| //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements name lookup for C, C++, Objective-C, and |
| // Objective-C++. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "Sema.h" |
| #include "SemaInherit.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <set> |
| #include <vector> |
| #include <iterator> |
| #include <utility> |
| #include <algorithm> |
| |
| using namespace clang; |
| |
| typedef llvm::SmallVector<UsingDirectiveDecl*, 4> UsingDirectivesTy; |
| typedef llvm::DenseSet<NamespaceDecl*> NamespaceSet; |
| typedef llvm::SmallVector<Sema::LookupResult, 3> LookupResultsTy; |
| |
| /// UsingDirAncestorCompare - Implements strict weak ordering of |
| /// UsingDirectives. It orders them by address of its common ancestor. |
| struct UsingDirAncestorCompare { |
| |
| /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext. |
| bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const { |
| return U->getCommonAncestor() < Ctx; |
| } |
| |
| /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext. |
| bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const { |
| return Ctx < U->getCommonAncestor(); |
| } |
| |
| /// @brief Compares UsingDirectiveDecl common ancestors. |
| bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const { |
| return U1->getCommonAncestor() < U2->getCommonAncestor(); |
| } |
| }; |
| |
| /// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs |
| /// (ordered by common ancestors), found in namespace NS, |
| /// including all found (recursively) in their nominated namespaces. |
| void AddNamespaceUsingDirectives(DeclContext *NS, |
| UsingDirectivesTy &UDirs, |
| NamespaceSet &Visited) { |
| DeclContext::udir_iterator I, End; |
| |
| for (llvm::tie(I, End) = NS->getUsingDirectives(); I !=End; ++I) { |
| UDirs.push_back(*I); |
| std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare()); |
| NamespaceDecl *Nominated = (*I)->getNominatedNamespace(); |
| if (Visited.insert(Nominated).second) |
| AddNamespaceUsingDirectives(Nominated, UDirs, /*ref*/ Visited); |
| } |
| } |
| |
| /// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S, |
| /// including all found in the namespaces they nominate. |
| static void AddScopeUsingDirectives(Scope *S, UsingDirectivesTy &UDirs) { |
| NamespaceSet VisitedNS; |
| |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { |
| |
| if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Ctx)) |
| VisitedNS.insert(NS); |
| |
| AddNamespaceUsingDirectives(Ctx, UDirs, /*ref*/ VisitedNS); |
| |
| } else { |
| Scope::udir_iterator I = S->using_directives_begin(), |
| End = S->using_directives_end(); |
| |
| for (; I != End; ++I) { |
| UsingDirectiveDecl *UD = I->getAs<UsingDirectiveDecl>(); |
| UDirs.push_back(UD); |
| std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare()); |
| |
| NamespaceDecl *Nominated = UD->getNominatedNamespace(); |
| if (!VisitedNS.count(Nominated)) { |
| VisitedNS.insert(Nominated); |
| AddNamespaceUsingDirectives(Nominated, UDirs, /*ref*/ VisitedNS); |
| } |
| } |
| } |
| } |
| |
| /// MaybeConstructOverloadSet - Name lookup has determined that the |
| /// elements in [I, IEnd) have the name that we are looking for, and |
| /// *I is a match for the namespace. This routine returns an |
| /// appropriate Decl for name lookup, which may either be *I or an |
| /// OverloadedFunctionDecl that represents the overloaded functions in |
| /// [I, IEnd). |
| /// |
| /// The existance of this routine is temporary; users of LookupResult |
| /// should be able to handle multiple results, to deal with cases of |
| /// ambiguity and overloaded functions without needing to create a |
| /// Decl node. |
| template<typename DeclIterator> |
| static NamedDecl * |
| MaybeConstructOverloadSet(ASTContext &Context, |
| DeclIterator I, DeclIterator IEnd) { |
| assert(I != IEnd && "Iterator range cannot be empty"); |
| assert(!isa<OverloadedFunctionDecl>(*I) && |
| "Cannot have an overloaded function"); |
| |
| if (isa<FunctionDecl>(*I)) { |
| // If we found a function, there might be more functions. If |
| // so, collect them into an overload set. |
| DeclIterator Last = I; |
| OverloadedFunctionDecl *Ovl = 0; |
| for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) { |
| if (!Ovl) { |
| // FIXME: We leak this overload set. Eventually, we want to |
| // stop building the declarations for these overload sets, so |
| // there will be nothing to leak. |
| Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(), |
| (*I)->getDeclName()); |
| Ovl->addOverload(cast<FunctionDecl>(*I)); |
| } |
| Ovl->addOverload(cast<FunctionDecl>(*Last)); |
| } |
| |
| // If we had more than one function, we built an overload |
| // set. Return it. |
| if (Ovl) |
| return Ovl; |
| } |
| |
| return *I; |
| } |
| |
| /// Merges together multiple LookupResults dealing with duplicated Decl's. |
| static Sema::LookupResult |
| MergeLookupResults(ASTContext &Context, LookupResultsTy &Results) { |
| typedef Sema::LookupResult LResult; |
| typedef llvm::SmallPtrSet<NamedDecl*, 4> DeclsSetTy; |
| |
| // Remove duplicated Decl pointing at same Decl, by storing them in |
| // associative collection. This might be case for code like: |
| // |
| // namespace A { int i; } |
| // namespace B { using namespace A; } |
| // namespace C { using namespace A; } |
| // |
| // void foo() { |
| // using namespace B; |
| // using namespace C; |
| // ++i; // finds A::i, from both namespace B and C at global scope |
| // } |
| // |
| // C++ [namespace.qual].p3: |
| // The same declaration found more than once is not an ambiguity |
| // (because it is still a unique declaration). |
| DeclsSetTy FoundDecls; |
| |
| // Counter of tag names, and functions for resolving ambiguity |
| // and name hiding. |
| std::size_t TagNames = 0, Functions = 0, OrdinaryNonFunc = 0; |
| |
| LookupResultsTy::iterator I = Results.begin(), End = Results.end(); |
| |
| // No name lookup results, return early. |
| if (I == End) return LResult::CreateLookupResult(Context, 0); |
| |
| // Keep track of the tag declaration we found. We only use this if |
| // we find a single tag declaration. |
| TagDecl *TagFound = 0; |
| |
| for (; I != End; ++I) { |
| switch (I->getKind()) { |
| case LResult::NotFound: |
| assert(false && |
| "Should be always successful name lookup result here."); |
| break; |
| |
| case LResult::AmbiguousReference: |
| case LResult::AmbiguousBaseSubobjectTypes: |
| case LResult::AmbiguousBaseSubobjects: |
| assert(false && "Shouldn't get ambiguous lookup here."); |
| break; |
| |
| case LResult::Found: { |
| NamedDecl *ND = I->getAsDecl(); |
| if (TagDecl *TD = dyn_cast<TagDecl>(ND)) { |
| TagFound = Context.getCanonicalDecl(TD); |
| TagNames += FoundDecls.insert(TagFound)? 1 : 0; |
| } else if (isa<FunctionDecl>(ND)) |
| Functions += FoundDecls.insert(ND)? 1 : 0; |
| else |
| FoundDecls.insert(ND); |
| break; |
| } |
| |
| case LResult::FoundOverloaded: |
| for (LResult::iterator FI = I->begin(), FEnd = I->end(); FI != FEnd; ++FI) |
| Functions += FoundDecls.insert(*FI)? 1 : 0; |
| break; |
| } |
| } |
| OrdinaryNonFunc = FoundDecls.size() - TagNames - Functions; |
| bool Ambiguous = false, NameHidesTags = false; |
| |
| if (FoundDecls.size() == 1) { |
| // 1) Exactly one result. |
| } else if (TagNames > 1) { |
| // 2) Multiple tag names (even though they may be hidden by an |
| // object name). |
| Ambiguous = true; |
| } else if (FoundDecls.size() - TagNames == 1) { |
| // 3) Ordinary name hides (optional) tag. |
| NameHidesTags = TagFound; |
| } else if (Functions) { |
| // C++ [basic.lookup].p1: |
| // ... Name lookup may associate more than one declaration with |
| // a name if it finds the name to be a function name; the declarations |
| // are said to form a set of overloaded functions (13.1). |
| // Overload resolution (13.3) takes place after name lookup has succeeded. |
| // |
| if (!OrdinaryNonFunc) { |
| // 4) Functions hide tag names. |
| NameHidesTags = TagFound; |
| } else { |
| // 5) Functions + ordinary names. |
| Ambiguous = true; |
| } |
| } else { |
| // 6) Multiple non-tag names |
| Ambiguous = true; |
| } |
| |
| if (Ambiguous) |
| return LResult::CreateLookupResult(Context, |
| FoundDecls.begin(), FoundDecls.size()); |
| if (NameHidesTags) { |
| // There's only one tag, TagFound. Remove it. |
| assert(TagFound && FoundDecls.count(TagFound) && "No tag name found?"); |
| FoundDecls.erase(TagFound); |
| } |
| |
| // Return successful name lookup result. |
| return LResult::CreateLookupResult(Context, |
| MaybeConstructOverloadSet(Context, |
| FoundDecls.begin(), |
| FoundDecls.end())); |
| } |
| |
| // Retrieve the set of identifier namespaces that correspond to a |
| // specific kind of name lookup. |
| inline unsigned |
| getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind, |
| bool CPlusPlus) { |
| unsigned IDNS = 0; |
| switch (NameKind) { |
| case Sema::LookupOrdinaryName: |
| case Sema::LookupOperatorName: |
| case Sema::LookupRedeclarationWithLinkage: |
| IDNS = Decl::IDNS_Ordinary; |
| if (CPlusPlus) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member; |
| break; |
| |
| case Sema::LookupTagName: |
| IDNS = Decl::IDNS_Tag; |
| break; |
| |
| case Sema::LookupMemberName: |
| IDNS = Decl::IDNS_Member; |
| if (CPlusPlus) |
| IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
| break; |
| |
| case Sema::LookupNestedNameSpecifierName: |
| case Sema::LookupNamespaceName: |
| IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member; |
| break; |
| } |
| return IDNS; |
| } |
| |
| Sema::LookupResult |
| Sema::LookupResult::CreateLookupResult(ASTContext &Context, NamedDecl *D) { |
| LookupResult Result; |
| Result.StoredKind = (D && isa<OverloadedFunctionDecl>(D))? |
| OverloadedDeclSingleDecl : SingleDecl; |
| Result.First = reinterpret_cast<uintptr_t>(D); |
| Result.Last = 0; |
| Result.Context = &Context; |
| return Result; |
| } |
| |
| /// @brief Moves the name-lookup results from Other to this LookupResult. |
| Sema::LookupResult |
| Sema::LookupResult::CreateLookupResult(ASTContext &Context, |
| IdentifierResolver::iterator F, |
| IdentifierResolver::iterator L) { |
| LookupResult Result; |
| Result.Context = &Context; |
| |
| if (F != L && isa<FunctionDecl>(*F)) { |
| IdentifierResolver::iterator Next = F; |
| ++Next; |
| if (Next != L && isa<FunctionDecl>(*Next)) { |
| Result.StoredKind = OverloadedDeclFromIdResolver; |
| Result.First = F.getAsOpaqueValue(); |
| Result.Last = L.getAsOpaqueValue(); |
| return Result; |
| } |
| } |
| |
| Result.StoredKind = SingleDecl; |
| Result.First = reinterpret_cast<uintptr_t>(*F); |
| Result.Last = 0; |
| return Result; |
| } |
| |
| Sema::LookupResult |
| Sema::LookupResult::CreateLookupResult(ASTContext &Context, |
| DeclContext::lookup_iterator F, |
| DeclContext::lookup_iterator L) { |
| LookupResult Result; |
| Result.Context = &Context; |
| |
| if (F != L && isa<FunctionDecl>(*F)) { |
| DeclContext::lookup_iterator Next = F; |
| ++Next; |
| if (Next != L && isa<FunctionDecl>(*Next)) { |
| Result.StoredKind = OverloadedDeclFromDeclContext; |
| Result.First = reinterpret_cast<uintptr_t>(F); |
| Result.Last = reinterpret_cast<uintptr_t>(L); |
| return Result; |
| } |
| } |
| |
| Result.StoredKind = SingleDecl; |
| Result.First = reinterpret_cast<uintptr_t>(*F); |
| Result.Last = 0; |
| return Result; |
| } |
| |
| /// @brief Determine the result of name lookup. |
| Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const { |
| switch (StoredKind) { |
| case SingleDecl: |
| return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound; |
| |
| case OverloadedDeclSingleDecl: |
| case OverloadedDeclFromIdResolver: |
| case OverloadedDeclFromDeclContext: |
| return FoundOverloaded; |
| |
| case AmbiguousLookupStoresBasePaths: |
| return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects; |
| |
| case AmbiguousLookupStoresDecls: |
| return AmbiguousReference; |
| } |
| |
| // We can't ever get here. |
| return NotFound; |
| } |
| |
| /// @brief Converts the result of name lookup into a single (possible |
| /// NULL) pointer to a declaration. |
| /// |
| /// The resulting declaration will either be the declaration we found |
| /// (if only a single declaration was found), an |
| /// OverloadedFunctionDecl (if an overloaded function was found), or |
| /// NULL (if no declaration was found). This conversion must not be |
| /// used anywhere where name lookup could result in an ambiguity. |
| /// |
| /// The OverloadedFunctionDecl conversion is meant as a stop-gap |
| /// solution, since it causes the OverloadedFunctionDecl to be |
| /// leaked. FIXME: Eventually, there will be a better way to iterate |
| /// over the set of overloaded functions returned by name lookup. |
| NamedDecl *Sema::LookupResult::getAsDecl() const { |
| switch (StoredKind) { |
| case SingleDecl: |
| return reinterpret_cast<NamedDecl *>(First); |
| |
| case OverloadedDeclFromIdResolver: |
| return MaybeConstructOverloadSet(*Context, |
| IdentifierResolver::iterator::getFromOpaqueValue(First), |
| IdentifierResolver::iterator::getFromOpaqueValue(Last)); |
| |
| case OverloadedDeclFromDeclContext: |
| return MaybeConstructOverloadSet(*Context, |
| reinterpret_cast<DeclContext::lookup_iterator>(First), |
| reinterpret_cast<DeclContext::lookup_iterator>(Last)); |
| |
| case OverloadedDeclSingleDecl: |
| return reinterpret_cast<OverloadedFunctionDecl*>(First); |
| |
| case AmbiguousLookupStoresDecls: |
| case AmbiguousLookupStoresBasePaths: |
| assert(false && |
| "Name lookup returned an ambiguity that could not be handled"); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /// @brief Retrieves the BasePaths structure describing an ambiguous |
| /// name lookup, or null. |
| BasePaths *Sema::LookupResult::getBasePaths() const { |
| if (StoredKind == AmbiguousLookupStoresBasePaths) |
| return reinterpret_cast<BasePaths *>(First); |
| return 0; |
| } |
| |
| Sema::LookupResult::iterator::reference |
| Sema::LookupResult::iterator::operator*() const { |
| switch (Result->StoredKind) { |
| case SingleDecl: |
| return reinterpret_cast<NamedDecl*>(Current); |
| |
| case OverloadedDeclSingleDecl: |
| return *reinterpret_cast<NamedDecl**>(Current); |
| |
| case OverloadedDeclFromIdResolver: |
| return *IdentifierResolver::iterator::getFromOpaqueValue(Current); |
| |
| case AmbiguousLookupStoresBasePaths: |
| if (Result->Last) |
| return *reinterpret_cast<NamedDecl**>(Current); |
| |
| // Fall through to handle the DeclContext::lookup_iterator we're |
| // storing. |
| |
| case OverloadedDeclFromDeclContext: |
| case AmbiguousLookupStoresDecls: |
| return *reinterpret_cast<DeclContext::lookup_iterator>(Current); |
| } |
| |
| return 0; |
| } |
| |
| Sema::LookupResult::iterator& Sema::LookupResult::iterator::operator++() { |
| switch (Result->StoredKind) { |
| case SingleDecl: |
| Current = reinterpret_cast<uintptr_t>((NamedDecl*)0); |
| break; |
| |
| case OverloadedDeclSingleDecl: { |
| NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current); |
| ++I; |
| Current = reinterpret_cast<uintptr_t>(I); |
| break; |
| } |
| |
| case OverloadedDeclFromIdResolver: { |
| IdentifierResolver::iterator I |
| = IdentifierResolver::iterator::getFromOpaqueValue(Current); |
| ++I; |
| Current = I.getAsOpaqueValue(); |
| break; |
| } |
| |
| case AmbiguousLookupStoresBasePaths: |
| if (Result->Last) { |
| NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current); |
| ++I; |
| Current = reinterpret_cast<uintptr_t>(I); |
| break; |
| } |
| // Fall through to handle the DeclContext::lookup_iterator we're |
| // storing. |
| |
| case OverloadedDeclFromDeclContext: |
| case AmbiguousLookupStoresDecls: { |
| DeclContext::lookup_iterator I |
| = reinterpret_cast<DeclContext::lookup_iterator>(Current); |
| ++I; |
| Current = reinterpret_cast<uintptr_t>(I); |
| break; |
| } |
| } |
| |
| return *this; |
| } |
| |
| Sema::LookupResult::iterator Sema::LookupResult::begin() { |
| switch (StoredKind) { |
| case SingleDecl: |
| case OverloadedDeclFromIdResolver: |
| case OverloadedDeclFromDeclContext: |
| case AmbiguousLookupStoresDecls: |
| return iterator(this, First); |
| |
| case OverloadedDeclSingleDecl: { |
| OverloadedFunctionDecl * Ovl = |
| reinterpret_cast<OverloadedFunctionDecl*>(First); |
| return iterator(this, |
| reinterpret_cast<uintptr_t>(&(*Ovl->function_begin()))); |
| } |
| |
| case AmbiguousLookupStoresBasePaths: |
| if (Last) |
| return iterator(this, |
| reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_begin())); |
| else |
| return iterator(this, |
| reinterpret_cast<uintptr_t>(getBasePaths()->front().Decls.first)); |
| } |
| |
| // Required to suppress GCC warning. |
| return iterator(); |
| } |
| |
| Sema::LookupResult::iterator Sema::LookupResult::end() { |
| switch (StoredKind) { |
| case SingleDecl: |
| case OverloadedDeclFromIdResolver: |
| case OverloadedDeclFromDeclContext: |
| case AmbiguousLookupStoresDecls: |
| return iterator(this, Last); |
| |
| case OverloadedDeclSingleDecl: { |
| OverloadedFunctionDecl * Ovl = |
| reinterpret_cast<OverloadedFunctionDecl*>(First); |
| return iterator(this, |
| reinterpret_cast<uintptr_t>(&(*Ovl->function_end()))); |
| } |
| |
| case AmbiguousLookupStoresBasePaths: |
| if (Last) |
| return iterator(this, |
| reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_end())); |
| else |
| return iterator(this, reinterpret_cast<uintptr_t>( |
| getBasePaths()->front().Decls.second)); |
| } |
| |
| // Required to suppress GCC warning. |
| return iterator(); |
| } |
| |
| void Sema::LookupResult::Destroy() { |
| if (BasePaths *Paths = getBasePaths()) |
| delete Paths; |
| else if (getKind() == AmbiguousReference) |
| delete[] reinterpret_cast<NamedDecl **>(First); |
| } |
| |
| static void |
| CppNamespaceLookup(ASTContext &Context, DeclContext *NS, |
| DeclarationName Name, Sema::LookupNameKind NameKind, |
| unsigned IDNS, LookupResultsTy &Results, |
| UsingDirectivesTy *UDirs = 0) { |
| |
| assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); |
| |
| // Perform qualified name lookup into the LookupCtx. |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I, E) = NS->lookup(Name); I != E; ++I) |
| if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS)) { |
| Results.push_back(Sema::LookupResult::CreateLookupResult(Context, I, E)); |
| break; |
| } |
| |
| if (UDirs) { |
| // For each UsingDirectiveDecl, which common ancestor is equal |
| // to NS, we preform qualified name lookup into namespace nominated by it. |
| UsingDirectivesTy::const_iterator UI, UEnd; |
| llvm::tie(UI, UEnd) = |
| std::equal_range(UDirs->begin(), UDirs->end(), NS, |
| UsingDirAncestorCompare()); |
| |
| for (; UI != UEnd; ++UI) |
| CppNamespaceLookup(Context, (*UI)->getNominatedNamespace(), |
| Name, NameKind, IDNS, Results); |
| } |
| } |
| |
| static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) |
| return Ctx->isFileContext(); |
| return false; |
| } |
| |
| std::pair<bool, Sema::LookupResult> |
| Sema::CppLookupName(Scope *S, DeclarationName Name, |
| LookupNameKind NameKind, bool RedeclarationOnly) { |
| assert(getLangOptions().CPlusPlus && |
| "Can perform only C++ lookup"); |
| unsigned IDNS |
| = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true); |
| Scope *Initial = S; |
| DeclContext *OutOfLineCtx = 0; |
| IdentifierResolver::iterator |
| I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| |
| // First we lookup local scope. |
| // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
| // ...During unqualified name lookup (3.4.1), the names appear as if |
| // they were declared in the nearest enclosing namespace which contains |
| // both the using-directive and the nominated namespace. |
| // [Note: in this context, “contains” means “contains directly or |
| // indirectly”. |
| // |
| // For example: |
| // namespace A { int i; } |
| // void foo() { |
| // int i; |
| // { |
| // using namespace A; |
| // ++i; // finds local 'i', A::i appears at global scope |
| // } |
| // } |
| // |
| for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
| // Check whether the IdResolver has anything in this scope. |
| for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { |
| if (isAcceptableLookupResult(*I, NameKind, IDNS)) { |
| // We found something. Look for anything else in our scope |
| // with this same name and in an acceptable identifier |
| // namespace, so that we can construct an overload set if we |
| // need to. |
| IdentifierResolver::iterator LastI = I; |
| for (++LastI; LastI != IEnd; ++LastI) { |
| if (!S->isDeclScope(DeclPtrTy::make(*LastI))) |
| break; |
| } |
| LookupResult Result = |
| LookupResult::CreateLookupResult(Context, I, LastI); |
| return std::make_pair(true, Result); |
| } |
| } |
| if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) { |
| LookupResult R; |
| // Perform member lookup into struct. |
| // FIXME: In some cases, we know that every name that could be |
| // found by this qualified name lookup will also be on the |
| // identifier chain. For example, inside a class without any |
| // base classes, we never need to perform qualified lookup |
| // because all of the members are on top of the identifier |
| // chain. |
| if (isa<RecordDecl>(Ctx)) { |
| R = LookupQualifiedName(Ctx, Name, NameKind, RedeclarationOnly); |
| if (R || RedeclarationOnly) |
| return std::make_pair(true, R); |
| } |
| if (Ctx->getParent() != Ctx->getLexicalParent()) { |
| // It is out of line defined C++ method or struct, we continue |
| // doing name lookup in parent context. Once we will find namespace |
| // or translation-unit we save it for possible checking |
| // using-directives later. |
| for (OutOfLineCtx = Ctx; OutOfLineCtx && !OutOfLineCtx->isFileContext(); |
| OutOfLineCtx = OutOfLineCtx->getParent()) { |
| R = LookupQualifiedName(OutOfLineCtx, Name, NameKind, RedeclarationOnly); |
| if (R || RedeclarationOnly) |
| return std::make_pair(true, R); |
| } |
| } |
| } |
| } |
| |
| // Collect UsingDirectiveDecls in all scopes, and recursively all |
| // nominated namespaces by those using-directives. |
| // UsingDirectives are pushed to heap, in common ancestor pointer |
| // value order. |
| // FIXME: Cache this sorted list in Scope structure, and DeclContext, |
| // so we don't build it for each lookup! |
| UsingDirectivesTy UDirs; |
| for (Scope *SC = Initial; SC; SC = SC->getParent()) |
| if (SC->getFlags() & Scope::DeclScope) |
| AddScopeUsingDirectives(SC, UDirs); |
| |
| // Sort heapified UsingDirectiveDecls. |
| std::sort_heap(UDirs.begin(), UDirs.end()); |
| |
| // Lookup namespace scope, and global scope. |
| // Unqualified name lookup in C++ requires looking into scopes |
| // that aren't strictly lexical, and therefore we walk through the |
| // context as well as walking through the scopes. |
| |
| LookupResultsTy LookupResults; |
| assert((!OutOfLineCtx || OutOfLineCtx->isFileContext()) && |
| "We should have been looking only at file context here already."); |
| bool LookedInCtx = false; |
| LookupResult Result; |
| while (OutOfLineCtx && |
| OutOfLineCtx != S->getEntity() && |
| OutOfLineCtx->isNamespace()) { |
| LookedInCtx = true; |
| |
| // Look into context considering using-directives. |
| CppNamespaceLookup(Context, OutOfLineCtx, Name, NameKind, IDNS, |
| LookupResults, &UDirs); |
| |
| if ((Result = MergeLookupResults(Context, LookupResults)) || |
| (RedeclarationOnly && !OutOfLineCtx->isTransparentContext())) |
| return std::make_pair(true, Result); |
| |
| OutOfLineCtx = OutOfLineCtx->getParent(); |
| } |
| |
| for (; S; S = S->getParent()) { |
| DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); |
| assert(Ctx && Ctx->isFileContext() && |
| "We should have been looking only at file context here already."); |
| |
| // Check whether the IdResolver has anything in this scope. |
| for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) { |
| if (isAcceptableLookupResult(*I, NameKind, IDNS)) { |
| // We found something. Look for anything else in our scope |
| // with this same name and in an acceptable identifier |
| // namespace, so that we can construct an overload set if we |
| // need to. |
| IdentifierResolver::iterator LastI = I; |
| for (++LastI; LastI != IEnd; ++LastI) { |
| if (!S->isDeclScope(DeclPtrTy::make(*LastI))) |
| break; |
| } |
| |
| // We store name lookup result, and continue trying to look into |
| // associated context, and maybe namespaces nominated by |
| // using-directives. |
| LookupResults.push_back( |
| LookupResult::CreateLookupResult(Context, I, LastI)); |
| break; |
| } |
| } |
| |
| LookedInCtx = true; |
| // Look into context considering using-directives. |
| CppNamespaceLookup(Context, Ctx, Name, NameKind, IDNS, |
| LookupResults, &UDirs); |
| |
| if ((Result = MergeLookupResults(Context, LookupResults)) || |
| (RedeclarationOnly && !Ctx->isTransparentContext())) |
| return std::make_pair(true, Result); |
| } |
| |
| if (!(LookedInCtx || LookupResults.empty())) { |
| // We didn't Performed lookup in Scope entity, so we return |
| // result form IdentifierResolver. |
| assert((LookupResults.size() == 1) && "Wrong size!"); |
| return std::make_pair(true, LookupResults.front()); |
| } |
| return std::make_pair(false, LookupResult()); |
| } |
| |
| /// @brief Perform unqualified name lookup starting from a given |
| /// scope. |
| /// |
| /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is |
| /// used to find names within the current scope. For example, 'x' in |
| /// @code |
| /// int x; |
| /// int f() { |
| /// return x; // unqualified name look finds 'x' in the global scope |
| /// } |
| /// @endcode |
| /// |
| /// Different lookup criteria can find different names. For example, a |
| /// particular scope can have both a struct and a function of the same |
| /// name, and each can be found by certain lookup criteria. For more |
| /// information about lookup criteria, see the documentation for the |
| /// class LookupCriteria. |
| /// |
| /// @param S The scope from which unqualified name lookup will |
| /// begin. If the lookup criteria permits, name lookup may also search |
| /// in the parent scopes. |
| /// |
| /// @param Name The name of the entity that we are searching for. |
| /// |
| /// @param Loc If provided, the source location where we're performing |
| /// name lookup. At present, this is only used to produce diagnostics when |
| /// C library functions (like "malloc") are implicitly declared. |
| /// |
| /// @returns The result of name lookup, which includes zero or more |
| /// declarations and possibly additional information used to diagnose |
| /// ambiguities. |
| Sema::LookupResult |
| Sema::LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind, |
| bool RedeclarationOnly, bool AllowBuiltinCreation, |
| SourceLocation Loc) { |
| if (!Name) return LookupResult::CreateLookupResult(Context, 0); |
| |
| if (!getLangOptions().CPlusPlus) { |
| // Unqualified name lookup in C/Objective-C is purely lexical, so |
| // search in the declarations attached to the name. |
| unsigned IDNS = 0; |
| switch (NameKind) { |
| case Sema::LookupOrdinaryName: |
| IDNS = Decl::IDNS_Ordinary; |
| break; |
| |
| case Sema::LookupTagName: |
| IDNS = Decl::IDNS_Tag; |
| break; |
| |
| case Sema::LookupMemberName: |
| IDNS = Decl::IDNS_Member; |
| break; |
| |
| case Sema::LookupOperatorName: |
| case Sema::LookupNestedNameSpecifierName: |
| case Sema::LookupNamespaceName: |
| assert(false && "C does not perform these kinds of name lookup"); |
| break; |
| |
| case Sema::LookupRedeclarationWithLinkage: |
| // Find the nearest non-transparent declaration scope. |
| while (!(S->getFlags() & Scope::DeclScope) || |
| (S->getEntity() && |
| static_cast<DeclContext *>(S->getEntity()) |
| ->isTransparentContext())) |
| S = S->getParent(); |
| IDNS = Decl::IDNS_Ordinary; |
| break; |
| } |
| |
| // Scan up the scope chain looking for a decl that matches this |
| // identifier that is in the appropriate namespace. This search |
| // should not take long, as shadowing of names is uncommon, and |
| // deep shadowing is extremely uncommon. |
| bool LeftStartingScope = false; |
| |
| for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
| IEnd = IdResolver.end(); |
| I != IEnd; ++I) |
| if ((*I)->isInIdentifierNamespace(IDNS)) { |
| if (NameKind == LookupRedeclarationWithLinkage) { |
| // Determine whether this (or a previous) declaration is |
| // out-of-scope. |
| if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I))) |
| LeftStartingScope = true; |
| |
| // If we found something outside of our starting scope that |
| // does not have linkage, skip it. |
| if (LeftStartingScope && !((*I)->hasLinkage())) |
| continue; |
| } |
| |
| if ((*I)->getAttr<OverloadableAttr>()) { |
| // If this declaration has the "overloadable" attribute, we |
| // might have a set of overloaded functions. |
| |
| // Figure out what scope the identifier is in. |
| while (!(S->getFlags() & Scope::DeclScope) || |
| !S->isDeclScope(DeclPtrTy::make(*I))) |
| S = S->getParent(); |
| |
| // Find the last declaration in this scope (with the same |
| // name, naturally). |
| IdentifierResolver::iterator LastI = I; |
| for (++LastI; LastI != IEnd; ++LastI) { |
| if (!S->isDeclScope(DeclPtrTy::make(*LastI))) |
| break; |
| } |
| |
| return LookupResult::CreateLookupResult(Context, I, LastI); |
| } |
| |
| // We have a single lookup result. |
| return LookupResult::CreateLookupResult(Context, *I); |
| } |
| } else { |
| // Perform C++ unqualified name lookup. |
| std::pair<bool, LookupResult> MaybeResult = |
| CppLookupName(S, Name, NameKind, RedeclarationOnly); |
| if (MaybeResult.first) |
| return MaybeResult.second; |
| } |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NameKind == LookupOrdinaryName || |
| NameKind == LookupRedeclarationWithLinkage) { |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| if (II && AllowBuiltinCreation) { |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) { |
| // In C++, we don't have any predefined library functions like |
| // 'malloc'. Instead, we'll just error. |
| if (getLangOptions().CPlusPlus && |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
| return LookupResult::CreateLookupResult(Context, 0); |
| |
| return LookupResult::CreateLookupResult(Context, |
| LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, |
| S, RedeclarationOnly, Loc)); |
| } |
| } |
| if (getLangOptions().ObjC1 && II) { |
| // @interface and @compatibility_alias introduce typedef-like names. |
| // Unlike typedef's, they can only be introduced at file-scope (and are |
| // therefore not scoped decls). They can, however, be shadowed by |
| // other names in IDNS_Ordinary. |
| ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II); |
| if (IDI != ObjCInterfaceDecls.end()) |
| return LookupResult::CreateLookupResult(Context, IDI->second); |
| ObjCAliasTy::iterator I = ObjCAliasDecls.find(II); |
| if (I != ObjCAliasDecls.end()) |
| return LookupResult::CreateLookupResult(Context, |
| I->second->getClassInterface()); |
| } |
| } |
| return LookupResult::CreateLookupResult(Context, 0); |
| } |
| |
| /// @brief Perform qualified name lookup into a given context. |
| /// |
| /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find |
| /// names when the context of those names is explicit specified, e.g., |
| /// "std::vector" or "x->member". |
| /// |
| /// Different lookup criteria can find different names. For example, a |
| /// particular scope can have both a struct and a function of the same |
| /// name, and each can be found by certain lookup criteria. For more |
| /// information about lookup criteria, see the documentation for the |
| /// class LookupCriteria. |
| /// |
| /// @param LookupCtx The context in which qualified name lookup will |
| /// search. If the lookup criteria permits, name lookup may also search |
| /// in the parent contexts or (for C++ classes) base classes. |
| /// |
| /// @param Name The name of the entity that we are searching for. |
| /// |
| /// @param Criteria The criteria that this routine will use to |
| /// determine which names are visible and which names will be |
| /// found. Note that name lookup will find a name that is visible by |
| /// the given criteria, but the entity itself may not be semantically |
| /// correct or even the kind of entity expected based on the |
| /// lookup. For example, searching for a nested-name-specifier name |
| /// might result in an EnumDecl, which is visible but is not permitted |
| /// as a nested-name-specifier in C++03. |
| /// |
| /// @returns The result of name lookup, which includes zero or more |
| /// declarations and possibly additional information used to diagnose |
| /// ambiguities. |
| Sema::LookupResult |
| Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name, |
| LookupNameKind NameKind, bool RedeclarationOnly) { |
| assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); |
| |
| if (!Name) return LookupResult::CreateLookupResult(Context, 0); |
| |
| // If we're performing qualified name lookup (e.g., lookup into a |
| // struct), find fields as part of ordinary name lookup. |
| unsigned IDNS |
| = getIdentifierNamespacesFromLookupNameKind(NameKind, |
| getLangOptions().CPlusPlus); |
| if (NameKind == LookupOrdinaryName) |
| IDNS |= Decl::IDNS_Member; |
| |
| // Perform qualified name lookup into the LookupCtx. |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I) |
| if (isAcceptableLookupResult(*I, NameKind, IDNS)) |
| return LookupResult::CreateLookupResult(Context, I, E); |
| |
| // If this isn't a C++ class or we aren't allowed to look into base |
| // classes, we're done. |
| if (RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx)) |
| return LookupResult::CreateLookupResult(Context, 0); |
| |
| // Perform lookup into our base classes. |
| BasePaths Paths; |
| Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx))); |
| |
| // Look for this member in our base classes |
| if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx), |
| MemberLookupCriteria(Name, NameKind, IDNS), Paths)) |
| return LookupResult::CreateLookupResult(Context, 0); |
| |
| // C++ [class.member.lookup]p2: |
| // [...] If the resulting set of declarations are not all from |
| // sub-objects of the same type, or the set has a nonstatic member |
| // and includes members from distinct sub-objects, there is an |
| // ambiguity and the program is ill-formed. Otherwise that set is |
| // the result of the lookup. |
| // FIXME: support using declarations! |
| QualType SubobjectType; |
| int SubobjectNumber = 0; |
| for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
| Path != PathEnd; ++Path) { |
| const BasePathElement &PathElement = Path->back(); |
| |
| // Determine whether we're looking at a distinct sub-object or not. |
| if (SubobjectType.isNull()) { |
| // This is the first subobject we've looked at. Record it's type. |
| SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); |
| SubobjectNumber = PathElement.SubobjectNumber; |
| } else if (SubobjectType |
| != Context.getCanonicalType(PathElement.Base->getType())) { |
| // We found members of the given name in two subobjects of |
| // different types. This lookup is ambiguous. |
| BasePaths *PathsOnHeap = new BasePaths; |
| PathsOnHeap->swap(Paths); |
| return LookupResult::CreateLookupResult(Context, PathsOnHeap, true); |
| } else if (SubobjectNumber != PathElement.SubobjectNumber) { |
| // We have a different subobject of the same type. |
| |
| // C++ [class.member.lookup]p5: |
| // A static member, a nested type or an enumerator defined in |
| // a base class T can unambiguously be found even if an object |
| // has more than one base class subobject of type T. |
| Decl *FirstDecl = *Path->Decls.first; |
| if (isa<VarDecl>(FirstDecl) || |
| isa<TypeDecl>(FirstDecl) || |
| isa<EnumConstantDecl>(FirstDecl)) |
| continue; |
| |
| if (isa<CXXMethodDecl>(FirstDecl)) { |
| // Determine whether all of the methods are static. |
| bool AllMethodsAreStatic = true; |
| for (DeclContext::lookup_iterator Func = Path->Decls.first; |
| Func != Path->Decls.second; ++Func) { |
| if (!isa<CXXMethodDecl>(*Func)) { |
| assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl"); |
| break; |
| } |
| |
| if (!cast<CXXMethodDecl>(*Func)->isStatic()) { |
| AllMethodsAreStatic = false; |
| break; |
| } |
| } |
| |
| if (AllMethodsAreStatic) |
| continue; |
| } |
| |
| // We have found a nonstatic member name in multiple, distinct |
| // subobjects. Name lookup is ambiguous. |
| BasePaths *PathsOnHeap = new BasePaths; |
| PathsOnHeap->swap(Paths); |
| return LookupResult::CreateLookupResult(Context, PathsOnHeap, false); |
| } |
| } |
| |
| // Lookup in a base class succeeded; return these results. |
| |
| // If we found a function declaration, return an overload set. |
| if (isa<FunctionDecl>(*Paths.front().Decls.first)) |
| return LookupResult::CreateLookupResult(Context, |
| Paths.front().Decls.first, Paths.front().Decls.second); |
| |
| // We found a non-function declaration; return a single declaration. |
| return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first); |
| } |
| |
| /// @brief Performs name lookup for a name that was parsed in the |
| /// source code, and may contain a C++ scope specifier. |
| /// |
| /// This routine is a convenience routine meant to be called from |
| /// contexts that receive a name and an optional C++ scope specifier |
| /// (e.g., "N::M::x"). It will then perform either qualified or |
| /// unqualified name lookup (with LookupQualifiedName or LookupName, |
| /// respectively) on the given name and return those results. |
| /// |
| /// @param S The scope from which unqualified name lookup will |
| /// begin. |
| /// |
| /// @param SS An optional C++ scope-specified, e.g., "::N::M". |
| /// |
| /// @param Name The name of the entity that name lookup will |
| /// search for. |
| /// |
| /// @param Loc If provided, the source location where we're performing |
| /// name lookup. At present, this is only used to produce diagnostics when |
| /// C library functions (like "malloc") are implicitly declared. |
| /// |
| /// @returns The result of qualified or unqualified name lookup. |
| Sema::LookupResult |
| Sema::LookupParsedName(Scope *S, const CXXScopeSpec *SS, |
| DeclarationName Name, LookupNameKind NameKind, |
| bool RedeclarationOnly, bool AllowBuiltinCreation, |
| SourceLocation Loc) { |
| if (SS) { |
| if (SS->isInvalid() || RequireCompleteDeclContext(*SS)) |
| return LookupResult::CreateLookupResult(Context, 0); |
| |
| if (SS->isSet()) { |
| return LookupQualifiedName(computeDeclContext(*SS), |
| Name, NameKind, RedeclarationOnly); |
| } |
| } |
| |
| return LookupName(S, Name, NameKind, RedeclarationOnly, |
| AllowBuiltinCreation, Loc); |
| } |
| |
| |
| /// @brief Produce a diagnostic describing the ambiguity that resulted |
| /// from name lookup. |
| /// |
| /// @param Result The ambiguous name lookup result. |
| /// |
| /// @param Name The name of the entity that name lookup was |
| /// searching for. |
| /// |
| /// @param NameLoc The location of the name within the source code. |
| /// |
| /// @param LookupRange A source range that provides more |
| /// source-location information concerning the lookup itself. For |
| /// example, this range might highlight a nested-name-specifier that |
| /// precedes the name. |
| /// |
| /// @returns true |
| bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name, |
| SourceLocation NameLoc, |
| SourceRange LookupRange) { |
| assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); |
| |
| if (BasePaths *Paths = Result.getBasePaths()) { |
| if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) { |
| QualType SubobjectType = Paths->front().back().Base->getType(); |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) |
| << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) |
| << LookupRange; |
| |
| DeclContext::lookup_iterator Found = Paths->front().Decls.first; |
| while (isa<CXXMethodDecl>(*Found) && |
| cast<CXXMethodDecl>(*Found)->isStatic()) |
| ++Found; |
| |
| Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); |
| |
| Result.Destroy(); |
| return true; |
| } |
| |
| assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes && |
| "Unhandled form of name lookup ambiguity"); |
| |
| Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) |
| << Name << LookupRange; |
| |
| std::set<Decl *> DeclsPrinted; |
| for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end(); |
| Path != PathEnd; ++Path) { |
| Decl *D = *Path->Decls.first; |
| if (DeclsPrinted.insert(D).second) |
| Diag(D->getLocation(), diag::note_ambiguous_member_found); |
| } |
| |
| Result.Destroy(); |
| return true; |
| } else if (Result.getKind() == LookupResult::AmbiguousReference) { |
| Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; |
| |
| NamedDecl **DI = reinterpret_cast<NamedDecl **>(Result.First), |
| **DEnd = reinterpret_cast<NamedDecl **>(Result.Last); |
| |
| for (; DI != DEnd; ++DI) |
| Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI; |
| |
| Result.Destroy(); |
| return true; |
| } |
| |
| assert(false && "Unhandled form of name lookup ambiguity"); |
| |
| // We can't reach here. |
| return true; |
| } |
| |
| // \brief Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of class type |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(CXXRecordDecl *Class, |
| ASTContext &Context, |
| Sema::AssociatedNamespaceSet &AssociatedNamespaces, |
| Sema::AssociatedClassSet &AssociatedClasses) { |
| // C++ [basic.lookup.koenig]p2: |
| // [...] |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base |
| // classes. Its associated namespaces are the namespaces in |
| // which its associated classes are defined. |
| |
| // Add the class of which it is a member, if any. |
| DeclContext *Ctx = Class->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| AssociatedClasses.insert(EnclosingClass); |
| |
| // Add the associated namespace for this class. |
| while (Ctx->isRecord()) |
| Ctx = Ctx->getParent(); |
| if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx)) |
| AssociatedNamespaces.insert(EnclosingNamespace); |
| |
| // Add the class itself. If we've already seen this class, we don't |
| // need to visit base classes. |
| if (!AssociatedClasses.insert(Class)) |
| return; |
| |
| // FIXME: Handle class template specializations |
| |
| // Add direct and indirect base classes along with their associated |
| // namespaces. |
| llvm::SmallVector<CXXRecordDecl *, 32> Bases; |
| Bases.push_back(Class); |
| while (!Bases.empty()) { |
| // Pop this class off the stack. |
| Class = Bases.back(); |
| Bases.pop_back(); |
| |
| // Visit the base classes. |
| for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(), |
| BaseEnd = Class->bases_end(); |
| Base != BaseEnd; ++Base) { |
| const RecordType *BaseType = Base->getType()->getAsRecordType(); |
| CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
| if (AssociatedClasses.insert(BaseDecl)) { |
| // Find the associated namespace for this base class. |
| DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
| while (BaseCtx->isRecord()) |
| BaseCtx = BaseCtx->getParent(); |
| if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(BaseCtx)) |
| AssociatedNamespaces.insert(EnclosingNamespace); |
| |
| // Make sure we visit the bases of this base class. |
| if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
| Bases.push_back(BaseDecl); |
| } |
| } |
| } |
| } |
| |
| // \brief Add the associated classes and namespaces for |
| // argument-dependent lookup with an argument of type T |
| // (C++ [basic.lookup.koenig]p2). |
| static void |
| addAssociatedClassesAndNamespaces(QualType T, |
| ASTContext &Context, |
| Sema::AssociatedNamespaceSet &AssociatedNamespaces, |
| Sema::AssociatedClassSet &AssociatedClasses) { |
| // C++ [basic.lookup.koenig]p2: |
| // |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). Typedef names and using-declarations used to specify |
| // the types do not contribute to this set. The sets of namespaces |
| // and classes are determined in the following way: |
| T = Context.getCanonicalType(T).getUnqualifiedType(); |
| |
| // -- If T is a pointer to U or an array of U, its associated |
| // namespaces and classes are those associated with U. |
| // |
| // We handle this by unwrapping pointer and array types immediately, |
| // to avoid unnecessary recursion. |
| while (true) { |
| if (const PointerType *Ptr = T->getAsPointerType()) |
| T = Ptr->getPointeeType(); |
| else if (const ArrayType *Ptr = Context.getAsArrayType(T)) |
| T = Ptr->getElementType(); |
| else |
| break; |
| } |
| |
| // -- If T is a fundamental type, its associated sets of |
| // namespaces and classes are both empty. |
| if (T->getAsBuiltinType()) |
| return; |
| |
| // -- If T is a class type (including unions), its associated |
| // classes are: the class itself; the class of which it is a |
| // member, if any; and its direct and indirect base |
| // classes. Its associated namespaces are the namespaces in |
| // which its associated classes are defined. |
| if (const RecordType *ClassType = T->getAsRecordType()) |
| if (CXXRecordDecl *ClassDecl |
| = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) { |
| addAssociatedClassesAndNamespaces(ClassDecl, Context, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| return; |
| } |
| |
| // -- If T is an enumeration type, its associated namespace is |
| // the namespace in which it is defined. If it is class |
| // member, its associated class is the member’s class; else |
| // it has no associated class. |
| if (const EnumType *EnumT = T->getAsEnumType()) { |
| EnumDecl *Enum = EnumT->getDecl(); |
| |
| DeclContext *Ctx = Enum->getDeclContext(); |
| if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
| AssociatedClasses.insert(EnclosingClass); |
| |
| // Add the associated namespace for this class. |
| while (Ctx->isRecord()) |
| Ctx = Ctx->getParent(); |
| if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx)) |
| AssociatedNamespaces.insert(EnclosingNamespace); |
| |
| return; |
| } |
| |
| // -- If T is a function type, its associated namespaces and |
| // classes are those associated with the function parameter |
| // types and those associated with the return type. |
| if (const FunctionType *FunctionType = T->getAsFunctionType()) { |
| // Return type |
| addAssociatedClassesAndNamespaces(FunctionType->getResultType(), |
| Context, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FunctionType); |
| if (!Proto) |
| return; |
| |
| // Argument types |
| for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), |
| ArgEnd = Proto->arg_type_end(); |
| Arg != ArgEnd; ++Arg) |
| addAssociatedClassesAndNamespaces(*Arg, Context, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| return; |
| } |
| |
| // -- If T is a pointer to a member function of a class X, its |
| // associated namespaces and classes are those associated |
| // with the function parameter types and return type, |
| // together with those associated with X. |
| // |
| // -- If T is a pointer to a data member of class X, its |
| // associated namespaces and classes are those associated |
| // with the member type together with those associated with |
| // X. |
| if (const MemberPointerType *MemberPtr = T->getAsMemberPointerType()) { |
| // Handle the type that the pointer to member points to. |
| addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(), |
| Context, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| // Handle the class type into which this points. |
| if (const RecordType *Class = MemberPtr->getClass()->getAsRecordType()) |
| addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()), |
| Context, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| return; |
| } |
| |
| // FIXME: What about block pointers? |
| // FIXME: What about Objective-C message sends? |
| } |
| |
| /// \brief Find the associated classes and namespaces for |
| /// argument-dependent lookup for a call with the given set of |
| /// arguments. |
| /// |
| /// This routine computes the sets of associated classes and associated |
| /// namespaces searched by argument-dependent lookup |
| /// (C++ [basic.lookup.argdep]) for a given set of arguments. |
| void |
| Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs, |
| AssociatedNamespaceSet &AssociatedNamespaces, |
| AssociatedClassSet &AssociatedClasses) { |
| AssociatedNamespaces.clear(); |
| AssociatedClasses.clear(); |
| |
| // C++ [basic.lookup.koenig]p2: |
| // For each argument type T in the function call, there is a set |
| // of zero or more associated namespaces and a set of zero or more |
| // associated classes to be considered. The sets of namespaces and |
| // classes is determined entirely by the types of the function |
| // arguments (and the namespace of any template template |
| // argument). |
| for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) { |
| Expr *Arg = Args[ArgIdx]; |
| |
| if (Arg->getType() != Context.OverloadTy) { |
| addAssociatedClassesAndNamespaces(Arg->getType(), Context, |
| AssociatedNamespaces, AssociatedClasses); |
| continue; |
| } |
| |
| // [...] In addition, if the argument is the name or address of a |
| // set of overloaded functions and/or function templates, its |
| // associated classes and namespaces are the union of those |
| // associated with each of the members of the set: the namespace |
| // in which the function or function template is defined and the |
| // classes and namespaces associated with its (non-dependent) |
| // parameter types and return type. |
| DeclRefExpr *DRE = 0; |
| if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) { |
| if (unaryOp->getOpcode() == UnaryOperator::AddrOf) |
| DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr()); |
| } else |
| DRE = dyn_cast<DeclRefExpr>(Arg); |
| if (!DRE) |
| continue; |
| |
| OverloadedFunctionDecl *Ovl |
| = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl()); |
| if (!Ovl) |
| continue; |
| |
| for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), |
| FuncEnd = Ovl->function_end(); |
| Func != FuncEnd; ++Func) { |
| FunctionDecl *FDecl = cast<FunctionDecl>(*Func); |
| |
| // Add the namespace in which this function was defined. Note |
| // that, if this is a member function, we do *not* consider the |
| // enclosing namespace of its class. |
| DeclContext *Ctx = FDecl->getDeclContext(); |
| if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx)) |
| AssociatedNamespaces.insert(EnclosingNamespace); |
| |
| // Add the classes and namespaces associated with the parameter |
| // types and return type of this function. |
| addAssociatedClassesAndNamespaces(FDecl->getType(), Context, |
| AssociatedNamespaces, AssociatedClasses); |
| } |
| } |
| } |
| |
| /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is |
| /// an acceptable non-member overloaded operator for a call whose |
| /// arguments have types T1 (and, if non-empty, T2). This routine |
| /// implements the check in C++ [over.match.oper]p3b2 concerning |
| /// enumeration types. |
| static bool |
| IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn, |
| QualType T1, QualType T2, |
| ASTContext &Context) { |
| if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) |
| return true; |
| |
| if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) |
| return true; |
| |
| const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType(); |
| if (Proto->getNumArgs() < 1) |
| return false; |
| |
| if (T1->isEnumeralType()) { |
| QualType ArgType = Proto->getArgType(0).getNonReferenceType(); |
| if (Context.getCanonicalType(T1).getUnqualifiedType() |
| == Context.getCanonicalType(ArgType).getUnqualifiedType()) |
| return true; |
| } |
| |
| if (Proto->getNumArgs() < 2) |
| return false; |
| |
| if (!T2.isNull() && T2->isEnumeralType()) { |
| QualType ArgType = Proto->getArgType(1).getNonReferenceType(); |
| if (Context.getCanonicalType(T2).getUnqualifiedType() |
| == Context.getCanonicalType(ArgType).getUnqualifiedType()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
| QualType T1, QualType T2, |
| FunctionSet &Functions) { |
| // C++ [over.match.oper]p3: |
| // -- The set of non-member candidates is the result of the |
| // unqualified lookup of operator@ in the context of the |
| // expression according to the usual rules for name lookup in |
| // unqualified function calls (3.4.2) except that all member |
| // functions are ignored. However, if no operand has a class |
| // type, only those non-member functions in the lookup set |
| // that have a first parameter of type T1 or “reference to |
| // (possibly cv-qualified) T1”, when T1 is an enumeration |
| // type, or (if there is a right operand) a second parameter |
| // of type T2 or “reference to (possibly cv-qualified) T2”, |
| // when T2 is an enumeration type, are candidate functions. |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| LookupResult Operators = LookupName(S, OpName, LookupOperatorName); |
| |
| assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); |
| |
| if (!Operators) |
| return; |
| |
| for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end(); |
| Op != OpEnd; ++Op) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) |
| if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context)) |
| Functions.insert(FD); // FIXME: canonical FD |
| } |
| } |
| |
| void Sema::ArgumentDependentLookup(DeclarationName Name, |
| Expr **Args, unsigned NumArgs, |
| FunctionSet &Functions) { |
| // Find all of the associated namespaces and classes based on the |
| // arguments we have. |
| AssociatedNamespaceSet AssociatedNamespaces; |
| AssociatedClassSet AssociatedClasses; |
| FindAssociatedClassesAndNamespaces(Args, NumArgs, |
| AssociatedNamespaces, AssociatedClasses); |
| |
| // C++ [basic.lookup.argdep]p3: |
| // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| // and let Y be the lookup set produced by argument dependent |
| // lookup (defined as follows). If X contains [...] then Y is |
| // empty. Otherwise Y is the set of declarations found in the |
| // namespaces associated with the argument types as described |
| // below. The set of declarations found by the lookup of the name |
| // is the union of X and Y. |
| // |
| // Here, we compute Y and add its members to the overloaded |
| // candidate set. |
| for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(), |
| NSEnd = AssociatedNamespaces.end(); |
| NS != NSEnd; ++NS) { |
| // When considering an associated namespace, the lookup is the |
| // same as the lookup performed when the associated namespace is |
| // used as a qualifier (3.4.3.2) except that: |
| // |
| // -- Any using-directives in the associated namespace are |
| // ignored. |
| // |
| // -- FIXME: Any namespace-scope friend functions declared in |
| // associated classes are visible within their respective |
| // namespaces even if they are not visible during an ordinary |
| // lookup (11.4). |
| DeclContext::lookup_iterator I, E; |
| for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) { |
| FunctionDecl *Func = dyn_cast<FunctionDecl>(*I); |
| if (!Func) |
| break; |
| |
| Functions.insert(Func); |
| } |
| } |
| } |
| |