignment) |
| AttributedType(canon, attrKind, modifiedType, equivalentType); |
| |
| Types.push_back(type); |
| AttributedTypes.InsertNode(type, insertPos); |
| |
| return QualType(type, 0); |
| } |
| |
| |
| /// \brief Retrieve a substitution-result type. |
| QualType |
| ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, |
| QualType Replacement) const { |
| assert(Replacement.isCanonical() |
| && "replacement types must always be canonical"); |
| |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); |
| void *InsertPos = 0; |
| SubstTemplateTypeParmType *SubstParm |
| = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!SubstParm) { |
| SubstParm = new (*this, TypeAlignment) |
| SubstTemplateTypeParmType(Parm, Replacement); |
| Types.push_back(SubstParm); |
| SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); |
| } |
| |
| return QualType(SubstParm, 0); |
| } |
| |
| /// \brief Retrieve a |
| QualType ASTContext::getSubstTemplateTypeParmPackType( |
| const TemplateTypeParmType *Parm, |
| const TemplateArgument &ArgPack) { |
| #ifndef NDEBUG |
| for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(), |
| PEnd = ArgPack.pack_end(); |
| P != PEnd; ++P) { |
| assert(P->getKind() == TemplateArgument::Type &&"Pack contains a non-type"); |
| assert(P->getAsType().isCanonical() && "Pack contains non-canonical type"); |
| } |
| #endif |
| |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); |
| void *InsertPos = 0; |
| if (SubstTemplateTypeParmPackType *SubstParm |
| = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(SubstParm, 0); |
| |
| QualType Canon; |
| if (!Parm->isCanonicalUnqualified()) { |
| Canon = getCanonicalType(QualType(Parm, 0)); |
| Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), |
| ArgPack); |
| SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| SubstTemplateTypeParmPackType *SubstParm |
| = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, |
| ArgPack); |
| Types.push_back(SubstParm); |
| SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); |
| return QualType(SubstParm, 0); |
| } |
| |
| /// \brief Retrieve the template type parameter type for a template |
| /// parameter or parameter pack with the given depth, index, and (optionally) |
| /// name. |
| QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
| bool ParameterPack, |
| TemplateTypeParmDecl *TTPDecl) const { |
| llvm::FoldingSetNodeID ID; |
| TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
| void *InsertPos = 0; |
| TemplateTypeParmType *TypeParm |
| = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (TypeParm) |
| return QualType(TypeParm, 0); |
| |
| if (TTPDecl) { |
| QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
| TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); |
| |
| TemplateTypeParmType *TypeCheck |
| = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!TypeCheck && "Template type parameter canonical type broken"); |
| (void)TypeCheck; |
| } else |
| TypeParm = new (*this, TypeAlignment) |
| TemplateTypeParmType(Depth, Index, ParameterPack); |
| |
| Types.push_back(TypeParm); |
| TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); |
| |
| return QualType(TypeParm, 0); |
| } |
| |
| TypeSourceInfo * |
| ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, |
| SourceLocation NameLoc, |
| const TemplateArgumentListInfo &Args, |
| QualType Underlying) const { |
| assert(!Name.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| QualType TST = getTemplateSpecializationType(Name, Args, Underlying); |
| |
| TypeSourceInfo *DI = CreateTypeSourceInfo(TST); |
| TemplateSpecializationTypeLoc TL |
| = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); |
| TL.setTemplateKeywordLoc(SourceLocation()); |
| TL.setTemplateNameLoc(NameLoc); |
| TL.setLAngleLoc(Args.getLAngleLoc()); |
| TL.setRAngleLoc(Args.getRAngleLoc()); |
| for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
| TL.setArgLocInfo(i, Args[i].getLocInfo()); |
| return DI; |
| } |
| |
| QualType |
| ASTContext::getTemplateSpecializationType(TemplateName Template, |
| const TemplateArgumentListInfo &Args, |
| QualType Underlying) const { |
| assert(!Template.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| |
| unsigned NumArgs = Args.size(); |
| |
| SmallVector<TemplateArgument, 4> ArgVec; |
| ArgVec.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| ArgVec.push_back(Args[i].getArgument()); |
| |
| return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, |
| Underlying); |
| } |
| |
| #ifndef NDEBUG |
| static bool hasAnyPackExpansions(const TemplateArgument *Args, |
| unsigned NumArgs) { |
| for (unsigned I = 0; I != NumArgs; ++I) |
| if (Args[I].isPackExpansion()) |
| return true; |
| |
| return true; |
| } |
| #endif |
| |
| QualType |
| ASTContext::getTemplateSpecializationType(TemplateName Template, |
| const TemplateArgument *Args, |
| unsigned NumArgs, |
| QualType Underlying) const { |
| assert(!Template.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| // Look through qualified template names. |
| if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| Template = TemplateName(QTN->getTemplateDecl()); |
| |
| bool IsTypeAlias = |
| Template.getAsTemplateDecl() && |
| isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); |
| QualType CanonType; |
| if (!Underlying.isNull()) |
| CanonType = getCanonicalType(Underlying); |
| else { |
| // We can get here with an alias template when the specialization contains |
| // a pack expansion that does not match up with a parameter pack. |
| assert((!IsTypeAlias || hasAnyPackExpansions(Args, NumArgs)) && |
| "Caller must compute aliased type"); |
| IsTypeAlias = false; |
| CanonType = getCanonicalTemplateSpecializationType(Template, Args, |
| NumArgs); |
| } |
| |
| // Allocate the (non-canonical) template specialization type, but don't |
| // try to unique it: these types typically have location information that |
| // we don't unique and don't want to lose. |
| void *Mem = Allocate(sizeof(TemplateSpecializationType) + |
| sizeof(TemplateArgument) * NumArgs + |
| (IsTypeAlias? sizeof(QualType) : 0), |
| TypeAlignment); |
| TemplateSpecializationType *Spec |
| = new (Mem) TemplateSpecializationType(Template, Args, NumArgs, CanonType, |
| IsTypeAlias ? Underlying : QualType()); |
| |
| Types.push_back(Spec); |
| return QualType(Spec, 0); |
| } |
| |
| QualType |
| ASTContext::getCanonicalTemplateSpecializationType(TemplateName Template, |
| const TemplateArgument *Args, |
| unsigned NumArgs) const { |
| assert(!Template.getAsDependentTemplateName() && |
| "No dependent template names here!"); |
| |
| // Look through qualified template names. |
| if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| Template = TemplateName(QTN->getTemplateDecl()); |
| |
| // Build the canonical template specialization type. |
| TemplateName CanonTemplate = getCanonicalTemplateName(Template); |
| SmallVector<TemplateArgument, 4> CanonArgs; |
| CanonArgs.reserve(NumArgs); |
| for (unsigned I = 0; I != NumArgs; ++I) |
| CanonArgs.push_back(getCanonicalTemplateArgument(Args[I])); |
| |
| // Determine whether this canonical template specialization type already |
| // exists. |
| llvm::FoldingSetNodeID ID; |
| TemplateSpecializationType::Profile(ID, CanonTemplate, |
| CanonArgs.data(), NumArgs, *this); |
| |
| void *InsertPos = 0; |
| TemplateSpecializationType *Spec |
| = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!Spec) { |
| // Allocate a new canonical template specialization type. |
| void *Mem = Allocate((sizeof(TemplateSpecializationType) + |
| sizeof(TemplateArgument) * NumArgs), |
| TypeAlignment); |
| Spec = new (Mem) TemplateSpecializationType(CanonTemplate, |
| CanonArgs.data(), NumArgs, |
| QualType(), QualType()); |
| Types.push_back(Spec); |
| TemplateSpecializationTypes.InsertNode(Spec, InsertPos); |
| } |
| |
| assert(Spec->isDependentType() && |
| "Non-dependent template-id type must have a canonical type"); |
| return QualType(Spec, 0); |
| } |
| |
| QualType |
| ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| QualType NamedType) const { |
| llvm::FoldingSetNodeID ID; |
| ElaboratedType::Profile(ID, Keyword, NNS, NamedType); |
| |
| void *InsertPos = 0; |
| ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| QualType Canon = NamedType; |
| if (!Canon.isCanonical()) { |
| Canon = getCanonicalType(NamedType); |
| ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckT && "Elaborated canonical type broken"); |
| (void)CheckT; |
| } |
| |
| T = new (*this) ElaboratedType(Keyword, NNS, NamedType, Canon); |
| Types.push_back(T); |
| ElaboratedTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType |
| ASTContext::getParenType(QualType InnerType) const { |
| llvm::FoldingSetNodeID ID; |
| ParenType::Profile(ID, InnerType); |
| |
| void *InsertPos = 0; |
| ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| QualType Canon = InnerType; |
| if (!Canon.isCanonical()) { |
| Canon = getCanonicalType(InnerType); |
| ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckT && "Paren canonical type broken"); |
| (void)CheckT; |
| } |
| |
| T = new (*this) ParenType(InnerType, Canon); |
| Types.push_back(T); |
| ParenTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| QualType Canon) const { |
| assert(NNS->isDependent() && "nested-name-specifier must be dependent"); |
| |
| if (Canon.isNull()) { |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| ElaboratedTypeKeyword CanonKeyword = Keyword; |
| if (Keyword == ETK_None) |
| CanonKeyword = ETK_Typename; |
| |
| if (CanonNNS != NNS || CanonKeyword != Keyword) |
| Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); |
| } |
| |
| llvm::FoldingSetNodeID ID; |
| DependentNameType::Profile(ID, Keyword, NNS, Name); |
| |
| void *InsertPos = 0; |
| DependentNameType *T |
| = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| T = new (*this) DependentNameType(Keyword, NNS, Name, Canon); |
| Types.push_back(T); |
| DependentNameTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType |
| ASTContext::getDependentTemplateSpecializationType( |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| const TemplateArgumentListInfo &Args) const { |
| // TODO: avoid this copy |
| SmallVector<TemplateArgument, 16> ArgCopy; |
| for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| ArgCopy.push_back(Args[I].getArgument()); |
| return getDependentTemplateSpecializationType(Keyword, NNS, Name, |
| ArgCopy.size(), |
| ArgCopy.data()); |
| } |
| |
| QualType |
| ASTContext::getDependentTemplateSpecializationType( |
| ElaboratedTypeKeyword Keyword, |
| NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name, |
| unsigned NumArgs, |
| const TemplateArgument *Args) const { |
| assert((!NNS || NNS->isDependent()) && |
| "nested-name-specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, |
| Name, NumArgs, Args); |
| |
| void *InsertPos = 0; |
| DependentTemplateSpecializationType *T |
| = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| |
| ElaboratedTypeKeyword CanonKeyword = Keyword; |
| if (Keyword == ETK_None) CanonKeyword = ETK_Typename; |
| |
| bool AnyNonCanonArgs = false; |
| SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); |
| for (unsigned I = 0; I != NumArgs; ++I) { |
| CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); |
| if (!CanonArgs[I].structurallyEquals(Args[I])) |
| AnyNonCanonArgs = true; |
| } |
| |
| QualType Canon; |
| if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { |
| Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, |
| Name, NumArgs, |
| CanonArgs.data()); |
| |
| // Find the insert position again. |
| DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + |
| sizeof(TemplateArgument) * NumArgs), |
| TypeAlignment); |
| T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, |
| Name, NumArgs, Args, Canon); |
| Types.push_back(T); |
| DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| QualType ASTContext::getPackExpansionType(QualType Pattern, |
| llvm::Optional<unsigned> NumExpansions) { |
| llvm::FoldingSetNodeID ID; |
| PackExpansionType::Profile(ID, Pattern, NumExpansions); |
| |
| assert(Pattern->containsUnexpandedParameterPack() && |
| "Pack expansions must expand one or more parameter packs"); |
| void *InsertPos = 0; |
| PackExpansionType *T |
| = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (T) |
| return QualType(T, 0); |
| |
| QualType Canon; |
| if (!Pattern.isCanonical()) { |
| Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions); |
| |
| // Find the insert position again. |
| PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| T = new (*this) PackExpansionType(Pattern, Canon, NumExpansions); |
| Types.push_back(T); |
| PackExpansionTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| /// CmpProtocolNames - Comparison predicate for sorting protocols |
| /// alphabetically. |
| static bool CmpProtocolNames(const ObjCProtocolDecl *LHS, |
| const ObjCProtocolDecl *RHS) { |
| return LHS->getDeclName() < RHS->getDeclName(); |
| } |
| |
| static bool areSortedAndUniqued(ObjCProtocolDecl * const *Protocols, |
| unsigned NumProtocols) { |
| if (NumProtocols == 0) return true; |
| |
| if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
| return false; |
| |
| for (unsigned i = 1; i != NumProtocols; ++i) |
| if (!CmpProtocolNames(Protocols[i-1], Protocols[i]) || |
| Protocols[i]->getCanonicalDecl() != Protocols[i]) |
| return false; |
| return true; |
| } |
| |
| static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols, |
| unsigned &NumProtocols) { |
| ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols; |
| |
| // Sort protocols, keyed by name. |
| std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames); |
| |
| // Canonicalize. |
| for (unsigned I = 0, N = NumProtocols; I != N; ++I) |
| Protocols[I] = Protocols[I]->getCanonicalDecl(); |
| |
| // Remove duplicates. |
| ProtocolsEnd = std::unique(Protocols, ProtocolsEnd); |
| NumProtocols = ProtocolsEnd-Protocols; |
| } |
| |
| QualType ASTContext::getObjCObjectType(QualType BaseType, |
| ObjCProtocolDecl * const *Protocols, |
| unsigned NumProtocols) const { |
| // If the base type is an interface and there aren't any protocols |
| // to add, then the interface type will do just fine. |
| if (!NumProtocols && isa<ObjCInterfaceType>(BaseType)) |
| return BaseType; |
| |
| // Look in the folding set for an existing type. |
| llvm::FoldingSetNodeID ID; |
| ObjCObjectTypeImpl::Profile(ID, BaseType, Protocols, NumProtocols); |
| void *InsertPos = 0; |
| if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // Build the canonical type, which has the canonical base type and |
| // a sorted-and-uniqued list of protocols. |
| QualType Canonical; |
| bool ProtocolsSorted = areSortedAndUniqued(Protocols, NumProtocols); |
| if (!ProtocolsSorted || !BaseType.isCanonical()) { |
| if (!ProtocolsSorted) { |
| SmallVector<ObjCProtocolDecl*, 8> Sorted(Protocols, |
| Protocols + NumProtocols); |
| unsigned UniqueCount = NumProtocols; |
| |
| SortAndUniqueProtocols(&Sorted[0], UniqueCount); |
| Canonical = getObjCObjectType(getCanonicalType(BaseType), |
| &Sorted[0], UniqueCount); |
| } else { |
| Canonical = getObjCObjectType(getCanonicalType(BaseType), |
| Protocols, NumProtocols); |
| } |
| |
| // Regenerate InsertPos. |
| ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| unsigned Size = sizeof(ObjCObjectTypeImpl); |
| Size += NumProtocols * sizeof(ObjCProtocolDecl *); |
| void *Mem = Allocate(Size, TypeAlignment); |
| ObjCObjectTypeImpl *T = |
| new (Mem) ObjCObjectTypeImpl(Canonical, BaseType, Protocols, NumProtocols); |
| |
| Types.push_back(T); |
| ObjCObjectTypes.InsertNode(T, InsertPos); |
| return QualType(T, 0); |
| } |
| |
| /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
| /// the given object type. |
| QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
| llvm::FoldingSetNodeID ID; |
| ObjCObjectPointerType::Profile(ID, ObjectT); |
| |
| void *InsertPos = 0; |
| if (ObjCObjectPointerType *QT = |
| ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // Find the canonical object type. |
| QualType Canonical; |
| if (!ObjectT.isCanonical()) { |
| Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); |
| |
| // Regenerate InsertPos. |
| ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| // No match. |
| void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); |
| ObjCObjectPointerType *QType = |
| new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
| |
| Types.push_back(QType); |
| ObjCObjectPointerTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getObjCInterfaceType - Return the unique reference to the type for the |
| /// specified ObjC interface decl. The list of protocols is optional. |
| QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
| ObjCInterfaceDecl *PrevDecl) const { |
| if (Decl->TypeForDecl) |
| return QualType(Decl->TypeForDecl, 0); |
| |
| if (PrevDecl) { |
| assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); |
| Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| return QualType(PrevDecl->TypeForDecl, 0); |
| } |
| |
| // Prefer the definition, if there is one. |
| if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
| Decl = Def; |
| |
| void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); |
| ObjCInterfaceType *T = new (Mem) ObjCInterfaceType(Decl); |
| Decl->TypeForDecl = T; |
| Types.push_back(T); |
| return QualType(T, 0); |
| } |
| |
| /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
| /// TypeOfExprType AST's (since expression's are never shared). For example, |
| /// multiple declarations that refer to "typeof(x)" all contain different |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { |
| TypeOfExprType *toe; |
| if (tofExpr->isTypeDependent()) { |
| llvm::FoldingSetNodeID ID; |
| DependentTypeOfExprType::Profile(ID, *this, tofExpr); |
| |
| void *InsertPos = 0; |
| DependentTypeOfExprType *Canon |
| = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (Canon) { |
| // We already have a "canonical" version of an identical, dependent |
| // typeof(expr) type. Use that as our canonical type. |
| toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, |
| QualType((TypeOfExprType*)Canon, 0)); |
| } else { |
| // Build a new, canonical typeof(expr) type. |
| Canon |
| = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); |
| DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); |
| toe = Canon; |
| } |
| } else { |
| QualType Canonical = getCanonicalType(tofExpr->getType()); |
| toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); |
| } |
| Types.push_back(toe); |
| return QualType(toe, 0); |
| } |
| |
| /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| /// TypeOfType AST's. The only motivation to unique these nodes would be |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfType(QualType tofType) const { |
| QualType Canonical = getCanonicalType(tofType); |
| TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); |
| Types.push_back(tot); |
| return QualType(tot, 0); |
| } |
| |
| |
| /// getDecltypeType - Unlike many "get<Type>" functions, we don't unique |
| /// DecltypeType AST's. The only motivation to unique these nodes would be |
| /// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't effect the type checker, since it operates |
| /// on canonical types (which are always unique). |
| QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { |
| DecltypeType *dt; |
| |
| // C++0x [temp.type]p2: |
| // If an expression e involves a template parameter, decltype(e) denotes a |
| // unique dependent type. Two such decltype-specifiers refer to the same |
| // type only if their expressions are equivalent (14.5.6.1). |
| if (e->isInstantiationDependent()) { |
| llvm::FoldingSetNodeID ID; |
| DependentDecltypeType::Profile(ID, *this, e); |
| |
| void *InsertPos = 0; |
| DependentDecltypeType *Canon |
| = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); |
| if (Canon) { |
| // We already have a "canonical" version of an equivalent, dependent |
| // decltype type. Use that as our canonical type. |
| dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy, |
| QualType((DecltypeType*)Canon, 0)); |
| } else { |
| // Build a new, canonical typeof(expr) type. |
| Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); |
| DependentDecltypeTypes.InsertNode(Canon, InsertPos); |
| dt = Canon; |
| } |
| } else { |
| dt = new (*this, TypeAlignment) DecltypeType(e, UnderlyingType, |
| getCanonicalType(UnderlyingType)); |
| } |
| Types.push_back(dt); |
| return QualType(dt, 0); |
| } |
| |
| /// getUnaryTransformationType - We don't unique these, since the memory |
| /// savings are minimal and these are rare. |
| QualType ASTContext::getUnaryTransformType(QualType BaseType, |
| QualType UnderlyingType, |
| UnaryTransformType::UTTKind Kind) |
| const { |
| UnaryTransformType *Ty = |
| new (*this, TypeAlignment) UnaryTransformType (BaseType, UnderlyingType, |
| Kind, |
| UnderlyingType->isDependentType() ? |
| QualType() : getCanonicalType(UnderlyingType)); |
| Types.push_back(Ty); |
| return QualType(Ty, 0); |
| } |
| |
| /// getAutoType - We only unique auto types after they've been deduced. |
| QualType ASTContext::getAutoType(QualType DeducedType) const { |
| void *InsertPos = 0; |
| if (!DeducedType.isNull()) { |
| // Look in the folding set for an existing type. |
| llvm::FoldingSetNodeID ID; |
| AutoType::Profile(ID, DeducedType); |
| if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(AT, 0); |
| } |
| |
| AutoType *AT = new (*this, TypeAlignment) AutoType(DeducedType); |
| Types.push_back(AT); |
| if (InsertPos) |
| AutoTypes.InsertNode(AT, InsertPos); |
| return QualType(AT, 0); |
| } |
| |
| /// getAtomicType - Return the uniqued reference to the atomic type for |
| /// the given value type. |
| QualType ASTContext::getAtomicType(QualType T) const { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| AtomicType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(AT, 0); |
| |
| // If the atomic value type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T.isCanonical()) { |
| Canonical = getAtomicType(getCanonicalType(T)); |
| |
| // Get the new insert position for the node we care about. |
| AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); (void)NewIP; |
| } |
| AtomicType *New = new (*this, TypeAlignment) AtomicType(T, Canonical); |
| Types.push_back(New); |
| AtomicTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
| QualType ASTContext::getAutoDeductType() const { |
| if (AutoDeductTy.isNull()) |
| AutoDeductTy = getAutoType(QualType()); |
| assert(!AutoDeductTy.isNull() && "can't build 'auto' pattern"); |
| return AutoDeductTy; |
| } |
| |
| /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
| QualType ASTContext::getAutoRRefDeductType() const { |
| if (AutoRRefDeductTy.isNull()) |
| AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); |
| assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); |
| return AutoRRefDeductTy; |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
| assert (Decl); |
| // FIXME: What is the design on getTagDeclType when it requires casting |
| // away const? mutable? |
| return getTypeDeclType(const_cast<TagDecl*>(Decl)); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| CanQualType ASTContext::getSizeType() const { |
| return getFromTargetType(Target->getSizeType()); |
| } |
| |
| /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
| CanQualType ASTContext::getIntMaxType() const { |
| return getFromTargetType(Target->getIntMaxType()); |
| } |
| |
| /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
| CanQualType ASTContext::getUIntMaxType() const { |
| return getFromTargetType(Target->getUIntMaxType()); |
| } |
| |
| /// getSignedWCharType - Return the type of "signed wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getSignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return WCharTy; |
| } |
| |
| /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
| /// Used when in C++, as a GCC extension. |
| QualType ASTContext::getUnsignedWCharType() const { |
| // FIXME: derive from "Target" ? |
| return UnsignedIntTy; |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| return getFromTargetType(Target->getPtrDiffType(0)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Operators |
| //===----------------------------------------------------------------------===// |
| |
| CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
| // Push qualifiers into arrays, and then discard any remaining |
| // qualifiers. |
| T = getCanonicalType(T); |
| T = getVariableArrayDecayedType(T); |
| const Type *Ty = T.getTypePtr(); |
| QualType Result; |
| if (isa<ArrayType>(Ty)) { |
| Result = getArrayDecayedType(QualType(Ty,0)); |
| } else if (isa<FunctionType>(Ty)) { |
| Result = getPointerType(QualType(Ty, 0)); |
| } else { |
| Result = QualType(Ty, 0); |
| } |
| |
| return CanQualType::CreateUnsafe(Result); |
| } |
| |
| QualType ASTContext::getUnqualifiedArrayType(QualType type, |
| Qualifiers &quals) { |
| SplitQualType splitType = type.getSplitUnqualifiedType(); |
| |
| // FIXME: getSplitUnqualifiedType() actually walks all the way to |
| // the unqualified desugared type and then drops it on the floor. |
| // We then have to strip that sugar back off with |
| // getUnqualifiedDesugaredType(), which is silly. |
| const ArrayType *AT = |
| dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); |
| |
| // If we don't have an array, just use the results in splitType. |
| if (!AT) { |
| quals = splitType.Quals; |
| return QualType(splitType.Ty, 0); |
| } |
| |
| // Otherwise, recurse on the array's element type. |
| QualType elementType = AT->getElementType(); |
| QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); |
| |
| // If that didn't change the element type, AT has no qualifiers, so we |
| // can just use the results in splitType. |
| if (elementType == unqualElementType) { |
| assert(quals.empty()); // from the recursive call |
| quals = splitType.Quals; |
| return QualType(splitType.Ty, 0); |
| } |
| |
| // Otherwise, add in the qualifiers from the outermost type, then |
| // build the type back up. |
| quals.addConsistentQualifiers(splitType.Quals); |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| return getConstantArrayType(unqualElementType, CAT->getSize(), |
| CAT->getSizeModifier(), 0); |
| } |
| |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
| return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); |
| } |
| |
| if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT)) { |
| return getVariableArrayType(unqualElementType, |
| VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeCVRQualifiers(), |
| VAT->getBracketsRange()); |
| } |
| |
| const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(AT); |
| return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), |
| DSAT->getSizeModifier(), 0, |
| SourceRange()); |
| } |
| |
| /// UnwrapSimilarPointerTypes - If T1 and T2 are pointer types that |
| /// may be similar (C++ 4.4), replaces T1 and T2 with the type that |
| /// they point to and return true. If T1 and T2 aren't pointer types |
| /// or pointer-to-member types, or if they are not similar at this |
| /// level, returns false and leaves T1 and T2 unchanged. Top-level |
| /// qualifiers on T1 and T2 are ignored. This function will typically |
| /// be called in a loop that successively "unwraps" pointer and |
| /// pointer-to-member types to compare them at each level. |
| bool ASTContext::UnwrapSimilarPointerTypes(QualType &T1, QualType &T2) { |
| const PointerType *T1PtrType = T1->getAs<PointerType>(), |
| *T2PtrType = T2->getAs<PointerType>(); |
| if (T1PtrType && T2PtrType) { |
| T1 = T1PtrType->getPointeeType(); |
| T2 = T2PtrType->getPointeeType(); |
| return true; |
| } |
| |
| const MemberPointerType *T1MPType = T1->getAs<MemberPointerType>(), |
| *T2MPType = T2->getAs<MemberPointerType>(); |
| if (T1MPType && T2MPType && |
| hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), |
| QualType(T2MPType->getClass(), 0))) { |
| T1 = T1MPType->getPointeeType(); |
| T2 = T2MPType->getPointeeType(); |
| return true; |
| } |
| |
| if (getLangOpts().ObjC1) { |
| const ObjCObjectPointerType *T1OPType = T1->getAs<ObjCObjectPointerType>(), |
| *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
| if (T1OPType && T2OPType) { |
| T1 = T1OPType->getPointeeType(); |
| T2 = T2OPType->getPointeeType(); |
| return true; |
| } |
| } |
| |
| // FIXME: Block pointers, too? |
| |
| return false; |
| } |
| |
| DeclarationNameInfo |
| ASTContext::getNameForTemplate(TemplateName Name, |
| SourceLocation NameLoc) const { |
| switch (Name.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| case TemplateName::Template: |
| // DNInfo work in progress: CHECKME: what about DNLoc? |
| return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
| NameLoc); |
| |
| case TemplateName::OverloadedTemplate: { |
| OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
| // DNInfo work in progress: CHECKME: what about DNLoc? |
| return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
| } |
| |
| case TemplateName::DependentTemplate: { |
| DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| DeclarationName DName; |
| if (DTN->isIdentifier()) { |
| DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); |
| return DeclarationNameInfo(DName, NameLoc); |
| } else { |
| DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); |
| // DNInfo work in progress: FIXME: source locations? |
| DeclarationNameLoc DNLoc; |
| DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding(); |
| DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding(); |
| return DeclarationNameInfo(DName, NameLoc, DNLoc); |
| } |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst |
| = Name.getAsSubstTemplateTemplateParm(); |
| return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
| NameLoc); |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| SubstTemplateTemplateParmPackStorage *subst |
| = Name.getAsSubstTemplateTemplateParmPack(); |
| return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
| NameLoc); |
| } |
| } |
| |
| llvm_unreachable("bad template name kind!"); |
| } |
| |
| TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { |
| switch (Name.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| case TemplateName::Template: { |
| TemplateDecl *Template = Name.getAsTemplateDecl(); |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Template)) |
| Template = getCanonicalTemplateTemplateParmDecl(TTP); |
| |
| // The canonical template name is the canonical template declaration. |
| return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); |
| } |
| |
| case TemplateName::OverloadedTemplate: |
| llvm_unreachable("cannot canonicalize overloaded template"); |
| |
| case TemplateName::DependentTemplate: { |
| DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| assert(DTN && "Non-dependent template names must refer to template decls."); |
| return DTN->CanonicalTemplateName; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst |
| = Name.getAsSubstTemplateTemplateParm(); |
| return getCanonicalTemplateName(subst->getReplacement()); |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| SubstTemplateTemplateParmPackStorage *subst |
| = Name.getAsSubstTemplateTemplateParmPack(); |
| TemplateTemplateParmDecl *canonParameter |
| = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); |
| TemplateArgument canonArgPack |
| = getCanonicalTemplateArgument(subst->getArgumentPack()); |
| return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); |
| } |
| } |
| |
| llvm_unreachable("bad template name!"); |
| } |
| |
| bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { |
| X = getCanonicalTemplateName(X); |
| Y = getCanonicalTemplateName(Y); |
| return X.getAsVoidPointer() == Y.getAsVoidPointer(); |
| } |
| |
| TemplateArgument |
| ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| return Arg; |
| |
| case TemplateArgument::Expression: |
| return Arg; |
| |
| case TemplateArgument::Declaration: { |
| if (Decl *D = Arg.getAsDecl()) |
| return TemplateArgument(D->getCanonicalDecl()); |
| return TemplateArgument((Decl*)0); |
| } |
| |
| case TemplateArgument::Template: |
| return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); |
| |
| case TemplateArgument::TemplateExpansion: |
| return TemplateArgument(getCanonicalTemplateName( |
| Arg.getAsTemplateOrTemplatePattern()), |
| Arg.getNumTemplateExpansions()); |
| |
| case TemplateArgument::Integral: |
| return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); |
| |
| case TemplateArgument::Type: |
| return TemplateArgument(getCanonicalType(Arg.getAsType())); |
| |
| case TemplateArgument::Pack: { |
| if (Arg.pack_size() == 0) |
| return Arg; |
| |
| TemplateArgument *CanonArgs |
| = new (*this) TemplateArgument[Arg.pack_size()]; |
| unsigned Idx = 0; |
| for (TemplateArgument::pack_iterator A = Arg.pack_begin(), |
| AEnd = Arg.pack_end(); |
| A != AEnd; (void)++A, ++Idx) |
| CanonArgs[Idx] = getCanonicalTemplateArgument(*A); |
| |
| return TemplateArgument(CanonArgs, Arg.pack_size()); |
| } |
| } |
| |
| // Silence GCC warning |
| llvm_unreachable("Unhandled template argument kind"); |
| } |
| |
| NestedNameSpecifier * |
| ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
| if (!NNS) |
| return 0; |
| |
| switch (NNS->getKind()) { |
| case NestedNameSpecifier::Identifier: |
| // Canonicalize the prefix but keep the identifier the same. |
| return NestedNameSpecifier::Create(*this, |
| getCanonicalNestedNameSpecifier(NNS->getPrefix()), |
| NNS->getAsIdentifier()); |
| |
| case NestedNameSpecifier::Namespace: |
| // A namespace is canonical; build a nested-name-specifier with |
| // this namespace and no prefix. |
| return NestedNameSpecifier::Create(*this, 0, |
| NNS->getAsNamespace()->getOriginalNamespace()); |
| |
| case NestedNameSpecifier::NamespaceAlias: |
| // A namespace is canonical; build a nested-name-specifier with |
| // this namespace and no prefix. |
| return NestedNameSpecifier::Create(*this, 0, |
| NNS->getAsNamespaceAlias()->getNamespace() |
| ->getOriginalNamespace()); |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: { |
| QualType T = getCanonicalType(QualType(NNS->getAsType(), 0)); |
| |
| // If we have some kind of dependent-named type (e.g., "typename T::type"), |
| // break it apart into its prefix and identifier, then reconsititute those |
| // as the canonical nested-name-specifier. This is required to canonicalize |
| // a dependent nested-name-specifier involving typedefs of dependent-name |
| // types, e.g., |
| // typedef typename T::type T1; |
| // typedef typename T1::type T2; |
| if (const DependentNameType *DNT = T->getAs<DependentNameType>()) |
| return NestedNameSpecifier::Create(*this, DNT->getQualifier(), |
| const_cast<IdentifierInfo *>(DNT->getIdentifier())); |
| |
| // Otherwise, just canonicalize the type, and force it to be a TypeSpec. |
| // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the |
| // first place? |
| return NestedNameSpecifier::Create(*this, 0, false, |
| const_cast<Type*>(T.getTypePtr())); |
| } |
| |
| case NestedNameSpecifier::Global: |
| // The global specifier is canonical and unique. |
| return NNS; |
| } |
| |
| llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); |
| } |
| |
| |
| const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
| // Handle the non-qualified case efficiently. |
| if (!T.hasLocalQualifiers()) { |
| // Handle the common positive case fast. |
| if (const ArrayType *AT = dyn_cast<ArrayType>(T)) |
| return AT; |
| } |
| |
| // Handle the common negative case fast. |
| if (!isa<ArrayType>(T.getCanonicalType())) |
| return 0; |
| |
| // Apply any qualifiers from the array type to the element type. This |
| // implements C99 6.7.3p8: "If the specification of an array type includes |
| // any type qualifiers, the element type is so qualified, not the array type." |
| |
| // If we get here, we either have type qualifiers on the type, or we have |
| // sugar such as a typedef in the way. If we have type qualifiers on the type |
| // we must propagate them down into the element type. |
| |
| SplitQualType split = T.getSplitDesugaredType(); |
| Qualifiers qs = split.Quals; |
| |
| // If we have a simple case, just return now. |
| const ArrayType *ATy = dyn_cast<ArrayType>(split.Ty); |
| if (ATy == 0 || qs.empty()) |
| return ATy; |
| |
| // Otherwise, we have an array and we have qualifiers on it. Push the |
| // qualifiers into the array element type and return a new array type. |
| QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy)) |
| return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), |
| CAT->getSizeModifier(), |
| CAT->getIndexTypeCVRQualifiers())); |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy)) |
| return cast<ArrayType>(getIncompleteArrayType(NewEltTy, |
| IAT->getSizeModifier(), |
| IAT->getIndexTypeCVRQualifiers())); |
| |
| if (const DependentSizedArrayType *DSAT |
| = dyn_cast<DependentSizedArrayType>(ATy)) |
| return cast<ArrayType>( |
| getDependentSizedArrayType(NewEltTy, |
| DSAT->getSizeExpr(), |
| DSAT->getSizeModifier(), |
| DSAT->getIndexTypeCVRQualifiers(), |
| DSAT->getBracketsRange())); |
| |
| const VariableArrayType *VAT = cast<VariableArrayType>(ATy); |
| return cast<ArrayType>(getVariableArrayType(NewEltTy, |
| VAT->getSizeExpr(), |
| VAT->getSizeModifier(), |
| VAT->getIndexTypeCVRQualifiers(), |
| VAT->getBracketsRange())); |
| } |
| |
| QualType ASTContext::getAdjustedParameterType(QualType T) const { |
| // C99 6.7.5.3p7: |
| // A declaration of a parameter as "array of type" shall be |
| // adjusted to "qualified pointer to type", where the type |
| // qualifiers (if any) are those specified within the [ and ] of |
| // the array type derivation. |
| if (T->isArrayType()) |
| return getArrayDecayedType(T); |
| |
| // C99 6.7.5.3p8: |
| // A declaration of a parameter as "function returning type" |
| // shall be adjusted to "pointer to function returning type", as |
| // in 6.3.2.1. |
| if (T->isFunctionType()) |
| return getPointerType(T); |
| |
| return T; |
| } |
| |
| QualType ASTContext::getSignatureParameterType(QualType T) const { |
| T = getVariableArrayDecayedType(T); |
| T = getAdjustedParameterType(T); |
| return T.getUnqualifiedType(); |
| } |
| |
| /// getArrayDecayedType - Return the properly qualified result of decaying the |
| /// specified array type to a pointer. This operation is non-trivial when |
| /// handling typedefs etc. The canonical type of "T" must be an array type, |
| /// this returns a pointer to a properly qualified element of the array. |
| /// |
| /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
| QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
| // Get the element type with 'getAsArrayType' so that we don't lose any |
| // typedefs in the element type of the array. This also handles propagation |
| // of type qualifiers from the array type into the element type if present |
| // (C99 6.7.3p8). |
| const ArrayType *PrettyArrayType = getAsArrayType(Ty); |
| assert(PrettyArrayType && "Not an array type!"); |
| |
| QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); |
| |
| // int x[restrict 4] -> int *restrict |
| return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers()); |
| } |
| |
| QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
| return getBaseElementType(array->getElementType()); |
| } |
| |
| QualType ASTContext::getBaseElementType(QualType type) const { |
| Qualifiers qs; |
| while (true) { |
| SplitQualType split = type.getSplitDesugaredType(); |
| const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
| if (!array) break; |
| |
| type = array->getElementType(); |
| qs.addConsistentQualifiers(split.Quals); |
| } |
| |
| return getQualifiedType(type, qs); |
| } |
| |
| /// getConstantArrayElementCount - Returns number of constant array elements. |
| uint64_t |
| ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
| uint64_t ElementCount = 1; |
| do { |
| ElementCount *= CA->getSize().getZExtValue(); |
| CA = dyn_cast<ConstantArrayType>(CA->getElementType()); |
| } while (CA); |
| return ElementCount; |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static FloatingRank getFloatingRank(QualType T) { |
| if (const ComplexType *CT = T->getAs<ComplexType>()) |
| return getFloatingRank(CT->getElementType()); |
| |
| assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type"); |
| switch (T->getAs<BuiltinType>()->getKind()) { |
| default: llvm_unreachable("getFloatingRank(): not a floating type"); |
| case BuiltinType::Half: return HalfRank; |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| } |
| } |
| |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| /// point or a complex type (based on typeDomain/typeSize). |
| /// 'typeDomain' is a real floating point or complex type. |
| /// 'typeSize' is a real floating point or complex type. |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, |
| QualType Domain) const { |
| FloatingRank EltRank = getFloatingRank(Size); |
| if (Domain->isComplexType()) { |
| switch (EltRank) { |
| case HalfRank: llvm_unreachable("Complex half is not supported"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| } |
| } |
| |
| assert(Domain->isRealFloatingType() && "Unknown domain!"); |
| switch (EltRank) { |
| case HalfRank: llvm_unreachable("Half ranks are not valid here"); |
| case FloatRank: return FloatTy; |
| case DoubleRank: return DoubleTy; |
| case LongDoubleRank: return LongDoubleTy; |
| } |
| llvm_unreachable("getFloatingRank(): illegal value for rank"); |
| } |
| |
| /// getFloatingTypeOrder - Compare the rank of the two specified floating |
| /// point types, ignoring the domain of the type (i.e. 'double' == |
| /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
| FloatingRank LHSR = getFloatingRank(LHS); |
| FloatingRank RHSR = getFloatingRank(RHS); |
| |
| if (LHSR == RHSR) |
| return 0; |
| if (LHSR > RHSR) |
| return 1; |
| return -1; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum, |
| /// or if it is not canonicalized. |
| unsigned ASTContext::getIntegerRank(const Type *T) const { |
| assert(T->isCanonicalUnqualified() && "T should be canonicalized"); |
| |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: llvm_unreachable("getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1 + (getIntWidth(BoolTy) << 3); |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2 + (getIntWidth(CharTy) << 3); |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3 + (getIntWidth(ShortTy) << 3); |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4 + (getIntWidth(IntTy) << 3); |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5 + (getIntWidth(LongTy) << 3); |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6 + (getIntWidth(LongLongTy) << 3); |
| case BuiltinType::Int128: |
| case BuiltinType::UInt128: |
| return 7 + (getIntWidth(Int128Ty) << 3); |
| } |
| } |
| |
| /// \brief Whether this is a promotable bitfield reference according |
| /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
| /// |
| /// \returns the type this bit-field will promote to, or NULL if no |
| /// promotion occurs. |
| QualType ASTContext::isPromotableBitField(Expr *E) const { |
| if (E->isTypeDependent() || E->isValueDependent()) |
| return QualType(); |
| |
| FieldDecl *Field = E->getBitField(); |
| if (!Field) |
| return QualType(); |
| |
| QualType FT = Field->getType(); |
| |
| uint64_t BitWidth = Field->getBitWidthValue(*this); |
| uint64_t IntSize = getTypeSize(IntTy); |
| // GCC extension compatibility: if the bit-field size is less than or equal |
| // to the size of int, it gets promoted no matter what its type is. |
| // For instance, unsigned long bf : 4 gets promoted to signed int. |
| if (BitWidth < IntSize) |
| return IntTy; |
| |
| if (BitWidth == IntSize) |
| return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
| |
| // Types bigger than int are not subject to promotions, and therefore act |
| // like the base type. |
| // FIXME: This doesn't quite match what gcc does, but what gcc does here |
| // is ridiculous. |
| return QualType(); |
| } |
| |
| /// getPromotedIntegerType - Returns the type that Promotable will |
| /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
| /// integer type. |
| QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
| assert(!Promotable.isNull()); |
| assert(Promotable->isPromotableIntegerType()); |
| if (const EnumType *ET = Promotable->getAs<EnumType>()) |
| return ET->getDecl()->getPromotionType(); |
| |
| if (const BuiltinType *BT = Promotable->getAs<BuiltinType>()) { |
| // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
| // (3.9.1) can be converted to a prvalue of the first of the following |
| // types that can represent all the values of its underlying type: |
| // int, unsigned int, long int, unsigned long int, long long int, or |
| // unsigned long long int [...] |
| // FIXME: Is there some better way to compute this? |
| if (BT->getKind() == BuiltinType::WChar_S || |
| BT->getKind() == BuiltinType::WChar_U || |
| BT->getKind() == BuiltinType::Char16 || |
| BT->getKind() == BuiltinType::Char32) { |
| bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
| uint64_t FromSize = getTypeSize(BT); |
| QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
| LongLongTy, UnsignedLongLongTy }; |
| for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { |
| uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); |
| if (FromSize < ToSize || |
| (FromSize == ToSize && |
| FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) |
| return PromoteTypes[Idx]; |
| } |
| llvm_unreachable("char type should fit into long long"); |
| } |
| } |
| |
| // At this point, we should have a signed or unsigned integer type. |
| if (Promotable->isSignedIntegerType()) |
| return IntTy; |
| uint64_t PromotableSize = getTypeSize(Promotable); |
| uint64_t IntSize = getTypeSize(IntTy); |
| assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); |
| return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
| } |
| |
| /// \brief Recurses in pointer/array types until it finds an objc retainable |
| /// type and returns its ownership. |
| Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
| while (!T.isNull()) { |
| if (T.getObjCLifetime() != Qualifiers::OCL_None) |
| return T.getObjCLifetime(); |
| if (T->isArrayType()) |
| T = getBaseElementType(T); |
| else if (const PointerType *PT = T->getAs<PointerType>()) |
| T = PT->getPointeeType(); |
| else if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
| T = RT->getPointeeType(); |
| else |
| break; |
| } |
| |
| return Qualifiers::OCL_None; |
| } |
| |
| /// getIntegerTypeOrder - Returns the highest ranked integer type: |
| /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| /// LHS < RHS, return -1. |
| int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
| const Type *LHSC = getCanonicalType(LHS).getTypePtr(); |
| const Type *RHSC = getCanonicalType(RHS).getTypePtr(); |
| if (LHSC == RHSC) return 0; |
| |
| bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
| bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
| |
| unsigned LHSRank = getIntegerRank(LHSC); |
| unsigned RHSRank = getIntegerRank(RHSC); |
| |
| if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
| if (LHSRank == RHSRank) return 0; |
| return LHSRank > RHSRank ? 1 : -1; |
| } |
| |
| // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
| if (LHSUnsigned) { |
| // If the unsigned [LHS] type is larger, return it. |
| if (LHSRank >= RHSRank) |
| return 1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return -1; |
| } |
| |
| // If the unsigned [RHS] type is larger, return it. |
| if (RHSRank >= LHSRank) |
| return -1; |
| |
| // If the signed type can represent all values of the unsigned type, it |
| // wins. Because we are dealing with 2's complement and types that are |
| // powers of two larger than each other, this is always safe. |
| return 1; |
| } |
| |
| static RecordDecl * |
| CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, |
| DeclContext *DC, IdentifierInfo *Id) { |
| SourceLocation Loc; |
| if (Ctx.getLangOpts().CPlusPlus) |
| return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); |
| else |
| return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); |
| } |
| |
| // getCFConstantStringType - Return the type used for constant CFStrings. |
| QualType ASTContext::getCFConstantStringType() const { |
| if (!CFConstantStringTypeDecl) { |
| CFConstantStringTypeDecl = |
| CreateRecordDecl(*this, TTK_Struct, TUDecl, |
| &Idents.get("NSConstantString")); |
| CFConstantStringTypeDecl->startDefinition(); |
| |
| QualType FieldTypes[4]; |
| |
| // const int *isa; |
| FieldTypes[0] = getPointerType(IntTy.withConst()); |
| // int flags; |
| FieldTypes[1] = IntTy; |
| // const char *str; |
| FieldTypes[2] = getPointerType(CharTy.withConst()); |
| // long length; |
| FieldTypes[3] = LongTy; |
| |
| // Create fields |
| for (unsigned i = 0; i < 4; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl, |
| SourceLocation(), |
| SourceLocation(), 0, |
| FieldTypes[i], /*TInfo=*/0, |
| /*BitWidth=*/0, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| CFConstantStringTypeDecl->addDecl(Field); |
| } |
| |
| CFConstantStringTypeDecl->completeDefinition(); |
| } |
| |
| return getTagDeclType(CFConstantStringTypeDecl); |
| } |
| |
| void ASTContext::setCFConstantStringType(QualType T) { |
| const RecordType *Rec = T->getAs<RecordType>(); |
| assert(Rec && "Invalid CFConstantStringType"); |
| CFConstantStringTypeDecl = Rec->getDecl(); |
| } |
| |
| QualType ASTContext::getBlockDescriptorType() const { |
| if (BlockDescriptorType) |
| return getTagDeclType(BlockDescriptorType); |
| |
| RecordDecl *T; |
| // FIXME: Needs the FlagAppleBlock bit. |
| T = CreateRecordDecl(*this, TTK_Struct, TUDecl, |
| &Idents.get("__block_descriptor")); |
| T->startDefinition(); |
| |
| QualType FieldTypes[] = { |
| UnsignedLongTy, |
| UnsignedLongTy, |
| }; |
| |
| const char *FieldNames[] = { |
| "reserved", |
| "Size" |
| }; |
| |
| for (size_t i = 0; i < 2; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(), |
| SourceLocation(), |
| &Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/0, |
| /*BitWidth=*/0, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| T->addDecl(Field); |
| } |
| |
| T->completeDefinition(); |
| |
| BlockDescriptorType = T; |
| |
| return getTagDeclType(BlockDescriptorType); |
| } |
| |
| QualType ASTContext::getBlockDescriptorExtendedType() const { |
| if (BlockDescriptorExtendedType) |
| return getTagDeclType(BlockDescriptorExtendedType); |
| |
| RecordDecl *T; |
| // FIXME: Needs the FlagAppleBlock bit. |
| T = CreateRecordDecl(*this, TTK_Struct, TUDecl, |
| &Idents.get("__block_descriptor_withcopydispose")); |
| T->startDefinition(); |
| |
| QualType FieldTypes[] = { |
| UnsignedLongTy, |
| UnsignedLongTy, |
| getPointerType(VoidPtrTy), |
| getPointerType(VoidPtrTy) |
| }; |
| |
| const char *FieldNames[] = { |
| "reserved", |
| "Size", |
| "CopyFuncPtr", |
| "DestroyFuncPtr" |
| }; |
| |
| for (size_t i = 0; i < 4; ++i) { |
| FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(), |
| SourceLocation(), |
| &Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/0, |
| /*BitWidth=*/0, |
| /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| T->addDecl(Field); |
| } |
| |
| T->completeDefinition(); |
| |
| BlockDescriptorExtendedType = T; |
| |
| return getTagDeclType(BlockDescriptorExtendedType); |
| } |
| |
| bool ASTContext::BlockRequiresCopying(QualType Ty) const { |
| if (Ty->isObjCRetainableType()) |
| return true; |
| if (getLangOpts().CPlusPlus) { |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
| return RD->hasConstCopyConstructor(); |
| |
| } |
| } |
| return false; |
| } |
| |
| QualType |
| ASTContext::BuildByRefType(StringRef DeclName, QualType Ty) const { |
| // type = struct __Block_byref_1_X { |
| // void *__isa; |
| // struct __Block_byref_1_X *__forwarding; |
| // unsigned int __flags; |
| // unsigned int __size; |
| // void *__copy_helper; // as needed |
| // void *__destroy_help // as needed |
| // int X; |
| // } * |
| |
| bool HasCopyAndDispose = BlockRequiresCopying(Ty); |
| |
| // FIXME: Move up |
| SmallString<36> Name; |
| llvm::raw_svector_ostream(Name) << "__Block_byref_" << |
| ++UniqueBlockByRefTypeID << '_' << DeclName; |
| RecordDecl *T; |
| T = CreateRecordDecl(*this, TTK_Struct, TUDecl, &Idents.get(Name.str())); |
| T->startDefinition(); |
| QualType Int32Ty = IntTy; |
| assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported"); |
| QualType FieldTypes[] = { |
| getPointerType(VoidPtrTy), |
| getPointerType(getTagDeclType(T)), |
| Int32Ty, |
| Int32Ty, |
| getPointerType(VoidPtrTy), |
| getPointerType(VoidPtrTy), |
| Ty |
| }; |
| |
| StringRef FieldNames[] = { |
| "__isa", |
| "__forwarding", |
| "__flags", |
| "__size", |
| "__copy_helper", |
| "__destroy_helper", |
| DeclName, |
| }; |
| |
| for (size_t i = 0; i < 7; ++i) { |
| if (!HasCopyAndDispose && i >=4 && i <= 5) |
| continue; |
| FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(), |
| SourceLocation(), |
| &Idents.get(FieldNames[i]), |
| FieldTypes[i], /*TInfo=*/0, |
| /*BitWidth=*/0, /*Mutable=*/false, |
| ICIS_NoInit); |
| Field->setAccess(AS_public); |
| T->addDecl(Field); |
| } |
| |
| T->completeDefinition(); |
| |
| return getPointerType(getTagDeclType(T)); |
| } |
| |
| TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
| if (!ObjCInstanceTypeDecl) |
| ObjCInstanceTypeDecl = TypedefDecl::Create(*this, |
| getTranslationUnitDecl(), |
| SourceLocation(), |
| SourceLocation(), |
| &Idents.get("instancetype"), |
| getTrivialTypeSourceInfo(getObjCIdType())); |
| return ObjCInstanceTypeDecl; |
| } |
| |
| // This returns true if a type has been typedefed to BOOL: |
| // typedef <type> BOOL; |
| static bool isTypeTypedefedAsBOOL(QualType T) { |
| if (const TypedefType *TT = dyn_cast<TypedefType>(T)) |
| if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
| return II->isStr("BOOL"); |
| |
| return false; |
| } |
| |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| /// purpose. |
| CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
| if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
| return CharUnits::Zero(); |
| |
| CharUnits sz = getTypeSizeInChars(type); |
| |
| // Make all integer and enum types at least as large as an int |
| if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
| sz = std::max(sz, getTypeSizeInChars(IntTy)); |
| // Treat arrays as pointers, since that's how they're passed in. |
| else if (type->isArrayType()) |
| sz = getTypeSizeInChars(VoidPtrTy); |
| return sz; |
| } |
| |
| static inline |
| std::string charUnitsToString(const CharUnits &CU) { |
| return llvm::itostr(CU.getQuantity()); |
| } |
| |
| /// getObjCEncodingForBlock - Return the encoded type for this block |
| /// declaration. |
| std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
| std::string S; |
| |
| const BlockDecl *Decl = Expr->getBlockDecl(); |
| QualType BlockTy = |
| Expr->getType()->getAs<BlockPointerType>()->getPointeeType(); |
| // Encode result type. |
| getObjCEncodingForType(BlockTy->getAs<FunctionType>()->getResultType(), S); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| SourceLocation Loc; |
| CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| CharUnits ParmOffset = PtrSize; |
| for (BlockDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->param_end(); PI != E; ++PI) { |
| QualType PType = (*PI)->getType(); |
| CharUnits sz = getObjCEncodingTypeSize(PType); |
| assert (sz.isPositive() && "BlockExpr - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| // Size of the argument frame |
| S += charUnitsToString(ParmOffset); |
| // Block pointer and offset. |
| S += "@?0"; |
| |
| // Argument types. |
| ParmOffset = PtrSize; |
| for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E = |
| Decl->param_end(); PI != E; ++PI) { |
| ParmVarDecl *PVDecl = *PI; |
| QualType PType = PVDecl->getOriginalType(); |
| if (const ArrayType *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!isa<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| } else if (PType->isFunctionType()) |
| PType = PVDecl->getType(); |
| getObjCEncodingForType(PType, S); |
| S += charUnitsToString(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| |
| return S; |
| } |
| |
| bool ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl, |
| std::string& S) { |
| // Encode result type. |
| getObjCEncodingForType(Decl->getResultType(), S); |
| CharUnits ParmOffset; |
| // Compute size of all parameters. |
| for (FunctionDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->param_end(); PI != E; ++PI) { |
| QualType PType = (*PI)->getType(); |
| CharUnits sz = getObjCEncodingTypeSize(PType); |
| if (sz.isZero()) |
| return true; |
| |
| assert (sz.isPositive() && |
| "getObjCEncodingForFunctionDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += charUnitsToString(ParmOffset); |
| ParmOffset = CharUnits::Zero(); |
| |
| // Argument types. |
| for (FunctionDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->param_end(); PI != E; ++PI) { |
| ParmVarDecl *PVDecl = *PI; |
| QualType PType = PVDecl->getOriginalType(); |
| if (const ArrayType *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!isa<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| } else if (PType->isFunctionType()) |
| PType = PVDecl->getType(); |
| getObjCEncodingForType(PType, S); |
| S += charUnitsToString(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| |
| return false; |
| } |
| |
| /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
| /// method parameter or return type. If Extended, include class names and |
| /// block object types. |
| void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
| QualType T, std::string& S, |
| bool Extended) const { |
| // Encode type qualifer, 'in', 'inout', etc. for the parameter. |
| getObjCEncodingForTypeQualifier(QT, S); |
| // Encode parameter type. |
| getObjCEncodingForTypeImpl(T, S, true, true, 0, |
| true /*OutermostType*/, |
| false /*EncodingProperty*/, |
| false /*StructField*/, |
| Extended /*EncodeBlockParameters*/, |
| Extended /*EncodeClassNames*/); |
| } |
| |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| /// declaration. |
| bool ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
| std::string& S, |
| bool Extended) const { |
| // FIXME: This is not very efficient. |
| // Encode return type. |
| getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), |
| Decl->getResultType(), S, Extended); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| SourceLocation Loc; |
| CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| // The first two arguments (self and _cmd) are pointers; account for |
| // their size. |
| CharUnits ParmOffset = 2 * PtrSize; |
| for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->sel_param_end(); PI != E; ++PI) { |
| QualType PType = (*PI)->getType(); |
| CharUnits sz = getObjCEncodingTypeSize(PType); |
| if (sz.isZero()) |
| return true; |
| |
| assert (sz.isPositive() && |
| "getObjCEncodingForMethodDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += charUnitsToString(ParmOffset); |
| S += "@0:"; |
| S += charUnitsToString(PtrSize); |
| |
| // Argument types. |
| ParmOffset = 2 * PtrSize; |
| for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| E = Decl->sel_param_end(); PI != E; ++PI) { |
| const ParmVarDecl *PVDecl = *PI; |
| QualType PType = PVDecl->getOriginalType(); |
| if (const ArrayType *AT = |
| dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| // Use array's original type only if it has known number of |
| // elements. |
| if (!isa<ConstantArrayType>(AT)) |
| PType = PVDecl->getType(); |
| } else if (PType->isFunctionType()) |
| PType = PVDecl->getType(); |
| getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), |
| PType, S, Extended); |
| S += charUnitsToString(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| |
| return false; |
| } |
| |
| /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
| /// property declaration. If non-NULL, Container must be either an |
| /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
| /// NULL when getting encodings for protocol properties. |
| /// Property attributes are stored as a comma-delimited C string. The simple |
| /// attributes readonly and bycopy are encoded as single characters. The |
| /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
| /// encoded as single characters, followed by an identifier. Property types |
| /// are also encoded as a parametrized attribute. The characters used to encode |
| /// these attributes are defined by the following enumeration: |
| /// @code |
| /// enum PropertyAttributes { |
| /// kPropertyReadOnly = 'R', // property is read-only. |
| /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
| /// kPropertyByref = '&', // property is a reference to the value last assigned |
| /// kPropertyDynamic = 'D', // property is dynamic |
| /// kPropertyGetter = 'G', // followed by getter selector name |
| /// kPropertySetter = 'S', // followed by setter selector name |
| /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
| /// kPropertyType = 'T' // followed by old-style type encoding. |
| /// kPropertyWeak = 'W' // 'weak' property |
| /// kPropertyStrong = 'P' // property GC'able |
| /// kPropertyNonAtomic = 'N' // property non-atomic |
| /// }; |
| /// @endcode |
| void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
| const Decl *Container, |
| std::string& S) const { |
| // Collect information from the property implementation decl(s). |
| bool Dynamic = false; |
| ObjCPropertyImplDecl *SynthesizePID = 0; |
| |
| // FIXME: Duplicated code due to poor abstraction. |
| if (Container) { |
| if (const ObjCCategoryImplDecl *CID = |
| dyn_cast<ObjCCategoryImplDecl>(Container)) { |
| for (ObjCCategoryImplDecl::propimpl_iterator |
| i = CID->propimpl_begin(), e = CID->propimpl_end(); |
| i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| if (PID->getPropertyDecl() == PD) { |
| if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { |
| Dynamic = true; |
| } else { |
| SynthesizePID = PID; |
| } |
| } |
| } |
| } else { |
| const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container); |
| for (ObjCCategoryImplDecl::propimpl_iterator |
| i = OID->propimpl_begin(), e = OID->propimpl_end(); |
| i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| if (PID->getPropertyDecl() == PD) { |
| if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) { |
| Dynamic = true; |
| } else { |
| SynthesizePID = PID; |
| } |
| } |
| } |
| } |
| } |
| |
| // FIXME: This is not very efficient. |
| S = "T"; |
| |
| // Encode result type. |
| // GCC has some special rules regarding encoding of properties which |
| // closely resembles encoding of ivars. |
| getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0, |
| true /* outermost type */, |
| true /* encoding for property */); |
| |
| if (PD->isReadOnly()) { |
| S += ",R"; |
| } else { |
| switch (PD->getSetterKind()) { |
| case ObjCPropertyDecl::Assign: break; |
| case ObjCPropertyDecl::Copy: S += ",C"; break; |
| case ObjCPropertyDecl::Retain: S += ",&"; break; |
| case ObjCPropertyDecl::Weak: S += ",W"; break; |
| } |
| } |
| |
| // It really isn't clear at all what this means, since properties |
| // are "dynamic by default". |
| if (Dynamic) |
| S += ",D"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic) |
| S += ",N"; |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) { |
| S += ",G"; |
| S += PD->getGetterName().getAsString(); |
| } |
| |
| if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) { |
| S += ",S"; |
| S += PD->getSetterName().getAsString(); |
| } |
| |
| if (SynthesizePID) { |
| const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
| S += ",V"; |
| S += OID->getNameAsString(); |
| } |
| |
| // FIXME: OBJCGC: weak & strong |
| } |
| |
| /// getLegacyIntegralTypeEncoding - |
| /// Another legacy compatibility encoding: 32-bit longs are encoded as |
| /// 'l' or 'L' , but not always. For typedefs, we need to use |
| /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
| /// |
| void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
| if (isa<TypedefType>(PointeeTy.getTypePtr())) { |
| if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) { |
| if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) |
| PointeeTy = UnsignedIntTy; |
| else |
| if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) |
| PointeeTy = IntTy; |
| } |
| } |
| } |
| |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| const FieldDecl *Field) const { |
| // We follow the behavior of gcc, expanding structures which are |
| // directly pointed to, and expanding embedded structures. Note that |
| // these rules are sufficient to prevent recursive encoding of the |
| // same type. |
| getObjCEncodingForTypeImpl(T, S, true, true, Field, |
| true /* outermost type */); |
| } |
| |
| static char ObjCEncodingForPrimitiveKind(const ASTContext *C, QualType T) { |
| switch (T->getAs<BuiltinType>()->getKind()) { |
| default: llvm_unreachable("Unhandled builtin type kind"); |
| case BuiltinType::Void: return 'v'; |
| case BuiltinType::Bool: return 'B'; |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: return 'C'; |
| case BuiltinType::UShort: return 'S'; |
| case BuiltinType::UInt: return 'I'; |
| case BuiltinType::ULong: |
| return C->getIntWidth(T) == 32 ? 'L' : 'Q'; |
| case BuiltinType::UInt128: return 'T'; |
| case BuiltinType::ULongLong: return 'Q'; |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: return 'c'; |
| case BuiltinType::Short: return 's'; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: |
| case BuiltinType::Int: return 'i'; |
| case BuiltinType::Long: |
| return C->getIntWidth(T) == 32 ? 'l' : 'q'; |
| case BuiltinType::LongLong: return 'q'; |
| case BuiltinType::Int128: return 't'; |
| case BuiltinType::Float: return 'f'; |
| case BuiltinType::Double: return 'd'; |
| case BuiltinType::LongDouble: return 'D'; |
| } |
| } |
| |
| static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
| EnumDecl *Enum = ET->getDecl(); |
| |
| // The encoding of an non-fixed enum type is always 'i', regardless of size. |
| if (!Enum->isFixed()) |
| return 'i'; |
| |
| // The encoding of a fixed enum type matches its fixed underlying type. |
| return ObjCEncodingForPrimitiveKind(C, Enum->getIntegerType()); |
| } |
| |
| static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
| QualType T, const FieldDecl *FD) { |
| assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); |
| S += 'b'; |
| // The NeXT runtime encodes bit fields as b followed by the number of bits. |
| // The GNU runtime requires more information; bitfields are encoded as b, |
| // then the offset (in bits) of the first element, then the type of the |
| // bitfield, then the size in bits. For example, in this structure: |
| // |
| // struct |
| // { |
| // int integer; |
| // int flags:2; |
| // }; |
| // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
| // runtime, but b32i2 for the GNU runtime. The reason for this extra |
| // information is not especially sensible, but we're stuck with it for |
| // compatibility with GCC, although providing it breaks anything that |
| // actually uses runtime introspection and wants to work on both runtimes... |
| if (!Ctx->getLangOpts().NeXTRuntime) { |
| const RecordDecl *RD = FD->getParent(); |
| const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); |
| S += llvm::utostr(RL.getFieldOffset(FD->getFieldIndex())); |
| if (const EnumType *ET = T->getAs<EnumType>()) |
| S += ObjCEncodingForEnumType(Ctx, ET); |
| else |
| S += ObjCEncodingForPrimitiveKind(Ctx, T); |
| } |
| S += llvm::utostr(FD->getBitWidthValue(*Ctx)); |
| } |
| |
| // FIXME: Use SmallString for accumulating string. |
| void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S, |
| bool ExpandPointedToStructures, |
| bool ExpandStructures, |
| const FieldDecl *FD, |
| bool OutermostType, |
| bool EncodingProperty, |
| bool StructField, |
| bool EncodeBlockParameters, |
| bool EncodeClassNames) const { |
| if (T->getAs<BuiltinType>()) { |
| if (FD && FD->isBitField()) |
| return EncodeBitField(this, S, T, FD); |
| S += ObjCEncodingForPrimitiveKind(this, T); |
| return; |
| } |
| |
| if (const ComplexType *CT = T->getAs<ComplexType>()) { |
| S += 'j'; |
| getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false, |
| false); |
| return; |
| } |
| |
| // encoding for pointer or r3eference types. |
| QualType PointeeTy; |
| if (const PointerType *PT = T->getAs<PointerType>()) { |
| if (PT->isObjCSelType()) { |
| S += ':'; |
| return; |
| } |
| PointeeTy = PT->getPointeeType(); |
| } |
| else if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
| PointeeTy = RT->getPointeeType(); |
| if (!PointeeTy.isNull()) { |
| bool isReadOnly = false; |
| // For historical/compatibility reasons, the read-only qualifier of the |
| // pointee gets emitted _before_ the '^'. The read-only qualifier of |
| // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
| // Also, do not emit the 'r' for anything but the outermost type! |
| if (isa<TypedefType>(T.getTypePtr())) { |
| if (OutermostType && T.isConstQualified()) { |
| isReadOnly = true; |
| S += 'r'; |
| } |
| } else if (OutermostType) { |
| QualType P = PointeeTy; |
| while (P->getAs<PointerType>()) |
| P = P->getAs<PointerType>()->getPointeeType(); |
| if (P.isConstQualified()) { |
| isReadOnly = true; |
| S += 'r'; |
| } |
| } |
| if (isReadOnly) { |
| // Another legacy compatibility encoding. Some ObjC qualifier and type |
| // combinations need to be rearranged. |
| // Rewrite "in const" from "nr" to "rn" |
| if (StringRef(S).endswith("nr")) |
| S.replace(S.end()-2, S.end(), "rn"); |
| } |
| |
| if (PointeeTy->isCharType()) { |
| // char pointer types should be encoded as '*' unless it is a |
| // type that has been typedef'd to 'BOOL'. |
| if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
| S += '*'; |
| return; |
| } |
| } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) { |
| // GCC binary compat: Need to convert "struct objc_class *" to "#". |
| if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { |
| S += '#'; |
| return; |
| } |
| // GCC binary compat: Need to convert "struct objc_object *" to "@". |
| if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { |
| S += '@'; |
| return; |
| } |
| // fall through... |
| } |
| S += '^'; |
| getLegacyIntegralTypeEncoding(PointeeTy); |
| |
| getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures, |
| NULL); |
| return; |
| } |
| |
| if (const ArrayType *AT = |
| // Ignore type qualifiers etc. |
| dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) { |
| if (isa<IncompleteArrayType>(AT) && !StructField) { |
| // Incomplete arrays are encoded as a pointer to the array element. |
| S += '^'; |
| |
| getObjCEncodingForTypeImpl(AT->getElementType(), S, |
| false, ExpandStructures, FD); |
| } else { |
| S += '['; |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| if (getTypeSize(CAT->getElementType()) == 0) |
| S += '0'; |
| else |
| S += llvm::utostr(CAT->getSize().getZExtValue()); |
| } else { |
| //Variable length arrays are encoded as a regular array with 0 elements. |
| assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && |
| "Unknown array type!"); |
| S += '0'; |
| } |
| |
| getObjCEncodingForTypeImpl(AT->getElementType(), S, |
| false, ExpandStructures, FD); |
| S += ']'; |
| } |
| return; |
| } |
| |
| if (T->getAs<FunctionType>()) { |
| S += '?'; |
| return; |
| } |
| |
| if (const RecordType *RTy = T->getAs<RecordType>()) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| S += RDecl->isUnion() ? '(' : '{'; |
| // Anonymous structures print as '?' |
| if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
| S += II->getName(); |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| std::string TemplateArgsStr |
| = TemplateSpecializationType::PrintTemplateArgumentList( |
| TemplateArgs.data(), |
| TemplateArgs.size(), |
| (*this).getPrintingPolicy()); |
| |
| S += TemplateArgsStr; |
| } |
| } else { |
| S += '?'; |
| } |
| if (ExpandStructures) { |
| S += '='; |
| if (!RDecl->isUnion()) { |
| getObjCEncodingForStructureImpl(RDecl, S, FD); |
| } else { |
| for (RecordDecl::field_iterator Field = RDecl->field_begin(), |
| FieldEnd = RDecl->field_end(); |
| Field != FieldEnd; ++Field) { |
| if (FD) { |
| S += '"'; |
| S += Field->getNameAsString(); |
| S += '"'; |
| } |
| |
| // Special case bit-fields. |
| if (Field->isBitField()) { |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, |
| *Field); |
| } else { |
| QualType qt = Field->getType(); |
| getLegacyIntegralTypeEncoding(qt); |
| getObjCEncodingForTypeImpl(qt, S, false, true, |
| FD, /*OutermostType*/false, |
| /*EncodingProperty*/false, |
| /*StructField*/true); |
| } |
| } |
| } |
| } |
| S += RDecl->isUnion() ? ')' : '}'; |
| return; |
| } |
| |
| if (const EnumType *ET = T->getAs<EnumType>()) { |
| if (FD && FD->isBitField()) |
| EncodeBitField(this, S, T, FD); |
| else |
| S += ObjCEncodingForEnumType(this, ET); |
| return; |
| } |
| |
| if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) { |
| S += "@?"; // Unlike a pointer-to-function, which is "^?". |
| if (EncodeBlockParameters) { |
| const FunctionType *FT = BT->getPointeeType()->getAs<FunctionType>(); |
| |
| S += '<'; |
| // Block return type |
| getObjCEncodingForTypeImpl(FT->getResultType(), S, |
| ExpandPointedToStructures, ExpandStructures, |
| FD, |
| false /* OutermostType */, |
| EncodingProperty, |
| false /* StructField */, |
| EncodeBlockParameters, |
| EncodeClassNames); |
| // Block self |
| S += "@?"; |
| // Block parameters |
| if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { |
| for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(), |
| E = FPT->arg_type_end(); I && (I != E); ++I) { |
| getObjCEncodingForTypeImpl(*I, S, |
| ExpandPointedToStructures, |
| ExpandStructures, |
| FD, |
| false /* OutermostType */, |
| EncodingProperty, |
| false /* StructField */, |
| EncodeBlockParameters, |
| EncodeClassNames); |
| } |
| } |
| S += '>'; |
| } |
| return; |
| } |
| |
| // Ignore protocol qualifiers when mangling at this level. |
| if (const ObjCObjectType *OT = T->getAs<ObjCObjectType>()) |
| T = OT->getBaseType(); |
| |
| if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) { |
| // @encode(class_name) |
| ObjCInterfaceDecl *OI = OIT->getDecl(); |
| S += '{'; |
| const IdentifierInfo *II = OI->getIdentifier(); |
| S += II->getName(); |
| S += '='; |
| SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| DeepCollectObjCIvars(OI, true, Ivars); |
| for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
| const FieldDecl *Field = cast<FieldDecl>(Ivars[i]); |
| if (Field->isBitField()) |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, Field); |
| else |
| getObjCEncodingForTypeImpl(Field->getType(), S, false, true, FD); |
| } |
| S += '}'; |
| return; |
| } |
| |
| if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) { |
| if (OPT->isObjCIdType()) { |
| S += '@'; |
| return; |
| } |
| |
| if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
| // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
| // Since this is a binary compatibility issue, need to consult with runtime |
| // folks. Fortunately, this is a *very* obsure construct. |
| S += '#'; |
| return; |
| } |
| |
| if (OPT->isObjCQualifiedIdType()) { |
| getObjCEncodingForTypeImpl(getObjCIdType(), S, |
| ExpandPointedToStructures, |
| ExpandStructures, FD); |
| if (FD || EncodingProperty || EncodeClassNames) { |
| // Note that we do extended encoding of protocol qualifer list |
| // Only when doing ivar or property encoding. |
| S += '"'; |
| for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), |
| E = OPT->qual_end(); I != E; ++I) { |
| S += '<'; |
| S += (*I)->getNameAsString(); |
| S += '>'; |
| } |
| S += '"'; |
| } |
| return; |
| } |
| |
| QualType PointeeTy = OPT->getPointeeType(); |
| if (!EncodingProperty && |
| isa<TypedefType>(PointeeTy.getTypePtr())) { |
| // Another historical/compatibility reason. |
| // We encode the underlying type which comes out as |
| // {...}; |
| S += '^'; |
| getObjCEncodingForTypeImpl(PointeeTy, S, |
| false, ExpandPointedToStructures, |
| NULL); |
| return; |
| } |
| |
| S += '@'; |
| if (OPT->getInterfaceDecl() && |
| (FD || EncodingProperty || EncodeClassNames)) { |
| S += '"'; |
| S += OPT->getInterfaceDecl()->getIdentifier()->getName(); |
| for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(), |
| E = OPT->qual_end(); I != E; ++I) { |
| S += '<'; |
| S += (*I)->getNameAsString(); |
| S += '>'; |
| } |
| S += '"'; |
| } |
| return; |
| } |
| |
| // gcc just blithely ignores member pointers. |
| // TODO: maybe there should be a mangling for these |
| if (T->getAs<MemberPointerType>()) |
| return; |
| |
| if (T->isVectorType()) { |
| // This matches gcc's encoding, even though technically it is |
| // insufficient. |
| // FIXME. We should do a better job than gcc. |
| return; |
| } |
| |
| llvm_unreachable("@encode for type not implemented!"); |
| } |
| |
| void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
| std::string &S, |
| const FieldDecl *FD, |
| bool includeVBases) const { |
| assert(RDecl && "Expected non-null RecordDecl"); |
| assert(!RDecl->isUnion() && "Should not be called for unions"); |
| if (!RDecl->getDefinition()) |
| return; |
| |
| CXXRecordDecl *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); |
| std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
| const ASTRecordLayout &layout = getASTRecordLayout(RDecl); |
| |
| if (CXXRec) { |
| for (CXXRecordDecl::base_class_iterator |
| BI = CXXRec->bases_begin(), |
| BE = CXXRec->bases_end(); BI != BE; ++BI) { |
| if (!BI->isVirtual()) { |
| CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl(); |
| if (base->isEmpty()) |
| continue; |
| uint64_t offs = layout.getBaseClassOffsetInBits(base); |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| std::make_pair(offs, base)); |
| } |
| } |
| } |
| |
| unsigned i = 0; |
| for (RecordDecl::field_iterator Field = RDecl->field_begin(), |
| FieldEnd = RDecl->field_end(); |
| Field != FieldEnd; ++Field, ++i) { |
| uint64_t offs = layout.getFieldOffset(i); |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| std::make_pair(offs, *Field)); |
| } |
| |
| if (CXXRec && includeVBases) { |
| for (CXXRecordDecl::base_class_iterator |
| BI = CXXRec->vbases_begin(), |
| BE = CXXRec->vbases_end(); BI != BE; ++BI) { |
| CXXRecordDecl *base = BI->getType()->getAsCXXRecordDecl(); |
| if (base->isEmpty()) |
| continue; |
| uint64_t offs = layout.getVBaseClassOffsetInBits(base); |
| if (FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), |
| std::make_pair(offs, base)); |
| } |
| } |
| |
| CharUnits size; |
| if (CXXRec) { |
| size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
| } else { |
| size = layout.getSize(); |
| } |
| |
| uint64_t CurOffs = 0; |
| std::multimap<uint64_t, NamedDecl *>::iterator |
| CurLayObj = FieldOrBaseOffsets.begin(); |
| |
| if (CXXRec && CXXRec->isDynamicClass() && |
| (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
| if (FD) { |
| S += "\"_vptr$"; |
| std::string recname = CXXRec->getNameAsString(); |
| if (recname.empty()) recname = "?"; |
| S += recname; |
| S += '"'; |
| } |
| S += "^^?"; |
| CurOffs += getTypeSize(VoidPtrTy); |
| } |
| |
| if (!RDecl->hasFlexibleArrayMember()) { |
| // Mark the end of the structure. |
| uint64_t offs = toBits(size); |
| FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| std::make_pair(offs, (NamedDecl*)0)); |
| } |
| |
| for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
| assert(CurOffs <= CurLayObj->first); |
| |
| if (CurOffs < CurLayObj->first) { |
| uint64_t padding = CurLayObj->first - CurOffs; |
| // FIXME: There doesn't seem to be a way to indicate in the encoding that |
| // packing/alignment of members is different that normal, in which case |
| // the encoding will be out-of-sync with the real layout. |
| // If the runtime switches to just consider the size of types without |
| // taking into account alignment, we could make padding explicit in the |
| // encoding (e.g. using arrays of chars). The encoding strings would be |
| // longer then though. |
| CurOffs += padding; |
| } |
| |
| NamedDecl *dcl = CurLayObj->second; |
| if (dcl == 0) |
| break; // reached end of structure. |
| |
| if (CXXRecordDecl *base = dyn_cast<CXXRecordDecl>(dcl)) { |
| // We expand the bases without their virtual bases since those are going |
| // in the initial structure. Note that this differs from gcc which |
| // expands virtual bases each time one is encountered in the hierarchy, |
| // making the encoding type bigger than it really is. |
| getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false); |
| assert(!base->isEmpty()); |
| CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); |
| } else { |
| FieldDecl *field = cast<FieldDecl>(dcl); |
| if (FD) { |
| S += '"'; |
| S += field->getNameAsString(); |
| S += '"'; |
| } |
| |
| if (field->isBitField()) { |
| EncodeBitField(this, S, field->getType(), field); |
| CurOffs += field->getBitWidthValue(*this); |
| } else { |
| QualType qt = field->getType(); |
| getLegacyIntegralTypeEncoding(qt); |
| getObjCEncodingForTypeImpl(qt, S, false, true, FD, |
| /*OutermostType*/false, |
| /*EncodingProperty*/false, |
| /*StructField*/true); |
| CurOffs += getTypeSize(field->getType()); |
| } |
| } |
| } |
| } |
| |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| std::string& S) const { |
| if (QT & Decl::OBJC_TQ_In) |
| S += 'n'; |
| if (QT & Decl::OBJC_TQ_Inout) |
| S += 'N'; |
| if (QT & Decl::OBJC_TQ_Out) |
| S += 'o'; |
| if (QT & Decl::OBJC_TQ_Bycopy) |
| S += 'O'; |
| if (QT & Decl::OBJC_TQ_Byref) |
| S += 'R'; |
| if (QT & Decl::OBJC_TQ_Oneway) |
| S += 'V'; |
| } |
| |
| void ASTContext::setBuiltinVaListType(QualType T) { |
| assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); |
| |
| BuiltinVaListType = T; |
| } |
| |
| TypedefDecl *ASTContext::getObjCIdDecl() const { |
| if (!ObjCIdDecl) { |
| QualType T = getObjCObjectType(ObjCBuiltinIdTy, 0, 0); |
| T = getObjCObjectPointerType(T); |
| TypeSourceInfo *IdInfo = getTrivialTypeSourceInfo(T); |
| ObjCIdDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this), |
| getTranslationUnitDecl(), |
| SourceLocation(), SourceLocation(), |
| &Idents.get("id"), IdInfo); |
| } |
| |
| return ObjCIdDecl; |
| } |
| |
| TypedefDecl *ASTContext::getObjCSelDecl() const { |
| if (!ObjCSelDecl) { |
| QualType SelT = getPointerType(ObjCBuiltinSelTy); |
| TypeSourceInfo *SelInfo = getTrivialTypeSourceInfo(SelT); |
| ObjCSelDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this), |
| getTranslationUnitDecl(), |
| SourceLocation(), SourceLocation(), |
| &Idents.get("SEL"), SelInfo); |
| } |
| return ObjCSelDecl; |
| } |
| |
| TypedefDecl *ASTContext::getObjCClassDecl() const { |
| if (!ObjCClassDecl) { |
| QualType T = getObjCObjectType(ObjCBuiltinClassTy, 0, 0); |
| T = getObjCObjectPointerType(T); |
| TypeSourceInfo *ClassInfo = getTrivialTypeSourceInfo(T); |
| ObjCClassDecl = TypedefDecl::Create(const_cast<ASTContext &>(*this), |
| getTranslationUnitDecl(), |
| SourceLocation(), SourceLocation(), |
| &Idents.get("Class"), ClassInfo); |
| } |
| |
| return ObjCClassDecl; |
| } |
| |
| ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
| if (!ObjCProtocolClassDecl) { |
| ObjCProtocolClassDecl |
| = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), |
| SourceLocation(), |
| &Idents.get("Protocol"), |
| /*PrevDecl=*/0, |
| SourceLocation(), true); |
| } |
| |
| return ObjCProtocolClassDecl; |
| } |
| |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| assert(ObjCConstantStringType.isNull() && |
| "'NSConstantString' type already set!"); |
| |
| ObjCConstantStringType = getObjCInterfaceType(Decl); |
| } |
| |
| /// \brief Retrieve the template name that corresponds to a non-empty |
| /// lookup. |
| TemplateName |
| ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
| UnresolvedSetIterator End) const { |
| unsigned size = End - Begin; |
| assert(size > 1 && "set is not overloaded!"); |
| |
| void *memory = Allocate(sizeof(OverloadedTemplateStorage) + |
| size * sizeof(FunctionTemplateDecl*)); |
| OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size); |
| |
| NamedDecl **Storage = OT->getStorage(); |
| for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
| NamedDecl *D = *I; |
| assert(isa<FunctionTemplateDecl>(D) || |
| (isa<UsingShadowDecl>(D) && |
| isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); |
| *Storage++ = D; |
| } |
| |
| return TemplateName(OT); |
| } |
| |
| /// \brief Retrieve the template name that represents a qualified |
| /// template name such as \c std::vector. |
| TemplateName |
| ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
| bool TemplateKeyword, |
| TemplateDecl *Template) const { |
| assert(NNS && "Missing nested-name-specifier in qualified template name"); |
| |
| // FIXME: Canonicalization? |
| llvm::FoldingSetNodeID ID; |
| QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); |
| |
| void *InsertPos = 0; |
| QualifiedTemplateName *QTN = |
| QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| if (!QTN) { |
| QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template); |
| QualifiedTemplateNames.InsertNode(QTN, InsertPos); |
| } |
| |
| return TemplateName(QTN); |
| } |
| |
| /// \brief Retrieve the template name that represents a dependent |
| /// template name such as \c MetaFun::template apply. |
| TemplateName |
| ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| const IdentifierInfo *Name) const { |
| assert((!NNS || NNS->isDependent()) && |
| "Nested name specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateName::Profile(ID, NNS, Name); |
| |
| void *InsertPos = 0; |
| DependentTemplateName *QTN = |
| DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (QTN) |
| return TemplateName(QTN); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS == NNS) { |
| QTN = new (*this,4) DependentTemplateName(NNS, Name); |
| } else { |
| TemplateName Canon = getDependentTemplateName(CanonNNS, Name); |
| QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon); |
| DependentTemplateName *CheckQTN = |
| DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckQTN && "Dependent type name canonicalization broken"); |
| (void)CheckQTN; |
| } |
| |
| DependentTemplateNames.InsertNode(QTN, InsertPos); |
| return TemplateName(QTN); |
| } |
| |
| /// \brief Retrieve the template name that represents a dependent |
| /// template name such as \c MetaFun::template operator+. |
| TemplateName |
| ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| OverloadedOperatorKind Operator) const { |
| assert((!NNS || NNS->isDependent()) && |
| "Nested name specifier must be dependent"); |
| |
| llvm::FoldingSetNodeID ID; |
| DependentTemplateName::Profile(ID, NNS, Operator); |
| |
| void *InsertPos = 0; |
| DependentTemplateName *QTN |
| = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (QTN) |
| return TemplateName(QTN); |
| |
| NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| if (CanonNNS == NNS) { |
| QTN = new (*this,4) DependentTemplateName(NNS, Operator); |
| } else { |
| TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); |
| QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon); |
| |
| DependentTemplateName *CheckQTN |
| = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| assert(!CheckQTN && "Dependent template name canonicalization broken"); |
| (void)CheckQTN; |
| } |
| |
| DependentTemplateNames.InsertNode(QTN, InsertPos); |
| return TemplateName(QTN); |
| } |
| |
| TemplateName |
| ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, |
| TemplateName replacement) const { |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); |
| |
| void *insertPos = 0; |
| SubstTemplateTemplateParmStorage *subst |
| = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); |
| |
| if (!subst) { |
| subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); |
| SubstTemplateTemplateParms.InsertNode(subst, insertPos); |
| } |
| |
| return TemplateName(subst); |
| } |
| |
| TemplateName |
| ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, |
| const TemplateArgument &ArgPack) const { |
| ASTContext &Self = const_cast<ASTContext &>(*this); |
| llvm::FoldingSetNodeID ID; |
| SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); |
| |
| void *InsertPos = 0; |
| SubstTemplateTemplateParmPackStorage *Subst |
| = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
| |
| if (!Subst) { |
| Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, |
| ArgPack.pack_size(), |
| ArgPack.pack_begin()); |
| SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); |
| } |
| |
| return TemplateName(Subst); |
| } |
| |
| /// getFromTargetType - Given one of the integer types provided by |
| /// TargetInfo, produce the corresponding type. The unsigned @p Type |
| /// is actually a value of type @c TargetInfo::IntType. |
| CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
| switch (Type) { |
| case TargetInfo::NoInt: return CanQualType(); |
| case TargetInfo::SignedShort: return ShortTy; |
| case TargetInfo::UnsignedShort: return UnsignedShortTy; |
| case TargetInfo::SignedInt: return IntTy; |
| case TargetInfo::UnsignedInt: return UnsignedIntTy; |
| case TargetInfo::SignedLong: return LongTy; |
| case TargetInfo::UnsignedLong: return UnsignedLongTy; |
| case TargetInfo::SignedLongLong: return LongLongTy; |
| case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
| } |
| |
| llvm_unreachable("Unhandled TargetInfo::IntType value"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Predicates. |
| //===----------------------------------------------------------------------===// |
| |
| /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
| /// garbage collection attribute. |
| /// |
| Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
| if (getLangOpts().getGC() == LangOptions::NonGC) |
| return Qualifiers::GCNone; |
| |
| assert(getLangOpts().ObjC1); |
| Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
| |
| // Default behaviour under objective-C's gc is for ObjC pointers |
| // (or pointers to them) be treated as though they were declared |
| // as __strong. |
| if (GCAttrs == Qualifiers::GCNone) { |
| if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
| return Qualifiers::Strong; |
| else if (Ty->isPointerType()) |
| return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType()); |
| } else { |
| // It's not valid to set GC attributes on anything that isn't a |
| // pointer. |
| #ifndef NDEBUG |
| QualType CT = Ty->getCanonicalTypeInternal(); |
| while (const ArrayType *AT = dyn_cast<ArrayType>(CT)) |
| CT = AT->getElementType(); |
| assert(CT->isAnyPointerType() || CT->isBlockPointerType()); |
| #endif |
| } |
| return GCAttrs; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Compatibility Testing |
| //===----------------------------------------------------------------------===// |
| |
| /// areCompatVectorTypes - Return true if the two specified vector types are |
| /// compatible. |
| static bool areCompatVectorTypes(const VectorType *LHS, |
| const VectorType *RHS) { |
| assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
| return LHS->getElementType() == RHS->getElementType() && |
| LHS->getNumElements() == RHS->getNumElements(); |
| } |
| |
| bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
| QualType SecondVec) { |
| assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); |
| assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); |
| |
| if (hasSameUnqualifiedType(FirstVec, SecondVec)) |
| return true; |
| |
| // Treat Neon vector types and most AltiVec vector types as if they are the |
| // equivalent GCC vector types. |
| const VectorType *First = FirstVec->getAs<VectorType>(); |
| const VectorType *Second = SecondVec->getAs<VectorType>(); |
| if (First->getNumElements() == Second->getNumElements() && |
| hasSameType(First->getElementType(), Second->getElementType()) && |
| First->getVectorKind() != VectorType::AltiVecPixel && |
| First->getVectorKind() != VectorType::AltiVecBool && |
| Second->getVectorKind() != VectorType::AltiVecPixel && |
| Second->getVectorKind() != VectorType::AltiVecBool) |
| return true; |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
| //===----------------------------------------------------------------------===// |
| |
| /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
| /// inheritance hierarchy of 'rProto'. |
| bool |
| ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
| ObjCProtocolDecl *rProto) const { |
| if (declaresSameEntity(lProto, rProto)) |
| return true; |
| for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(), |
| E = rProto->protocol_end(); PI != E; ++PI) |
| if (ProtocolCompatibleWithProtocol(lProto, *PI)) |
| return true; |
| return false; |
| } |
| |
| /// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...> |
| /// return true if lhs's protocols conform to rhs's protocol; false |
| /// otherwise. |
| bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) { |
| if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType()) |
| return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false); |
| return false; |
| } |
| |
| /// ObjCQualifiedClassTypesAreCompatible - compare Class<p,...> and |
| /// Class<p1, ...>. |
| bool ASTContext::ObjCQualifiedClassTypesAreCompatible(QualType lhs, |
| QualType rhs) { |
| const ObjCObjectPointerType *lhsQID = lhs->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| assert ((lhsQID && rhsOPT) && "ObjCQualifiedClassTypesAreCompatible"); |
| |
| for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), |
| E = lhsQID->qual_end(); I != E; ++I) { |
| bool match = false; |
| ObjCProtocolDecl *lhsProto = *I; |
| for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(), |
| E = rhsOPT->qual_end(); J != E; ++J) { |
| ObjCProtocolDecl *rhsProto = *J; |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| return true; |
| } |
| |
| /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
| /// ObjCQualifiedIDType. |
| bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs, |
| bool compare) { |
| // Allow id<P..> and an 'id' or void* type in all cases. |
| if (lhs->isVoidPointerType() || |
| lhs->isObjCIdType() || lhs->isObjCClassType()) |
| return true; |
| else if (rhs->isVoidPointerType() || |
| rhs->isObjCIdType() || rhs->isObjCClassType()) |
| return true; |
| |
| if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) { |
| const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| |
| if (!rhsOPT) return false; |
| |
| if (rhsOPT->qual_empty()) { |
| // If the RHS is a unqualified interface pointer "NSString*", |
| // make sure we check the class hierarchy. |
| if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { |
| for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), |
| E = lhsQID->qual_end(); I != E; ++I) { |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| if (!rhsID->ClassImplementsProtocol(*I, true)) |
| return false; |
| } |
| } |
| // If there are no qualifiers and no interface, we have an 'id'. |
| return true; |
| } |
| // Both the right and left sides have qualifiers. |
| for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), |
| E = lhsQID->qual_end(); I != E; ++I) { |
| ObjCProtocolDecl *lhsProto = *I; |
| bool match = false; |
| |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(), |
| E = rhsOPT->qual_end(); J != E; ++J) { |
| ObjCProtocolDecl *rhsProto = *J; |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| match = true; |
| break; |
| } |
| } |
| // If the RHS is a qualified interface pointer "NSString<P>*", |
| // make sure we check the class hierarchy. |
| if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) { |
| for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(), |
| E = lhsQID->qual_end(); I != E; ++I) { |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| if (rhsID->ClassImplementsProtocol(*I, true)) { |
| match = true; |
| break; |
| } |
| } |
| } |
| if (!match) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType(); |
| assert(rhsQID && "One of the LHS/RHS should be id<x>"); |
| |
| if (const ObjCObjectPointerType *lhsOPT = |
| lhs->getAsObjCInterfacePointerType()) { |
| // If both the right and left sides have qualifiers. |
| for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(), |
| E = lhsOPT->qual_end(); I != E; ++I) { |
| ObjCProtocolDecl *lhsProto = *I; |
| bool match = false; |
| |
| // when comparing an id<P> on rhs with a static type on lhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| // First, lhs protocols in the qualifier list must be found, direct |
| // or indirect in rhs's qualifier list or it is a mismatch. |
| for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(), |
| E = rhsQID->qual_end(); J != E; ++J) { |
| ObjCProtocolDecl *rhsProto = *J; |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| |
| // Static class's protocols, or its super class or category protocols |
| // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
| if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) { |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
| CollectInheritedProtocols(lhsID, LHSInheritedProtocols); |
| // This is rather dubious but matches gcc's behavior. If lhs has |
| // no type qualifier and its class has no static protocol(s) |
| // assume that it is mismatch. |
| if (LHSInheritedProtocols.empty() && lhsOPT->qual_empty()) |
| return false; |
| for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I = |
| LHSInheritedProtocols.begin(), |
| E = LHSInheritedProtocols.end(); I != E; ++I) { |
| bool match = false; |
| ObjCProtocolDecl *lhsProto = (*I); |
| for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(), |
| E = rhsQID->qual_end(); J != E; ++J) { |
| ObjCProtocolDecl *rhsProto = *J; |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| /// canAssignObjCInterfaces - Return true if the two interface types are |
| /// compatible for assignment from RHS to LHS. This handles validation of any |
| /// protocol qualifiers on the LHS or RHS. |
| /// |
| bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
| const ObjCObjectPointerType *RHSOPT) { |
| const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| |
| // If either type represents the built-in 'id' or 'Class' types, return true. |
| if (LHS->isObjCUnqualifiedIdOrClass() || |
| RHS->isObjCUnqualifiedIdOrClass()) |
| return true; |
| |
| if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) |
| return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), |
| QualType(RHSOPT,0), |
| false); |
| |
| if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) |
| return ObjCQualifiedClassTypesAreCompatible(QualType(LHSOPT,0), |
| QualType(RHSOPT,0)); |
| |
| // If we have 2 user-defined types, fall into that path. |
| if (LHS->getInterface() && RHS->getInterface()) |
| return canAssignObjCInterfaces(LHS, RHS); |
| |
| return false; |
| } |
| |
| /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
| /// for providing type-safety for objective-c pointers used to pass/return |
| /// arguments in block literals. When passed as arguments, passing 'A*' where |
| /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
| /// not OK. For the return type, the opposite is not OK. |
| bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
| const ObjCObjectPointerType *LHSOPT, |
| const ObjCObjectPointerType *RHSOPT, |
| bool BlockReturnType) { |
| if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
| return true; |
| |
| if (LHSOPT->isObjCBuiltinType()) { |
| return RHSOPT->isObjCBuiltinType() || RHSOPT->isObjCQualifiedIdType(); |
| } |
| |
| if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) |
| return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0), |
| QualType(RHSOPT,0), |
| false); |
| |
| const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
| const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
| if (LHS && RHS) { // We have 2 user-defined types. |
| if (LHS != RHS) { |
| if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) |
| return BlockReturnType; |
| if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) |
| return !BlockReturnType; |
| } |
| else |
| return true; |
| } |
| return false; |
| } |
| |
| /// getIntersectionOfProtocols - This routine finds the intersection of set |
| /// of protocols inherited from two distinct objective-c pointer objects. |
| /// It is used to build composite qualifier list of the composite type of |
| /// the conditional expression involving two objective-c pointer objects. |
| static |
| void getIntersectionOfProtocols(ASTContext &Context, |
| const ObjCObjectPointerType *LHSOPT, |
| const ObjCObjectPointerType *RHSOPT, |
| SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) { |
| |
| const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| assert(LHS->getInterface() && "LHS must have an interface base"); |
| assert(RHS->getInterface() && "RHS must have an interface base"); |
| |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet; |
| unsigned LHSNumProtocols = LHS->getNumProtocols(); |
| if (LHSNumProtocols > 0) |
| InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end()); |
| else { |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
| Context.CollectInheritedProtocols(LHS->getInterface(), |
| LHSInheritedProtocols); |
| InheritedProtocolSet.insert(LHSInheritedProtocols.begin(), |
| LHSInheritedProtocols.end()); |
| } |
| |
| unsigned RHSNumProtocols = RHS->getNumProtocols(); |
| if (RHSNumProtocols > 0) { |
| ObjCProtocolDecl **RHSProtocols = |
| const_cast<ObjCProtocolDecl **>(RHS->qual_begin()); |
| for (unsigned i = 0; i < RHSNumProtocols; ++i) |
| if (InheritedProtocolSet.count(RHSProtocols[i])) |
| IntersectionOfProtocols.push_back(RHSProtocols[i]); |
| } else { |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSInheritedProtocols; |
| Context.CollectInheritedProtocols(RHS->getInterface(), |
| RHSInheritedProtocols); |
| for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I = |
| RHSInheritedProtocols.begin(), |
| E = RHSInheritedProtocols.end(); I != E; ++I) |
| if (InheritedProtocolSet.count((*I))) |
| IntersectionOfProtocols.push_back((*I)); |
| } |
| } |
| |
| /// areCommonBaseCompatible - Returns common base class of the two classes if |
| /// one found. Note that this is O'2 algorithm. But it will be called as the |
| /// last type comparison in a ?-exp of ObjC pointer types before a |
| /// warning is issued. So, its invokation is extremely rare. |
| QualType ASTContext::areCommonBaseCompatible( |
| const ObjCObjectPointerType *Lptr, |
| const ObjCObjectPointerType *Rptr) { |
| const ObjCObjectType *LHS = Lptr->getObjectType(); |
| const ObjCObjectType *RHS = Rptr->getObjectType(); |
| const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
| const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
| if (!LDecl || !RDecl || (declaresSameEntity(LDecl, RDecl))) |
| return QualType(); |
| |
| do { |
| LHS = cast<ObjCInterfaceType>(getObjCInterfaceType(LDecl)); |
| if (canAssignObjCInterfaces(LHS, RHS)) { |
| SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| getIntersectionOfProtocols(*this, Lptr, Rptr, Protocols); |
| |
| QualType Result = QualType(LHS, 0); |
| if (!Protocols.empty()) |
| Result = getObjCObjectType(Result, Protocols.data(), Protocols.size()); |
| Result = getObjCObjectPointerType(Result); |
| return Result; |
| } |
| } while ((LDecl = LDecl->getSuperClass())); |
| |
| return QualType(); |
| } |
| |
| bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
| const ObjCObjectType *RHS) { |
| assert(LHS->getInterface() && "LHS is not an interface type"); |
| assert(RHS->getInterface() && "RHS is not an interface type"); |
| |
| // Verify that the base decls are compatible: the RHS must be a subclass of |
| // the LHS. |
| if (!LHS->getInterface()->isSuperClassOf(RHS->getInterface())) |
| return false; |
| |
| // RHS must have a superset of the protocols in the LHS. If the LHS is not |
| // protocol qualified at all, then we are good. |
| if (LHS->getNumProtocols() == 0) |
| return true; |
| |
| // Okay, we know the LHS has protocol qualifiers. If the RHS doesn't, |
| // more detailed analysis is required. |
| if (RHS->getNumProtocols() == 0) { |
| // OK, if LHS is a superclass of RHS *and* |
| // this superclass is assignment compatible with LHS. |
| // false otherwise. |
| bool IsSuperClass = |
| LHS->getInterface()->isSuperClassOf(RHS->getInterface()); |
| if (IsSuperClass) { |
| // OK if conversion of LHS to SuperClass results in narrowing of types |
| // ; i.e., SuperClass may implement at least one of the protocols |
| // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
| // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
| llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
| CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); |
| // If super class has no protocols, it is not a match. |
| if (SuperClassInheritedProtocols.empty()) |
| return false; |
| |
| for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(), |
| LHSPE = LHS->qual_end(); |
| LHSPI != LHSPE; LHSPI++) { |
| bool SuperImplementsProtocol = false; |
| ObjCProtocolDecl *LHSProto = (*LHSPI); |
| |
| for (llvm::SmallPtrSet<ObjCProtocolDecl*,8>::iterator I = |
| SuperClassInheritedProtocols.begin(), |
| E = SuperClassInheritedProtocols.end(); I != E; ++I) { |
| ObjCProtocolDecl *SuperClassProto = (*I); |
| if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { |
| SuperImplementsProtocol = true; |
| break; |
| } |
| } |
| if (!SuperImplementsProtocol) |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| for (ObjCObjectType::qual_iterator LHSPI = LHS->qual_begin(), |
| LHSPE = LHS->qual_end(); |
| LHSPI != LHSPE; LHSPI++) { |
| bool RHSImplementsProtocol = false; |
| |
| // If the RHS doesn't implement the protocol on the left, the types |
| // are incompatible. |
| for (ObjCObjectType::qual_iterator RHSPI = RHS->qual_begin(), |
| RHSPE = RHS->qual_end(); |
| RHSPI != RHSPE; RHSPI++) { |
| if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) { |
| RHSImplementsProtocol = true; |
| break; |
| } |
| } |
| // FIXME: For better diagnostics, consider passing back the protocol name. |
| if (!RHSImplementsProtocol) |
| return false; |
| } |
| // The RHS implements all protocols listed on the LHS. |
| return true; |
| } |
| |
| bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
| // get the "pointed to" types |
| const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
| |
| if (!LHSOPT || !RHSOPT) |
| return false; |
| |
| return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
| canAssignObjCInterfaces(RHSOPT, LHSOPT); |
| } |
| |
| bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
| return canAssignObjCInterfaces( |
| getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(), |
| getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>()); |
| } |
| |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| /// both shall have the identically qualified version of a compatible type. |
| /// C99 6.2.7p1: Two types have compatible types if their types are the |
| /// same. See 6.7.[2,3,5] for additional rules. |
| bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
| bool CompareUnqualified) { |
| if (getLangOpts().CPlusPlus) |
| return hasSameType(LHS, RHS); |
| |
| return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); |
| } |
| |
| bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
| return typesAreCompatible(LHS, RHS); |
| } |
| |
| bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
| return !mergeTypes(LHS, RHS, true).isNull(); |
| } |
| |
| /// mergeTransparentUnionType - if T is a transparent union type and a member |
| /// of T is compatible with SubType, return the merged type, else return |
| /// QualType() |
| QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
| bool OfBlockPointer, |
| bool Unqualified) { |
| if (const RecordType *UT = T->getAsUnionType()) { |
| RecordDecl *UD = UT->getDecl(); |
| if (UD->hasAttr<TransparentUnionAttr>()) { |
| for (RecordDecl::field_iterator it = UD->field_begin(), |
| itend = UD->field_end(); it != itend; ++it) { |
| QualType ET = it->getType().getUnqualifiedType(); |
| QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
| if (!MT.isNull()) |
| return MT; |
| } |
| } |
| } |
| |
| return QualType(); |
| } |
| |
| /// mergeFunctionArgumentTypes - merge two types which appear as function |
| /// argument types |
| QualType ASTContext::mergeFunctionArgumentTypes(QualType lhs, QualType rhs, |
| bool OfBlockPointer, |
| bool Unqualified) { |
| // GNU extension: two types are compatible if they appear as a function |
| // argument, one of the types is a transparent union type and the other |
| // type is compatible with a union member |
| QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, |
| Unqualified); |
| if (!lmerge.isNull()) |
| return lmerge; |
| |
| QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, |
| Unqualified); |
| if (!rmerge.isNull()) |
| return rmerge; |
| |
| return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
| } |
| |
| QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
| bool OfBlockPointer, |
| bool Unqualified) { |
| const FunctionType *lbase = lhs->getAs<FunctionType>(); |
| const FunctionType *rbase = rhs->getAs<FunctionType>(); |
| const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase); |
| const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase); |
| bool allLTypes = true; |
| bool allRTypes = true; |
| |
| // Check return type |
| QualType retType; |
| if (OfBlockPointer) { |
| QualType RHS = rbase->getResultType(); |
| QualType LHS = lbase->getResultType(); |
| bool UnqualifiedResult = Unqualified; |
| if (!UnqualifiedResult) |
| UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
| retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); |
| } |
| else |
| retType = mergeTypes(lbase->getResultType(), rbase->getResultType(), false, |
| Unqualified); |
| if (retType.isNull()) return QualType(); |
| |
| if (Unqualified) |
| retType = retType.getUnqualifiedType(); |
| |
| CanQualType LRetType = getCanonicalType(lbase->getResultType()); |
| CanQualType RRetType = getCanonicalType(rbase->getResultType()); |
| if (Unqualified) { |
| LRetType = LRetType.getUnqualifiedType(); |
| RRetType = RRetType.getUnqualifiedType(); |
| } |
| |
| if (getCanonicalType(retType) != LRetType) |
| allLTypes = false; |
| if (getCanonicalType(retType) != RRetType) |
| allRTypes = false; |
| |
| // FIXME: double check this |
| // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
| // rbase->getRegParmAttr() != 0 && |
| // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
| FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
| FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
| |
| // Compatible functions must have compatible calling conventions |
| if (!isSameCallConv(lbaseInfo.getCC(), rbaseInfo.getCC())) |
| return QualType(); |
| |
| // Regparm is part of the calling convention. |
| if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
| return QualType(); |
| if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
| return QualType(); |
| |
| if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
| return QualType(); |
| |
| // functypes which return are preferred over those that do not. |
| if (lbaseInfo.getNoReturn() && !rbaseInfo.getNoReturn()) |
| allLTypes = false; |
| else if (!lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn()) |
| allRTypes = false; |
| // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. |
| bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
| |
| FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); |
| |
| if (lproto && rproto) { // two C99 style function prototypes |
| assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() && |
| "C++ shouldn't be here"); |
| unsigned lproto_nargs = lproto->getNumArgs(); |
| unsigned rproto_nargs = rproto->getNumArgs(); |
| |
| // Compatible functions must have the same number of arguments |
| if (lproto_nargs != rproto_nargs) |
| return QualType(); |
| |
| // Variadic and non-variadic functions aren't compatible |
| if (lproto->isVariadic() != rproto->isVariadic()) |
| return QualType(); |
| |
| if (lproto->getTypeQuals() != rproto->getTypeQuals()) |
| return QualType(); |
| |
| if (LangOpts.ObjCAutoRefCount && |
| !FunctionTypesMatchOnNSConsumedAttrs(rproto, lproto)) |
| return QualType(); |
| |
| // Check argument compatibility |
| SmallVector<QualType, 10> types; |
| for (unsigned i = 0; i < lproto_nargs; i++) { |
| QualType largtype = lproto->getArgType(i).getUnqualifiedType(); |
| QualType rargtype = rproto->getArgType(i).getUnqualifiedType(); |
| QualType argtype = mergeFunctionArgumentTypes(largtype, rargtype, |
| OfBlockPointer, |
| Unqualified); |
| if (argtype.isNull()) return QualType(); |
| |
| if (Unqualified) |
| argtype = argtype.getUnqualifiedType(); |
| |
| types.push_back(argtype); |
| if (Unqualified) { |
| largtype = largtype.getUnqualifiedType(); |
| rargtype = rargtype.getUnqualifiedType(); |
| } |
| |
| if (getCanonicalType(argtype) != getCanonicalType(largtype)) |
| allLTypes = false; |
| if (getCanonicalType(argtype) != getCanonicalType(rargtype)) |
| allRTypes = false; |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| |
| FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
| EPI.ExtInfo = einfo; |
| return getFunctionType(retType, types.begin(), types.size(), EPI); |
| } |
| |
| if (lproto) allRTypes = false; |
| if (rproto) allLTypes = false; |
| |
| const FunctionProtoType *proto = lproto ? lproto : rproto; |
| if (proto) { |
| assert(!proto->hasExceptionSpec() && "C++ shouldn't be here"); |
| if (proto->isVariadic()) return QualType(); |
| // Check that the types are compatible with the types that |
| // would result from default argument promotions (C99 6.7.5.3p15). |
| // The only types actually affected are promotable integer |
| // types and floats, which would be passed as a different |
| // type depending on whether the prototype is visible. |
| unsigned proto_nargs = proto->getNumArgs(); |
| for (unsigned i = 0; i < proto_nargs; ++i) { |
| QualType argTy = proto->getArgType(i); |
| |
| // Look at the promotion type of enum types, since that is the type used |
| // to pass enum values. |
| if (const EnumType *Enum = argTy->getAs<EnumType>()) |
| argTy = Enum->getDecl()->getPromotionType(); |
| |
| if (argTy->isPromotableIntegerType() || |
| getCanonicalType(argTy).getUnqualifiedType() == FloatTy) |
| return QualType(); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| |
| FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
| EPI.ExtInfo = einfo; |
| return getFunctionType(retType, proto->arg_type_begin(), |
| proto->getNumArgs(), EPI); |
| } |
| |
| if (allLTypes) return lhs; |
| if (allRTypes) return rhs; |
| return getFunctionNoProtoType(retType, einfo); |
| } |
| |
| QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, |
| bool OfBlockPointer, |
| bool Unqualified, bool BlockReturnType) { |
| // C++ [expr]: If an expression initially has the type "reference to T", the |
| // type is adjusted to "T" prior to any further analysis, the expression |
| // designates the object or function denoted by the reference, and the |
| // expression is an lvalue unless the reference is an rvalue reference and |
| // the expression is a function call (possibly inside parentheses). |
| assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?"); |
| assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?"); |
| |
| if (Unqualified) { |
| LHS = LHS.getUnqualifiedType(); |
| RHS = RHS.getUnqualifiedType(); |
| } |
| |
| QualType LHSCan = getCanonicalType(LHS), |
| RHSCan = getCanonicalType(RHS); |
| |
| // If two types are identical, they are compatible. |
| if (LHSCan == RHSCan) |
| return LHS; |
| |
| // If the qualifiers are different, the types aren't compatible... mostly. |
| Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| if (LQuals != RQuals) { |
| // If any of these qualifiers are different, we have a type |
| // mismatch. |
| if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
| LQuals.getObjCLifetime() != RQuals.getObjCLifetime()) |
| return QualType(); |
| |
| // Exactly one GC qualifier difference is allowed: __strong is |
| // okay if the other type has no GC qualifier but is an Objective |
| // C object pointer (i.e. implicitly strong by default). We fix |
| // this by pretending that the unqualified type was actually |
| // qualified __strong. |
| Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); |
| |
| if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| return QualType(); |
| |
| if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
| return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); |
| } |
| if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
| return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); |
| } |
| return QualType(); |
| } |
| |
| // Okay, qualifiers are equal. |
| |
| Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
| Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
| |
| // We want to consider the two function types to be the same for these |
| // comparisons, just force one to the other. |
| if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| |
| // Same as above for arrays |
| if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
| LHSClass = Type::ConstantArray; |
| if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
| RHSClass = Type::ConstantArray; |
| |
| // ObjCInterfaces are just specialized ObjCObjects. |
| if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
| if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
| |
| // Canonicalize ExtVector -> Vector. |
| if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
| if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
| |
| // If the canonical type classes don't match. |
| if (LHSClass != RHSClass) { |
| // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| // a signed integer type, or an unsigned integer type. |
| // Compatibility is based on the underlying type, not the promotion |
| // type. |
| if (const EnumType* ETy = LHS->getAs<EnumType>()) { |
| QualType TINT = ETy->getDecl()->getIntegerType(); |
| if (!TINT.isNull() && hasSameType(TINT, RHSCan.getUnqualifiedType())) |
| return RHS; |
| } |
| if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
| QualType TINT = ETy->getDecl()->getIntegerType(); |
| if (!TINT.isNull() && hasSameType(TINT, LHSCan.getUnqualifiedType())) |
| return LHS; |
| } |
| // allow block pointer type to match an 'id' type. |
| if (OfBlockPointer && !BlockReturnType) { |
| if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
| return LHS; |
| if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
| return RHS; |
| } |
| |
| return QualType(); |
| } |
| |
| // The canonical type classes match. |
| switch (LHSClass) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| case Type::MemberPointer: |
| llvm_unreachable("C++ should never be in mergeTypes"); |
| |
| case Type::ObjCInterface: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::FunctionProto: |
| case Type::ExtVector: |
| llvm_unreachable("Types are eliminated above"); |
| |
| case Type::Pointer: |
| { |
| // Merge two pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType(); |
| QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType(); |
| if (Unqualified) { |
| LHSPointee = LHSPointee.getUnqualifiedType(); |
| RHSPointee = RHSPointee.getUnqualifiedType(); |
| } |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, |
| Unqualified); |
| if (ResultType.isNull()) return QualType(); |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| return RHS; |
| return getPointerType(ResultType); |
| } |
| case Type::BlockPointer: |
| { |
| // Merge two block pointer types, while trying to preserve typedef info |
| QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType(); |
| QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType(); |
| if (Unqualified) { |
| LHSPointee = LHSPointee.getUnqualifiedType(); |
| RHSPointee = RHSPointee.getUnqualifiedType(); |
| } |
| QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, |
| Unqualified); |
| if (ResultType.isNull()) return QualType(); |
| if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| return RHS; |
| return getBlockPointerType(ResultType); |
| } |
| case Type::Atomic: |
| { |
| // Merge two pointer types, while trying to preserve typedef info |
| QualType LHSValue = LHS->getAs<AtomicType>()->getValueType(); |
| QualType RHSValue = RHS->getAs<AtomicType>()->getValueType(); |
| if (Unqualified) { |
| LHSValue = LHSValue.getUnqualifiedType(); |
| RHSValue = RHSValue.getUnqualifiedType(); |
| } |
| QualType ResultType = mergeTypes(LHSValue, RHSValue, false, |
| Unqualified); |
| if (ResultType.isNull()) return QualType(); |
| if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) |
| return LHS; |
| if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) |
| return RHS; |
| return getAtomicType(ResultType); |
| } |
| case Type::ConstantArray: |
| { |
| const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); |
| const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); |
| if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) |
| return QualType(); |
| |
| QualType LHSElem = getAsArrayType(LHS)->getElementType(); |
| QualType RHSElem = getAsArrayType(RHS)->getElementType(); |
| if (Unqualified) { |
| LHSElem = LHSElem.getUnqualifiedType(); |
| RHSElem = RHSElem.getUnqualifiedType(); |
| } |
| |
| QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); |
| if (ResultType.isNull()) return QualType(); |
| if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| return LHS; |
| if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| return RHS; |
| if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(), |
| ArrayType::ArraySizeModifier(), 0); |
| const VariableArrayType* LVAT = getAsVariableArrayType(LHS); |
| const VariableArrayType* RVAT = getAsVariableArrayType(RHS); |
| if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| return LHS; |
| if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| return RHS; |
| if (LVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of LHS, but the type |
| // has to be different. |
| return LHS; |
| } |
| if (RVAT) { |
| // FIXME: This isn't correct! But tricky to implement because |
| // the array's size has to be the size of RHS, but the type |
| // has to be different. |
| return RHS; |
| } |
| if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| return getIncompleteArrayType(ResultType, |
| ArrayType::ArraySizeModifier(), 0); |
| } |
| case Type::FunctionNoProto: |
| return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); |
| case Type::Record: |
| case Type::Enum: |
| return QualType(); |
| case Type::Builtin: |
| // Only exactly equal builtin types are compatible, which is tested above. |
| return QualType(); |
| case Type::Complex: |
| // Distinct complex types are incompatible. |
| return QualType(); |
| case Type::Vector: |
| // FIXME: The merged type should be an ExtVector! |
| if (areCompatVectorTypes(LHSCan->getAs<VectorType>(), |
| RHSCan->getAs<VectorType>())) |
| return LHS; |
| return QualType(); |
| case Type::ObjCObject: { |
| // Check if the types are assignment compatible. |
| // FIXME: This should be type compatibility, e.g. whether |
| // "LHS x; RHS x;" at global scope is legal. |
| const ObjCObjectType* LHSIface = LHS->getAs<ObjCObjectType>(); |
| const ObjCObjectType* RHSIface = RHS->getAs<ObjCObjectType>(); |
| if (canAssignObjCInterfaces(LHSIface, RHSIface)) |
| return LHS; |
| |
| return QualType(); |
| } |
| case Type::ObjCObjectPointer: { |
| if (OfBlockPointer) { |
| if (canAssignObjCInterfacesInBlockPointer( |
| LHS->getAs<ObjCObjectPointerType>(), |
| RHS->getAs<ObjCObjectPointerType>(), |
| BlockReturnType)) |
| return LHS; |
| return QualType(); |
| } |
| if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(), |
| RHS->getAs<ObjCObjectPointerType>())) |
| return LHS; |
| |
| return QualType(); |
| } |
| } |
| |
| llvm_unreachable("Invalid Type::Class!"); |
| } |
| |
| bool ASTContext::FunctionTypesMatchOnNSConsumedAttrs( |
| const FunctionProtoType *FromFunctionType, |
| const FunctionProtoType *ToFunctionType) { |
| if (FromFunctionType->hasAnyConsumedArgs() != |
| ToFunctionType->hasAnyConsumedArgs()) |
| return false; |
| FunctionProtoType::ExtProtoInfo FromEPI = |
| FromFunctionType->getExtProtoInfo(); |
| FunctionProtoType::ExtProtoInfo ToEPI = |
| ToFunctionType->getExtProtoInfo(); |
| if (FromEPI.ConsumedArguments && ToEPI.ConsumedArguments) |
| for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); |
| ArgIdx != NumArgs; ++ArgIdx) { |
| if (FromEPI.ConsumedArguments[ArgIdx] != |
| ToEPI.ConsumedArguments[ArgIdx]) |
| return false; |
| } |
| return true; |
| } |
| |
| /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
| /// 'RHS' attributes and returns the merged version; including for function |
| /// return types. |
| QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
| QualType LHSCan = getCanonicalType(LHS), |
| RHSCan = getCanonicalType(RHS); |
| // If two types are identical, they are compatible. |
| if (LHSCan == RHSCan) |
| return LHS; |
| if (RHSCan->isFunctionType()) { |
| if (!LHSCan->isFunctionType()) |
| return QualType(); |
| QualType OldReturnType = |
| cast<FunctionType>(RHSCan.getTypePtr())->getResultType(); |
| QualType NewReturnType = |
| cast<FunctionType>(LHSCan.getTypePtr())->getResultType(); |
| QualType ResReturnType = |
| mergeObjCGCQualifiers(NewReturnType, OldReturnType); |
| if (ResReturnType.isNull()) |
| return QualType(); |
| if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
| // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
| // In either case, use OldReturnType to build the new function type. |
| const FunctionType *F = LHS->getAs<FunctionType>(); |
| if (const FunctionProtoType *FPT = cast<FunctionProtoType>(F)) { |
| FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| EPI.ExtInfo = getFunctionExtInfo(LHS); |
| QualType ResultType |
| = getFunctionType(OldReturnType, FPT->arg_type_begin(), |
| FPT->getNumArgs(), EPI); |
| return ResultType; |
| } |
| } |
| return QualType(); |
| } |
| |
| // If the qualifiers are different, the types can still be merged. |
| Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| if (LQuals != RQuals) { |
| // If any of these qualifiers are different, we have a type mismatch. |
| if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
| return QualType(); |
| |
| // Exactly one GC qualifier difference is allowed: __strong is |
| // okay if the other type has no GC qualifier but is an Objective |
| // C object pointer (i.e. implicitly strong by default). We fix |
| // this by pretending that the unqualified type was actually |
| // qualified __strong. |
| Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); |
| |
| if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| return QualType(); |
| |
| if (GC_L == Qualifiers::Strong) |
| return LHS; |
| if (GC_R == Qualifiers::Strong) |
| return RHS; |
| return QualType(); |
| } |
| |
| if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
| QualType LHSBaseQT = LHS->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType RHSBaseQT = RHS->getAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); |
| if (ResQT == LHSBaseQT) |
| return LHS; |
| if (ResQT == RHSBaseQT) |
| return RHS; |
| } |
| return QualType(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Predicates |
| //===----------------------------------------------------------------------===// |
| |
| unsigned ASTContext::getIntWidth(QualType T) const { |
| if (const EnumType *ET = dyn_cast<EnumType>(T)) |
| T = ET->getDecl()->getIntegerType(); |
| if (T->isBooleanType()) |
| return 1; |
| // For builtin types, just use the standard type sizing method |
| return (unsigned)getTypeSize(T); |
| } |
| |
| QualType ASTContext::getCorrespondingUnsignedType(QualType T) { |
| assert(T->hasSignedIntegerRepresentation() && "Unexpected type"); |
| |
| // Turn <4 x signed int> -> <4 x unsigned int> |
| if (const VectorType *VTy = T->getAs<VectorType>()) |
| return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), |
| VTy->getNumElements(), VTy->getVectorKind()); |
| |
| // For enums, we return the unsigned version of the base type. |
| if (const EnumType *ETy = T->getAs<EnumType>()) |
| T = ETy->getDecl()->getIntegerType(); |
| |
| const BuiltinType *BTy = T->getAs<BuiltinType>(); |
| assert(BTy && "Unexpected signed integer type"); |
| switch (BTy->getKind()) { |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: |
| return UnsignedCharTy; |
| case BuiltinType::Short: |
| return UnsignedShortTy; |
| case BuiltinType::Int: |
| return UnsignedIntTy; |
| case BuiltinType::Long: |
| return UnsignedLongTy; |
| case BuiltinType::LongLong: |
| return UnsignedLongLongTy; |
| case BuiltinType::Int128: |
| return UnsignedInt128Ty; |
| default: |
| llvm_unreachable("Unexpected signed integer type"); |
| } |
| } |
| |
| ASTMutationListener::~ASTMutationListener() { } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Builtin Type Computation |
| //===----------------------------------------------------------------------===// |
| |
| /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
| /// pointer over the consumed characters. This returns the resultant type. If |
| /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
| /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
| /// a vector of "i*". |
| /// |
| /// RequiresICE is filled in on return to indicate whether the value is required |
| /// to be an Integer Constant Expression. |
| static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
| ASTContext::GetBuiltinTypeError &Error, |
| bool &RequiresICE, |
| bool AllowTypeModifiers) { |
| // Modifiers. |
| int HowLong = 0; |
| bool Signed = false, Unsigned = false; |
| RequiresICE = false; |
| |
| // Read the prefixed modifiers first. |
| bool Done = false; |
| while (!Done) { |
| switch (*Str++) { |
| default: Done = true; --Str; break; |
| case 'I': |
| RequiresICE = true; |
| break; |
| case 'S': |
| assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); |
| assert(!Signed && "Can't use 'S' modifier multiple times!"); |
| Signed = true; |
| break; |
| case 'U': |
| assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); |
| assert(!Unsigned && "Can't use 'S' modifier multiple times!"); |
| Unsigned = true; |
| break; |
| case 'L': |
| assert(HowLong <= 2 && "Can't have LLLL modifier"); |
| ++HowLong; |
| break; |
| } |
| } |
| |
| QualType Type; |
| |
| // Read the base type. |
| switch (*Str++) { |
| default: llvm_unreachable("Unknown builtin type letter!"); |
| case 'v': |
| assert(HowLong == 0 && !Signed && !Unsigned && |
| "Bad modifiers used with 'v'!"); |
| Type = Context.VoidTy; |
| break; |
| case 'f': |
| assert(HowLong == 0 && !Signed && !Unsigned && |
| "Bad modifiers used with 'f'!"); |
| Type = Context.FloatTy; |
| break; |
| case 'd': |
| assert(HowLong < 2 && !Signed && !Unsigned && |
| "Bad modifiers used with 'd'!"); |
| if (HowLong) |
| Type = Context.LongDoubleTy; |
| else |
| Type = Context.DoubleTy; |
| break; |
| case 's': |
| assert(HowLong == 0 && "Bad modifiers used with 's'!"); |
| if (Unsigned) |
| Type = Context.UnsignedShortTy; |
| else |
| Type = Context.ShortTy; |
| break; |
| case 'i': |
| if (HowLong == 3) |
| Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
| else if (HowLong == 2) |
| Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
| else if (HowLong == 1) |
| Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
| else |
| Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
| break; |
| case 'c': |
| assert(HowLong == 0 && "Bad modifiers used with 'c'!"); |
| if (Signed) |
| Type = Context.SignedCharTy; |
| else if (Unsigned) |
| Type = Context.UnsignedCharTy; |
| else |
| Type = Context.CharTy; |
| break; |
| case 'b': // boolean |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); |
| Type = Context.BoolTy; |
| break; |
| case 'z': // size_t. |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); |
| Type = Context.getSizeType(); |
| break; |
| case 'F': |
| Type = Context.getCFConstantStringType(); |
| break; |
| case 'G': |
| Type = Context.getObjCIdType(); |
| break; |
| case 'H': |
| Type = Context.getObjCSelType(); |
| break; |
| case 'a': |
| Type = Context.getBuiltinVaListType(); |
| assert(!Type.isNull() && "builtin va list type not initialized!"); |
| break; |
| case 'A': |
| // This is a "reference" to a va_list; however, what exactly |
| // this means depends on how va_list is defined. There are two |
| // different kinds of va_list: ones passed by value, and ones |
| // passed by reference. An example of a by-value va_list is |
| // x86, where va_list is a char*. An example of by-ref va_list |
| // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
| // we want this argument to be a char*&; for x86-64, we want |
| // it to be a __va_list_tag*. |
| Type = Context.getBuiltinVaListType(); |
| assert(!Type.isNull() && "builtin va list type not initialized!"); |
| if (Type->isArrayType()) |
| Type = Context.getArrayDecayedType(Type); |
| else |
| Type = Context.getLValueReferenceType(Type); |
| break; |
| case 'V': { |
| char *End; |
| unsigned NumElements = strtoul(Str, &End, 10); |
| assert(End != Str && "Missing vector size"); |
| Str = End; |
| |
| QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
| RequiresICE, false); |
| assert(!RequiresICE && "Can't require vector ICE"); |
| |
| // TODO: No way to make AltiVec vectors in builtins yet. |
| Type = Context.getVectorType(ElementType, NumElements, |
| VectorType::GenericVector); |
| break; |
| } |
| case 'E': { |
| char *End; |
| |
| unsigned NumElements = strtoul(Str, &End, 10); |
| assert(End != Str && "Missing vector size"); |
| |
| Str = End; |
| |
| QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| false); |
| Type = Context.getExtVectorType(ElementType, NumElements); |
| break; |
| } |
| case 'X': { |
| QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| false); |
| assert(!RequiresICE && "Can't require complex ICE"); |
| Type = Context.getComplexType(ElementType); |
| break; |
| } |
| case 'Y' : { |
| Type = Context.getPointerDiffType(); |
| break; |
| } |
| case 'P': |
| Type = Context.getFILEType(); |
| if (Type.isNull()) { |
| Error = ASTContext::GE_Missing_stdio; |
| return QualType(); |
| } |
| break; |
| case 'J': |
| if (Signed) |
| Type = Context.getsigjmp_bufType(); |
| else |
| Type = Context.getjmp_bufType(); |
| |
| if (Type.isNull()) { |
| Error = ASTContext::GE_Missing_setjmp; |
| return QualType(); |
| } |
| break; |
| case 'K': |
| assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); |
| Type = Context.getucontext_tType(); |
| |
| if (Type.isNull()) { |
| Error = ASTContext::GE_Missing_ucontext; |
| return QualType(); |
| } |
| break; |
| } |
| |
| // If there are modifiers and if we're allowed to parse them, go for it. |
| Done = !AllowTypeModifiers; |
| while (!Done) { |
| switch (char c = *Str++) { |
| default: Done = true; --Str; break; |
| case '*': |
| case '&': { |
| // Both pointers and references can have their pointee types |
| // qualified with an address space. |
| char *End; |
| unsigned AddrSpace = strtoul(Str, &End, 10); |
| if (End != Str && AddrSpace != 0) { |
| Type = Context.getAddrSpaceQualType(Type, AddrSpace); |
| Str = End; |
| } |
| if (c == '*') |
| Type = Context.getPointerType(Type); |
| else |
| Type = Context.getLValueReferenceType(Type); |
| break; |
| } |
| // FIXME: There's no way to have a built-in with an rvalue ref arg. |
| case 'C': |
| Type = Type.withConst(); |
| break; |
| case 'D': |
| Type = Context.getVolatileType(Type); |
| break; |
| case 'R': |
| Type = Type.withRestrict(); |
| break; |
| } |
| } |
| |
| assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && |
| "Integer constant 'I' type must be an integer"); |
| |
| return Type; |
| } |
| |
| /// GetBuiltinType - Return the type for the specified builtin. |
| QualType ASTContext::GetBuiltinType(unsigned Id, |
| GetBuiltinTypeError &Error, |
| unsigned *IntegerConstantArgs) const { |
| const char *TypeStr = BuiltinInfo.GetTypeString(Id); |
| |
| SmallVector<QualType, 8> ArgTypes; |
| |
| bool RequiresICE = false; |
| Error = GE_None; |
| QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, |
| RequiresICE, true); |
| if (Error != GE_None) |
| return QualType(); |
| |
| assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); |
| |
| while (TypeStr[0] && TypeStr[0] != '.') { |
| QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); |
| if (Error != GE_None) |
| return QualType(); |
| |
| // If this argument is required to be an IntegerConstantExpression and the |
| // caller cares, fill in the bitmask we return. |
| if (RequiresICE && IntegerConstantArgs) |
| *IntegerConstantArgs |= 1 << ArgTypes.size(); |
| |
| // Do array -> pointer decay. The builtin should use the decayed type. |
| if (Ty->isArrayType()) |
| Ty = getArrayDecayedType(Ty); |
| |
| ArgTypes.push_back(Ty); |
| } |
| |
| assert((TypeStr[0] != '.' || TypeStr[1] == 0) && |
| "'.' should only occur at end of builtin type list!"); |
| |
| FunctionType::ExtInfo EI; |
| if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); |
| |
| bool Variadic = (TypeStr[0] == '.'); |
| |
| // We really shouldn't be making a no-proto type here, especially in C++. |
| if (ArgTypes.empty() && Variadic) |
| return getFunctionNoProtoType(ResType, EI); |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.ExtInfo = EI; |
| EPI.Variadic = Variadic; |
| |
| return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(), EPI); |
| } |
| |
| GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) { |
| GVALinkage External = GVA_StrongExternal; |
| |
| Linkage L = FD->getLinkage(); |
| switch (L) { |
| case NoLinkage: |
| case InternalLinkage: |
| case UniqueExternalLinkage: |
| return GVA_Internal; |
| |
| case ExternalLinkage: |
| switch (FD->getTemplateSpecializationKind()) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| External = GVA_StrongExternal; |
| break; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return GVA_ExplicitTemplateInstantiation; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ImplicitInstantiation: |
| External = GVA_TemplateInstantiation; |
| break; |
| } |
| } |
| |
| if (!FD->isInlined()) |
| return External; |
| |
| if (!getLangOpts().CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { |
| // GNU or C99 inline semantics. Determine whether this symbol should be |
| // externally visible. |
| if (FD->isInlineDefinitionExternallyVisible()) |
| return External; |
| |
| // C99 inline semantics, where the symbol is not externally visible. |
| return GVA_C99Inline; |
| } |
| |
| // C++0x [temp.explicit]p9: |
| // [ Note: The intent is that an inline function that is the subject of |
| // an explicit instantiation declaration will still be implicitly |
| // instantiated when used so that the body can be considered for |
| // inlining, but that no out-of-line copy of the inline function would be |
| // generated in the translation unit. -- end note ] |
| if (FD->getTemplateSpecializationKind() |
| == TSK_ExplicitInstantiationDeclaration) |
| return GVA_C99Inline; |
| |
| return GVA_CXXInline; |
| } |
| |
| GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { |
| // If this is a static data member, compute the kind of template |
| // specialization. Otherwise, this variable is not part of a |
| // template. |
| TemplateSpecializationKind TSK = TSK_Undeclared; |
| if (VD->isStaticDataMember()) |
| TSK = VD->getTemplateSpecializationKind(); |
| |
| Linkage L = VD->getLinkage(); |
| if (L == ExternalLinkage && getLangOpts().CPlusPlus && |
| VD->getType()->getLinkage() == UniqueExternalLinkage) |
| L = UniqueExternalLinkage; |
| |
| switch (L) { |
| case NoLinkage: |
| case InternalLinkage: |
| case UniqueExternalLinkage: |
| return GVA_Internal; |
| |
| case ExternalLinkage: |
| switch (TSK) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| return GVA_StrongExternal; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| llvm_unreachable("Variable should not be instantiated"); |
| // Fall through to treat this like any other instantiation. |
| |
| case TSK_ExplicitInstantiationDefinition: |
| return GVA_ExplicitTemplateInstantiation; |
| |
| case TSK_ImplicitInstantiation: |
| return GVA_TemplateInstantiation; |
| } |
| } |
| |
| llvm_unreachable("Invalid Linkage!"); |
| } |
| |
| bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (!VD->isFileVarDecl()) |
| return false; |
| } else if (!isa<FunctionDecl>(D)) |
| return false; |
| |
| // Weak references don't produce any output by themselves. |
| if (D->hasAttr<WeakRefAttr>()) |
| return false; |
| |
| // Aliases and used decls are required. |
| if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
| return true; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // Forward declarations aren't required. |
| if (!FD->doesThisDeclarationHaveABody()) |
| return FD->doesDeclarationForceExternallyVisibleDefinition(); |
| |
| // Constructors and destructors are required. |
| if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
| return true; |
| |
| // The key function for a class is required. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| const CXXRecordDecl *RD = MD->getParent(); |
| if (MD->isOutOfLine() && RD->isDynamicClass()) { |
| const CXXMethodDecl *KeyFunc = getKeyFunction(RD); |
| if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
| return true; |
| } |
| } |
| |
| GVALinkage Linkage = GetGVALinkageForFunction(FD); |
| |
| // static, static inline, always_inline, and extern inline functions can |
| // always be deferred. Normal inline functions can be deferred in C99/C++. |
| // Implicit template instantiations can also be deferred in C++. |
| if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || |
| Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) |
| return false; |
| return true; |
| } |
| |
| const VarDecl *VD = cast<VarDecl>(D); |
| assert(VD->isFileVarDecl() && "Expected file scoped var"); |
| |
| if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) |
| return false; |
| |
| // Structs that have non-trivial constructors or destructors are required. |
| |
| // FIXME: Handle references. |
| // FIXME: Be more selective about which constructors we care about. |
| if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
| if (RD->hasDefinition() && !(RD->hasTrivialDefaultConstructor() && |
| RD->hasTrivialCopyConstructor() && |
| RD->hasTrivialMoveConstructor() && |
| RD->hasTrivialDestructor())) |
| return true; |
| } |
| } |
| |
| GVALinkage L = GetGVALinkageForVariable(VD); |
| if (L == GVA_Internal || L == GVA_TemplateInstantiation) { |
| if (!(VD->getInit() && VD->getInit()->HasSideEffects(*this))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| CallingConv ASTContext::getDefaultMethodCallConv() { |
| // Pass through to the C++ ABI object |
| return ABI->getDefaultMethodCallConv(); |
| } |
| |
| bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
| // Pass through to the C++ ABI object |
| return ABI->isNearlyEmpty(RD); |
| } |
| |
| MangleContext *ASTContext::createMangleContext() { |
| switch (Target->getCXXABI()) { |
| case CXXABI_ARM: |
| case CXXABI_Itanium: |
| return createItaniumMangleContext(*this, getDiagnostics()); |
| case CXXABI_Microsoft: |
| return createMicrosoftMangleContext(*this, getDiagnostics()); |
| } |
| llvm_unreachable("Unsupported ABI"); |
| } |
| |
| CXXABI::~CXXABI() {} |
| |
| size_t ASTContext::getSideTableAllocatedMemory() const { |
| return ASTRecordLayouts.getMemorySize() |
| + llvm::capacity_in_bytes(ObjCLayouts) |
| + llvm::capacity_in_bytes(KeyFunctions) |
| + llvm::capacity_in_bytes(ObjCImpls) |
| + llvm::capacity_in_bytes(BlockVarCopyInits) |
| + llvm::capacity_in_bytes(DeclAttrs) |
| + llvm::capacity_in_bytes(InstantiatedFromStaticDataMember) |
| + llvm::capacity_in_bytes(InstantiatedFromUsingDecl) |
| + llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) |
| + llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) |
| + llvm::capacity_in_bytes(OverriddenMethods) |
| + llvm::capacity_in_bytes(Types) |
| + llvm::capacity_in_bytes(VariableArrayTypes) |
| + llvm::capacity_in_bytes(ClassScopeSpecializationPattern); |
| } |
| |
| unsigned ASTContext::getLambdaManglingNumber(CXXMethodDecl *CallOperator) { |
| CXXRecordDecl *Lambda = CallOperator->getParent(); |
| return LambdaMangleContexts[Lambda->getDeclContext()] |
| .getManglingNumber(CallOperator); |
| } |
| |
| |
| void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
| ParamIndices[D] = index; |
| } |
| |
| unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
| ParameterIndexTable::const_iterator I = ParamIndices.find(D); |
| assert(I != ParamIndices.end() && |
| "ParmIndices lacks entry set by ParmVarDecl"); |
| return I->second; |
| } |