| //===--- PTHLexer.cpp - Lex from a token stream ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the PTHLexer interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Basic/TokenKinds.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Lex/PTHLexer.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/PTHManager.h" |
| #include "clang/Lex/Token.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/OwningPtr.h" |
| using namespace clang; |
| |
| #define DISK_TOKEN_SIZE (1+1+2+4+4) |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods for reading from the mmap'ed PTH file. |
| //===----------------------------------------------------------------------===// |
| |
| static inline uint8_t Read8(const unsigned char *&Data) { |
| uint8_t V = Data[0]; |
| Data += 1; |
| return V; |
| } |
| |
| static inline uint16_t Read16(const unsigned char *&Data) { |
| // Targets that directly support unaligned little-endian 16-bit loads can just |
| // use them. |
| #if defined(__i386__) || defined(__x86_64__) |
| uint16_t V = *((uint16_t*)Data); |
| #else |
| uint16_t V = ((uint16_t)Data[0] << 0) | |
| ((uint16_t)Data[1] << 8); |
| #endif |
| Data += 2; |
| return V; |
| } |
| |
| static inline uint32_t Read24(const unsigned char *&Data) { |
| // Targets that directly support unaligned little-endian 16-bit loads can just |
| // use them. |
| #if defined(__i386__) || defined(__x86_64__) |
| uint32_t V = ((uint16_t*)Data)[0] | |
| ((uint32_t)Data[2] << 16); |
| #else |
| uint32_t V = ((uint32_t)Data[0] << 0) | |
| ((uint32_t)Data[1] << 8) | |
| ((uint32_t)Data[2] << 16); |
| #endif |
| |
| Data += 3; |
| return V; |
| } |
| |
| static inline uint32_t Read32(const unsigned char *&Data) { |
| // Targets that directly support unaligned little-endian 32-bit loads can just |
| // use them. |
| #if defined(__i386__) || defined(__x86_64__) |
| uint32_t V = *((uint32_t*)Data); |
| #else |
| uint32_t V = ((uint32_t)Data[0] << 0) | |
| ((uint32_t)Data[1] << 8) | |
| ((uint32_t)Data[2] << 16) | |
| ((uint32_t)Data[3] << 24); |
| #endif |
| Data += 4; |
| return V; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // PTHLexer methods. |
| //===----------------------------------------------------------------------===// |
| |
| PTHLexer::PTHLexer(Preprocessor &PP, FileID FID, const unsigned char *D, |
| const unsigned char *ppcond, |
| PTHSpellingSearch &mySpellingSrch, PTHManager &PM) |
| : PreprocessorLexer(&PP, FID), TokBuf(D), CurPtr(D), LastHashTokPtr(0), |
| PPCond(ppcond), CurPPCondPtr(ppcond), MySpellingSrch(mySpellingSrch), |
| PTHMgr(PM) { |
| |
| FileStartLoc = PP.getSourceManager().getLocForStartOfFile(FID); |
| } |
| |
| void PTHLexer::Lex(Token& Tok) { |
| LexNextToken: |
| |
| //===--------------------------------------==// |
| // Read the raw token data. |
| //===--------------------------------------==// |
| |
| // Shadow CurPtr into an automatic variable. |
| const unsigned char *CurPtrShadow = CurPtr; |
| |
| // Read in the data for the token. |
| unsigned Word0 = Read32(CurPtrShadow); |
| uint32_t IdentifierID = Read32(CurPtrShadow); |
| uint32_t FileOffset = Read32(CurPtrShadow); |
| |
| tok::TokenKind TKind = (tok::TokenKind) (Word0 & 0xFF); |
| Token::TokenFlags TFlags = (Token::TokenFlags) ((Word0 >> 8) & 0xFF); |
| uint32_t Len = Word0 >> 16; |
| |
| CurPtr = CurPtrShadow; |
| |
| //===--------------------------------------==// |
| // Construct the token itself. |
| //===--------------------------------------==// |
| |
| Tok.startToken(); |
| Tok.setKind(TKind); |
| Tok.setFlag(TFlags); |
| assert(!LexingRawMode); |
| Tok.setLocation(FileStartLoc.getFileLocWithOffset(FileOffset)); |
| Tok.setLength(Len); |
| |
| // Handle identifiers. |
| if (IdentifierID) { |
| MIOpt.ReadToken(); |
| IdentifierInfo *II = PTHMgr.GetIdentifierInfo(IdentifierID-1); |
| Tok.setIdentifierInfo(II); |
| if (II->isHandleIdentifierCase()) |
| PP->HandleIdentifier(Tok); |
| return; |
| } |
| |
| //===--------------------------------------==// |
| // Process the token. |
| //===--------------------------------------==// |
| #if 0 |
| SourceManager& SM = PP->getSourceManager(); |
| llvm::cerr << SM.getFileEntryForID(FileID)->getName() |
| << ':' << SM.getLogicalLineNumber(Tok.getLocation()) |
| << ':' << SM.getLogicalColumnNumber(Tok.getLocation()) |
| << '\n'; |
| #endif |
| |
| if (TKind == tok::eof) { |
| // Save the end-of-file token. |
| EofToken = Tok; |
| |
| Preprocessor *PPCache = PP; |
| |
| assert(!ParsingPreprocessorDirective); |
| assert(!LexingRawMode); |
| |
| // FIXME: Issue diagnostics similar to Lexer. |
| if (PP->HandleEndOfFile(Tok, false)) |
| return; |
| |
| assert(PPCache && "Raw buffer::LexEndOfFile should return a token"); |
| return PPCache->Lex(Tok); |
| } |
| |
| if (TKind == tok::hash && Tok.isAtStartOfLine()) { |
| LastHashTokPtr = CurPtr - DISK_TOKEN_SIZE; |
| assert(!LexingRawMode); |
| PP->HandleDirective(Tok); |
| |
| if (PP->isCurrentLexer(this)) |
| goto LexNextToken; |
| |
| return PP->Lex(Tok); |
| } |
| |
| if (TKind == tok::eom) { |
| assert(ParsingPreprocessorDirective); |
| ParsingPreprocessorDirective = false; |
| return; |
| } |
| |
| MIOpt.ReadToken(); |
| } |
| |
| // FIXME: We can just grab the last token instead of storing a copy |
| // into EofToken. |
| void PTHLexer::getEOF(Token& Tok) { |
| assert(EofToken.is(tok::eof)); |
| Tok = EofToken; |
| } |
| |
| void PTHLexer::DiscardToEndOfLine() { |
| assert(ParsingPreprocessorDirective && ParsingFilename == false && |
| "Must be in a preprocessing directive!"); |
| |
| // We assume that if the preprocessor wishes to discard to the end of |
| // the line that it also means to end the current preprocessor directive. |
| ParsingPreprocessorDirective = false; |
| |
| // Skip tokens by only peeking at their token kind and the flags. |
| // We don't need to actually reconstruct full tokens from the token buffer. |
| // This saves some copies and it also reduces IdentifierInfo* lookup. |
| const unsigned char* p = CurPtr; |
| while (1) { |
| // Read the token kind. Are we at the end of the file? |
| tok::TokenKind x = (tok::TokenKind) (uint8_t) *p; |
| if (x == tok::eof) break; |
| |
| // Read the token flags. Are we at the start of the next line? |
| Token::TokenFlags y = (Token::TokenFlags) (uint8_t) p[1]; |
| if (y & Token::StartOfLine) break; |
| |
| // Skip to the next token. |
| p += DISK_TOKEN_SIZE; |
| } |
| |
| CurPtr = p; |
| } |
| |
| /// SkipBlock - Used by Preprocessor to skip the current conditional block. |
| bool PTHLexer::SkipBlock() { |
| assert(CurPPCondPtr && "No cached PP conditional information."); |
| assert(LastHashTokPtr && "No known '#' token."); |
| |
| const unsigned char* HashEntryI = 0; |
| uint32_t Offset; |
| uint32_t TableIdx; |
| |
| do { |
| // Read the token offset from the side-table. |
| Offset = Read32(CurPPCondPtr); |
| |
| // Read the target table index from the side-table. |
| TableIdx = Read32(CurPPCondPtr); |
| |
| // Compute the actual memory address of the '#' token data for this entry. |
| HashEntryI = TokBuf + Offset; |
| |
| // Optmization: "Sibling jumping". #if...#else...#endif blocks can |
| // contain nested blocks. In the side-table we can jump over these |
| // nested blocks instead of doing a linear search if the next "sibling" |
| // entry is not at a location greater than LastHashTokPtr. |
| if (HashEntryI < LastHashTokPtr && TableIdx) { |
| // In the side-table we are still at an entry for a '#' token that |
| // is earlier than the last one we saw. Check if the location we would |
| // stride gets us closer. |
| const unsigned char* NextPPCondPtr = |
| PPCond + TableIdx*(sizeof(uint32_t)*2); |
| assert(NextPPCondPtr >= CurPPCondPtr); |
| // Read where we should jump to. |
| uint32_t TmpOffset = Read32(NextPPCondPtr); |
| const unsigned char* HashEntryJ = TokBuf + TmpOffset; |
| |
| if (HashEntryJ <= LastHashTokPtr) { |
| // Jump directly to the next entry in the side table. |
| HashEntryI = HashEntryJ; |
| Offset = TmpOffset; |
| TableIdx = Read32(NextPPCondPtr); |
| CurPPCondPtr = NextPPCondPtr; |
| } |
| } |
| } |
| while (HashEntryI < LastHashTokPtr); |
| assert(HashEntryI == LastHashTokPtr && "No PP-cond entry found for '#'"); |
| assert(TableIdx && "No jumping from #endifs."); |
| |
| // Update our side-table iterator. |
| const unsigned char* NextPPCondPtr = PPCond + TableIdx*(sizeof(uint32_t)*2); |
| assert(NextPPCondPtr >= CurPPCondPtr); |
| CurPPCondPtr = NextPPCondPtr; |
| |
| // Read where we should jump to. |
| HashEntryI = TokBuf + Read32(NextPPCondPtr); |
| uint32_t NextIdx = Read32(NextPPCondPtr); |
| |
| // By construction NextIdx will be zero if this is a #endif. This is useful |
| // to know to obviate lexing another token. |
| bool isEndif = NextIdx == 0; |
| |
| // This case can occur when we see something like this: |
| // |
| // #if ... |
| // /* a comment or nothing */ |
| // #elif |
| // |
| // If we are skipping the first #if block it will be the case that CurPtr |
| // already points 'elif'. Just return. |
| |
| if (CurPtr > HashEntryI) { |
| assert(CurPtr == HashEntryI + DISK_TOKEN_SIZE); |
| // Did we reach a #endif? If so, go ahead and consume that token as well. |
| if (isEndif) |
| CurPtr += DISK_TOKEN_SIZE*2; |
| else |
| LastHashTokPtr = HashEntryI; |
| |
| return isEndif; |
| } |
| |
| // Otherwise, we need to advance. Update CurPtr to point to the '#' token. |
| CurPtr = HashEntryI; |
| |
| // Update the location of the last observed '#'. This is useful if we |
| // are skipping multiple blocks. |
| LastHashTokPtr = CurPtr; |
| |
| // Skip the '#' token. |
| assert(((tok::TokenKind)*CurPtr) == tok::hash); |
| CurPtr += DISK_TOKEN_SIZE; |
| |
| // Did we reach a #endif? If so, go ahead and consume that token as well. |
| if (isEndif) { CurPtr += DISK_TOKEN_SIZE*2; } |
| |
| return isEndif; |
| } |
| |
| SourceLocation PTHLexer::getSourceLocation() { |
| // getSourceLocation is not on the hot path. It is used to get the location |
| // of the next token when transitioning back to this lexer when done |
| // handling a #included file. Just read the necessary data from the token |
| // data buffer to construct the SourceLocation object. |
| // NOTE: This is a virtual function; hence it is defined out-of-line. |
| const unsigned char *OffsetPtr = CurPtr + (1 + 1 + 3); |
| uint32_t Offset = Read32(OffsetPtr); |
| return FileStartLoc.getFileLocWithOffset(Offset); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // getSpelling() - Use cached data in PTH files for getSpelling(). |
| //===----------------------------------------------------------------------===// |
| |
| unsigned PTHManager::getSpelling(FileID FID, unsigned FPos, |
| const char *&Buffer) { |
| llvm::DenseMap<FileID, PTHSpellingSearch*>::iterator I =SpellingMap.find(FID); |
| |
| if (I == SpellingMap.end()) |
| return 0; |
| |
| return I->second->getSpellingBinarySearch(FPos, Buffer); |
| } |
| |
| unsigned PTHManager::getSpelling(SourceLocation Loc, const char *&Buffer) { |
| SourceManager &SM = PP->getSourceManager(); |
| Loc = SM.getSpellingLoc(Loc); |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc); |
| return getSpelling(LocInfo.first, LocInfo.second, Buffer); |
| } |
| |
| unsigned PTHManager::getSpellingAtPTHOffset(unsigned PTHOffset, |
| const char *&Buffer) { |
| assert(PTHOffset < Buf->getBufferSize()); |
| const unsigned char* Ptr = |
| (const unsigned char*)Buf->getBufferStart() + PTHOffset; |
| |
| // The string is prefixed by 16 bits for its length, followed by the string |
| // itself. |
| unsigned Len = Read16(Ptr); |
| Buffer = (const char *)Ptr; |
| return Len; |
| } |
| |
| unsigned PTHSpellingSearch::getSpellingLinearSearch(unsigned FPos, |
| const char *&Buffer) { |
| const unsigned char *Ptr = LinearItr; |
| unsigned Len = 0; |
| |
| if (Ptr == TableEnd) |
| return getSpellingBinarySearch(FPos, Buffer); |
| |
| do { |
| uint32_t TokOffset = Read32(Ptr); |
| |
| if (TokOffset > FPos) |
| return getSpellingBinarySearch(FPos, Buffer); |
| |
| // Did we find a matching token offset for this spelling? |
| if (TokOffset == FPos) { |
| uint32_t SpellingPTHOffset = Read32(Ptr); |
| Len = PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); |
| break; |
| } |
| } while (Ptr != TableEnd); |
| |
| LinearItr = Ptr; |
| return Len; |
| } |
| |
| |
| unsigned PTHSpellingSearch::getSpellingBinarySearch(unsigned FPos, |
| const char *&Buffer) { |
| |
| assert((TableEnd - TableBeg) % SpellingEntrySize == 0); |
| assert(TableEnd >= TableBeg); |
| |
| if (TableEnd == TableBeg) |
| return 0; |
| |
| unsigned min = 0; |
| const unsigned char *tb = TableBeg; |
| unsigned max = NumSpellings; |
| |
| do { |
| unsigned i = (max - min) / 2 + min; |
| const unsigned char *Ptr = tb + (i * SpellingEntrySize); |
| |
| uint32_t TokOffset = Read32(Ptr); |
| if (TokOffset > FPos) { |
| max = i; |
| assert(!(max == min) || (min == i)); |
| continue; |
| } |
| |
| if (TokOffset < FPos) { |
| if (i == min) |
| break; |
| |
| min = i; |
| continue; |
| } |
| |
| uint32_t SpellingPTHOffset = Read32(Ptr); |
| return PTHMgr.getSpellingAtPTHOffset(SpellingPTHOffset, Buffer); |
| } |
| while (min != max); |
| |
| return 0; |
| } |
| |
| unsigned PTHLexer::getSpelling(SourceLocation Loc, const char *&Buffer) { |
| SourceManager &SM = PP->getSourceManager(); |
| Loc = SM.getSpellingLoc(Loc); |
| std::pair<FileID, unsigned> LocInfo = SM.getDecomposedFileLoc(Loc); |
| |
| FileID FID = LocInfo.first; |
| unsigned FPos = LocInfo.second; |
| |
| if (FID == getFileID()) |
| return MySpellingSrch.getSpellingLinearSearch(FPos, Buffer); |
| return PTHMgr.getSpelling(FID, FPos, Buffer); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Internal Data Structures for PTH file lookup and resolving identifiers. |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// PTHFileLookup - This internal data structure is used by the PTHManager |
| /// to map from FileEntry objects managed by FileManager to offsets within |
| /// the PTH file. |
| namespace { |
| class VISIBILITY_HIDDEN PTHFileLookup { |
| public: |
| class Val { |
| uint32_t TokenOff; |
| uint32_t PPCondOff; |
| uint32_t SpellingOff; |
| public: |
| Val() : TokenOff(~0) {} |
| Val(uint32_t toff, uint32_t poff, uint32_t soff) |
| : TokenOff(toff), PPCondOff(poff), SpellingOff(soff) {} |
| |
| bool isValid() const { return TokenOff != ~((uint32_t)0); } |
| |
| uint32_t getTokenOffset() const { |
| assert(isValid() && "PTHFileLookup entry initialized."); |
| return TokenOff; |
| } |
| |
| uint32_t getPPCondOffset() const { |
| assert(isValid() && "PTHFileLookup entry initialized."); |
| return PPCondOff; |
| } |
| |
| uint32_t getSpellingOffset() const { |
| assert(isValid() && "PTHFileLookup entry initialized."); |
| return SpellingOff; |
| } |
| }; |
| |
| private: |
| llvm::StringMap<Val> FileMap; |
| |
| public: |
| PTHFileLookup() {}; |
| |
| bool isEmpty() const { |
| return FileMap.empty(); |
| } |
| |
| Val Lookup(const FileEntry* FE) { |
| const char* s = FE->getName(); |
| unsigned size = strlen(s); |
| return FileMap.GetOrCreateValue(s, s+size).getValue(); |
| } |
| |
| void ReadTable(const unsigned char* D) { |
| uint32_t N = Read32(D); // Read the length of the table. |
| |
| for ( ; N > 0; --N) { // The rest of the data is the table itself. |
| uint32_t Len = Read32(D); |
| const char* s = (const char *)D; |
| D += Len; |
| |
| uint32_t TokenOff = Read32(D); |
| uint32_t PPCondOff = Read32(D); |
| uint32_t SpellingOff = Read32(D); |
| |
| FileMap.GetOrCreateValue(s, s+Len).getValue() = |
| Val(TokenOff, PPCondOff, SpellingOff); |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // PTHManager methods. |
| //===----------------------------------------------------------------------===// |
| |
| PTHManager::PTHManager(const llvm::MemoryBuffer* buf, void* fileLookup, |
| const unsigned char* idDataTable, |
| IdentifierInfo** perIDCache, |
| const unsigned char* sortedIdTable, unsigned numIds) |
| : Buf(buf), PerIDCache(perIDCache), FileLookup(fileLookup), |
| IdDataTable(idDataTable), SortedIdTable(sortedIdTable), |
| NumIds(numIds), PP(0) {} |
| |
| PTHManager::~PTHManager() { |
| delete Buf; |
| delete (PTHFileLookup*) FileLookup; |
| free(PerIDCache); |
| } |
| |
| PTHManager* PTHManager::Create(const std::string& file) { |
| // Memory map the PTH file. |
| llvm::OwningPtr<llvm::MemoryBuffer> |
| File(llvm::MemoryBuffer::getFile(file.c_str())); |
| |
| if (!File) |
| return 0; |
| |
| // Get the buffer ranges and check if there are at least three 32-bit |
| // words at the end of the file. |
| const unsigned char* BufBeg = (unsigned char*)File->getBufferStart(); |
| const unsigned char* BufEnd = (unsigned char*)File->getBufferEnd(); |
| |
| if(!(BufEnd > BufBeg + sizeof(uint32_t)*3)) { |
| assert(false && "Invalid PTH file."); |
| return 0; // FIXME: Proper error diagnostic? |
| } |
| |
| // Compute the address of the index table at the end of the PTH file. |
| // This table contains the offset of the file lookup table, the |
| // persistent ID -> identifer data table. |
| // FIXME: We should just embed this offset in the PTH file. |
| const unsigned char* EndTable = BufEnd - sizeof(uint32_t)*4; |
| |
| // Construct the file lookup table. This will be used for mapping from |
| // FileEntry*'s to cached tokens. |
| const unsigned char* FileTableOffset = EndTable + sizeof(uint32_t)*3; |
| const unsigned char* FileTable = BufBeg + Read32(FileTableOffset); |
| |
| if (!(FileTable > BufBeg && FileTable < BufEnd)) { |
| assert(false && "Invalid PTH file."); |
| return 0; // FIXME: Proper error diagnostic? |
| } |
| |
| llvm::OwningPtr<PTHFileLookup> FL(new PTHFileLookup()); |
| FL->ReadTable(FileTable); |
| |
| if (FL->isEmpty()) |
| return 0; |
| |
| // Get the location of the table mapping from persistent ids to the |
| // data needed to reconstruct identifiers. |
| const unsigned char* IDTableOffset = EndTable + sizeof(uint32_t)*1; |
| const unsigned char* IData = BufBeg + Read32(IDTableOffset); |
| |
| if (!(IData >= BufBeg && IData < BufEnd)) { |
| assert(false && "Invalid PTH file."); |
| return 0; // FIXME: Proper error diagnostic? |
| } |
| |
| // Get the location of the lexigraphically-sorted table of persistent IDs. |
| const unsigned char* SortedIdTableOffset = EndTable + sizeof(uint32_t)*2; |
| const unsigned char* SortedIdTable = BufBeg + Read32(SortedIdTableOffset); |
| if (!(SortedIdTable >= BufBeg && SortedIdTable < BufEnd)) { |
| assert(false && "Invalid PTH file."); |
| return 0; // FIXME: Proper error diagnostic? |
| } |
| |
| // Get the number of IdentifierInfos and pre-allocate the identifier cache. |
| uint32_t NumIds = Read32(IData); |
| |
| // Pre-allocate the peristent ID -> IdentifierInfo* cache. We use calloc() |
| // so that we in the best case only zero out memory once when the OS returns |
| // us new pages. |
| IdentifierInfo** PerIDCache = 0; |
| |
| if (NumIds) { |
| PerIDCache = (IdentifierInfo**)calloc(NumIds, sizeof(*PerIDCache)); |
| if (!PerIDCache) { |
| assert(false && "Could not allocate Persistent ID cache."); |
| return 0; |
| } |
| } |
| |
| // Create the new PTHManager. |
| return new PTHManager(File.take(), FL.take(), IData, PerIDCache, |
| SortedIdTable, NumIds); |
| } |
| IdentifierInfo* PTHManager::LazilyCreateIdentifierInfo(unsigned PersistentID) { |
| // Look in the PTH file for the string data for the IdentifierInfo object. |
| const unsigned char* TableEntry = IdDataTable + sizeof(uint32_t)*PersistentID; |
| const unsigned char* IDData = |
| (const unsigned char*)Buf->getBufferStart() + Read32(TableEntry); |
| assert(IDData < (const unsigned char*)Buf->getBufferEnd()); |
| |
| // Allocate the object. |
| std::pair<IdentifierInfo,const unsigned char*> *Mem = |
| Alloc.Allocate<std::pair<IdentifierInfo,const unsigned char*> >(); |
| |
| Mem->second = IDData; |
| IdentifierInfo *II = new ((void*) Mem) IdentifierInfo(); |
| |
| // Store the new IdentifierInfo in the cache. |
| PerIDCache[PersistentID] = II; |
| return II; |
| } |
| |
| IdentifierInfo* PTHManager::get(const char *NameStart, const char *NameEnd) { |
| unsigned min = 0; |
| unsigned max = NumIds; |
| unsigned Len = NameEnd - NameStart; |
| |
| do { |
| unsigned i = (max - min) / 2 + min; |
| const unsigned char *Ptr = SortedIdTable + (i * 4); |
| |
| // Read the persistentID. |
| unsigned perID = Read32(Ptr); |
| |
| // Get the IdentifierInfo. |
| IdentifierInfo* II = GetIdentifierInfo(perID); |
| |
| // First compare the lengths. |
| unsigned IILen = II->getLength(); |
| if (Len < IILen) goto IsLess; |
| if (Len > IILen) goto IsGreater; |
| |
| // Now compare the strings! |
| { |
| signed comp = strncmp(NameStart, II->getName(), Len); |
| if (comp < 0) goto IsLess; |
| if (comp > 0) goto IsGreater; |
| } |
| // We found a match! |
| return II; |
| |
| IsGreater: |
| if (i == min) break; |
| min = i; |
| continue; |
| |
| IsLess: |
| max = i; |
| assert(!(max == min) || (min == i)); |
| } |
| while (min != max); |
| |
| return 0; |
| } |
| |
| |
| PTHLexer *PTHManager::CreateLexer(FileID FID) { |
| const FileEntry *FE = PP->getSourceManager().getFileEntryForID(FID); |
| if (!FE) |
| return 0; |
| |
| // Lookup the FileEntry object in our file lookup data structure. It will |
| // return a variant that indicates whether or not there is an offset within |
| // the PTH file that contains cached tokens. |
| PTHFileLookup::Val FileData = ((PTHFileLookup*)FileLookup)->Lookup(FE); |
| |
| if (!FileData.isValid()) // No tokens available. |
| return 0; |
| |
| const unsigned char *BufStart = (const unsigned char *)Buf->getBufferStart(); |
| // Compute the offset of the token data within the buffer. |
| const unsigned char* data = BufStart + FileData.getTokenOffset(); |
| |
| // Get the location of pp-conditional table. |
| const unsigned char* ppcond = BufStart + FileData.getPPCondOffset(); |
| uint32_t Len = Read32(ppcond); |
| if (Len == 0) ppcond = 0; |
| |
| // Get the location of the spelling table. |
| const unsigned char* spellingTable = BufStart + FileData.getSpellingOffset(); |
| |
| Len = Read32(spellingTable); |
| if (Len == 0) spellingTable = 0; |
| |
| assert(data < (const unsigned char*)Buf->getBufferEnd()); |
| |
| // Create the SpellingSearch object for this FileID. |
| PTHSpellingSearch* ss = new PTHSpellingSearch(*this, Len, spellingTable); |
| SpellingMap[FID] = ss; |
| |
| assert(PP && "No preprocessor set yet!"); |
| return new PTHLexer(*PP, FID, data, ppcond, *ss, *this); |
| } |