blob: e9f409ace9cdf29cd9b49bed86435ced5b74da4d [file] [log] [blame]
<html>
<head>
<title>Clang Language Extensions</title>
<link type="text/css" rel="stylesheet" href="../menu.css" />
<link type="text/css" rel="stylesheet" href="../content.css" />
<style type="text/css">
td {
vertical-align: top;
}
</style>
</head>
<body>
<!--#include virtual="../menu.html.incl"-->
<div id="content">
<h1>Clang Language Extensions</h1>
<ul>
<li><a href="#intro">Introduction</a></li>
<li><a href="#vectors">Vectors and Extended Vectors</a></li>
<li><a href="#blocks">Blocks</a></li>
<li><a href="#overloading-in-c">Function Overloading in C</a></li>
<li><a href="#builtins">Builtin Functions</a>
<ul>
<li><a href="#__builtin_overload">__builtin_overload</a></li>
<li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
</ul>
</li>
</ul>
<!-- ======================================================================= -->
<h2 id="intro">Introduction</h2>
<!-- ======================================================================= -->
<p>This document describes the language extensions provided by Clang. In
addition to the langauge extensions listed here, Clang aims to support a broad
range of GCC extensions. Please see the <a
href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
more information on these extensions.</p>
<!-- ======================================================================= -->
<h2 id="vectors">Vectors and Extended Vectors</h2>
<!-- ======================================================================= -->
<p>Supports the GCC vector extensions, plus some stuff like V[1]. ext_vector
with V.xyzw syntax and other tidbits. See also <a
href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
<!-- ======================================================================= -->
<h2 id="blocks">Blocks</h2>
<!-- ======================================================================= -->
<p>The idea, syntax, and semantics.</p>
<!-- ======================================================================= -->
<h2 id="overloading-in-c">Function Overloading in C</h2>
<!-- ======================================================================= -->
<p>Clang provides support for C++ function overloading in C. Function overloading in C is introduced using the <tt>overloadable</tt> attribute. For example, one might provide several overloaded versions of a <tt>tgsin</tt> function that invokes the appropriate standard function computing the sine of a value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt> precision:</p>
<blockquote>
<pre>
#include &lt;math.h&gt;
float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
</pre>
</blockquote>
<p>Given these declarations, one can call <tt>tgsin</tt> with a
<tt>float</tt> value to receive a <tt>float</tt> result, with a
<tt>double</tt> to receive a <tt>double</tt> result, etc. Function
overloading in C follows the rules of C++ function overloading to pick
the best overload given the call arguments, with a few C-specific
semantics:</p>
<ul>
<li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
double</tt> is ranked as a floating-point promotion (per C99) rather
than as a floating-point conversion (as in C++).</li>
<li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
<tt>U*</tt> is considered a pointer conversion (with conversion
rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
<li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
conversion is given "conversion" rank.</li>
</ul>
<p>The declaration of <tt>overloadable</tt> functions is restricted to
function declarations and definitions. Most importantly, if any
function with a given name is given the <tt>overloadable</tt>
attribute, then all function declarations and definitions with that
name (and in that scope) must have the <tt>overloadable</tt>
attribute. This rule even applies to redeclarations of functions whose original declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
<blockquote>
<pre>
int f(int) __attribute__((overloadable));
float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
int g(int) __attribute__((overloadable));
int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
</pre>
</blockquote>
<p>Functions declared with the <tt>overloadable</tt> attribute have
their names mangled according to the same rules as C++ function
names. For example, the three <tt>tgsin</tt> functions in our
motivating example get the mangled names <tt>_Z5tgsinf</tt>,
<tt>_Z5tgsind</tt>, and <tt>Z5tgsine</tt>, respectively. There are two
caveats to this use of name mangling:</p>
<ul>
<li>Future versions of Clang may change the name mangling of
functions overloaded in C, so you should not depend on an specific
mangling. To be completely safe, we strongly urge the use of
<tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
<li>The <tt>overloadable</tt> attribute has almost no meaning when
used in C++, because names will already be mangled and functions are
already overloadable. However, when an <tt>overloadable</tt>
function occurs within an <tt>extern "C"</tt> linkage specification,
it's name <i>will</i> be mangled in the same way as it would in
C.</li>
</ul>
<!-- ======================================================================= -->
<h2 id="builtins">Builtin Functions</h2>
<!-- ======================================================================= -->
<p>Clang supports a number of builtin library functions with the same syntax as
GCC, including things like <tt>__builtin_nan</tt>,
<tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>,
<tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc. In
addition to the GCC builtins, Clang supports a number of builtins that GCC does
not, which are listed here.</p>
<p>Please note that Clang does not and will not support all of the GCC builtins
for vector operations. Instead of using builtins, you should use the functions
defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
define portable wrappers for these. Many of the Clang versions of these
functions are implemented directly in terms of <a href="#vectors">extended
vector support</a> instead of builtins, in order to reduce the number of
builtins that we need to implement.</p>
<!-- ======================================================================= -->
<h3 id="__builtin_overload">__builtin_overload</h3>
<!-- ======================================================================= -->
<p><tt>__builtin_overload</tt> is used to implement type-generic "overloaded"
functions in C. This builtin is used to implement the <tt>&lt;tgmath.h&gt;</tt>
header file, but is intended to be usable for a broad variety of other similar
situations, like the <tt>&lt;altivec.h&gt;</tt> header.
<b>In the future, we intend to eliminate <tt>__builtin_overload</tt> in favor of <a href="#overloading-in-c">function overloading in C</a>, which provides a better solution for type-generic "overloaded" functions.</b>
</p>
<p><b>Syntax:</b></p>
<pre>
__builtin_overload(FnNameStr, PromotionRuleStr, NumArgs, arg1, arg2, ...
overloadcandidate1, overloadcandidate2, ...)
</pre>
<p><b>Examples:</b></p>
<pre>
#define sin(x) \
(__builtin_overload("sin", "tgmath", 1, x, sinf, sin, sinl,
csinf, csin, csinl)(x))
#define fma(x,y,z) \
(__builtin_overload("fma", "tgmath", 3, x, y, z, fmaf, fma, fmal)(x,y,z))
#define ldexp(x, y) \
(__builtin_overload("ldexp", "tgmath1", 2, x, 0, ldexpf, ldexp, ldexpl)(x,y))
</pre>
<p><b>Description:</b></p>
<p>The first argument to __builtin_overload is a string that is the name of the
"function" being implemented. This is used to produce diagnostics that make
sense to the user. For example, if you accidentally pass a pointer argument to
"sin" in GCC, it emits 6 errors about incompatible types. This name allows
Clang to diagnose the error in a way the user can understand.
</p>
<p>The second argument is a string that indicates a set of promotion rules to
apply to the arguments before prototype matching occurs. The currently
supported rules are:</p>
<dl>
<dt>tgmath</dt>
<dd>Follow the rules of C99 7.22 to determine a single common type, and use it
for every argument.</dd>
<dt>tgmath1</dt>
<dd>Follow the rules of C99 7.22 to determine a single common type of just the
first argument (e.g. treat ints as doubles).</dd>
</dl>
<p>The third argument is an integer that specifies the arity of the function
being overloaded. After this are N expression arguments which are promoted
according to the rules specified by the promotion rule string.</p>
<p>The final arguments are functions or function pointers with different
signatures. __builtin_overload will match and evaluate to the first function
pointer whose signature is compatible and does not cause value truncation of
any arguments to the function.</p>
<!-- ======================================================================= -->
<h3 id="__builtin_shufflevector">__builtin_shufflevector</h3>
<!-- ======================================================================= -->
<p>todo describe me.</p>
</div>
</body>
</html>