blob: 29debe58b6b1e44d66243309fd51ed876fb0ca45 [file] [log] [blame]
//===--- Format.cpp - Format C++ code -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements functions declared in Format.h. This will be
/// split into separate files as we go.
///
/// This is EXPERIMENTAL code under heavy development. It is not in a state yet,
/// where it can be used to format real code.
///
//===----------------------------------------------------------------------===//
#include "clang/Format/Format.h"
#include "UnwrappedLineParser.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Lexer.h"
#include <string>
namespace clang {
namespace format {
enum TokenType {
TT_BinaryOperator,
TT_BlockComment,
TT_CastRParen,
TT_ConditionalExpr,
TT_CtorInitializerColon,
TT_DirectorySeparator,
TT_LineComment,
TT_ObjCBlockLParen,
TT_ObjCDecl,
TT_ObjCMethodSpecifier,
TT_ObjCMethodExpr,
TT_ObjCSelectorStart,
TT_ObjCProperty,
TT_OverloadedOperator,
TT_PointerOrReference,
TT_PureVirtualSpecifier,
TT_TemplateCloser,
TT_TemplateOpener,
TT_TrailingUnaryOperator,
TT_UnaryOperator,
TT_Unknown
};
enum LineType {
LT_Invalid,
LT_Other,
LT_PreprocessorDirective,
LT_VirtualFunctionDecl,
LT_ObjCDecl, // An @interface, @implementation, or @protocol line.
LT_ObjCMethodDecl,
LT_ObjCProperty // An @property line.
};
class AnnotatedToken {
public:
AnnotatedToken(const FormatToken &FormatTok)
: FormatTok(FormatTok), Type(TT_Unknown), SpaceRequiredBefore(false),
CanBreakBefore(false), MustBreakBefore(false),
ClosesTemplateDeclaration(false), Parent(NULL) {}
bool is(tok::TokenKind Kind) const {
return FormatTok.Tok.is(Kind);
}
bool isNot(tok::TokenKind Kind) const {
return FormatTok.Tok.isNot(Kind);
}
bool isObjCAtKeyword(tok::ObjCKeywordKind Kind) const {
return FormatTok.Tok.isObjCAtKeyword(Kind);
}
FormatToken FormatTok;
TokenType Type;
bool SpaceRequiredBefore;
bool CanBreakBefore;
bool MustBreakBefore;
bool ClosesTemplateDeclaration;
std::vector<AnnotatedToken> Children;
AnnotatedToken *Parent;
};
static prec::Level getPrecedence(const AnnotatedToken &Tok) {
return getBinOpPrecedence(Tok.FormatTok.Tok.getKind(), true, true);
}
FormatStyle getLLVMStyle() {
FormatStyle LLVMStyle;
LLVMStyle.ColumnLimit = 80;
LLVMStyle.MaxEmptyLinesToKeep = 1;
LLVMStyle.PointerAndReferenceBindToType = false;
LLVMStyle.AccessModifierOffset = -2;
LLVMStyle.SplitTemplateClosingGreater = true;
LLVMStyle.IndentCaseLabels = false;
LLVMStyle.SpacesBeforeTrailingComments = 1;
LLVMStyle.ConstructorInitializerAllOnOneLineOrOnePerLine = false;
LLVMStyle.ObjCSpaceBeforeProtocolList = true;
LLVMStyle.ObjCSpaceBeforeReturnType = true;
return LLVMStyle;
}
FormatStyle getGoogleStyle() {
FormatStyle GoogleStyle;
GoogleStyle.ColumnLimit = 80;
GoogleStyle.MaxEmptyLinesToKeep = 1;
GoogleStyle.PointerAndReferenceBindToType = true;
GoogleStyle.AccessModifierOffset = -1;
GoogleStyle.SplitTemplateClosingGreater = false;
GoogleStyle.IndentCaseLabels = true;
GoogleStyle.SpacesBeforeTrailingComments = 2;
GoogleStyle.ConstructorInitializerAllOnOneLineOrOnePerLine = true;
GoogleStyle.ObjCSpaceBeforeProtocolList = false;
GoogleStyle.ObjCSpaceBeforeReturnType = false;
return GoogleStyle;
}
struct OptimizationParameters {
unsigned PenaltyIndentLevel;
unsigned PenaltyLevelDecrease;
unsigned PenaltyExcessCharacter;
};
/// \brief Replaces the whitespace in front of \p Tok. Only call once for
/// each \c FormatToken.
static void replaceWhitespace(const AnnotatedToken &Tok, unsigned NewLines,
unsigned Spaces, const FormatStyle &Style,
SourceManager &SourceMgr,
tooling::Replacements &Replaces) {
Replaces.insert(tooling::Replacement(
SourceMgr, Tok.FormatTok.WhiteSpaceStart, Tok.FormatTok.WhiteSpaceLength,
std::string(NewLines, '\n') + std::string(Spaces, ' ')));
}
/// \brief Like \c replaceWhitespace, but additionally adds right-aligned
/// backslashes to escape newlines inside a preprocessor directive.
///
/// This function and \c replaceWhitespace have the same behavior if
/// \c Newlines == 0.
static void replacePPWhitespace(
const AnnotatedToken &Tok, unsigned NewLines, unsigned Spaces,
unsigned WhitespaceStartColumn, const FormatStyle &Style,
SourceManager &SourceMgr, tooling::Replacements &Replaces) {
std::string NewLineText;
if (NewLines > 0) {
unsigned Offset = std::min<int>(Style.ColumnLimit - 1,
WhitespaceStartColumn);
for (unsigned i = 0; i < NewLines; ++i) {
NewLineText += std::string(Style.ColumnLimit - Offset - 1, ' ');
NewLineText += "\\\n";
Offset = 0;
}
}
Replaces.insert(tooling::Replacement(SourceMgr, Tok.FormatTok.WhiteSpaceStart,
Tok.FormatTok.WhiteSpaceLength,
NewLineText + std::string(Spaces, ' ')));
}
/// \brief Checks whether the (remaining) \c UnwrappedLine starting with
/// \p RootToken fits into \p Limit columns.
static bool fitsIntoLimit(const AnnotatedToken &RootToken, unsigned Limit) {
unsigned Columns = RootToken.FormatTok.TokenLength;
bool FitsOnALine = true;
const AnnotatedToken *Tok = &RootToken;
while (!Tok->Children.empty()) {
Tok = &Tok->Children[0];
Columns += (Tok->SpaceRequiredBefore ? 1 : 0) + Tok->FormatTok.TokenLength;
// A special case for the colon of a constructor initializer as this only
// needs to be put on a new line if the line needs to be split.
if (Columns > Limit ||
(Tok->MustBreakBefore && Tok->Type != TT_CtorInitializerColon)) {
FitsOnALine = false;
break;
}
}
return FitsOnALine;
}
/// \brief Returns if a token is an Objective-C selector name.
///
/// For example, "bar" is a selector name in [foo bar:(4 + 5)].
static bool isObjCSelectorName(const AnnotatedToken &Tok) {
return Tok.is(tok::identifier) && !Tok.Children.empty() &&
Tok.Children[0].is(tok::colon) &&
Tok.Children[0].Type == TT_ObjCMethodExpr;
}
class UnwrappedLineFormatter {
public:
UnwrappedLineFormatter(const FormatStyle &Style, SourceManager &SourceMgr,
const UnwrappedLine &Line, unsigned FirstIndent,
bool FitsOnALine, const AnnotatedToken &RootToken,
tooling::Replacements &Replaces, bool StructuralError)
: Style(Style), SourceMgr(SourceMgr), Line(Line),
FirstIndent(FirstIndent), FitsOnALine(FitsOnALine),
RootToken(RootToken), Replaces(Replaces) {
Parameters.PenaltyIndentLevel = 15;
Parameters.PenaltyLevelDecrease = 30;
Parameters.PenaltyExcessCharacter = 1000000;
}
/// \brief Formats an \c UnwrappedLine.
///
/// \returns The column after the last token in the last line of the
/// \c UnwrappedLine.
unsigned format() {
// Initialize state dependent on indent.
LineState State;
State.Column = FirstIndent;
State.NextToken = &RootToken;
State.Stack.push_back(ParenState(FirstIndent + 4, FirstIndent));
State.ForLoopVariablePos = 0;
State.LineContainsContinuedForLoopSection = false;
State.StartOfLineLevel = 1;
// The first token has already been indented and thus consumed.
moveStateToNextToken(State);
// Start iterating at 1 as we have correctly formatted of Token #0 above.
while (State.NextToken != NULL) {
if (FitsOnALine) {
addTokenToState(false, false, State);
} else {
unsigned NoBreak = calcPenalty(State, false, UINT_MAX);
unsigned Break = calcPenalty(State, true, NoBreak);
addTokenToState(Break < NoBreak, false, State);
if (State.NextToken != NULL &&
State.NextToken->Parent->Type == TT_CtorInitializerColon) {
if (Style.ConstructorInitializerAllOnOneLineOrOnePerLine &&
!fitsIntoLimit(*State.NextToken,
getColumnLimit() - State.Column - 1))
State.Stack.back().BreakAfterComma = true;
}
}
}
return State.Column;
}
private:
struct ParenState {
ParenState(unsigned Indent, unsigned LastSpace)
: Indent(Indent), LastSpace(LastSpace), FirstLessLess(0),
BreakBeforeClosingBrace(false), BreakAfterComma(false) {}
/// \brief The position to which a specific parenthesis level needs to be
/// indented.
unsigned Indent;
/// \brief The position of the last space on each level.
///
/// Used e.g. to break like:
/// functionCall(Parameter, otherCall(
/// OtherParameter));
unsigned LastSpace;
/// \brief The position the first "<<" operator encountered on each level.
///
/// Used to align "<<" operators. 0 if no such operator has been encountered
/// on a level.
unsigned FirstLessLess;
/// \brief Whether a newline needs to be inserted before the block's closing
/// brace.
///
/// We only want to insert a newline before the closing brace if there also
/// was a newline after the beginning left brace.
bool BreakBeforeClosingBrace;
bool BreakAfterComma;
bool operator<(const ParenState &Other) const {
if (Indent != Other.Indent)
return Indent < Other.Indent;
if (LastSpace != Other.LastSpace)
return LastSpace < Other.LastSpace;
if (FirstLessLess != Other.FirstLessLess)
return FirstLessLess < Other.FirstLessLess;
if (BreakBeforeClosingBrace != Other.BreakBeforeClosingBrace)
return BreakBeforeClosingBrace;
if (BreakAfterComma != Other.BreakAfterComma)
return BreakAfterComma;
return false;
}
};
/// \brief The current state when indenting a unwrapped line.
///
/// As the indenting tries different combinations this is copied by value.
struct LineState {
/// \brief The number of used columns in the current line.
unsigned Column;
/// \brief The token that needs to be next formatted.
const AnnotatedToken *NextToken;
/// \brief The parenthesis level of the first token on the current line.
unsigned StartOfLineLevel;
/// \brief The column of the first variable in a for-loop declaration.
///
/// Used to align the second variable if necessary.
unsigned ForLoopVariablePos;
/// \brief \c true if this line contains a continued for-loop section.
bool LineContainsContinuedForLoopSection;
/// \brief A stack keeping track of properties applying to parenthesis
/// levels.
std::vector<ParenState> Stack;
/// \brief Comparison operator to be able to used \c LineState in \c map.
bool operator<(const LineState &Other) const {
if (Other.NextToken != NextToken)
return Other.NextToken > NextToken;
if (Other.Column != Column)
return Other.Column > Column;
if (Other.StartOfLineLevel != StartOfLineLevel)
return Other.StartOfLineLevel > StartOfLineLevel;
if (Other.ForLoopVariablePos != ForLoopVariablePos)
return Other.ForLoopVariablePos < ForLoopVariablePos;
if (Other.LineContainsContinuedForLoopSection !=
LineContainsContinuedForLoopSection)
return LineContainsContinuedForLoopSection;
return Other.Stack < Stack;
}
};
/// \brief Appends the next token to \p State and updates information
/// necessary for indentation.
///
/// Puts the token on the current line if \p Newline is \c true and adds a
/// line break and necessary indentation otherwise.
///
/// If \p DryRun is \c false, also creates and stores the required
/// \c Replacement.
void addTokenToState(bool Newline, bool DryRun, LineState &State) {
const AnnotatedToken &Current = *State.NextToken;
const AnnotatedToken &Previous = *State.NextToken->Parent;
assert(State.Stack.size());
unsigned ParenLevel = State.Stack.size() - 1;
if (Newline) {
unsigned WhitespaceStartColumn = State.Column;
if (Current.is(tok::r_brace)) {
State.Column = Line.Level * 2;
} else if (Current.is(tok::string_literal) &&
Previous.is(tok::string_literal)) {
State.Column = State.Column - Previous.FormatTok.TokenLength;
} else if (Current.is(tok::lessless) &&
State.Stack[ParenLevel].FirstLessLess != 0) {
State.Column = State.Stack[ParenLevel].FirstLessLess;
} else if (ParenLevel != 0 &&
(Previous.is(tok::equal) || Current.is(tok::arrow) ||
Current.is(tok::period) || Previous.is(tok::question) ||
Previous.Type == TT_ConditionalExpr)) {
// Indent and extra 4 spaces after if we know the current expression is
// continued. Don't do that on the top level, as we already indent 4
// there.
State.Column = State.Stack[ParenLevel].Indent + 4;
} else if (RootToken.is(tok::kw_for) && Previous.is(tok::comma)) {
State.Column = State.ForLoopVariablePos;
} else if (State.NextToken->Parent->ClosesTemplateDeclaration) {
State.Column = State.Stack[ParenLevel].Indent - 4;
} else {
State.Column = State.Stack[ParenLevel].Indent;
}
// A line starting with a closing brace is assumed to be correct for the
// same level as before the opening brace.
State.StartOfLineLevel = ParenLevel + (Current.is(tok::r_brace) ? 0 : 1);
if (RootToken.is(tok::kw_for))
State.LineContainsContinuedForLoopSection = Previous.isNot(tok::semi);
if (!DryRun) {
if (!Line.InPPDirective)
replaceWhitespace(Current.FormatTok, 1, State.Column, Style,
SourceMgr, Replaces);
else
replacePPWhitespace(Current.FormatTok, 1, State.Column,
WhitespaceStartColumn, Style, SourceMgr,
Replaces);
}
State.Stack[ParenLevel].LastSpace = State.Column;
if (Current.is(tok::colon) && State.NextToken->Type != TT_ConditionalExpr)
State.Stack[ParenLevel].Indent += 2;
} else {
if (Current.is(tok::equal) && RootToken.is(tok::kw_for))
State.ForLoopVariablePos = State.Column -
Previous.FormatTok.TokenLength;
unsigned Spaces = State.NextToken->SpaceRequiredBefore ? 1 : 0;
if (State.NextToken->Type == TT_LineComment)
Spaces = Style.SpacesBeforeTrailingComments;
if (!DryRun)
replaceWhitespace(Current, 0, Spaces, Style, SourceMgr, Replaces);
// FIXME: Do we need to do this for assignments nested in other
// expressions?
if (RootToken.isNot(tok::kw_for) && ParenLevel == 0 &&
(getPrecedence(Previous) == prec::Assignment ||
Previous.is(tok::kw_return)))
State.Stack[ParenLevel].Indent = State.Column + Spaces;
if (Previous.is(tok::l_paren) || Previous.is(tok::l_brace) ||
State.NextToken->Parent->Type == TT_TemplateOpener)
State.Stack[ParenLevel].Indent = State.Column + Spaces;
// Top-level spaces that are not part of assignments are exempt as that
// mostly leads to better results.
State.Column += Spaces;
if (Spaces > 0 &&
(ParenLevel != 0 || getPrecedence(Previous) == prec::Assignment))
State.Stack[ParenLevel].LastSpace = State.Column;
}
moveStateToNextToken(State);
if (Newline && Previous.is(tok::l_brace)) {
State.Stack.back().BreakBeforeClosingBrace = true;
}
}
/// \brief Mark the next token as consumed in \p State and modify its stacks
/// accordingly.
void moveStateToNextToken(LineState &State) {
const AnnotatedToken &Current = *State.NextToken;
assert(State.Stack.size());
if (Current.is(tok::lessless) && State.Stack.back().FirstLessLess == 0)
State.Stack.back().FirstLessLess = State.Column;
// If we encounter an opening (, [, { or <, we add a level to our stacks to
// prepare for the following tokens.
if (Current.is(tok::l_paren) || Current.is(tok::l_square) ||
Current.is(tok::l_brace) ||
State.NextToken->Type == TT_TemplateOpener) {
unsigned NewIndent;
if (Current.is(tok::l_brace)) {
// FIXME: This does not work with nested static initializers.
// Implement a better handling for static initializers and similar
// constructs.
NewIndent = Line.Level * 2 + 2;
} else {
NewIndent = 4 + State.Stack.back().LastSpace;
}
State.Stack.push_back(
ParenState(NewIndent, State.Stack.back().LastSpace));
}
// If we encounter a closing ), ], } or >, we can remove a level from our
// stacks.
if (Current.is(tok::r_paren) || Current.is(tok::r_square) ||
(Current.is(tok::r_brace) && State.NextToken != &RootToken) ||
State.NextToken->Type == TT_TemplateCloser) {
State.Stack.pop_back();
}
if (State.NextToken->Children.empty())
State.NextToken = NULL;
else
State.NextToken = &State.NextToken->Children[0];
State.Column += Current.FormatTok.TokenLength;
}
/// \brief Calculate the penalty for splitting after the token at \p Index.
unsigned splitPenalty(const AnnotatedToken &Tok) {
const AnnotatedToken &Left = Tok;
const AnnotatedToken &Right = Tok.Children[0];
// In for-loops, prefer breaking at ',' and ';'.
if (RootToken.is(tok::kw_for) &&
(Left.isNot(tok::comma) && Left.isNot(tok::semi)))
return 20;
if (Left.is(tok::semi) || Left.is(tok::comma) ||
Left.ClosesTemplateDeclaration)
return 0;
// In Objective-C method expressions, prefer breaking before "param:" over
// breaking after it.
if (isObjCSelectorName(Right))
return 0;
if (Right.is(tok::colon) && Right.Type == TT_ObjCMethodExpr)
return 20;
if (Left.is(tok::l_paren))
return 20;
if (Left.is(tok::question) || Left.Type == TT_ConditionalExpr)
return prec::Assignment;
prec::Level Level = getPrecedence(Left);
// Breaking after an assignment leads to a bad result as the two sides of
// the assignment are visually very close together.
if (Level == prec::Assignment)
return 50;
if (Level != prec::Unknown)
return Level;
if (Right.is(tok::arrow) || Right.is(tok::period))
return 150;
return 3;
}
unsigned getColumnLimit() {
return Style.ColumnLimit - (Line.InPPDirective ? 1 : 0);
}
/// \brief Calculate the number of lines needed to format the remaining part
/// of the unwrapped line.
///
/// Assumes the formatting so far has led to
/// the \c LineSta \p State. If \p NewLine is set, a new line will be
/// added after the previous token.
///
/// \param StopAt is used for optimization. If we can determine that we'll
/// definitely need at least \p StopAt additional lines, we already know of a
/// better solution.
unsigned calcPenalty(LineState State, bool NewLine, unsigned StopAt) {
// We are at the end of the unwrapped line, so we don't need any more lines.
if (State.NextToken == NULL)
return 0;
if (!NewLine && State.NextToken->MustBreakBefore)
return UINT_MAX;
if (NewLine && !State.NextToken->CanBreakBefore)
return UINT_MAX;
if (!NewLine && State.NextToken->is(tok::r_brace) &&
State.Stack.back().BreakBeforeClosingBrace)
return UINT_MAX;
if (!NewLine && State.NextToken->Parent->is(tok::semi) &&
State.LineContainsContinuedForLoopSection)
return UINT_MAX;
if (!NewLine && State.NextToken->Parent->is(tok::comma) &&
State.NextToken->Type != TT_LineComment &&
State.Stack.back().BreakAfterComma)
return UINT_MAX;
unsigned CurrentPenalty = 0;
if (NewLine) {
CurrentPenalty += Parameters.PenaltyIndentLevel * State.Stack.size() +
splitPenalty(*State.NextToken->Parent);
} else {
if (State.Stack.size() < State.StartOfLineLevel)
CurrentPenalty += Parameters.PenaltyLevelDecrease *
(State.StartOfLineLevel - State.Stack.size());
}
addTokenToState(NewLine, true, State);
// Exceeding column limit is bad, assign penalty.
if (State.Column > getColumnLimit()) {
unsigned ExcessCharacters = State.Column - getColumnLimit();
CurrentPenalty += Parameters.PenaltyExcessCharacter * ExcessCharacters;
}
if (StopAt <= CurrentPenalty)
return UINT_MAX;
StopAt -= CurrentPenalty;
StateMap::iterator I = Memory.find(State);
if (I != Memory.end()) {
// If this state has already been examined, we can safely return the
// previous result if we
// - have not hit the optimatization (and thus returned UINT_MAX) OR
// - are now computing for a smaller or equal StopAt.
unsigned SavedResult = I->second.first;
unsigned SavedStopAt = I->second.second;
if (SavedResult != UINT_MAX)
return SavedResult + CurrentPenalty;
else if (StopAt <= SavedStopAt)
return UINT_MAX;
}
unsigned NoBreak = calcPenalty(State, false, StopAt);
unsigned WithBreak = calcPenalty(State, true, std::min(StopAt, NoBreak));
unsigned Result = std::min(NoBreak, WithBreak);
// We have to store 'Result' without adding 'CurrentPenalty' as the latter
// can depend on 'NewLine'.
Memory[State] = std::pair<unsigned, unsigned>(Result, StopAt);
return Result == UINT_MAX ? UINT_MAX : Result + CurrentPenalty;
}
FormatStyle Style;
SourceManager &SourceMgr;
const UnwrappedLine &Line;
const unsigned FirstIndent;
const bool FitsOnALine;
const AnnotatedToken &RootToken;
tooling::Replacements &Replaces;
// A map from an indent state to a pair (Result, Used-StopAt).
typedef std::map<LineState, std::pair<unsigned, unsigned> > StateMap;
StateMap Memory;
OptimizationParameters Parameters;
};
/// \brief Determines extra information about the tokens comprising an
/// \c UnwrappedLine.
class TokenAnnotator {
public:
TokenAnnotator(const UnwrappedLine &Line, const FormatStyle &Style,
SourceManager &SourceMgr, Lexer &Lex)
: Style(Style), SourceMgr(SourceMgr), Lex(Lex),
RootToken(Line.RootToken) {}
/// \brief A parser that gathers additional information about tokens.
///
/// The \c TokenAnnotator tries to matches parenthesis and square brakets and
/// store a parenthesis levels. It also tries to resolve matching "<" and ">"
/// into template parameter lists.
class AnnotatingParser {
public:
AnnotatingParser(AnnotatedToken &RootToken)
: CurrentToken(&RootToken), KeywordVirtualFound(false),
ColonIsObjCMethodExpr(false) {}
bool parseAngle() {
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::greater)) {
CurrentToken->Type = TT_TemplateCloser;
next();
return true;
}
if (CurrentToken->is(tok::r_paren) || CurrentToken->is(tok::r_square) ||
CurrentToken->is(tok::r_brace))
return false;
if (CurrentToken->is(tok::pipepipe) || CurrentToken->is(tok::ampamp) ||
CurrentToken->is(tok::question) || CurrentToken->is(tok::colon))
return false;
if (!consumeToken())
return false;
}
return false;
}
bool parseParens() {
if (CurrentToken != NULL && CurrentToken->is(tok::caret))
CurrentToken->Parent->Type = TT_ObjCBlockLParen;
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::r_paren)) {
next();
return true;
}
if (CurrentToken->is(tok::r_square) || CurrentToken->is(tok::r_brace))
return false;
if (!consumeToken())
return false;
}
return false;
}
bool parseSquare() {
if (!CurrentToken)
return false;
// A '[' could be an index subscript (after an indentifier or after
// ')' or ']'), or it could be the start of an Objective-C method
// expression.
AnnotatedToken *LSquare = CurrentToken->Parent;
bool StartsObjCMethodExpr =
!LSquare->Parent || LSquare->Parent->is(tok::colon) ||
LSquare->Parent->is(tok::l_square) ||
LSquare->Parent->is(tok::l_paren) ||
LSquare->Parent->is(tok::kw_return) ||
LSquare->Parent->is(tok::kw_throw) ||
getBinOpPrecedence(LSquare->Parent->FormatTok.Tok.getKind(),
true, true) > prec::Unknown;
bool ColonWasObjCMethodExpr = ColonIsObjCMethodExpr;
if (StartsObjCMethodExpr) {
ColonIsObjCMethodExpr = true;
LSquare->Type = TT_ObjCMethodExpr;
}
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::r_square)) {
if (StartsObjCMethodExpr) {
ColonIsObjCMethodExpr = ColonWasObjCMethodExpr;
CurrentToken->Type = TT_ObjCMethodExpr;
}
next();
return true;
}
if (CurrentToken->is(tok::r_paren) || CurrentToken->is(tok::r_brace))
return false;
if (!consumeToken())
return false;
}
return false;
}
bool parseBrace() {
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::r_brace)) {
next();
return true;
}
if (CurrentToken->is(tok::r_paren) || CurrentToken->is(tok::r_square))
return false;
if (!consumeToken())
return false;
}
// Lines can currently end with '{'.
return true;
}
bool parseConditional() {
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::colon)) {
CurrentToken->Type = TT_ConditionalExpr;
next();
return true;
}
if (!consumeToken())
return false;
}
return false;
}
bool parseTemplateDeclaration() {
if (CurrentToken != NULL && CurrentToken->is(tok::less)) {
CurrentToken->Type = TT_TemplateOpener;
next();
if (!parseAngle())
return false;
CurrentToken->Parent->ClosesTemplateDeclaration = true;
parseLine();
return true;
}
return false;
}
bool consumeToken() {
AnnotatedToken *Tok = CurrentToken;
next();
switch (Tok->FormatTok.Tok.getKind()) {
case tok::plus:
case tok::minus:
// At the start of the line, +/- specific ObjectiveC method
// declarations.
if (Tok->Parent == NULL)
Tok->Type = TT_ObjCMethodSpecifier;
break;
case tok::colon:
// Colons from ?: are handled in parseConditional().
if (ColonIsObjCMethodExpr)
Tok->Type = TT_ObjCMethodExpr;
break;
case tok::l_paren: {
bool ParensWereObjCReturnType =
Tok->Parent && Tok->Parent->Type == TT_ObjCMethodSpecifier;
if (!parseParens())
return false;
if (CurrentToken != NULL && CurrentToken->is(tok::colon)) {
CurrentToken->Type = TT_CtorInitializerColon;
next();
} else if (CurrentToken != NULL && ParensWereObjCReturnType) {
CurrentToken->Type = TT_ObjCSelectorStart;
next();
}
} break;
case tok::l_square:
if (!parseSquare())
return false;
break;
case tok::l_brace:
if (!parseBrace())
return false;
break;
case tok::less:
if (parseAngle())
Tok->Type = TT_TemplateOpener;
else {
Tok->Type = TT_BinaryOperator;
CurrentToken = Tok;
next();
}
break;
case tok::r_paren:
case tok::r_square:
return false;
case tok::r_brace:
// Lines can start with '}'.
if (Tok->Parent != NULL)
return false;
break;
case tok::greater:
Tok->Type = TT_BinaryOperator;
break;
case tok::kw_operator:
if (CurrentToken->is(tok::l_paren)) {
CurrentToken->Type = TT_OverloadedOperator;
next();
if (CurrentToken != NULL && CurrentToken->is(tok::r_paren)) {
CurrentToken->Type = TT_OverloadedOperator;
next();
}
} else {
while (CurrentToken != NULL && CurrentToken->isNot(tok::l_paren)) {
CurrentToken->Type = TT_OverloadedOperator;
next();
}
}
break;
case tok::question:
parseConditional();
break;
case tok::kw_template:
parseTemplateDeclaration();
break;
default:
break;
}
return true;
}
void parseIncludeDirective() {
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::slash))
CurrentToken->Type = TT_DirectorySeparator;
else if (CurrentToken->is(tok::less))
CurrentToken->Type = TT_TemplateOpener;
else if (CurrentToken->is(tok::greater))
CurrentToken->Type = TT_TemplateCloser;
next();
}
}
void parsePreprocessorDirective() {
next();
if (CurrentToken == NULL)
return;
// Hashes in the middle of a line can lead to any strange token
// sequence.
if (CurrentToken->FormatTok.Tok.getIdentifierInfo() == NULL)
return;
switch (
CurrentToken->FormatTok.Tok.getIdentifierInfo()->getPPKeywordID()) {
case tok::pp_include:
case tok::pp_import:
parseIncludeDirective();
break;
default:
break;
}
}
LineType parseLine() {
if (CurrentToken->is(tok::hash)) {
parsePreprocessorDirective();
return LT_PreprocessorDirective;
}
while (CurrentToken != NULL) {
if (CurrentToken->is(tok::kw_virtual))
KeywordVirtualFound = true;
if (!consumeToken())
return LT_Invalid;
}
if (KeywordVirtualFound)
return LT_VirtualFunctionDecl;
return LT_Other;
}
void next() {
if (CurrentToken != NULL && !CurrentToken->Children.empty())
CurrentToken = &CurrentToken->Children[0];
else
CurrentToken = NULL;
}
private:
AnnotatedToken *CurrentToken;
bool KeywordVirtualFound;
bool ColonIsObjCMethodExpr;
};
void createAnnotatedTokens(AnnotatedToken &Current) {
if (!Current.FormatTok.Children.empty()) {
Current.Children.push_back(AnnotatedToken(Current.FormatTok.Children[0]));
Current.Children.back().Parent = &Current;
createAnnotatedTokens(Current.Children.back());
}
}
void calculateExtraInformation(AnnotatedToken &Current) {
Current.SpaceRequiredBefore = spaceRequiredBefore(Current);
if (Current.FormatTok.MustBreakBefore) {
Current.MustBreakBefore = true;
} else {
if (Current.Type == TT_CtorInitializerColon || Current.Parent->Type ==
TT_LineComment || (Current.is(tok::string_literal) &&
Current.Parent->is(tok::string_literal))) {
Current.MustBreakBefore = true;
} else {
Current.MustBreakBefore = false;
}
}
Current.CanBreakBefore = Current.MustBreakBefore || canBreakBefore(Current);
if (!Current.Children.empty())
calculateExtraInformation(Current.Children[0]);
}
bool annotate() {
createAnnotatedTokens(RootToken);
AnnotatingParser Parser(RootToken);
CurrentLineType = Parser.parseLine();
if (CurrentLineType == LT_Invalid)
return false;
determineTokenTypes(RootToken, /*IsRHS=*/false);
if (RootToken.Type == TT_ObjCMethodSpecifier)
CurrentLineType = LT_ObjCMethodDecl;
else if (RootToken.Type == TT_ObjCDecl)
CurrentLineType = LT_ObjCDecl;
else if (RootToken.Type == TT_ObjCProperty)
CurrentLineType = LT_ObjCProperty;
if (!RootToken.Children.empty())
calculateExtraInformation(RootToken.Children[0]);
return true;
}
LineType getLineType() {
return CurrentLineType;
}
const AnnotatedToken &getRootToken() {
return RootToken;
}
private:
void determineTokenTypes(AnnotatedToken &Current, bool IsRHS) {
if (getPrecedence(Current) == prec::Assignment ||
Current.is(tok::kw_return) || Current.is(tok::kw_throw))
IsRHS = true;
if (Current.Type == TT_Unknown) {
if (Current.is(tok::star) || Current.is(tok::amp)) {
Current.Type = determineStarAmpUsage(Current, IsRHS);
} else if (Current.is(tok::minus) || Current.is(tok::plus) ||
Current.is(tok::caret)) {
Current.Type = determinePlusMinusCaretUsage(Current);
} else if (Current.is(tok::minusminus) || Current.is(tok::plusplus)) {
Current.Type = determineIncrementUsage(Current);
} else if (Current.is(tok::exclaim)) {
Current.Type = TT_UnaryOperator;
} else if (isBinaryOperator(Current)) {
Current.Type = TT_BinaryOperator;
} else if (Current.is(tok::comment)) {
std::string Data(Lexer::getSpelling(Current.FormatTok.Tok, SourceMgr,
Lex.getLangOpts()));
if (StringRef(Data).startswith("//"))
Current.Type = TT_LineComment;
else
Current.Type = TT_BlockComment;
} else if (Current.is(tok::r_paren) &&
(Current.Parent->Type == TT_PointerOrReference ||
Current.Parent->Type == TT_TemplateCloser)) {
// FIXME: We need to get smarter and understand more cases of casts.
Current.Type = TT_CastRParen;
} else if (Current.is(tok::at) && Current.Children.size()) {
switch (Current.Children[0].FormatTok.Tok.getObjCKeywordID()) {
case tok::objc_interface:
case tok::objc_implementation:
case tok::objc_protocol:
Current.Type = TT_ObjCDecl;
break;
case tok::objc_property:
Current.Type = TT_ObjCProperty;
break;
default:
break;
}
}
}
if (!Current.Children.empty())
determineTokenTypes(Current.Children[0], IsRHS);
}
bool isBinaryOperator(const AnnotatedToken &Tok) {
// Comma is a binary operator, but does not behave as such wrt. formatting.
return getPrecedence(Tok) > prec::Comma;
}
TokenType determineStarAmpUsage(const AnnotatedToken &Tok, bool IsRHS) {
if (Tok.Parent == NULL)
return TT_UnaryOperator;
if (Tok.Children.size() == 0)
return TT_Unknown;
const FormatToken &PrevToken = Tok.Parent->FormatTok;
const FormatToken &NextToken = Tok.Children[0].FormatTok;
if (PrevToken.Tok.is(tok::l_paren) || PrevToken.Tok.is(tok::l_square) ||
PrevToken.Tok.is(tok::comma) || PrevToken.Tok.is(tok::kw_return) ||
PrevToken.Tok.is(tok::colon) || Tok.Parent->Type == TT_BinaryOperator ||
Tok.Parent->Type == TT_CastRParen)
return TT_UnaryOperator;
if (PrevToken.Tok.isLiteral() || PrevToken.Tok.is(tok::r_paren) ||
PrevToken.Tok.is(tok::r_square) || NextToken.Tok.isLiteral() ||
NextToken.Tok.is(tok::plus) || NextToken.Tok.is(tok::minus) ||
NextToken.Tok.is(tok::plusplus) || NextToken.Tok.is(tok::minusminus) ||
NextToken.Tok.is(tok::tilde) || NextToken.Tok.is(tok::exclaim) ||
NextToken.Tok.is(tok::l_paren) || NextToken.Tok.is(tok::l_square) ||
NextToken.Tok.is(tok::kw_alignof) || NextToken.Tok.is(tok::kw_sizeof))
return TT_BinaryOperator;
if (NextToken.Tok.is(tok::comma) || NextToken.Tok.is(tok::r_paren) ||
NextToken.Tok.is(tok::greater))
return TT_PointerOrReference;
// It is very unlikely that we are going to find a pointer or reference type
// definition on the RHS of an assignment.
if (IsRHS)
return TT_BinaryOperator;
return TT_PointerOrReference;
}
TokenType determinePlusMinusCaretUsage(const AnnotatedToken &Tok) {
// Use heuristics to recognize unary operators.
if (Tok.Parent->is(tok::equal) || Tok.Parent->is(tok::l_paren) ||
Tok.Parent->is(tok::comma) || Tok.Parent->is(tok::l_square) ||
Tok.Parent->is(tok::question) || Tok.Parent->is(tok::colon) ||
Tok.Parent->is(tok::kw_return) || Tok.Parent->is(tok::kw_case) ||
Tok.Parent->is(tok::at) || Tok.Parent->is(tok::l_brace))
return TT_UnaryOperator;
// There can't be to consecutive binary operators.
if (Tok.Parent->Type == TT_BinaryOperator)
return TT_UnaryOperator;
// Fall back to marking the token as binary operator.
return TT_BinaryOperator;
}
/// \brief Determine whether ++/-- are pre- or post-increments/-decrements.
TokenType determineIncrementUsage(const AnnotatedToken &Tok) {
if (Tok.Parent != NULL && Tok.Parent->is(tok::identifier))
return TT_TrailingUnaryOperator;
return TT_UnaryOperator;
}
bool spaceRequiredBetween(const AnnotatedToken &Left,
const AnnotatedToken &Right) {
if (Right.is(tok::hashhash))
return Left.is(tok::hash);
if (Left.is(tok::hashhash) || Left.is(tok::hash))
return Right.is(tok::hash);
if (Right.is(tok::r_paren) || Right.is(tok::semi) || Right.is(tok::comma))
return false;
if (Right.is(tok::less) &&
(Left.is(tok::kw_template) ||
(CurrentLineType == LT_ObjCDecl && Style.ObjCSpaceBeforeProtocolList)))
return true;
if (Left.is(tok::arrow) || Right.is(tok::arrow))
return false;
if (Left.is(tok::exclaim) || Left.is(tok::tilde))
return false;
if (Left.is(tok::at) &&
(Right.is(tok::identifier) || Right.is(tok::string_literal) ||
Right.is(tok::char_constant) || Right.is(tok::numeric_constant) ||
Right.is(tok::l_paren) || Right.is(tok::l_brace) ||
Right.is(tok::kw_true) || Right.is(tok::kw_false)))
return false;
if (Left.is(tok::less) || Right.is(tok::greater) || Right.is(tok::less))
return false;
if (Right.is(tok::amp) || Right.is(tok::star))
return Left.FormatTok.Tok.isLiteral() ||
(Left.isNot(tok::star) && Left.isNot(tok::amp) &&
!Style.PointerAndReferenceBindToType);
if (Left.is(tok::amp) || Left.is(tok::star))
return Right.FormatTok.Tok.isLiteral() ||
Style.PointerAndReferenceBindToType;
if (Right.is(tok::star) && Left.is(tok::l_paren))
return false;
if (Left.is(tok::l_square) || Right.is(tok::r_square))
return false;
if (Right.is(tok::l_square) && Right.Type != TT_ObjCMethodExpr)
return false;
if (Left.is(tok::coloncolon) ||
(Right.is(tok::coloncolon) &&
(Left.is(tok::identifier) || Left.is(tok::greater))))
return false;
if (Left.is(tok::period) || Right.is(tok::period))
return false;
if (Left.is(tok::colon))
return Left.Type != TT_ObjCMethodExpr;
if (Right.is(tok::colon))
return Right.Type != TT_ObjCMethodExpr;
if (Left.is(tok::l_paren))
return false;
if (Right.is(tok::l_paren)) {
return CurrentLineType == LT_ObjCDecl || Left.is(tok::kw_if) ||
Left.is(tok::kw_for) || Left.is(tok::kw_while) ||
Left.is(tok::kw_switch) || Left.is(tok::kw_return) ||
Left.is(tok::kw_catch) || Left.is(tok::kw_new) ||
Left.is(tok::kw_delete);
}
if (Left.is(tok::at) &&
Right.FormatTok.Tok.getObjCKeywordID() != tok::objc_not_keyword)
return false;
if (Left.is(tok::l_brace) && Right.is(tok::r_brace))
return false;
return true;
}
bool spaceRequiredBefore(const AnnotatedToken &Tok) {
if (CurrentLineType == LT_ObjCMethodDecl) {
if (Tok.is(tok::identifier) && !Tok.Children.empty() &&
Tok.Children[0].is(tok::colon) && Tok.Parent->is(tok::identifier))
return true;
if (Tok.is(tok::colon))
return false;
if (Tok.Parent->Type == TT_ObjCMethodSpecifier)
return Style.ObjCSpaceBeforeReturnType || Tok.isNot(tok::l_paren);
if (Tok.Type == TT_ObjCSelectorStart)
return !Style.ObjCSpaceBeforeReturnType;
if (Tok.Parent->is(tok::r_paren) && Tok.is(tok::identifier))
// Don't space between ')' and <id>
return false;
if (Tok.Parent->is(tok::colon) && Tok.is(tok::l_paren))
// Don't space between ':' and '('
return false;
}
if (CurrentLineType == LT_ObjCProperty &&
(Tok.is(tok::equal) || Tok.Parent->is(tok::equal)))
return false;
if (Tok.Type == TT_CtorInitializerColon || Tok.Type == TT_ObjCBlockLParen)
return true;
if (Tok.Type == TT_OverloadedOperator)
return Tok.is(tok::identifier) || Tok.is(tok::kw_new) ||
Tok.is(tok::kw_delete) || Tok.is(tok::kw_bool);
if (Tok.Parent->Type == TT_OverloadedOperator)
return false;
if (Tok.is(tok::colon))
return RootToken.isNot(tok::kw_case) && !Tok.Children.empty() &&
Tok.Type != TT_ObjCMethodExpr;
if (Tok.Parent->Type == TT_UnaryOperator ||
Tok.Parent->Type == TT_CastRParen)
return false;
if (Tok.Type == TT_UnaryOperator)
return Tok.Parent->isNot(tok::l_paren) &&
Tok.Parent->isNot(tok::l_square) && Tok.Parent->isNot(tok::at) &&
(Tok.Parent->isNot(tok::colon) ||
Tok.Parent->Type != TT_ObjCMethodExpr);
if (Tok.Parent->is(tok::greater) && Tok.is(tok::greater)) {
return Tok.Type == TT_TemplateCloser && Tok.Parent->Type ==
TT_TemplateCloser && Style.SplitTemplateClosingGreater;
}
if (Tok.Type == TT_DirectorySeparator ||
Tok.Parent->Type == TT_DirectorySeparator)
return false;
if (Tok.Type == TT_BinaryOperator || Tok.Parent->Type == TT_BinaryOperator)
return true;
if (Tok.Parent->Type == TT_TemplateCloser && Tok.is(tok::l_paren))
return false;
if (Tok.is(tok::less) && RootToken.is(tok::hash))
return true;
if (Tok.Type == TT_TrailingUnaryOperator)
return false;
return spaceRequiredBetween(*Tok.Parent, Tok);
}
bool canBreakBefore(const AnnotatedToken &Right) {
const AnnotatedToken &Left = *Right.Parent;
if (CurrentLineType == LT_ObjCMethodDecl) {
if (Right.is(tok::identifier) && !Right.Children.empty() &&
Right.Children[0].is(tok::colon) && Left.is(tok::identifier))
return true;
if (Right.is(tok::identifier) && Left.is(tok::l_paren) &&
Left.Parent->is(tok::colon))
// Don't break this identifier as ':' or identifier
// before it will break.
return false;
if (Right.is(tok::colon) && Left.is(tok::identifier) &&
Left.CanBreakBefore)
// Don't break at ':' if identifier before it can beak.
return false;
}
if (Right.is(tok::colon) && Right.Type == TT_ObjCMethodExpr)
return false;
if (Left.is(tok::colon) && Left.Type == TT_ObjCMethodExpr)
return true;
if (isObjCSelectorName(Right))
return true;
if (Left.ClosesTemplateDeclaration)
return true;
if (Left.Type == TT_PointerOrReference || Left.Type == TT_TemplateCloser ||
Left.Type == TT_UnaryOperator || Right.Type == TT_ConditionalExpr)
return false;
if (Left.is(tok::equal) && CurrentLineType == LT_VirtualFunctionDecl)
return false;
if (Right.is(tok::comment))
return !Right.Children.empty();
if (Right.is(tok::r_paren) || Right.is(tok::l_brace) ||
Right.is(tok::greater))
return false;
return (isBinaryOperator(Left) && Left.isNot(tok::lessless)) ||
Left.is(tok::comma) || Right.is(tok::lessless) ||
Right.is(tok::arrow) || Right.is(tok::period) ||
Right.is(tok::colon) || Left.is(tok::semi) ||
Left.is(tok::l_brace) || Left.is(tok::question) ||
Right.is(tok::r_brace) || Left.Type == TT_ConditionalExpr ||
(Left.is(tok::r_paren) && Left.Type != TT_CastRParen &&
Right.is(tok::identifier)) ||
(Left.is(tok::l_paren) && !Right.is(tok::r_paren));
}
FormatStyle Style;
SourceManager &SourceMgr;
Lexer &Lex;
LineType CurrentLineType;
AnnotatedToken RootToken;
};
class LexerBasedFormatTokenSource : public FormatTokenSource {
public:
LexerBasedFormatTokenSource(Lexer &Lex, SourceManager &SourceMgr)
: GreaterStashed(false), Lex(Lex), SourceMgr(SourceMgr),
IdentTable(Lex.getLangOpts()) {
Lex.SetKeepWhitespaceMode(true);
}
virtual FormatToken getNextToken() {
if (GreaterStashed) {
FormatTok.NewlinesBefore = 0;
FormatTok.WhiteSpaceStart =
FormatTok.Tok.getLocation().getLocWithOffset(1);
FormatTok.WhiteSpaceLength = 0;
GreaterStashed = false;
return FormatTok;
}
FormatTok = FormatToken();
Lex.LexFromRawLexer(FormatTok.Tok);
StringRef Text = rawTokenText(FormatTok.Tok);
FormatTok.WhiteSpaceStart = FormatTok.Tok.getLocation();
if (SourceMgr.getFileOffset(FormatTok.WhiteSpaceStart) == 0)
FormatTok.IsFirst = true;
// Consume and record whitespace until we find a significant token.
while (FormatTok.Tok.is(tok::unknown)) {
FormatTok.NewlinesBefore += Text.count('\n');
FormatTok.HasUnescapedNewline = Text.count("\\\n") !=
FormatTok.NewlinesBefore;
FormatTok.WhiteSpaceLength += FormatTok.Tok.getLength();
if (FormatTok.Tok.is(tok::eof))
return FormatTok;
Lex.LexFromRawLexer(FormatTok.Tok);
Text = rawTokenText(FormatTok.Tok);
}
// Now FormatTok is the next non-whitespace token.
FormatTok.TokenLength = Text.size();
// In case the token starts with escaped newlines, we want to
// take them into account as whitespace - this pattern is quite frequent
// in macro definitions.
// FIXME: What do we want to do with other escaped spaces, and escaped
// spaces or newlines in the middle of tokens?
// FIXME: Add a more explicit test.
unsigned i = 0;
while (i + 1 < Text.size() && Text[i] == '\\' && Text[i + 1] == '\n') {
FormatTok.WhiteSpaceLength += 2;
FormatTok.TokenLength -= 2;
i += 2;
}
if (FormatTok.Tok.is(tok::raw_identifier)) {
IdentifierInfo &Info = IdentTable.get(Text);
FormatTok.Tok.setIdentifierInfo(&Info);
FormatTok.Tok.setKind(Info.getTokenID());
}
if (FormatTok.Tok.is(tok::greatergreater)) {
FormatTok.Tok.setKind(tok::greater);
GreaterStashed = true;
}
return FormatTok;
}
private:
FormatToken FormatTok;
bool GreaterStashed;
Lexer &Lex;
SourceManager &SourceMgr;
IdentifierTable IdentTable;
/// Returns the text of \c FormatTok.
StringRef rawTokenText(Token &Tok) {
return StringRef(SourceMgr.getCharacterData(Tok.getLocation()),
Tok.getLength());
}
};
class Formatter : public UnwrappedLineConsumer {
public:
Formatter(clang::DiagnosticsEngine &Diag, const FormatStyle &Style,
Lexer &Lex, SourceManager &SourceMgr,
const std::vector<CharSourceRange> &Ranges)
: Diag(Diag), Style(Style), Lex(Lex), SourceMgr(SourceMgr),
Ranges(Ranges) {}
virtual ~Formatter() {}
tooling::Replacements format() {
LexerBasedFormatTokenSource Tokens(Lex, SourceMgr);
UnwrappedLineParser Parser(Diag, Style, Tokens, *this);
StructuralError = Parser.parse();
unsigned PreviousEndOfLineColumn = 0;
for (std::vector<UnwrappedLine>::iterator I = UnwrappedLines.begin(),
E = UnwrappedLines.end();
I != E; ++I) {
const UnwrappedLine &TheLine = *I;
if (touchesRanges(TheLine)) {
OwningPtr<TokenAnnotator> AnnotatedLine(
new TokenAnnotator(TheLine, Style, SourceMgr, Lex));
if (!AnnotatedLine->annotate())
break;
unsigned Indent = formatFirstToken(AnnotatedLine->getRootToken(),
TheLine.Level, TheLine.InPPDirective,
PreviousEndOfLineColumn);
UnwrappedLine Line(TheLine);
bool FitsOnALine = tryFitMultipleLinesInOne(Indent, Line, AnnotatedLine,
I, E);
UnwrappedLineFormatter Formatter(
Style, SourceMgr, Line, Indent, FitsOnALine,
AnnotatedLine->getRootToken(), Replaces, StructuralError);
PreviousEndOfLineColumn = Formatter.format();
} else {
// If we did not reformat this unwrapped line, the column at the end of
// the last token is unchanged - thus, we can calculate the end of the
// last token, and return the result.
const FormatToken *Last = getLastInLine(TheLine);
PreviousEndOfLineColumn =
SourceMgr.getSpellingColumnNumber(Last->Tok.getLocation()) +
Lex.MeasureTokenLength(Last->Tok.getLocation(), SourceMgr,
Lex.getLangOpts()) -
1;
}
}
return Replaces;
}
private:
/// \brief Tries to merge lines into one.
///
/// This will change \c Line and \c AnnotatedLine to contain the merged line,
/// if possible; note that \c I will be incremented when lines are merged.
///
/// Returns whether the resulting \c Line can fit in a single line.
bool tryFitMultipleLinesInOne(unsigned Indent, UnwrappedLine &Line,
OwningPtr<TokenAnnotator> &AnnotatedLine,
std::vector<UnwrappedLine>::iterator &I,
std::vector<UnwrappedLine>::iterator E) {
unsigned Limit = Style.ColumnLimit - (I->InPPDirective ? 1 : 0) - Indent;
// Check whether the UnwrappedLine can be put onto a single line. If
// so, this is bound to be the optimal solution (by definition) and we
// don't need to analyze the entire solution space.
bool FitsOnALine = fitsIntoLimit(AnnotatedLine->getRootToken(), Limit);
if (!FitsOnALine || I + 1 == E || I + 2 == E)
return FitsOnALine;
// Try to merge the next two lines if possible.
UnwrappedLine Combined(Line);
// First, check that the current line allows merging. This is the case if
// we're not in a control flow statement and the last token is an opening
// brace.
FormatToken *Last = &Combined.RootToken;
bool AllowedTokens =
Last->Tok.isNot(tok::kw_if) && Last->Tok.isNot(tok::kw_while) &&
Last->Tok.isNot(tok::kw_do) && Last->Tok.isNot(tok::r_brace) &&
Last->Tok.isNot(tok::kw_else) && Last->Tok.isNot(tok::kw_try) &&
Last->Tok.isNot(tok::kw_catch) && Last->Tok.isNot(tok::kw_for) &&
// This gets rid of all ObjC @ keywords and methods.
Last->Tok.isNot(tok::at) && Last->Tok.isNot(tok::minus) &&
Last->Tok.isNot(tok::plus);
while (!Last->Children.empty())
Last = &Last->Children.back();
if (!Last->Tok.is(tok::l_brace))
return FitsOnALine;
// Second, check that the next line does not contain any braces - if it
// does, readability declines when putting it into a single line.
const FormatToken *Next = &(I + 1)->RootToken;
while (Next) {
AllowedTokens = AllowedTokens && !Next->Tok.is(tok::l_brace) &&
!Next->Tok.is(tok::r_brace);
Last->Children.push_back(*Next);
Last = &Last->Children[0];
Last->Children.clear();
Next = Next->Children.empty() ? NULL : &Next->Children.back();
}
// Last, check that the third line contains a single closing brace.
Next = &(I + 2)->RootToken;
AllowedTokens = AllowedTokens && Next->Tok.is(tok::r_brace);
if (!Next->Children.empty() || !AllowedTokens)
return FitsOnALine;
Last->Children.push_back(*Next);
OwningPtr<TokenAnnotator> CombinedAnnotator(
new TokenAnnotator(Combined, Style, SourceMgr, Lex));
if (CombinedAnnotator->annotate() &&
fitsIntoLimit(CombinedAnnotator->getRootToken(), Limit)) {
// If the merged line fits, we use that instead and skip the next two
// lines.
AnnotatedLine.reset(CombinedAnnotator.take());
Line = Combined;
I += 2;
}
return FitsOnALine;
}
const FormatToken *getLastInLine(const UnwrappedLine &TheLine) {
const FormatToken *Last = &TheLine.RootToken;
while (!Last->Children.empty())
Last = &Last->Children.back();
return Last;
}
bool touchesRanges(const UnwrappedLine &TheLine) {
const FormatToken *First = &TheLine.RootToken;
const FormatToken *Last = getLastInLine(TheLine);
CharSourceRange LineRange = CharSourceRange::getTokenRange(
First->Tok.getLocation(),
Last->Tok.getLocation());
for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
if (!SourceMgr.isBeforeInTranslationUnit(LineRange.getEnd(),
Ranges[i].getBegin()) &&
!SourceMgr.isBeforeInTranslationUnit(Ranges[i].getEnd(),
LineRange.getBegin()))
return true;
}
return false;
}
virtual void consumeUnwrappedLine(const UnwrappedLine &TheLine) {
UnwrappedLines.push_back(TheLine);
}
/// \brief Add a new line and the required indent before the first Token
/// of the \c UnwrappedLine if there was no structural parsing error.
/// Returns the indent level of the \c UnwrappedLine.
unsigned formatFirstToken(const AnnotatedToken &RootToken, unsigned Level,
bool InPPDirective,
unsigned PreviousEndOfLineColumn) {
const FormatToken &Tok = RootToken.FormatTok;
if (!Tok.WhiteSpaceStart.isValid() || StructuralError)
return SourceMgr.getSpellingColumnNumber(Tok.Tok.getLocation()) - 1;
unsigned Newlines = std::min(Tok.NewlinesBefore,
Style.MaxEmptyLinesToKeep + 1);
if (Newlines == 0 && !Tok.IsFirst)
Newlines = 1;
unsigned Indent = Level * 2;
bool IsAccessModifier = false;
if (RootToken.is(tok::kw_public) || RootToken.is(tok::kw_protected) ||
RootToken.is(tok::kw_private))
IsAccessModifier = true;
else if (RootToken.is(tok::at) && !RootToken.Children.empty() &&
(RootToken.Children[0].isObjCAtKeyword(tok::objc_public) ||
RootToken.Children[0].isObjCAtKeyword(tok::objc_protected) ||
RootToken.Children[0].isObjCAtKeyword(tok::objc_package) ||
RootToken.Children[0].isObjCAtKeyword(tok::objc_private)))
IsAccessModifier = true;
if (IsAccessModifier &&
static_cast<int>(Indent) + Style.AccessModifierOffset >= 0)
Indent += Style.AccessModifierOffset;
if (!InPPDirective || Tok.HasUnescapedNewline) {
replaceWhitespace(Tok, Newlines, Indent, Style, SourceMgr, Replaces);
} else {
replacePPWhitespace(Tok, Newlines, Indent, PreviousEndOfLineColumn, Style,
SourceMgr, Replaces);
}
return Indent;
}
clang::DiagnosticsEngine &Diag;
FormatStyle Style;
Lexer &Lex;
SourceManager &SourceMgr;
tooling::Replacements Replaces;
std::vector<CharSourceRange> Ranges;
std::vector<UnwrappedLine> UnwrappedLines;
bool StructuralError;
};
tooling::Replacements reformat(const FormatStyle &Style, Lexer &Lex,
SourceManager &SourceMgr,
std::vector<CharSourceRange> Ranges) {
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
TextDiagnosticPrinter DiagnosticPrinter(llvm::errs(), &*DiagOpts);
DiagnosticPrinter.BeginSourceFile(Lex.getLangOpts(), Lex.getPP());
DiagnosticsEngine Diagnostics(
IntrusiveRefCntPtr<DiagnosticIDs>(new DiagnosticIDs()), &*DiagOpts,
&DiagnosticPrinter, false);
Diagnostics.setSourceManager(&SourceMgr);
Formatter formatter(Diagnostics, Style, Lex, SourceMgr, Ranges);
return formatter.format();
}
LangOptions getFormattingLangOpts() {
LangOptions LangOpts;
LangOpts.CPlusPlus = 1;
LangOpts.CPlusPlus11 = 1;
LangOpts.Bool = 1;
LangOpts.ObjC1 = 1;
LangOpts.ObjC2 = 1;
return LangOpts;
}
} // namespace format
} // namespace clang