| //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements name lookup for C, C++, Objective-C, and |
| // Objective-C++. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "Sema.h" |
| #include "Lookup.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <list> |
| #include <set> |
| #include <vector> |
| #include <iterator> |
| #include <utility> |
| #include <algorithm> |
| |
| using namespace clang; |
| |
| namespace { |
| class UnqualUsingEntry { |
| const DeclContext *Nominated; |
| const DeclContext *CommonAncestor; |
| |
| public: |
| UnqualUsingEntry(const DeclContext *Nominated, |
| const DeclContext *CommonAncestor) |
| : Nominated(Nominated), CommonAncestor(CommonAncestor) { |
| } |
| |
| const DeclContext *getCommonAncestor() const { |
| return CommonAncestor; |
| } |
| |
| const DeclContext *getNominatedNamespace() const { |
| return Nominated; |
| } |
| |
| // Sort by the pointer value of the common ancestor. |
| struct Comparator { |
| bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { |
| return L.getCommonAncestor() < R.getCommonAncestor(); |
| } |
| |
| bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { |
| return E.getCommonAncestor() < DC; |
| } |
| |
| bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { |
| return DC < E.getCommonAncestor(); |
| } |
| }; |
| }; |
| |
| /// A collection of using directives, as used by C++ unqualified |
| /// lookup. |
| class UnqualUsingDirectiveSet { |
| typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy; |
| |
| ListTy list; |
| llvm::SmallPtrSet<DeclContext*, 8> visited; |
| |
| public: |
| UnqualUsingDirectiveSet() {} |
| |
| void visitScopeChain(Scope *S, Scope *InnermostFileScope) { |
| // C++ [namespace.udir]p1: |
| // During unqualified name lookup, the names appear as if they |
| // were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| DeclContext *InnermostFileDC |
| = static_cast<DeclContext*>(InnermostFileScope->getEntity()); |
| assert(InnermostFileDC && InnermostFileDC->isFileContext()); |
| |
| for (; S; S = S->getParent()) { |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { |
| DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC); |
| visit(Ctx, EffectiveDC); |
| } else { |
| Scope::udir_iterator I = S->using_directives_begin(), |
| End = S->using_directives_end(); |
| |
| for (; I != End; ++I) |
| visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC); |
| } |
| } |
| } |
| |
| // Visits a context and collect all of its using directives |
| // recursively. Treats all using directives as if they were |
| // declared in the context. |
| // |
| // A given context is only every visited once, so it is important |
| // that contexts be visited from the inside out in order to get |
| // the effective DCs right. |
| void visit(DeclContext *DC, DeclContext *EffectiveDC) { |
| if (!visited.insert(DC)) |
| return; |
| |
| addUsingDirectives(DC, EffectiveDC); |
| } |
| |
| // Visits a using directive and collects all of its using |
| // directives recursively. Treats all using directives as if they |
| // were declared in the effective DC. |
| void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| DeclContext *NS = UD->getNominatedNamespace(); |
| if (!visited.insert(NS)) |
| return; |
| |
| addUsingDirective(UD, EffectiveDC); |
| addUsingDirectives(NS, EffectiveDC); |
| } |
| |
| // Adds all the using directives in a context (and those nominated |
| // by its using directives, transitively) as if they appeared in |
| // the given effective context. |
| void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { |
| llvm::SmallVector<DeclContext*,4> queue; |
| while (true) { |
| DeclContext::udir_iterator I, End; |
| for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) { |
| UsingDirectiveDecl *UD = *I; |
| DeclContext *NS = UD->getNominatedNamespace(); |
| if (visited.insert(NS)) { |
| addUsingDirective(UD, EffectiveDC); |
| queue.push_back(NS); |
| } |
| } |
| |
| if (queue.empty()) |
| return; |
| |
| DC = queue.back(); |
| queue.pop_back(); |
| } |
| } |
| |
| // Add a using directive as if it had been declared in the given |
| // context. This helps implement C++ [namespace.udir]p3: |
| // The using-directive is transitive: if a scope contains a |
| // using-directive that nominates a second namespace that itself |
| // contains using-directives, the effect is as if the |
| // using-directives from the second namespace also appeared in |
| // the first. |
| void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
| // Find the common ancestor between the effective context and |
| // the nominated namespace. |
| DeclContext *Common = UD->getNominatedNamespace(); |
| while (!Common->Encloses(EffectiveDC)) |
| Common = Common->getParent(); |
| Common = Common->getPrimaryContext(); |
| |
| list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); |
| } |
| |
| void done() { |
| std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator()); |
| } |
| |
| typedef ListTy::iterator iterator; |
| typedef ListTy::const_iterator const_iterator; |
| |
| iterator begin() { return list.begin(); } |
| iterator end() { return list.end(); } |
| const_iterator begin() const { return list.begin(); } |
| const_iterator end() const { return list.end(); } |
| |
| std::pair<const_iterator,const_iterator> |
| getNamespacesFor(DeclContext *DC) const { |
| return std::equal_range(begin(), end(), DC->getPrimaryContext(), |
| UnqualUsingEntry::Comparator()); |
| } |
| }; |
| } |
| |
| static bool IsAcceptableIDNS(NamedDecl *D, unsigned IDNS) { |
| return D->isInIdentifierNamespace(IDNS); |
| } |
| |
| static bool IsAcceptableOperatorName(NamedDecl *D, unsigned IDNS) { |
| return D->isInIdentifierNamespace(IDNS) && |
| !D->getDeclContext()->isRecord(); |
| } |
| |
| static bool IsAcceptableNestedNameSpecifierName(NamedDecl *D, unsigned IDNS) { |
| // This lookup ignores everything that isn't a type. |
| |
| // This is a fast check for the far most common case. |
| if (D->isInIdentifierNamespace(Decl::IDNS_Tag)) |
| return true; |
| |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| return isa<TypeDecl>(D); |
| } |
| |
| static bool IsAcceptableNamespaceName(NamedDecl *D, unsigned IDNS) { |
| // We don't need to look through using decls here because |
| // using decls aren't allowed to name namespaces. |
| |
| return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D); |
| } |
| |
| /// Gets the default result filter for the given lookup. |
| static inline |
| LookupResult::ResultFilter getResultFilter(Sema::LookupNameKind NameKind) { |
| switch (NameKind) { |
| case Sema::LookupOrdinaryName: |
| case Sema::LookupTagName: |
| case Sema::LookupMemberName: |
| case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping |
| case Sema::LookupUsingDeclName: |
| case Sema::LookupObjCProtocolName: |
| case Sema::LookupObjCImplementationName: |
| return &IsAcceptableIDNS; |
| |
| case Sema::LookupOperatorName: |
| return &IsAcceptableOperatorName; |
| |
| case Sema::LookupNestedNameSpecifierName: |
| return &IsAcceptableNestedNameSpecifierName; |
| |
| case Sema::LookupNamespaceName: |
| return &IsAcceptableNamespaceName; |
| } |
| |
| llvm_unreachable("unkknown lookup kind"); |
| return 0; |
| } |
| |
| // Retrieve the set of identifier namespaces that correspond to a |
| // specific kind of name lookup. |
| static inline unsigned getIDNS(Sema::LookupNameKind NameKind, |
| bool CPlusPlus, |
| bool Redeclaration) { |
| unsigned IDNS = 0; |
| switch (NameKind) { |
| case Sema::LookupOrdinaryName: |
| case Sema::LookupOperatorName: |
| case Sema::LookupRedeclarationWithLinkage: |
| IDNS = Decl::IDNS_Ordinary; |
| if (CPlusPlus) { |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member; |
| if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; |
| } |
| break; |
| |
| case Sema::LookupTagName: |
| IDNS = Decl::IDNS_Tag; |
| if (CPlusPlus && Redeclaration) |
| IDNS |= Decl::IDNS_TagFriend; |
| break; |
| |
| case Sema::LookupMemberName: |
| IDNS = Decl::IDNS_Member; |
| if (CPlusPlus) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
| break; |
| |
| case Sema::LookupNestedNameSpecifierName: |
| case Sema::LookupNamespaceName: |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member; |
| break; |
| |
| case Sema::LookupUsingDeclName: |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag |
| | Decl::IDNS_Member | Decl::IDNS_Using; |
| break; |
| |
| case Sema::LookupObjCProtocolName: |
| IDNS = Decl::IDNS_ObjCProtocol; |
| break; |
| |
| case Sema::LookupObjCImplementationName: |
| IDNS = Decl::IDNS_ObjCImplementation; |
| break; |
| } |
| return IDNS; |
| } |
| |
| void LookupResult::configure() { |
| IDNS = getIDNS(LookupKind, |
| SemaRef.getLangOptions().CPlusPlus, |
| isForRedeclaration()); |
| IsAcceptableFn = getResultFilter(LookupKind); |
| } |
| |
| // Necessary because CXXBasePaths is not complete in Sema.h |
| void LookupResult::deletePaths(CXXBasePaths *Paths) { |
| delete Paths; |
| } |
| |
| /// Resolves the result kind of this lookup. |
| void LookupResult::resolveKind() { |
| unsigned N = Decls.size(); |
| |
| // Fast case: no possible ambiguity. |
| if (N == 0) { |
| assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation); |
| return; |
| } |
| |
| // If there's a single decl, we need to examine it to decide what |
| // kind of lookup this is. |
| if (N == 1) { |
| if (isa<FunctionTemplateDecl>(*Decls.begin())) |
| ResultKind = FoundOverloaded; |
| else if (isa<UnresolvedUsingValueDecl>(*Decls.begin())) |
| ResultKind = FoundUnresolvedValue; |
| return; |
| } |
| |
| // Don't do any extra resolution if we've already resolved as ambiguous. |
| if (ResultKind == Ambiguous) return; |
| |
| llvm::SmallPtrSet<NamedDecl*, 16> Unique; |
| |
| bool Ambiguous = false; |
| bool HasTag = false, HasFunction = false, HasNonFunction = false; |
| bool HasFunctionTemplate = false, HasUnresolved = false; |
| |
| unsigned UniqueTagIndex = 0; |
| |
| unsigned I = 0; |
| while (I < N) { |
| NamedDecl *D = Decls[I]->getUnderlyingDecl(); |
| D = cast<NamedDecl>(D->getCanonicalDecl()); |
| |
| if (!Unique.insert(D)) { |
| // If it's not unique, pull something off the back (and |
| // continue at this index). |
| Decls[I] = Decls[--N]; |
| } else { |
| // Otherwise, do some decl type analysis and then continue. |
| |
| if (isa<UnresolvedUsingValueDecl>(D)) { |
| HasUnresolved = true; |
| } else if (isa<TagDecl>(D)) { |
| if (HasTag) |
| Ambiguous = true; |
| UniqueTagIndex = I; |
| HasTag = true; |
| } else if (isa<FunctionTemplateDecl>(D)) { |
| HasFunction = true; |
| HasFunctionTemplate = true; |
| } else if (isa<FunctionDecl>(D)) { |
| HasFunction = true; |
| } else { |
| if (HasNonFunction) |
| Ambiguous = true; |
| HasNonFunction = true; |
| } |
| I++; |
| } |
| } |
| |
| // C++ [basic.scope.hiding]p2: |
| // A class name or enumeration name can be hidden by the name of |
| // an object, function, or enumerator declared in the same |
| // scope. If a class or enumeration name and an object, function, |
| // or enumerator are declared in the same scope (in any order) |
| // with the same name, the class or enumeration name is hidden |
| // wherever the object, function, or enumerator name is visible. |
| // But it's still an error if there are distinct tag types found, |
| // even if they're not visible. (ref?) |
| if (HideTags && HasTag && !Ambiguous && |
| (HasFunction || HasNonFunction || HasUnresolved)) |
| Decls[UniqueTagIndex] = Decls[--N]; |
| |
| Decls.set_size(N); |
| |
| if (HasNonFunction && (HasFunction || HasUnresolved)) |
| Ambiguous = true; |
| |
| if (Ambiguous) |
| setAmbiguous(LookupResult::AmbiguousReference); |
| else if (HasUnresolved) |
| ResultKind = LookupResult::FoundUnresolvedValue; |
| else if (N > 1 || HasFunctionTemplate) |
| ResultKind = LookupResult::FoundOverloaded; |
| else |
| ResultKind = LookupResult::Found; |
| } |
| |
| void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { |
| CXXBasePaths::const_paths_iterator I, E; |
| DeclContext::lookup_iterator DI, DE; |
| for (I = P.begin(), E = P.end(); I != E; ++I) |
| for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI) |
| addDecl(*DI); |
| } |
| |
| void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { |
| Paths = new CXXBasePaths; |
| Paths->swap(P); |
| addDeclsFromBasePaths(*Paths); |
| resolveKind(); |
| setAmbiguous(AmbiguousBaseSubobjects); |
| } |
| |
| void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { |
| Paths = new CXXBasePaths; |
| Paths->swap(P); |
| addDeclsFromBasePaths(*Paths); |
| resolveKind(); |
| setAmbiguous(AmbiguousBaseSubobjectTypes); |
| } |
| |
| void LookupResult::print(llvm::raw_ostream &Out) { |
| Out << Decls.size() << " result(s)"; |
| if (isAmbiguous()) Out << ", ambiguous"; |
| if (Paths) Out << ", base paths present"; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| Out << "\n"; |
| (*I)->print(Out, 2); |
| } |
| } |
| |
| /// \brief Lookup a builtin function, when name lookup would otherwise |
| /// fail. |
| static bool LookupBuiltin(Sema &S, LookupResult &R) { |
| Sema::LookupNameKind NameKind = R.getLookupKind(); |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NameKind == Sema::LookupOrdinaryName || |
| NameKind == Sema::LookupRedeclarationWithLinkage) { |
| IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); |
| if (II) { |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| // In C++, we don't have any predefined library functions like |
| // 'malloc'. Instead, we'll just error. |
| if (S.getLangOptions().CPlusPlus && |
| S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return false; |
| |
| NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, |
| S.TUScope, R.isForRedeclaration(), |
| R.getNameLoc()); |
| if (D) |
| R.addDecl(D); |
| return (D != NULL); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // Adds all qualifying matches for a name within a decl context to the |
| // given lookup result. Returns true if any matches were found. |
| static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { |
| bool Found = false; |
| |
| DeclContext::lookup_const_iterator I, E; |
| for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) { |
| NamedDecl *D = *I; |
| if (R.isAcceptableDecl(D)) { |
| R.addDecl(D); |
| Found = true; |
| } |
| } |
| |
| if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R)) |
| return true; |
| |
| if (R.getLookupName().getNameKind() |
| != DeclarationName::CXXConversionFunctionName || |
| R.getLookupName().getCXXNameType()->isDependentType() || |
| !isa<CXXRecordDecl>(DC)) |
| return Found; |
| |
| // C++ [temp.mem]p6: |
| // A specialization of a conversion function template is not found by |
| // name lookup. Instead, any conversion function templates visible in the |
| // context of the use are considered. [...] |
| const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
| if (!Record->isDefinition()) |
| return Found; |
| |
| const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions(); |
| for (UnresolvedSetImpl::iterator U = Unresolved->begin(), |
| UEnd = Unresolved->end(); U != UEnd; ++U) { |
| FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); |
| if (!ConvTemplate) |
| continue; |
| |
| // When we're performing lookup for the purposes of redeclaration, just |
| // add the conversion function template. When we deduce template |
| // arguments for specializations, we'll end up unifying the return |
| // type of the new declaration with the type of the function template. |
| if (R.isForRedeclaration()) { |
| R.addDecl(ConvTemplate); |
| Found = true; |
| continue; |
| } |
| |
| // C++ [temp.mem]p6: |
| // [...] For each such operator, if argument deduction succeeds |
| // (14.9.2.3), the resulting specialization is used as if found by |
| // name lookup. |
| // |
| // When referencing a conversion function for any purpose other than |
| // a redeclaration (such that we'll be building an expression with the |
| // result), perform template argument deduction and place the |
| // specialization into the result set. We do this to avoid forcing all |
| // callers to perform special deduction for conversion functions. |
| Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc()); |
| FunctionDecl *Specialization = 0; |
| |
| const FunctionProtoType *ConvProto |
| = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); |
| assert(ConvProto && "Nonsensical conversion function template type"); |
| |
| // Compute the type of the function that we would expect the conversion |
| // function to have, if it were to match the name given. |
| // FIXME: Calling convention! |
| QualType ExpectedType |
| = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(), |
| 0, 0, ConvProto->isVariadic(), |
| ConvProto->getTypeQuals(), |
| false, false, 0, 0, |
| ConvProto->getNoReturnAttr(), |
| CC_Default); |
| |
| // Perform template argument deduction against the type that we would |
| // expect the function to have. |
| if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType, |
| Specialization, Info) |
| == Sema::TDK_Success) { |
| R.addDecl(Specialization); |
| Found = true; |
| } |
| } |
| |
| return Found; |
| } |
| |
| // Performs C++ unqualified lookup into the given file context. |
| static bool |
| CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, |
| DeclContext *NS, UnqualUsingDirectiveSet &UDirs) { |
| |
| assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); |
| |
| // Perform direct name lookup into the LookupCtx. |
| bool Found = LookupDirect(S, R, NS); |
| |
| // Perform direct name lookup into the namespaces nominated by the |
| // using directives whose common ancestor is this namespace. |
| UnqualUsingDirectiveSet::const_iterator UI, UEnd; |
| llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS); |
| |
| for (; UI != UEnd; ++UI) |
| if (LookupDirect(S, R, UI->getNominatedNamespace())) |
| Found = true; |
| |
| R.resolveKind(); |
| |
| return Found; |
| } |
| |
| static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) |
| return Ctx->isFileContext(); |
| return false; |
| } |
| |
| // Find the next outer declaration context corresponding to this scope. |
| static DeclContext *findOuterContext(Scope *S) { |
| for (S = S->getParent(); S; S = S->getParent()) |
| if (S->getEntity()) |
| return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext(); |
| |
| return 0; |
| } |
| |
| bool Sema::CppLookupName(LookupResult &R, Scope *S) { |
| assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup"); |
| |
| DeclarationName Name = R.getLookupName(); |
| |
| Scope *Initial = S; |
| IdentifierResolver::iterator |
| I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| |
| // First we lookup local scope. |
| // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
| // ...During unqualified name lookup (3.4.1), the names appear as if |
| // they were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| // [Note: in this context, "contains" means "contains directly or |
| // indirectly". |
| // |
| // For example: |
| // namespace A { int i; } |
| // void foo() { |
| // int i; |
| // { |
| // using namespace A; |
| // ++i; // finds local 'i', A::i appears at global scope |
| // } |
| // } |
| // |
| for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
| // Check whether the IdResolver has anything in this scope. |
| bool Found = false; |
| for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { |
| if (R.isAcceptableDecl(*I)) { |
| Found = true; |
| R.addDecl(*I); |
| } |
| } |
| if (Found) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { |
| DeclContext *OuterCtx = findOuterContext(S); |
| for (; Ctx && Ctx->getPrimaryContext() != OuterCtx; |
| Ctx = Ctx->getLookupParent()) { |
| // We do not directly look into transparent contexts, since |
| // those entities will be found in the nearest enclosing |
| // non-transparent context. |
| if (Ctx->isTransparentContext()) |
| continue; |
| |
| // We do not look directly into function or method contexts, |
| // since all of the local variables and parameters of the |
| // function/method are present within the Scope. |
| if (Ctx->isFunctionOrMethod()) { |
| // If we have an Objective-C instance method, look for ivars |
| // in the corresponding interface. |
| if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
| if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) |
| if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( |
| Name.getAsIdentifierInfo(), |
| ClassDeclared)) { |
| if (R.isAcceptableDecl(Ivar)) { |
| R.addDecl(Ivar); |
| R.resolveKind(); |
| return true; |
| } |
| } |
| } |
| } |
| |
| continue; |
| } |
| |
| // Perform qualified name lookup into this context. |
| // FIXME: In some cases, we know that every name that could be found by |
| // this qualified name lookup will also be on the identifier chain. For |
| // example, inside a class without any base classes, we never need to |
| // perform qualified lookup because all of the members are on top of the |
| // identifier chain. |
| if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) |
| return true; |
| } |
| } |
| } |
| |
| // Stop if we ran out of scopes. |
| // FIXME: This really, really shouldn't be happening. |
| if (!S) return false; |
| |
| // Collect UsingDirectiveDecls in all scopes, and recursively all |
| // nominated namespaces by those using-directives. |
| // |
| // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we |
| // don't build it for each lookup! |
| |
| UnqualUsingDirectiveSet UDirs; |
| UDirs.visitScopeChain(Initial, S); |
| UDirs.done(); |
| |
| // Lookup namespace scope, and global scope. |
| // Unqualified name lookup in C++ requires looking into scopes |
| // that aren't strictly lexical, and therefore we walk through the |
| // context as well as walking through the scopes. |
| |
| for (; S; S = S->getParent()) { |
| DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); |
| if (Ctx && Ctx->isTransparentContext()) |
| continue; |
| |
| // Check whether the IdResolver has anything in this scope. |
| bool Found = false; |
| for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { |
| if (R.isAcceptableDecl(*I)) { |
| // We found something. Look for anything else in our scope |
| // with this same name and in an acceptable identifier |
| // namespace, so that we can construct an overload set if we |
| // need to. |
| Found = true; |
| R.addDecl(*I); |
| } |
| } |
| |
| if (Ctx) { |
| assert(Ctx->isFileContext() && |
| "We should have been looking only at file context here already."); |
| |
| // Look into context considering using-directives. |
| if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) |
| Found = true; |
| } |
| |
| if (Found) { |
| R.resolveKind(); |
| return true; |
| } |
| |
| if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) |
| return false; |
| } |
| |
| return !R.empty(); |
| } |
| |
| /// @brief Perform unqualified name lookup starting from a given |
| /// scope. |
| /// |
| /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is |
| /// used to find names within the current scope. For example, 'x' in |
| /// @code |
| /// int x; |
| /// int f() { |
| /// return x; // unqualified name look finds 'x' in the global scope |
| /// } |
| /// @endcode |
| /// |
| /// Different lookup criteria can find different names. For example, a |
| /// particular scope can have both a struct and a function of the same |
| /// name, and each can be found by certain lookup criteria. For more |
| /// information about lookup criteria, see the documentation for the |
| /// class LookupCriteria. |
| /// |
| /// @param S The scope from which unqualified name lookup will |
| /// begin. If the lookup criteria permits, name lookup may also search |
| /// in the parent scopes. |
| /// |
| /// @param Name The name of the entity that we are searching for. |
| /// |
| /// @param Loc If provided, the source location where we're performing |
| /// name lookup. At present, this is only used to produce diagnostics when |
| /// C library functions (like "malloc") are implicitly declared. |
| /// |
| /// @returns The result of name lookup, which includes zero or more |
| /// declarations and possibly additional information used to diagnose |
| /// ambiguities. |
| bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) { |
| DeclarationName Name = R.getLookupName(); |
| if (!Name) return false; |
| |
| LookupNameKind NameKind = R.getLookupKind(); |
| |
| if (!getLangOptions().CPlusPlus) { |
| // Unqualified name lookup in C/Objective-C is purely lexical, so |
| // search in the declarations attached to the name. |
| |
| if (NameKind == Sema::LookupRedeclarationWithLinkage) { |
| // Find the nearest non-transparent declaration scope. |
| while (!(S->getFlags() & Scope::DeclScope) || |
| (S->getEntity() && |
| static_cast<DeclContext *>(S->getEntity()) |
| ->isTransparentContext())) |
| S = S->getParent(); |
| } |
| |
| unsigned IDNS = R.getIdentifierNamespace(); |
| |
| // Scan up the scope chain looking for a decl that matches this |
| // identifier that is in the appropriate namespace. This search |
| // should not take long, as shadowing of names is uncommon, and |
| // deep shadowing is extremely uncommon. |
| bool LeftStartingScope = false; |
| |
| for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| I != IEnd; ++I) |
| if ((*I)->isInIdentifierNamespace(IDNS)) { |
| if (NameKind == LookupRedeclarationWithLinkage) { |
| // Determine whether this (or a previous) declaration is |
| // out-of-scope. |
| if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I))) |
| LeftStartingScope = true; |
| |
| // If we found something outside of our starting scope that |
| // does not have linkage, skip it. |
| if (LeftStartingScope && !((*I)->hasLinkage())) |
| continue; |
| } |
| |
| R.addDecl(*I); |
| |
| if ((*I)->getAttr<OverloadableAttr>()) { |
| // If this declaration has the "overloadable" attribute, we |
| // might have a set of overloaded functions. |
| |
| // Figure out what scope the identifier is in. |
| while (!(S->getFlags() & Scope::DeclScope) || |
| !S->isDeclScope(DeclPtrTy::make(*I))) |
| S = S->getParent(); |
| |
| // Find the last declaration in this scope (with the same |
| // name, naturally). |
| IdentifierResolver::iterator LastI = I; |
| for (++LastI; LastI != IEnd; ++LastI) { |
| if (!S->isDeclScope(DeclPtrTy::make(*LastI))) |
| break; |
| R.addDecl(*LastI); |
| } |
| } |
| |
| R.resolveKind(); |
| |
| return true; |
| } |
| } else { |
| // Perform C++ unqualified name lookup. |
| if (CppLookupName(R, S)) |
| return true; |
| } |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (AllowBuiltinCreation) |
| return LookupBuiltin(*this, R); |
| |
| return false; |
| } |
| |
| /// @brief Perform qualified name lookup in the namespaces nominated by |
| /// using directives by the given context. |
| /// |
| /// C++98 [namespace.qual]p2: |
| /// Given X::m (where X is a user-declared namespace), or given ::m |
| /// (where X is the global namespace), let S be the set of all |
| /// declarations of m in X and in the transitive closure of all |
| /// namespaces nominated by using-directives in X and its used |
| /// namespaces, except that using-directives are ignored in any |
| /// namespace, including X, directly containing one or more |
| /// declarations of m. No namespace is searched more than once in |
| /// the lookup of a name. If S is the empty set, the program is |
| /// ill-formed. Otherwise, if S has exactly one member, or if the |
| /// context of the reference is a using-declaration |
| /// (namespace.udecl), S is the required set of declarations of |
| /// m. Otherwise if the use of m is not one that allows a unique |
| /// declaration to be chosen from S, the program is ill-formed. |
| /// C++98 [namespace.qual]p5: |
| /// During the lookup of a qualified namespace member name, if the |
| /// lookup finds more than one declaration of the member, and if one |
| /// declaration introduces a class name or enumeration name and the |
| /// other declarations either introduce the same object, the same |
| /// enumerator or a set of functions, the non-type name hides the |
| /// class or enumeration name if and only if the declarations are |
| /// from the same namespace; otherwise (the declarations are from |
| /// different namespaces), the program is ill-formed. |
| static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, |
| DeclContext *StartDC) { |
| assert(StartDC->isFileContext() && "start context is not a file context"); |
| |
| DeclContext::udir_iterator I = StartDC->using_directives_begin(); |
| DeclContext::udir_iterator E = StartDC->using_directives_end(); |
| |
| if (I == E) return false; |
| |
| // We have at least added all these contexts to the queue. |
| llvm::DenseSet<DeclContext*> Visited; |
| Visited.insert(StartDC); |
| |
| // We have not yet looked into these namespaces, much less added |
| // their "using-children" to the queue. |
| llvm::SmallVector<NamespaceDecl*, 8> Queue; |
| |
| // We have already looked into the initial namespace; seed the queue |
| // with its using-children. |
| for (; I != E; ++I) { |
| NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace(); |
| if (Visited.insert(ND).second) |
| Queue.push_back(ND); |
| } |
| |
| // The easiest way to implement the restriction in [namespace.qual]p5 |
| // is to check whether any of the individual results found a tag |
| // and, if so, to declare an ambiguity if the final result is not |
| // a tag. |
| bool FoundTag = false; |
| bool FoundNonTag = false; |
| |
| LookupResult LocalR(LookupResult::Temporary, R); |
| |
| bool Found = false; |
| while (!Queue.empty()) { |
| NamespaceDecl *ND = Queue.back(); |
| Queue.pop_back(); |
| |
| // We go through some convolutions here to avoid copying results |
| // between LookupResults. |
| bool UseLocal = !R.empty(); |
| LookupResult &DirectR = UseLocal ? LocalR : R; |
| bool FoundDirect = LookupDirect(S, DirectR, ND); |
| |
| if (FoundDirect) { |
| // First do any local hiding. |
| DirectR.resolveKind(); |
| |
| // If the local result is a tag, remember that. |
| if (DirectR.isSingleTagDecl()) |
| FoundTag = true; |
| else |
| FoundNonTag = true; |
| |
| // Append the local results to the total results if necessary. |
| if (UseLocal) { |
| R.addAllDecls(LocalR); |
| LocalR.clear(); |
| } |
| } |
| |
| // If we find names in this namespace, ignore its using directives. |
| if (FoundDirect) { |
| Found = true; |
| continue; |
| } |
| |
| for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) { |
| NamespaceDecl *Nom = (*I)->getNominatedNamespace(); |
| if (Visited.insert(Nom).second) |
| Queue.push_back(Nom); |
| } |
| } |
| |
| if (Found) { |
| if (FoundTag && FoundNonTag) |
| R.setAmbiguousQualifiedTagHiding(); |
| else |
| R.resolveKind(); |
| } |
| |
| return Found; |
| } |
| |
| /// \brief Perform qualified name lookup into a given context. |
| /// |
| /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find |
| /// names when the context of those names is explicit specified, e.g., |
| /// "std::vector" or "x->member", or as part of unqualified name lookup. |
| /// |
| /// Different lookup criteria can find different names. For example, a |
| /// particular scope can have both a struct and a function of the same |
| /// name, and each can be found by certain lookup criteria. For more |
| /// information about lookup criteria, see the documentation for the |
| /// class LookupCriteria. |
| /// |
| /// \param R captures both the lookup criteria and any lookup results found. |
| /// |
| /// \param LookupCtx The context in which qualified name lookup will |
| /// search. If the lookup criteria permits, name lookup may also search |
| /// in the parent contexts or (for C++ classes) base classes. |
| /// |
| /// \param InUnqualifiedLookup true if this is qualified name lookup that |
| /// occurs as part of unqualified name lookup. |
| /// |
| /// \returns true if lookup succeeded, false if it failed. |
| bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
| bool InUnqualifiedLookup) { |
| assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); |
| |
| if (!R.getLookupName()) |
| return false; |
| |
| // Make sure that the declaration context is complete. |
| assert((!isa<TagDecl>(LookupCtx) || |
| LookupCtx->isDependentContext() || |
| cast<TagDecl>(LookupCtx)->isDefinition() || |
| Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>() |
| ->isBeingDefined()) && |
| "Declaration context must already be complete!"); |
| |
| // Perform qualified name lookup into the LookupCtx. |
| if (LookupDirect(*this, R, LookupCtx)) { |
| R.resolveKind(); |
| if (isa<CXXRecordDecl>(LookupCtx)) |
| R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); |
| return true; |
| } |
| |
| // Don't descend into implied contexts for redeclarations. |
| // C++98 [namespace.qual]p6: |
| // In a declaration for a namespace member in which the |
| // declarator-id is a qualified-id, given that the qualified-id |
| // for the namespace member has the form |
| // nested-name-specifier unqualified-id |
| // the unqualified-id shall name a member of the namespace |
| // designated by the nested-name-specifier. |
| // See also [class.mfct]p5 and [class.static.data]p2. |
| if (R.isForRedeclaration()) |
| return false; |
| |
| // If this is a namespace, look it up in the implied namespaces. |
| if (LookupCtx->isFileContext()) |
| return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); |
| |
| // If this isn't a C++ class, we aren't allowed to look into base |
| // classes, we're done. |
| CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); |
| if (!LookupRec) |
| return false; |
| |
| // If we're performing qualified name lookup into a dependent class, |
| // then we are actually looking into a current instantiation. If we have any |
| // dependent base classes, then we either have to delay lookup until |
| // template instantiation time (at which point all bases will be available) |
| // or we have to fail. |
| if (!InUnqualifiedLookup && LookupRec->isDependentContext() && |
| LookupRec->hasAnyDependentBases()) { |
| R.setNotFoundInCurrentInstantiation(); |
| return false; |
| } |
| |
| // Perform lookup into our base classes. |
| CXXBasePaths Paths; |
| Paths.setOrigin(LookupRec); |
| |
| // Look for this member in our base classes |
| CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0; |
| switch (R.getLookupKind()) { |
| case LookupOrdinaryName: |
| case LookupMemberName: |
| case LookupRedeclarationWithLinkage: |
| BaseCallback = &CXXRecordDecl::FindOrdinaryMember; |
| break; |
| |
| case LookupTagName: |
| BaseCallback = &CXXRecordDecl::FindTagMember; |
| break; |
| |
| case LookupUsingDeclName: |
| // This lookup is for redeclarations only. |
| |
| case LookupOperatorName: |
| case LookupNamespaceName: |
| case LookupObjCProtocolName: |
| case LookupObjCImplementationName: |
| // These lookups will never find a member in a C++ class (or base class). |
| return false; |
| |
| case LookupNestedNameSpecifierName: |
| BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember; |
| break; |
| } |
| |
| if (!LookupRec->lookupInBases(BaseCallback, |
| R.getLookupName().getAsOpaquePtr(), Paths)) |
| return false; |
| |
| R.setNamingClass(LookupRec); |
| |
| // C++ [class.member.lookup]p2: |
| // [...] If the resulting set of declarations are not all from |
| // sub-objects of the same type, or the set has a nonstatic member |
| // and includes members from distinct sub-objects, there is an |
| // ambiguity and the program is ill-formed. Otherwise that set is |
| // the result of the lookup. |
| // FIXME: support using declarations! |
| QualType SubobjectType; |
| int SubobjectNumber = 0; |
| AccessSpecifier SubobjectAccess = AS_private; |
| for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
| Path != PathEnd; ++Path) { |
| const CXXBasePathElement &PathElement = Path->back(); |
| |
| // Pick the best (i.e. most permissive i.e. numerically lowest) access |
| // across all paths. |
| SubobjectAccess = std::min(SubobjectAccess, Path->Access); |
| |
| // Determine whether we're looking at a distinct sub-object or not. |
| if (SubobjectType.isNull()) { |
| // This is the first subobject we've looked at. Record its type. |
| SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); |
| SubobjectNumber = PathElement.SubobjectNumber; |
| } else if (SubobjectType |
| != Context.getCanonicalType(PathElement.Base->getType())) { |
| // We found members of the given name in two subobjects of |
| // different types. This lookup is ambiguous. |
| R.setAmbiguousBaseSubobjectTypes(Paths); |
| return true; |
| } else if (SubobjectNumber != PathElement.SubobjectNumber) { |
| // We have a different subobject of the same type. |
| |
| // C++ [class.member.lookup]p5: |
| // A static member, a nested type or an enumerator defined in |
| // a base class T can unambiguously be found even if an object |
| // has more than one base class subobject of type T. |
| Decl *FirstDecl = *Path->Decls.first; |
| if (isa<VarDecl>(FirstDecl) || |
| isa<TypeDecl>(FirstDecl) || |
| isa<EnumConstantDecl>(FirstDecl)) |
| continue; |
| |
| if (isa<CXXMethodDecl>(FirstDecl)) { |
| // Determine whether all of the methods are static. |
| bool AllMethodsAreStatic = true; |
| for (DeclContext::lookup_iterator Func = Path->Decls.first; |
| Func != Path->Decls.second; ++Func) { |
| if (!isa<CXXMethodDecl>(*Func)) { |
| assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl"); |
| break; |
| } |
| |
| if (!cast<CXXMethodDecl>(*Func)->isStatic()) { |
| AllMethodsAreStatic = false; |
| break; |
| } |
| } |
| |
| if (AllMethodsAreStatic) |
| continue; |
| } |
| |
| // We have found a nonstatic member name in multiple, distinct |
| // subobjects. Name lookup is ambiguous. |
| R.setAmbiguousBaseSubobjects(Paths); |
| return true; |
| } |
| } |
| |
| // Lookup in a base class succeeded; return these results. |
| |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) { |
| NamedDecl *D = *I; |
| AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, |
| D->getAccess()); |
| R.addDecl(D, AS); |
| } |
| R.resolveKind(); |
| return true; |
| } |
| |
| /// @brief Performs name lookup for a name that was parsed in the |
| /// source code, and may contain a C++ scope specifier. |
| /// |
| /// This routine is a convenience routine meant to be called from |
| /// contexts that receive a name and an optional C++ scope specifier |
| /// (e.g., "N::M::x"). It will then perform either qualified or |
| /// unqualified name lookup (with LookupQualifiedName or LookupName, |
| /// respectively) on the given name and return those results. |
| /// |
| /// @param S The scope from which unqualified name lookup will |
| /// begin. |
| /// |
| /// @param SS An optional C++ scope-specifier, e.g., "::N::M". |
| /// |
| /// @param Name The name of the entity that name lookup will |
| /// search for. |
| /// |
| /// @param Loc If provided, the source location where we're performing |
| /// name lookup. At present, this is only used to produce diagnostics when |
| /// C library functions (like "malloc") are implicitly declared. |
| /// |
| /// @param EnteringContext Indicates whether we are going to enter the |
| /// context of the scope-specifier SS (if present). |
| /// |
| /// @returns True if any decls were found (but possibly ambiguous) |
| bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS, |
| bool AllowBuiltinCreation, bool EnteringContext) { |
| if (SS && SS->isInvalid()) { |
| // When the scope specifier is invalid, don't even look for |
| // anything. |
| return false; |
| } |
| |
| if (SS && SS->isSet()) { |
| if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { |
| // We have resolved the scope specifier to a particular declaration |
| // contex, and will perform name lookup in that context. |
| if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS)) |
| return false; |
| |
| R.setContextRange(SS->getRange()); |
| |
| return LookupQualifiedName(R, DC); |
| } |
| |
| // We could not resolve the scope specified to a specific declaration |
| // context, which means that SS refers to an unknown specialization. |
| // Name lookup can't find anything in this case. |
| return false; |
| } |
| |
| // Perform unqualified name lookup starting in the given scope. |
| return LookupName(R, S, AllowBuiltinCreation); |
| } |
| |
| |
| /// @brief Produce a diagnostic describing the ambiguity that resulted |
| /// from name lookup. |
| /// |
| /// @param Result The ambiguous name lookup result. |
| /// |
| /// @param Name The name of the entity that name lookup was |
| /// searching for. |
| /// |
| /// @param NameLoc The location of the name within the source code. |
| /// |
| /// @param LookupRange A source range that provides more |
| /// source-location information concerning the lookup itself. For |
| /// example, this range might highlight a nested-name-specifier that |
| /// precedes the name. |
| /// |
| /// @returns true |
| bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { |
| assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); |
| |
| DeclarationName Name = Result.getLookupName(); |
| SourceLocation NameLoc = Result.getNameLoc(); |
| SourceRange LookupRange = Result.getContextRange(); |
| |
| switch (Result.getAmbiguityKind()) { |
| case LookupResult::AmbiguousBaseSubobjects: { |
| CXXBasePaths *Paths = Result.getBasePaths(); |
| QualType SubobjectType = Paths->front().back().Base->getType(); |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) |
| << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) |
| << LookupRange; |
| |
| DeclContext::lookup_iterator Found = Paths->front().Decls.first; |
| while (isa<CXXMethodDecl>(*Found) && |
| cast<CXXMethodDecl>(*Found)->isStatic()) |
| ++Found; |
| |
| Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); |
| |
| return true; |
| } |
| |
| case LookupResult::AmbiguousBaseSubobjectTypes: { |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) |
| << Name << LookupRange; |
| |
| CXXBasePaths *Paths = Result.getBasePaths(); |
| std::set<Decl *> DeclsPrinted; |
| for (CXXBasePaths::paths_iterator Path = Paths->begin(), |
| PathEnd = Paths->end(); |
| Path != PathEnd; ++Path) { |
| Decl *D = *Path->Decls.first; |
| if (DeclsPrinted.insert(D).second) |
| Diag(D->getLocation(), diag::note_ambiguous_member_found); |
| } |
| |
| return true; |
| } |
| |
| case LookupResult::AmbiguousTagHiding: { |
| Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; |
| |
| llvm::SmallPtrSet<NamedDecl*,8> TagDecls; |
| |
| LookupResult::iterator DI, DE = Result.end(); |
| for (DI = Result.begin(); DI != DE; ++DI) |
| if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) { |
| TagDecls.insert(TD); |
| Diag(TD->getLocation(), diag::note_hidden_tag); |
| } |
| |
| for (DI = Result.begin(); DI != DE; ++DI) |
| if (!isa<TagDecl>(*DI)) |
| Diag((*DI)->getLocation(), diag::note_hiding_object); |
| |
| // For recovery purposes, go ahead and implement the hiding. |
| LookupResult::Filter F = Result.makeFilter(); |
| while (F.hasNext()) { |
| if (TagDecls.count(F.next())) |
| F.erase(); |
| } |
| F.done(); |
| |
| return true; |
| } |
| |
| case LookupResult::AmbiguousReference: { |
| Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; |
| |
| LookupResult::iterator DI = Result.begin(), DE = Result.end(); |
| for (; DI != DE; ++DI) |
| Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; |
| |
| return true; |
| } |
| } |
| |
| llvm_unreachable("unknown ambiguity kind"); |
| return true; |
| } |
| |
| static void |
| addAssociatedClassesAndNamespaces(QualType T, |
| ASTContext &Context, |
| Sema::AssociatedNamespaceSet &AssociatedNamespaces, |
| Sema::AssociatedClassSet &AssociatedClasses); |
| |
| static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces, |
| DeclContext *Ctx) { |
| if (Ctx->isFileContext()) |
| Namespaces.insert(Ctx); |
| } |
| |
| // \brief Add the associated classes and namespaces for argument-dependent |
| // lookup that involves a template argument (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(const TemplateArgument &Arg, |
| ASTContext &Context, |
| Sema::AssociatedNamespaceSet &AssociatedNamespaces, |
| Sema::AssociatedClassSet &AssociatedClasses) { |
| // C++ [basic.lookup.koenig]p2, last bullet: |
| // -- [...] ; |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| break; |
| |
| case TemplateArgument::Type: |
| // [...] the namespaces and classes associated with the types of the |
| // template arguments provided for template type parameters (excluding |
| // template template parameters) |
| addAssociatedClassesAndNamespaces(Arg.getAsType(), Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| break; |
| |
| case TemplateArgument::Template: { |
| // [...] the namespaces in which any template template arguments are |
| // defined; and the classes in which any member templates used as |
| // template template arguments are defined. |
| TemplateName Template = Arg.getAsTemplate(); |
| if (ClassTemplateDecl *ClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { |
| DeclContext *Ctx = ClassTemplate->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| AssociatedClasses.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| while (Ctx->isRecord()) |
| Ctx = Ctx->getParent(); |
| CollectNamespace(AssociatedNamespaces, Ctx); |
| } |
| break; |
| } |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| case TemplateArgument::Expression: |
| // [Note: non-type template arguments do not contribute to the set of |
| // associated namespaces. ] |
| break; |
| |
| case TemplateArgument::Pack: |
| for (TemplateArgument::pack_iterator P = Arg.pack_begin(), |
| PEnd = Arg.pack_end(); |
| P != PEnd; ++P) |
| addAssociatedClassesAndNamespaces(*P, Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| break; |
| } |
| } |
| |
| // \brief Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of class type |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(CXXRecordDecl *Class, |
| ASTContext &Context, |
| Sema::AssociatedNamespaceSet &AssociatedNamespaces, |
| Sema::AssociatedClassSet &AssociatedClasses) { |
| // C++ [basic.lookup.koenig]p2: |
| // [...] |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base |
| // classes. Its associated namespaces are the namespaces in |
| // which its associated classes are defined. |
| |
| // Add the class of which it is a member, if any. |
| DeclContext *Ctx = Class->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| AssociatedClasses.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| while (Ctx->isRecord()) |
| Ctx = Ctx->getParent(); |
| CollectNamespace(AssociatedNamespaces, Ctx); |
| |
| // Add the class itself. If we've already seen this class, we don't |
| // need to visit base classes. |
| if (!AssociatedClasses.insert(Class)) |
| return; |
| |
| // -- If T is a template-id, its associated namespaces and classes are |
| // the namespace in which the template is defined; for member |
| // templates, the member template’s class; the namespaces and classes |
| // associated with the types of the template arguments provided for |
| // template type parameters (excluding template template parameters); the |
| // namespaces in which any template template arguments are defined; and |
| // the classes in which any member templates used as template template |
| // arguments are defined. [Note: non-type template arguments do not |
| // contribute to the set of associated namespaces. ] |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { |
| DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| AssociatedClasses.insert(EnclosingClass); |
| // Add the associated namespace for this class. |
| while (Ctx->isRecord()) |
| Ctx = Ctx->getParent(); |
| CollectNamespace(AssociatedNamespaces, Ctx); |
| |
| const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| addAssociatedClassesAndNamespaces(TemplateArgs[I], Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| } |
| |
| // Only recurse into base classes for complete types. |
| if (!Class->hasDefinition()) { |
| // FIXME: we might need to instantiate templates here |
| return; |
| } |
| |
| // Add direct and indirect base classes along with their associated |
| // namespaces. |
| llvm::SmallVector<CXXRecordDecl *, 32> Bases; |
| Bases.push_back(Class); |
| while (!Bases.empty()) { |
| // Pop this class off the stack. |
| Class = Bases.back(); |
| Bases.pop_back(); |
| |
| // Visit the base classes. |
| for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), |
| BaseEnd = Class->bases_end(); |
| Base != BaseEnd; ++Base) { |
| const RecordType *BaseType = Base->getType()->getAs<RecordType>(); |
| // In dependent contexts, we do ADL twice, and the first time around, |
| // the base type might be a dependent TemplateSpecializationType, or a |
| // TemplateTypeParmType. If that happens, simply ignore it. |
| // FIXME: If we want to support export, we probably need to add the |
| // namespace of the template in a TemplateSpecializationType, or even |
| // the classes and namespaces of known non-dependent arguments. |
| if (!BaseType) |
| continue; |
| CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| if (AssociatedClasses.insert(BaseDecl)) { |
| // Find the associated namespace for this base class. |
| DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
| while (BaseCtx->isRecord()) |
| BaseCtx = BaseCtx->getParent(); |
| CollectNamespace(AssociatedNamespaces, BaseCtx); |
| |
| // Make sure we visit the bases of this base class. |
| if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
| Bases.push_back(BaseDecl); |
| } |
| } |
| } |
| } |
| |
| // \brief Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of type T |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(QualType T, |
| ASTContext &Context, |
| Sema::AssociatedNamespaceSet &AssociatedNamespaces, |
| Sema::AssociatedClassSet &AssociatedClasses) { |
| // C++ [basic.lookup.koenig]p2: |
| // |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). Typedef names and using-declarations used to specify |
| // the types do not contribute to this set. The sets of namespaces |
| // and classes are determined in the following way: |
| T = Context.getCanonicalType(T).getUnqualifiedType(); |
| |
| // -- If T is a pointer to U or an array of U, its associated |
| // namespaces and classes are those associated with U. |
| // |
| // We handle this by unwrapping pointer and array types immediately, |
| // to avoid unnecessary recursion. |
| while (true) { |
| if (const PointerType *Ptr = T->getAs<PointerType>()) |
| T = Ptr->getPointeeType(); |
| else if (const ArrayType *Ptr = Context.getAsArrayType(T)) |
| T = Ptr->getElementType(); |
| else |
| break; |
| } |
| |
| // -- If T is a fundamental type, its associated sets of |
| // namespaces and classes are both empty. |
| if (T->getAs<BuiltinType>()) |
| return; |
| |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base |
| // classes. Its associated namespaces are the namespaces in |
| // which its associated classes are defined. |
| if (const RecordType *ClassType = T->getAs<RecordType>()) |
| if (CXXRecordDecl *ClassDecl |
| = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) { |
| addAssociatedClassesAndNamespaces(ClassDecl, Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| return; |
| } |
| |
| // -- If T is an enumeration type, its associated namespace is |
| // the namespace in which it is defined. If it is class |
| // member, its associated class is the member’s class; else |
| // it has no associated class. |
| if (const EnumType *EnumT = T->getAs<EnumType>()) { |
| EnumDecl *Enum = EnumT->getDecl(); |
| |
| DeclContext *Ctx = Enum->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| AssociatedClasses.insert(EnclosingClass); |
| |
| // Add the associated namespace for this class. |
| while (Ctx->isRecord()) |
| Ctx = Ctx->getParent(); |
| CollectNamespace(AssociatedNamespaces, Ctx); |
| |
| return; |
| } |
| |
| // -- If T is a function type, its associated namespaces and |
| // classes are those associated with the function parameter |
| // types and those associated with the return type. |
| if (const FunctionType *FnType = T->getAs<FunctionType>()) { |
| // Return type |
| addAssociatedClassesAndNamespaces(FnType->getResultType(), |
| Context, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType); |
| if (!Proto) |
| return; |
| |
| // Argument types |
| for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), |
| ArgEnd = Proto->arg_type_end(); |
| Arg != ArgEnd; ++Arg) |
| addAssociatedClassesAndNamespaces(*Arg, Context, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| return; |
| } |
| |
| // -- If T is a pointer to a member function of a class X, its |
| // associated namespaces and classes are those associated |
| // with the function parameter types and return type, |
| // together with those associated with X. |
| // |
| // -- If T is a pointer to a data member of class X, its |
| // associated namespaces and classes are those associated |
| // with the member type together with those associated with |
| // X. |
| if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) { |
| // Handle the type that the pointer to member points to. |
| addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(), |
| Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| |
| // Handle the class type into which this points. |
| if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>()) |
| addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()), |
| Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| |
| return; |
| } |
| |
| // FIXME: What about block pointers? |
| // FIXME: What about Objective-C message sends? |
| } |
| |
| /// \brief Find the associated classes and namespaces for |
| /// argument-dependent lookup for a call with the given set of |
| /// arguments. |
| /// |
| /// This routine computes the sets of associated classes and associated |
| /// namespaces searched by argument-dependent lookup |
| /// (C++ [basic.lookup.argdep]) for a given set of arguments. |
| void |
| Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, |
| AssociatedNamespaceSet &AssociatedNamespaces, |
| AssociatedClassSet &AssociatedClasses) { |
| AssociatedNamespaces.clear(); |
| AssociatedClasses.clear(); |
| |
| // C++ [basic.lookup.koenig]p2: |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). |
| for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { |
| Expr *Arg = Args[ArgIdx]; |
| |
| if (Arg->getType() != Context.OverloadTy) { |
| addAssociatedClassesAndNamespaces(Arg->getType(), Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| continue; |
| } |
| |
| // [...] In addition, if the argument is the name or address of a |
| // set of overloaded functions and/or function templates, its |
| // associated classes and namespaces are the union of those |
| // associated with each of the members of the set: the namespace |
| // in which the function or function template is defined and the |
| // classes and namespaces associated with its (non-dependent) |
| // parameter types and return type. |
| Arg = Arg->IgnoreParens(); |
| if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) |
| if (unaryOp->getOpcode() == UnaryOperator::AddrOf) |
| Arg = unaryOp->getSubExpr(); |
| |
| // TODO: avoid the copies. This should be easy when the cases |
| // share a storage implementation. |
| llvm::SmallVector<NamedDecl*, 8> Functions; |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg)) |
| Functions.append(ULE->decls_begin(), ULE->decls_end()); |
| else |
| continue; |
| |
| for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(), |
| E = Functions.end(); I != E; ++I) { |
| // Look through any using declarations to find the underlying function. |
| NamedDecl *Fn = (*I)->getUnderlyingDecl(); |
| |
| FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn); |
| if (!FDecl) |
| FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl(); |
| |
| // Add the classes and namespaces associated with the parameter |
| // types and return type of this function. |
| addAssociatedClassesAndNamespaces(FDecl->getType(), Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| } |
| } |
| } |
| |
| /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is |
| /// an acceptable non-member overloaded operator for a call whose |
| /// arguments have types T1 (and, if non-empty, T2). This routine |
| /// implements the check in C++ [over.match.oper]p3b2 concerning |
| /// enumeration types. |
| static bool |
| IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, |
| QualType T1, QualType T2, |
| ASTContext &Context) { |
| if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) |
| return true; |
| |
| if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) |
| return true; |
| |
| const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>(); |
| if (Proto->getNumArgs() < 1) |
| return false; |
| |
| if (T1->isEnumeralType()) { |
| QualType ArgType = Proto->getArgType(0).getNonReferenceType(); |
| if (Context.hasSameUnqualifiedType(T1, ArgType)) |
| return true; |
| } |
| |
| if (Proto->getNumArgs() < 2) |
| return false; |
| |
| if (!T2.isNull() && T2->isEnumeralType()) { |
| QualType ArgType = Proto->getArgType(1).getNonReferenceType(); |
| if (Context.hasSameUnqualifiedType(T2, ArgType)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, |
| LookupNameKind NameKind, |
| RedeclarationKind Redecl) { |
| LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl); |
| LookupName(R, S); |
| return R.getAsSingle<NamedDecl>(); |
| } |
| |
| /// \brief Find the protocol with the given name, if any. |
| ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) { |
| Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName); |
| return cast_or_null<ObjCProtocolDecl>(D); |
| } |
| |
| void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
| QualType T1, QualType T2, |
| UnresolvedSetImpl &Functions) { |
| // C++ [over.match.oper]p3: |
| // -- The set of non-member candidates is the result of the |
| // unqualified lookup of operator@ in the context of the |
| // expression according to the usual rules for name lookup in |
| // unqualified function calls (3.4.2) except that all member |
| // functions are ignored. However, if no operand has a class |
| // type, only those non-member functions in the lookup set |
| // that have a first parameter of type T1 or "reference to |
| // (possibly cv-qualified) T1", when T1 is an enumeration |
| // type, or (if there is a right operand) a second parameter |
| // of type T2 or "reference to (possibly cv-qualified) T2", |
| // when T2 is an enumeration type, are candidate functions. |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); |
| LookupName(Operators, S); |
| |
| assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); |
| |
| if (Operators.empty()) |
| return; |
| |
| for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); |
| Op != OpEnd; ++Op) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) { |
| if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) |
| Functions.addDecl(FD, Op.getAccess()); // FIXME: canonical FD |
| } else if (FunctionTemplateDecl *FunTmpl |
| = dyn_cast<FunctionTemplateDecl>(*Op)) { |
| // FIXME: friend operators? |
| // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate, |
| // later? |
| if (!FunTmpl->getDeclContext()->isRecord()) |
| Functions.addDecl(FunTmpl, Op.getAccess()); |
| } |
| } |
| } |
| |
| void ADLResult::insert(NamedDecl *New) { |
| NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; |
| |
| // If we haven't yet seen a decl for this key, or the last decl |
| // was exactly this one, we're done. |
| if (Old == 0 || Old == New) { |
| Old = New; |
| return; |
| } |
| |
| // Otherwise, decide which is a more recent redeclaration. |
| FunctionDecl *OldFD, *NewFD; |
| if (isa<FunctionTemplateDecl>(New)) { |
| OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl(); |
| NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl(); |
| } else { |
| OldFD = cast<FunctionDecl>(Old); |
| NewFD = cast<FunctionDecl>(New); |
| } |
| |
| FunctionDecl *Cursor = NewFD; |
| while (true) { |
| Cursor = Cursor->getPreviousDeclaration(); |
| |
| // If we got to the end without finding OldFD, OldFD is the newer |
| // declaration; leave things as they are. |
| if (!Cursor) return; |
| |
| // If we do find OldFD, then NewFD is newer. |
| if (Cursor == OldFD) break; |
| |
| // Otherwise, keep looking. |
| } |
| |
| Old = New; |
| } |
| |
| void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator, |
| Expr **Args, unsigned NumArgs, |
| ADLResult &Result) { |
| // Find all of the associated namespaces and classes based on the |
| // arguments we have. |
| AssociatedNamespaceSet AssociatedNamespaces; |
| AssociatedClassSet AssociatedClasses; |
| FindAssociatedClassesAndNamespaces(Args, NumArgs, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| |
| QualType T1, T2; |
| if (Operator) { |
| T1 = Args[0]->getType(); |
| if (NumArgs >= 2) |
| T2 = Args[1]->getType(); |
| } |
| |
| // C++ [basic.lookup.argdep]p3: |
| // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| // and let Y be the lookup set produced by argument dependent |
| // lookup (defined as follows). If X contains [...] then Y is |
| // empty. Otherwise Y is the set of declarations found in the |
| // namespaces associated with the argument types as described |
| // below. The set of declarations found by the lookup of the name |
| // is the union of X and Y. |
| // |
| // Here, we compute Y and add its members to the overloaded |
| // candidate set. |
| for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), |
| NSEnd = AssociatedNamespaces.end(); |
| NS != NSEnd; ++NS) { |
| // When considering an associated namespace, the lookup is the |
| // same as the lookup performed when the associated namespace is |
| // used as a qualifier (3.4.3.2) except that: |
| // |
| // -- Any using-directives in the associated namespace are |
| // ignored. |
| // |
| // -- Any namespace-scope friend functions declared in |
| // associated classes are visible within their respective |
| // namespaces even if they are not visible during an ordinary |
| // lookup (11.4). |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { |
| NamedDecl *D = *I; |
| // If the only declaration here is an ordinary friend, consider |
| // it only if it was declared in an associated classes. |
| if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) { |
| DeclContext *LexDC = D->getLexicalDeclContext(); |
| if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC))) |
| continue; |
| } |
| |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| if (isa<FunctionDecl>(D)) { |
| if (Operator && |
| !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D), |
| T1, T2, Context)) |
| continue; |
| } else if (!isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| Result.insert(D); |
| } |
| } |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Search for all visible declarations. |
| //---------------------------------------------------------------------------- |
| VisibleDeclConsumer::~VisibleDeclConsumer() { } |
| |
| namespace { |
| |
| class ShadowContextRAII; |
| |
| class VisibleDeclsRecord { |
| public: |
| /// \brief An entry in the shadow map, which is optimized to store a |
| /// single declaration (the common case) but can also store a list |
| /// of declarations. |
| class ShadowMapEntry { |
| typedef llvm::SmallVector<NamedDecl *, 4> DeclVector; |
| |
| /// \brief Contains either the solitary NamedDecl * or a vector |
| /// of declarations. |
| llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector; |
| |
| public: |
| ShadowMapEntry() : DeclOrVector() { } |
| |
| void Add(NamedDecl *ND); |
| void Destroy(); |
| |
| // Iteration. |
| typedef NamedDecl **iterator; |
| iterator begin(); |
| iterator end(); |
| }; |
| |
| private: |
| /// \brief A mapping from declaration names to the declarations that have |
| /// this name within a particular scope. |
| typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; |
| |
| /// \brief A list of shadow maps, which is used to model name hiding. |
| std::list<ShadowMap> ShadowMaps; |
| |
| /// \brief The declaration contexts we have already visited. |
| llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; |
| |
| friend class ShadowContextRAII; |
| |
| public: |
| /// \brief Determine whether we have already visited this context |
| /// (and, if not, note that we are going to visit that context now). |
| bool visitedContext(DeclContext *Ctx) { |
| return !VisitedContexts.insert(Ctx); |
| } |
| |
| /// \brief Determine whether the given declaration is hidden in the |
| /// current scope. |
| /// |
| /// \returns the declaration that hides the given declaration, or |
| /// NULL if no such declaration exists. |
| NamedDecl *checkHidden(NamedDecl *ND); |
| |
| /// \brief Add a declaration to the current shadow map. |
| void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); } |
| }; |
| |
| /// \brief RAII object that records when we've entered a shadow context. |
| class ShadowContextRAII { |
| VisibleDeclsRecord &Visible; |
| |
| typedef VisibleDeclsRecord::ShadowMap ShadowMap; |
| |
| public: |
| ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { |
| Visible.ShadowMaps.push_back(ShadowMap()); |
| } |
| |
| ~ShadowContextRAII() { |
| for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(), |
| EEnd = Visible.ShadowMaps.back().end(); |
| E != EEnd; |
| ++E) |
| E->second.Destroy(); |
| |
| Visible.ShadowMaps.pop_back(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) { |
| if (DeclOrVector.isNull()) { |
| // 0 - > 1 elements: just set the single element information. |
| DeclOrVector = ND; |
| return; |
| } |
| |
| if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) { |
| // 1 -> 2 elements: create the vector of results and push in the |
| // existing declaration. |
| DeclVector *Vec = new DeclVector; |
| Vec->push_back(PrevND); |
| DeclOrVector = Vec; |
| } |
| |
| // Add the new element to the end of the vector. |
| DeclOrVector.get<DeclVector*>()->push_back(ND); |
| } |
| |
| void VisibleDeclsRecord::ShadowMapEntry::Destroy() { |
| if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) { |
| delete Vec; |
| DeclOrVector = ((NamedDecl *)0); |
| } |
| } |
| |
| VisibleDeclsRecord::ShadowMapEntry::iterator |
| VisibleDeclsRecord::ShadowMapEntry::begin() { |
| if (DeclOrVector.isNull()) |
| return 0; |
| |
| if (DeclOrVector.dyn_cast<NamedDecl *>()) |
| return &reinterpret_cast<NamedDecl*&>(DeclOrVector); |
| |
| return DeclOrVector.get<DeclVector *>()->begin(); |
| } |
| |
| VisibleDeclsRecord::ShadowMapEntry::iterator |
| VisibleDeclsRecord::ShadowMapEntry::end() { |
| if (DeclOrVector.isNull()) |
| return 0; |
| |
| if (DeclOrVector.dyn_cast<NamedDecl *>()) |
| return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1; |
| |
| return DeclOrVector.get<DeclVector *>()->end(); |
| } |
| |
| NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { |
| // Look through using declarations. |
| ND = ND->getUnderlyingDecl(); |
| |
| unsigned IDNS = ND->getIdentifierNamespace(); |
| std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); |
| for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); |
| SM != SMEnd; ++SM) { |
| ShadowMap::iterator Pos = SM->find(ND->getDeclName()); |
| if (Pos == SM->end()) |
| continue; |
| |
| for (ShadowMapEntry::iterator I = Pos->second.begin(), |
| IEnd = Pos->second.end(); |
| I != IEnd; ++I) { |
| // A tag declaration does not hide a non-tag declaration. |
| if ((*I)->getIdentifierNamespace() == Decl::IDNS_Tag && |
| (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
| Decl::IDNS_ObjCProtocol))) |
| continue; |
| |
| // Protocols are in distinct namespaces from everything else. |
| if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
| || (IDNS & Decl::IDNS_ObjCProtocol)) && |
| (*I)->getIdentifierNamespace() != IDNS) |
| continue; |
| |
| // Functions and function templates in the same scope overload |
| // rather than hide. FIXME: Look for hiding based on function |
| // signatures! |
| if ((*I)->isFunctionOrFunctionTemplate() && |
| ND->isFunctionOrFunctionTemplate() && |
| SM == ShadowMaps.rbegin()) |
| continue; |
| |
| // We've found a declaration that hides this one. |
| return *I; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result, |
| bool QualifiedNameLookup, |
| bool InBaseClass, |
| VisibleDeclConsumer &Consumer, |
| VisibleDeclsRecord &Visited) { |
| if (!Ctx) |
| return; |
| |
| // Make sure we don't visit the same context twice. |
| if (Visited.visitedContext(Ctx->getPrimaryContext())) |
| return; |
| |
| // Enumerate all of the results in this context. |
| for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx; |
| CurCtx = CurCtx->getNextContext()) { |
| for (DeclContext::decl_iterator D = CurCtx->decls_begin(), |
| DEnd = CurCtx->decls_end(); |
| D != DEnd; ++D) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>(*D)) |
| if (Result.isAcceptableDecl(ND)) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass); |
| Visited.add(ND); |
| } |
| |
| // Visit transparent contexts inside this context. |
| if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) { |
| if (InnerCtx->isTransparentContext()) |
| LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass, |
| Consumer, Visited); |
| } |
| } |
| } |
| |
| // Traverse using directives for qualified name lookup. |
| if (QualifiedNameLookup) { |
| ShadowContextRAII Shadow(Visited); |
| DeclContext::udir_iterator I, E; |
| for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) { |
| LookupVisibleDecls((*I)->getNominatedNamespace(), Result, |
| QualifiedNameLookup, InBaseClass, Consumer, Visited); |
| } |
| } |
| |
| // Traverse the contexts of inherited C++ classes. |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { |
| if (!Record->hasDefinition()) |
| return; |
| |
| for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(), |
| BEnd = Record->bases_end(); |
| B != BEnd; ++B) { |
| QualType BaseType = B->getType(); |
| |
| // Don't look into dependent bases, because name lookup can't look |
| // there anyway. |
| if (BaseType->isDependentType()) |
| continue; |
| |
| const RecordType *Record = BaseType->getAs<RecordType>(); |
| if (!Record) |
| continue; |
| |
| // FIXME: It would be nice to be able to determine whether referencing |
| // a particular member would be ambiguous. For example, given |
| // |
| // struct A { int member; }; |
| // struct B { int member; }; |
| // struct C : A, B { }; |
| // |
| // void f(C *c) { c->### } |
| // |
| // accessing 'member' would result in an ambiguity. However, we |
| // could be smart enough to qualify the member with the base |
| // class, e.g., |
| // |
| // c->B::member |
| // |
| // or |
| // |
| // c->A::member |
| |
| // Find results in this base class (and its bases). |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup, |
| true, Consumer, Visited); |
| } |
| } |
| |
| // Traverse the contexts of Objective-C classes. |
| if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { |
| // Traverse categories. |
| for (ObjCCategoryDecl *Category = IFace->getCategoryList(); |
| Category; Category = Category->getNextClassCategory()) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(Category, Result, QualifiedNameLookup, false, |
| Consumer, Visited); |
| } |
| |
| // Traverse protocols. |
| for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(), |
| E = IFace->protocol_end(); I != E; ++I) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, |
| Visited); |
| } |
| |
| // Traverse the superclass. |
| if (IFace->getSuperClass()) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup, |
| true, Consumer, Visited); |
| } |
| } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { |
| for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(), |
| E = Protocol->protocol_end(); I != E; ++I) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, |
| Visited); |
| } |
| } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { |
| for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(), |
| E = Category->protocol_end(); I != E; ++I) { |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer, |
| Visited); |
| } |
| } |
| } |
| |
| static void LookupVisibleDecls(Scope *S, LookupResult &Result, |
| UnqualUsingDirectiveSet &UDirs, |
| VisibleDeclConsumer &Consumer, |
| VisibleDeclsRecord &Visited) { |
| if (!S) |
| return; |
| |
| if (!S->getEntity() || !S->getParent() || |
| ((DeclContext *)S->getEntity())->isFunctionOrMethod()) { |
| // Walk through the declarations in this Scope. |
| for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end(); |
| D != DEnd; ++D) { |
| if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get()))) |
| if (Result.isAcceptableDecl(ND)) { |
| Consumer.FoundDecl(ND, Visited.checkHidden(ND), false); |
| Visited.add(ND); |
| } |
| } |
| } |
| |
| DeclContext *Entity = 0; |
| if (S->getEntity()) { |
| // Look into this scope's declaration context, along with any of its |
| // parent lookup contexts (e.g., enclosing classes), up to the point |
| // where we hit the context stored in the next outer scope. |
| Entity = (DeclContext *)S->getEntity(); |
| DeclContext *OuterCtx = findOuterContext(S); |
| |
| for (DeclContext *Ctx = Entity; Ctx && Ctx->getPrimaryContext() != OuterCtx; |
| Ctx = Ctx->getLookupParent()) { |
| if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
| if (Method->isInstanceMethod()) { |
| // For instance methods, look for ivars in the method's interface. |
| LookupResult IvarResult(Result.getSema(), Result.getLookupName(), |
| Result.getNameLoc(), Sema::LookupMemberName); |
| if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) |
| LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| // We've already performed all of the name lookup that we need |
| // to for Objective-C methods; the next context will be the |
| // outer scope. |
| break; |
| } |
| |
| if (Ctx->isFunctionOrMethod()) |
| continue; |
| |
| LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| } else if (!S->getParent()) { |
| // Look into the translation unit scope. We walk through the translation |
| // unit's declaration context, because the Scope itself won't have all of |
| // the declarations if we loaded a precompiled header. |
| // FIXME: We would like the translation unit's Scope object to point to the |
| // translation unit, so we don't need this special "if" branch. However, |
| // doing so would force the normal C++ name-lookup code to look into the |
| // translation unit decl when the IdentifierInfo chains would suffice. |
| // Once we fix that problem (which is part of a more general "don't look |
| // in DeclContexts unless we have to" optimization), we can eliminate this. |
| Entity = Result.getSema().Context.getTranslationUnitDecl(); |
| LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| if (Entity) { |
| // Lookup visible declarations in any namespaces found by using |
| // directives. |
| UnqualUsingDirectiveSet::const_iterator UI, UEnd; |
| llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity); |
| for (; UI != UEnd; ++UI) |
| LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()), |
| Result, /*QualifiedNameLookup=*/false, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| // Lookup names in the parent scope. |
| ShadowContextRAII Shadow(Visited); |
| LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited); |
| } |
| |
| void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, |
| VisibleDeclConsumer &Consumer) { |
| // Determine the set of using directives available during |
| // unqualified name lookup. |
| Scope *Initial = S; |
| UnqualUsingDirectiveSet UDirs; |
| if (getLangOptions().CPlusPlus) { |
| // Find the first namespace or translation-unit scope. |
| while (S && !isNamespaceOrTranslationUnitScope(S)) |
| S = S->getParent(); |
| |
| UDirs.visitScopeChain(Initial, S); |
| } |
| UDirs.done(); |
| |
| // Look for visible declarations. |
| LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); |
| VisibleDeclsRecord Visited; |
| ShadowContextRAII Shadow(Visited); |
| ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited); |
| } |
| |
| void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, |
| VisibleDeclConsumer &Consumer) { |
| LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind); |
| VisibleDeclsRecord Visited; |
| ShadowContextRAII Shadow(Visited); |
| ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, |
| /*InBaseClass=*/false, Consumer, Visited); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Typo correction |
| //---------------------------------------------------------------------------- |
| |
| namespace { |
| class TypoCorrectionConsumer : public VisibleDeclConsumer { |
| /// \brief The name written that is a typo in the source. |
| llvm::StringRef Typo; |
| |
| /// \brief The results found that have the smallest edit distance |
| /// found (so far) with the typo name. |
| llvm::SmallVector<NamedDecl *, 4> BestResults; |
| |
| /// \brief The best edit distance found so far. |
| unsigned BestEditDistance; |
| |
| public: |
| explicit TypoCorrectionConsumer(IdentifierInfo *Typo) |
| : Typo(Typo->getName()) { } |
| |
| virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass); |
| |
| typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator; |
| iterator begin() const { return BestResults.begin(); } |
| iterator end() const { return BestResults.end(); } |
| bool empty() const { return BestResults.empty(); } |
| |
| unsigned getBestEditDistance() const { return BestEditDistance; } |
| }; |
| |
| } |
| |
| void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, |
| bool InBaseClass) { |
| // Don't consider hidden names for typo correction. |
| if (Hiding) |
| return; |
| |
| // Only consider entities with identifiers for names, ignoring |
| // special names (constructors, overloaded operators, selectors, |
| // etc.). |
| IdentifierInfo *Name = ND->getIdentifier(); |
| if (!Name) |
| return; |
| |
| // Compute the edit distance between the typo and the name of this |
| // entity. If this edit distance is not worse than the best edit |
| // distance we've seen so far, add it to the list of results. |
| unsigned ED = Typo.edit_distance(Name->getName()); |
| if (!BestResults.empty()) { |
| if (ED < BestEditDistance) { |
| // This result is better than any we've seen before; clear out |
| // the previous results. |
| BestResults.clear(); |
| BestEditDistance = ED; |
| } else if (ED > BestEditDistance) { |
| // This result is worse than the best results we've seen so far; |
| // ignore it. |
| return; |
| } |
| } else |
| BestEditDistance = ED; |
| |
| BestResults.push_back(ND); |
| } |
| |
| /// \brief Try to "correct" a typo in the source code by finding |
| /// visible declarations whose names are similar to the name that was |
| /// present in the source code. |
| /// |
| /// \param Res the \c LookupResult structure that contains the name |
| /// that was present in the source code along with the name-lookup |
| /// criteria used to search for the name. On success, this structure |
| /// will contain the results of name lookup. |
| /// |
| /// \param S the scope in which name lookup occurs. |
| /// |
| /// \param SS the nested-name-specifier that precedes the name we're |
| /// looking for, if present. |
| /// |
| /// \param MemberContext if non-NULL, the context in which to look for |
| /// a member access expression. |
| /// |
| /// \param EnteringContext whether we're entering the context described by |
| /// the nested-name-specifier SS. |
| /// |
| /// \param OPT when non-NULL, the search for visible declarations will |
| /// also walk the protocols in the qualified interfaces of \p OPT. |
| /// |
| /// \returns true if the typo was corrected, in which case the \p Res |
| /// structure will contain the results of name lookup for the |
| /// corrected name. Otherwise, returns false. |
| bool Sema::CorrectTypo(LookupResult &Res, Scope *S, const CXXScopeSpec *SS, |
| DeclContext *MemberContext, bool EnteringContext, |
| const ObjCObjectPointerType *OPT) { |
| if (Diags.hasFatalErrorOccurred()) |
| return false; |
| |
| // Provide a stop gap for files that are just seriously broken. Trying |
| // to correct all typos can turn into a HUGE performance penalty, causing |
| // some files to take minutes to get rejected by the parser. |
| // FIXME: Is this the right solution? |
| if (TyposCorrected == 20) |
| return false; |
| ++TyposCorrected; |
| |
| // We only attempt to correct typos for identifiers. |
| IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo(); |
| if (!Typo) |
| return false; |
| |
| // If the scope specifier itself was invalid, don't try to correct |
| // typos. |
| if (SS && SS->isInvalid()) |
| return false; |
| |
| // Never try to correct typos during template deduction or |
| // instantiation. |
| if (!ActiveTemplateInstantiations.empty()) |
| return false; |
| |
| TypoCorrectionConsumer Consumer(Typo); |
| if (MemberContext) { |
| LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer); |
| |
| // Look in qualified interfaces. |
| if (OPT) { |
| for (ObjCObjectPointerType::qual_iterator |
| I = OPT->qual_begin(), E = OPT->qual_end(); |
| I != E; ++I) |
| LookupVisibleDecls(*I, Res.getLookupKind(), Consumer); |
| } |
| } else if (SS && SS->isSet()) { |
| DeclContext *DC = computeDeclContext(*SS, EnteringContext); |
| if (!DC) |
| return false; |
| |
| LookupVisibleDecls(DC, Res.getLookupKind(), Consumer); |
| } else { |
| LookupVisibleDecls(S, Res.getLookupKind(), Consumer); |
| } |
| |
| if (Consumer.empty()) |
| return false; |
| |
| // Only allow a single, closest name in the result set (it's okay to |
| // have overloads of that name, though). |
| TypoCorrectionConsumer::iterator I = Consumer.begin(); |
| DeclarationName BestName = (*I)->getDeclName(); |
| |
| // If we've found an Objective-C ivar or property, don't perform |
| // name lookup again; we'll just return the result directly. |
| NamedDecl *FoundBest = 0; |
| if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) |
| FoundBest = *I; |
| ++I; |
| for(TypoCorrectionConsumer::iterator IEnd = Consumer.end(); I != IEnd; ++I) { |
| if (BestName != (*I)->getDeclName()) |
| return false; |
| |
| // FIXME: If there are both ivars and properties of the same name, |
| // don't return both because the callee can't handle two |
| // results. We really need to separate ivar lookup from property |
| // lookup to avoid this problem. |
| FoundBest = 0; |
| } |
| |
| // BestName is the closest viable name to what the user |
| // typed. However, to make sure that we don't pick something that's |
| // way off, make sure that the user typed at least 3 characters for |
| // each correction. |
| unsigned ED = Consumer.getBestEditDistance(); |
| if (ED == 0 || (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3) |
| return false; |
| |
| // Perform name lookup again with the name we chose, and declare |
| // success if we found something that was not ambiguous. |
| Res.clear(); |
| Res.setLookupName(BestName); |
| |
| // If we found an ivar or property, add that result; no further |
| // lookup is required. |
| if (FoundBest) |
| Res.addDecl(FoundBest); |
| // If we're looking into the context of a member, perform qualified |
| // name lookup on the best name. |
| else if (MemberContext) |
| LookupQualifiedName(Res, MemberContext); |
| // Perform lookup as if we had just parsed the best name. |
| else |
| LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, |
| EnteringContext); |
| |
| if (Res.isAmbiguous()) { |
| Res.suppressDiagnostics(); |
| return false; |
| } |
| |
| return Res.getResultKind() != LookupResult::NotFound; |
| } |