| //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements C++ template argument deduction. |
| // |
| //===----------------------------------------------------------------------===/ |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "llvm/Support/Compiler.h" |
| #include <algorithm> |
| |
| namespace clang { |
| /// \brief Various flags that control template argument deduction. |
| /// |
| /// These flags can be bitwise-OR'd together. |
| enum TemplateDeductionFlags { |
| /// \brief No template argument deduction flags, which indicates the |
| /// strictest results for template argument deduction (as used for, e.g., |
| /// matching class template partial specializations). |
| TDF_None = 0, |
| /// \brief Within template argument deduction from a function call, we are |
| /// matching with a parameter type for which the original parameter was |
| /// a reference. |
| TDF_ParamWithReferenceType = 0x1, |
| /// \brief Within template argument deduction from a function call, we |
| /// are matching in a case where we ignore cv-qualifiers. |
| TDF_IgnoreQualifiers = 0x02, |
| /// \brief Within template argument deduction from a function call, |
| /// we are matching in a case where we can perform template argument |
| /// deduction from a template-id of a derived class of the argument type. |
| TDF_DerivedClass = 0x04, |
| /// \brief Allow non-dependent types to differ, e.g., when performing |
| /// template argument deduction from a function call where conversions |
| /// may apply. |
| TDF_SkipNonDependent = 0x08 |
| }; |
| } |
| |
| using namespace clang; |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(ASTContext &Context, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument &Param, |
| const TemplateArgument &Arg, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced); |
| |
| /// \brief If the given expression is of a form that permits the deduction |
| /// of a non-type template parameter, return the declaration of that |
| /// non-type template parameter. |
| static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) { |
| if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) |
| E = IC->getSubExpr(); |
| |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); |
| |
| return 0; |
| } |
| |
| /// \brief Deduce the value of the given non-type template parameter |
| /// from the given constant. |
| static Sema::TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(ASTContext &Context, |
| NonTypeTemplateParmDecl *NTTP, |
| llvm::APSInt Value, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument with depth > 0"); |
| |
| if (Deduced[NTTP->getIndex()].isNull()) { |
| QualType T = NTTP->getType(); |
| |
| // FIXME: Make sure we didn't overflow our data type! |
| unsigned AllowedBits = Context.getTypeSize(T); |
| if (Value.getBitWidth() != AllowedBits) |
| Value.extOrTrunc(AllowedBits); |
| Value.setIsSigned(T->isSignedIntegerType()); |
| |
| Deduced[NTTP->getIndex()] = TemplateArgument(Value, T); |
| return Sema::TDK_Success; |
| } |
| |
| assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral); |
| |
| // If the template argument was previously deduced to a negative value, |
| // then our deduction fails. |
| const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral(); |
| if (PrevValuePtr->isNegative()) { |
| Info.Param = NTTP; |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = TemplateArgument(Value, NTTP->getType()); |
| return Sema::TDK_Inconsistent; |
| } |
| |
| llvm::APSInt PrevValue = *PrevValuePtr; |
| if (Value.getBitWidth() > PrevValue.getBitWidth()) |
| PrevValue.zext(Value.getBitWidth()); |
| else if (Value.getBitWidth() < PrevValue.getBitWidth()) |
| Value.zext(PrevValue.getBitWidth()); |
| |
| if (Value != PrevValue) { |
| Info.Param = NTTP; |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = TemplateArgument(Value, NTTP->getType()); |
| return Sema::TDK_Inconsistent; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Deduce the value of the given non-type template parameter |
| /// from the given type- or value-dependent expression. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| |
| static Sema::TemplateDeductionResult |
| DeduceNonTypeTemplateArgument(ASTContext &Context, |
| NonTypeTemplateParmDecl *NTTP, |
| Expr *Value, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument with depth > 0"); |
| assert((Value->isTypeDependent() || Value->isValueDependent()) && |
| "Expression template argument must be type- or value-dependent."); |
| |
| if (Deduced[NTTP->getIndex()].isNull()) { |
| // FIXME: Clone the Value? |
| Deduced[NTTP->getIndex()] = TemplateArgument(Value); |
| return Sema::TDK_Success; |
| } |
| |
| if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) { |
| // Okay, we deduced a constant in one case and a dependent expression |
| // in another case. FIXME: Later, we will check that instantiating the |
| // dependent expression gives us the constant value. |
| return Sema::TDK_Success; |
| } |
| |
| if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) { |
| // Compare the expressions for equality |
| llvm::FoldingSetNodeID ID1, ID2; |
| Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, Context, true); |
| Value->Profile(ID2, Context, true); |
| if (ID1 == ID2) |
| return Sema::TDK_Success; |
| |
| // FIXME: Fill in argument mismatch information |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(ASTContext &Context, |
| TemplateName Param, |
| TemplateName Arg, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced) { |
| // FIXME: Implement template argument deduction for template |
| // template parameters. |
| |
| // FIXME: this routine does not have enough information to produce |
| // good diagnostics. |
| |
| TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); |
| TemplateDecl *ArgDecl = Arg.getAsTemplateDecl(); |
| |
| if (!ParamDecl || !ArgDecl) { |
| // FIXME: fill in Info.Param/Info.FirstArg |
| return Sema::TDK_Inconsistent; |
| } |
| |
| ParamDecl = cast<TemplateDecl>(ParamDecl->getCanonicalDecl()); |
| ArgDecl = cast<TemplateDecl>(ArgDecl->getCanonicalDecl()); |
| if (ParamDecl != ArgDecl) { |
| // FIXME: fill in Info.Param/Info.FirstArg |
| return Sema::TDK_Inconsistent; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Deduce the template arguments by comparing the template parameter |
| /// type (which is a template-id) with the template argument type. |
| /// |
| /// \param Context the AST context in which this deduction occurs. |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param Param the parameter type |
| /// |
| /// \param Arg the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(ASTContext &Context, |
| TemplateParameterList *TemplateParams, |
| const TemplateSpecializationType *Param, |
| QualType Arg, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced) { |
| assert(Arg.isCanonical() && "Argument type must be canonical"); |
| |
| // Check whether the template argument is a dependent template-id. |
| // FIXME: This is untested code; it can be tested when we implement |
| // partial ordering of class template partial specializations. |
| if (const TemplateSpecializationType *SpecArg |
| = dyn_cast<TemplateSpecializationType>(Arg)) { |
| // Perform template argument deduction for the template name. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, |
| Param->getTemplateName(), |
| SpecArg->getTemplateName(), |
| Info, Deduced)) |
| return Result; |
| |
| unsigned NumArgs = Param->getNumArgs(); |
| |
| // FIXME: When one of the template-names refers to a |
| // declaration with default template arguments, do we need to |
| // fill in those default template arguments here? Most likely, |
| // the answer is "yes", but I don't see any references. This |
| // issue may be resolved elsewhere, because we may want to |
| // instantiate default template arguments when we actually write |
| // the template-id. |
| if (SpecArg->getNumArgs() != NumArgs) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Perform template argument deduction on each template |
| // argument. |
| for (unsigned I = 0; I != NumArgs; ++I) |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| Param->getArg(I), |
| SpecArg->getArg(I), |
| Info, Deduced)) |
| return Result; |
| |
| return Sema::TDK_Success; |
| } |
| |
| // If the argument type is a class template specialization, we |
| // perform template argument deduction using its template |
| // arguments. |
| const RecordType *RecordArg = dyn_cast<RecordType>(Arg); |
| if (!RecordArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| ClassTemplateSpecializationDecl *SpecArg |
| = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); |
| if (!SpecArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Perform template argument deduction for the template name. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, |
| Param->getTemplateName(), |
| TemplateName(SpecArg->getSpecializedTemplate()), |
| Info, Deduced)) |
| return Result; |
| |
| // FIXME: Can the # of arguments in the parameter and the argument |
| // differ due to default arguments? |
| unsigned NumArgs = Param->getNumArgs(); |
| const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs(); |
| if (NumArgs != ArgArgs.size()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| for (unsigned I = 0; I != NumArgs; ++I) |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| Param->getArg(I), |
| ArgArgs.get(I), |
| Info, Deduced)) |
| return Result; |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Returns a completely-unqualified array type, capturing the |
| /// qualifiers in Quals. |
| /// |
| /// \param Context the AST context in which the array type was built. |
| /// |
| /// \param T a canonical type that may be an array type. |
| /// |
| /// \param Quals will receive the full set of qualifiers that were |
| /// applied to the element type of the array. |
| /// |
| /// \returns if \p T is an array type, the completely unqualified array type |
| /// that corresponds to T. Otherwise, returns T. |
| static QualType getUnqualifiedArrayType(ASTContext &Context, QualType T, |
| Qualifiers &Quals) { |
| assert(T.isCanonical() && "Only operates on canonical types"); |
| if (!isa<ArrayType>(T)) { |
| Quals = T.getQualifiers(); |
| return T.getUnqualifiedType(); |
| } |
| |
| assert(!T.hasQualifiers() && "canonical array type has qualifiers!"); |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) { |
| QualType Elt = getUnqualifiedArrayType(Context, CAT->getElementType(), |
| Quals); |
| if (Elt == CAT->getElementType()) |
| return T; |
| |
| return Context.getConstantArrayType(Elt, CAT->getSize(), |
| CAT->getSizeModifier(), 0); |
| } |
| |
| if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) { |
| QualType Elt = getUnqualifiedArrayType(Context, IAT->getElementType(), |
| Quals); |
| if (Elt == IAT->getElementType()) |
| return T; |
| |
| return Context.getIncompleteArrayType(Elt, IAT->getSizeModifier(), 0); |
| } |
| |
| const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T); |
| QualType Elt = getUnqualifiedArrayType(Context, DSAT->getElementType(), |
| Quals); |
| if (Elt == DSAT->getElementType()) |
| return T; |
| |
| return Context.getDependentSizedArrayType(Elt, DSAT->getSizeExpr()->Retain(), |
| DSAT->getSizeModifier(), 0, |
| SourceRange()); |
| } |
| |
| /// \brief Deduce the template arguments by comparing the parameter type and |
| /// the argument type (C++ [temp.deduct.type]). |
| /// |
| /// \param Context the AST context in which this deduction occurs. |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param ParamIn the parameter type |
| /// |
| /// \param ArgIn the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(ASTContext &Context, |
| TemplateParameterList *TemplateParams, |
| QualType ParamIn, QualType ArgIn, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced, |
| unsigned TDF) { |
| // We only want to look at the canonical types, since typedefs and |
| // sugar are not part of template argument deduction. |
| QualType Param = Context.getCanonicalType(ParamIn); |
| QualType Arg = Context.getCanonicalType(ArgIn); |
| |
| // C++0x [temp.deduct.call]p4 bullet 1: |
| // - If the original P is a reference type, the deduced A (i.e., the type |
| // referred to by the reference) can be more cv-qualified than the |
| // transformed A. |
| if (TDF & TDF_ParamWithReferenceType) { |
| Qualifiers Quals = Param.getQualifiers(); |
| Quals.setCVRQualifiers(Quals.getCVRQualifiers() & Arg.getCVRQualifiers()); |
| Param = Context.getQualifiedType(Param.getUnqualifiedType(), Quals); |
| } |
| |
| // If the parameter type is not dependent, there is nothing to deduce. |
| if (!Param->isDependentType()) { |
| if (!(TDF & TDF_SkipNonDependent) && Param != Arg) { |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| // C++ [temp.deduct.type]p9: |
| // A template type argument T, a template template argument TT or a |
| // template non-type argument i can be deduced if P and A have one of |
| // the following forms: |
| // |
| // T |
| // cv-list T |
| if (const TemplateTypeParmType *TemplateTypeParm |
| = Param->getAs<TemplateTypeParmType>()) { |
| unsigned Index = TemplateTypeParm->getIndex(); |
| bool RecanonicalizeArg = false; |
| |
| // If the argument type is an array type, move the qualifiers up to the |
| // top level, so they can be matched with the qualifiers on the parameter. |
| // FIXME: address spaces, ObjC GC qualifiers |
| if (isa<ArrayType>(Arg)) { |
| Qualifiers Quals; |
| Arg = getUnqualifiedArrayType(Context, Arg, Quals); |
| if (Quals) { |
| Arg = Context.getQualifiedType(Arg, Quals); |
| RecanonicalizeArg = true; |
| } |
| } |
| |
| // The argument type can not be less qualified than the parameter |
| // type. |
| if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = Deduced[Index]; |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_InconsistentQuals; |
| } |
| |
| assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0"); |
| |
| QualType DeducedType = Arg; |
| DeducedType.removeCVRQualifiers(Param.getCVRQualifiers()); |
| if (RecanonicalizeArg) |
| DeducedType = Context.getCanonicalType(DeducedType); |
| |
| if (Deduced[Index].isNull()) |
| Deduced[Index] = TemplateArgument(DeducedType); |
| else { |
| // C++ [temp.deduct.type]p2: |
| // [...] If type deduction cannot be done for any P/A pair, or if for |
| // any pair the deduction leads to more than one possible set of |
| // deduced values, or if different pairs yield different deduced |
| // values, or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| if (Deduced[Index].getAsType() != DeducedType) { |
| Info.Param |
| = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = Deduced[Index]; |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_Inconsistent; |
| } |
| } |
| return Sema::TDK_Success; |
| } |
| |
| // Set up the template argument deduction information for a failure. |
| Info.FirstArg = TemplateArgument(ParamIn); |
| Info.SecondArg = TemplateArgument(ArgIn); |
| |
| // Check the cv-qualifiers on the parameter and argument types. |
| if (!(TDF & TDF_IgnoreQualifiers)) { |
| if (TDF & TDF_ParamWithReferenceType) { |
| if (Param.isMoreQualifiedThan(Arg)) |
| return Sema::TDK_NonDeducedMismatch; |
| } else { |
| if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| |
| switch (Param->getTypeClass()) { |
| // No deduction possible for these types |
| case Type::Builtin: |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // T * |
| case Type::Pointer: { |
| const PointerType *PointerArg = Arg->getAs<PointerType>(); |
| if (!PointerArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); |
| return DeduceTemplateArguments(Context, TemplateParams, |
| cast<PointerType>(Param)->getPointeeType(), |
| PointerArg->getPointeeType(), |
| Info, Deduced, SubTDF); |
| } |
| |
| // T & |
| case Type::LValueReference: { |
| const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>(); |
| if (!ReferenceArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArguments(Context, TemplateParams, |
| cast<LValueReferenceType>(Param)->getPointeeType(), |
| ReferenceArg->getPointeeType(), |
| Info, Deduced, 0); |
| } |
| |
| // T && [C++0x] |
| case Type::RValueReference: { |
| const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>(); |
| if (!ReferenceArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArguments(Context, TemplateParams, |
| cast<RValueReferenceType>(Param)->getPointeeType(), |
| ReferenceArg->getPointeeType(), |
| Info, Deduced, 0); |
| } |
| |
| // T [] (implied, but not stated explicitly) |
| case Type::IncompleteArray: { |
| const IncompleteArrayType *IncompleteArrayArg = |
| Context.getAsIncompleteArrayType(Arg); |
| if (!IncompleteArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArguments(Context, TemplateParams, |
| Context.getAsIncompleteArrayType(Param)->getElementType(), |
| IncompleteArrayArg->getElementType(), |
| Info, Deduced, 0); |
| } |
| |
| // T [integer-constant] |
| case Type::ConstantArray: { |
| const ConstantArrayType *ConstantArrayArg = |
| Context.getAsConstantArrayType(Arg); |
| if (!ConstantArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const ConstantArrayType *ConstantArrayParm = |
| Context.getAsConstantArrayType(Param); |
| if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArguments(Context, TemplateParams, |
| ConstantArrayParm->getElementType(), |
| ConstantArrayArg->getElementType(), |
| Info, Deduced, 0); |
| } |
| |
| // type [i] |
| case Type::DependentSizedArray: { |
| const ArrayType *ArrayArg = dyn_cast<ArrayType>(Arg); |
| if (!ArrayArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check the element type of the arrays |
| const DependentSizedArrayType *DependentArrayParm |
| = cast<DependentSizedArrayType>(Param); |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| DependentArrayParm->getElementType(), |
| ArrayArg->getElementType(), |
| Info, Deduced, 0)) |
| return Result; |
| |
| // Determine the array bound is something we can deduce. |
| NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| assert(NTTP->getDepth() == 0 && |
| "Cannot deduce non-type template argument at depth > 0"); |
| if (const ConstantArrayType *ConstantArrayArg |
| = dyn_cast<ConstantArrayType>(ArrayArg)) { |
| llvm::APSInt Size(ConstantArrayArg->getSize()); |
| return DeduceNonTypeTemplateArgument(Context, NTTP, Size, |
| Info, Deduced); |
| } |
| if (const DependentSizedArrayType *DependentArrayArg |
| = dyn_cast<DependentSizedArrayType>(ArrayArg)) |
| return DeduceNonTypeTemplateArgument(Context, NTTP, |
| DependentArrayArg->getSizeExpr(), |
| Info, Deduced); |
| |
| // Incomplete type does not match a dependently-sized array type |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // type(*)(T) |
| // T(*)() |
| // T(*)(T) |
| case Type::FunctionProto: { |
| const FunctionProtoType *FunctionProtoArg = |
| dyn_cast<FunctionProtoType>(Arg); |
| if (!FunctionProtoArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const FunctionProtoType *FunctionProtoParam = |
| cast<FunctionProtoType>(Param); |
| |
| if (FunctionProtoParam->getTypeQuals() != |
| FunctionProtoArg->getTypeQuals()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check return types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| FunctionProtoParam->getResultType(), |
| FunctionProtoArg->getResultType(), |
| Info, Deduced, 0)) |
| return Result; |
| |
| for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) { |
| // Check argument types. |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| FunctionProtoParam->getArgType(I), |
| FunctionProtoArg->getArgType(I), |
| Info, Deduced, 0)) |
| return Result; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| // template-name<T> (where template-name refers to a class template) |
| // template-name<i> |
| // TT<T> (TODO) |
| // TT<i> (TODO) |
| // TT<> (TODO) |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *SpecParam |
| = cast<TemplateSpecializationType>(Param); |
| |
| // Try to deduce template arguments from the template-id. |
| Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, SpecParam, Arg, |
| Info, Deduced); |
| |
| if (Result && (TDF & TDF_DerivedClass)) { |
| // C++ [temp.deduct.call]p3b3: |
| // If P is a class, and P has the form template-id, then A can be a |
| // derived class of the deduced A. Likewise, if P is a pointer to a |
| // class of the form template-id, A can be a pointer to a derived |
| // class pointed to by the deduced A. |
| // |
| // More importantly: |
| // These alternatives are considered only if type deduction would |
| // otherwise fail. |
| if (const RecordType *RecordT = dyn_cast<RecordType>(Arg)) { |
| // Use data recursion to crawl through the list of base classes. |
| // Visited contains the set of nodes we have already visited, while |
| // ToVisit is our stack of records that we still need to visit. |
| llvm::SmallPtrSet<const RecordType *, 8> Visited; |
| llvm::SmallVector<const RecordType *, 8> ToVisit; |
| ToVisit.push_back(RecordT); |
| bool Successful = false; |
| while (!ToVisit.empty()) { |
| // Retrieve the next class in the inheritance hierarchy. |
| const RecordType *NextT = ToVisit.back(); |
| ToVisit.pop_back(); |
| |
| // If we have already seen this type, skip it. |
| if (!Visited.insert(NextT)) |
| continue; |
| |
| // If this is a base class, try to perform template argument |
| // deduction from it. |
| if (NextT != RecordT) { |
| Sema::TemplateDeductionResult BaseResult |
| = DeduceTemplateArguments(Context, TemplateParams, SpecParam, |
| QualType(NextT, 0), Info, Deduced); |
| |
| // If template argument deduction for this base was successful, |
| // note that we had some success. |
| if (BaseResult == Sema::TDK_Success) |
| Successful = true; |
| } |
| |
| // Visit base classes |
| CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); |
| for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(), |
| BaseEnd = Next->bases_end(); |
| Base != BaseEnd; ++Base) { |
| assert(Base->getType()->isRecordType() && |
| "Base class that isn't a record?"); |
| ToVisit.push_back(Base->getType()->getAs<RecordType>()); |
| } |
| } |
| |
| if (Successful) |
| return Sema::TDK_Success; |
| } |
| |
| } |
| |
| return Result; |
| } |
| |
| // T type::* |
| // T T::* |
| // T (type::*)() |
| // type (T::*)() |
| // type (type::*)(T) |
| // type (T::*)(T) |
| // T (type::*)(T) |
| // T (T::*)() |
| // T (T::*)(T) |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); |
| const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); |
| if (!MemPtrArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| MemPtrParam->getPointeeType(), |
| MemPtrArg->getPointeeType(), |
| Info, Deduced, |
| TDF & TDF_IgnoreQualifiers)) |
| return Result; |
| |
| return DeduceTemplateArguments(Context, TemplateParams, |
| QualType(MemPtrParam->getClass(), 0), |
| QualType(MemPtrArg->getClass(), 0), |
| Info, Deduced, 0); |
| } |
| |
| // (clang extension) |
| // |
| // type(^)(T) |
| // T(^)() |
| // T(^)(T) |
| case Type::BlockPointer: { |
| const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); |
| const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); |
| |
| if (!BlockPtrArg) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArguments(Context, TemplateParams, |
| BlockPtrParam->getPointeeType(), |
| BlockPtrArg->getPointeeType(), Info, |
| Deduced, 0); |
| } |
| |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::Typename: |
| // No template argument deduction for these types |
| return Sema::TDK_Success; |
| |
| default: |
| break; |
| } |
| |
| // FIXME: Many more cases to go (to go). |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(ASTContext &Context, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgument &Param, |
| const TemplateArgument &Arg, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced) { |
| switch (Param.getKind()) { |
| case TemplateArgument::Null: |
| assert(false && "Null template argument in parameter list"); |
| break; |
| |
| case TemplateArgument::Type: |
| assert(Arg.getKind() == TemplateArgument::Type && "Type/value mismatch"); |
| return DeduceTemplateArguments(Context, TemplateParams, Param.getAsType(), |
| Arg.getAsType(), Info, Deduced, 0); |
| |
| case TemplateArgument::Declaration: |
| // FIXME: Implement this check |
| assert(false && "Unimplemented template argument deduction case"); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Integral: |
| if (Arg.getKind() == TemplateArgument::Integral) { |
| // FIXME: Zero extension + sign checking here? |
| if (*Param.getAsIntegral() == *Arg.getAsIntegral()) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| if (Arg.getKind() == TemplateArgument::Expression) { |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| assert(false && "Type/value mismatch"); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Expression: { |
| if (NonTypeTemplateParmDecl *NTTP |
| = getDeducedParameterFromExpr(Param.getAsExpr())) { |
| if (Arg.getKind() == TemplateArgument::Integral) |
| // FIXME: Sign problems here |
| return DeduceNonTypeTemplateArgument(Context, NTTP, |
| *Arg.getAsIntegral(), |
| Info, Deduced); |
| if (Arg.getKind() == TemplateArgument::Expression) |
| return DeduceNonTypeTemplateArgument(Context, NTTP, Arg.getAsExpr(), |
| Info, Deduced); |
| |
| assert(false && "Type/value mismatch"); |
| Info.FirstArg = Param; |
| Info.SecondArg = Arg; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Can't deduce anything, but that's okay. |
| return Sema::TDK_Success; |
| } |
| case TemplateArgument::Pack: |
| assert(0 && "FIXME: Implement!"); |
| break; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(ASTContext &Context, |
| TemplateParameterList *TemplateParams, |
| const TemplateArgumentList &ParamList, |
| const TemplateArgumentList &ArgList, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced) { |
| assert(ParamList.size() == ArgList.size()); |
| for (unsigned I = 0, N = ParamList.size(); I != N; ++I) { |
| if (Sema::TemplateDeductionResult Result |
| = DeduceTemplateArguments(Context, TemplateParams, |
| ParamList[I], ArgList[I], |
| Info, Deduced)) |
| return Result; |
| } |
| return Sema::TDK_Success; |
| } |
| |
| /// \brief Determine whether two template arguments are the same. |
| static bool isSameTemplateArg(ASTContext &Context, |
| const TemplateArgument &X, |
| const TemplateArgument &Y) { |
| if (X.getKind() != Y.getKind()) |
| return false; |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| assert(false && "Comparing NULL template argument"); |
| break; |
| |
| case TemplateArgument::Type: |
| return Context.getCanonicalType(X.getAsType()) == |
| Context.getCanonicalType(Y.getAsType()); |
| |
| case TemplateArgument::Declaration: |
| return X.getAsDecl()->getCanonicalDecl() == |
| Y.getAsDecl()->getCanonicalDecl(); |
| |
| case TemplateArgument::Integral: |
| return *X.getAsIntegral() == *Y.getAsIntegral(); |
| |
| case TemplateArgument::Expression: |
| // FIXME: We assume that all expressions are distinct, but we should |
| // really check their canonical forms. |
| return false; |
| |
| case TemplateArgument::Pack: |
| if (X.pack_size() != Y.pack_size()) |
| return false; |
| |
| for (TemplateArgument::pack_iterator XP = X.pack_begin(), |
| XPEnd = X.pack_end(), |
| YP = Y.pack_begin(); |
| XP != XPEnd; ++XP, ++YP) |
| if (!isSameTemplateArg(Context, *XP, *YP)) |
| return false; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Helper function to build a TemplateParameter when we don't |
| /// know its type statically. |
| static TemplateParameter makeTemplateParameter(Decl *D) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) |
| return TemplateParameter(TTP); |
| else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) |
| return TemplateParameter(NTTP); |
| |
| return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); |
| } |
| |
| /// \brief Perform template argument deduction to determine whether |
| /// the given template arguments match the given class template |
| /// partial specialization per C++ [temp.class.spec.match]. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, |
| const TemplateArgumentList &TemplateArgs, |
| TemplateDeductionInfo &Info) { |
| // C++ [temp.class.spec.match]p2: |
| // A partial specialization matches a given actual template |
| // argument list if the template arguments of the partial |
| // specialization can be deduced from the actual template argument |
| // list (14.8.2). |
| SFINAETrap Trap(*this); |
| llvm::SmallVector<TemplateArgument, 4> Deduced; |
| Deduced.resize(Partial->getTemplateParameters()->size()); |
| if (TemplateDeductionResult Result |
| = ::DeduceTemplateArguments(Context, |
| Partial->getTemplateParameters(), |
| Partial->getTemplateArgs(), |
| TemplateArgs, Info, Deduced)) |
| return Result; |
| |
| InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial, |
| Deduced.data(), Deduced.size()); |
| if (Inst) |
| return TDK_InstantiationDepth; |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(), |
| Deduced.size()); |
| for (unsigned I = 0, N = Deduced.size(); I != N; ++I) { |
| if (Deduced[I].isNull()) { |
| Decl *Param |
| = const_cast<NamedDecl *>( |
| Partial->getTemplateParameters()->getParam(I)); |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) |
| Info.Param = TTP; |
| else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) |
| Info.Param = NTTP; |
| else |
| Info.Param = cast<TemplateTemplateParmDecl>(Param); |
| return TDK_Incomplete; |
| } |
| |
| Builder.Append(Deduced[I]); |
| } |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *DeducedArgumentList |
| = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true); |
| Info.reset(DeducedArgumentList); |
| |
| // Substitute the deduced template arguments into the template |
| // arguments of the class template partial specialization, and |
| // verify that the instantiated template arguments are both valid |
| // and are equivalent to the template arguments originally provided |
| // to the class template. |
| ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate(); |
| const TemplateArgumentLoc *PartialTemplateArgs |
| = Partial->getTemplateArgsAsWritten(); |
| unsigned N = Partial->getNumTemplateArgsAsWritten(); |
| llvm::SmallVector<TemplateArgumentLoc, 16> InstArgs(N); |
| for (unsigned I = 0; I != N; ++I) { |
| Decl *Param = const_cast<NamedDecl *>( |
| ClassTemplate->getTemplateParameters()->getParam(I)); |
| if (Subst(PartialTemplateArgs[I], InstArgs[I], |
| MultiLevelTemplateArgumentList(*DeducedArgumentList))) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = PartialTemplateArgs[I].getArgument(); |
| return TDK_SubstitutionFailure; |
| } |
| } |
| |
| TemplateArgumentListBuilder ConvertedInstArgs( |
| ClassTemplate->getTemplateParameters(), N); |
| |
| if (CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(), |
| /*LAngle*/ SourceLocation(), |
| InstArgs.data(), N, |
| /*RAngle*/ SourceLocation(), |
| false, ConvertedInstArgs)) { |
| // FIXME: fail with more useful information? |
| return TDK_SubstitutionFailure; |
| } |
| |
| for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) { |
| // We don't really care if we overwrite the internal structures of |
| // the arg list builder, because we're going to throw it all away. |
| TemplateArgument &InstArg |
| = const_cast<TemplateArgument&>(ConvertedInstArgs.getFlatArguments()[I]); |
| |
| Decl *Param = const_cast<NamedDecl *>( |
| ClassTemplate->getTemplateParameters()->getParam(I)); |
| |
| if (InstArg.getKind() == TemplateArgument::Expression) { |
| // When the argument is an expression, check the expression result |
| // against the actual template parameter to get down to the canonical |
| // template argument. |
| Expr *InstExpr = InstArg.getAsExpr(); |
| if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| if (CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = Partial->getTemplateArgs()[I]; |
| return TDK_SubstitutionFailure; |
| } |
| } else if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Param)) { |
| // FIXME: template template arguments should really resolve to decls |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InstExpr); |
| if (!DRE || CheckTemplateArgument(TTP, DRE)) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = Partial->getTemplateArgs()[I]; |
| return TDK_SubstitutionFailure; |
| } |
| } |
| } |
| |
| if (!isSameTemplateArg(Context, TemplateArgs[I], InstArg)) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = TemplateArgs[I]; |
| Info.SecondArg = InstArg; |
| return TDK_NonDeducedMismatch; |
| } |
| } |
| |
| if (Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| |
| return TDK_Success; |
| } |
| |
| /// \brief Determine whether the given type T is a simple-template-id type. |
| static bool isSimpleTemplateIdType(QualType T) { |
| if (const TemplateSpecializationType *Spec |
| = T->getAs<TemplateSpecializationType>()) |
| return Spec->getTemplateName().getAsTemplateDecl() != 0; |
| |
| return false; |
| } |
| |
| /// \brief Substitute the explicitly-provided template arguments into the |
| /// given function template according to C++ [temp.arg.explicit]. |
| /// |
| /// \param FunctionTemplate the function template into which the explicit |
| /// template arguments will be substituted. |
| /// |
| /// \param ExplicitTemplateArguments the explicitly-specified template |
| /// arguments. |
| /// |
| /// \param NumExplicitTemplateArguments the number of explicitly-specified |
| /// template arguments in @p ExplicitTemplateArguments. This value may be zero. |
| /// |
| /// \param Deduced the deduced template arguments, which will be populated |
| /// with the converted and checked explicit template arguments. |
| /// |
| /// \param ParamTypes will be populated with the instantiated function |
| /// parameters. |
| /// |
| /// \param FunctionType if non-NULL, the result type of the function template |
| /// will also be instantiated and the pointed-to value will be updated with |
| /// the instantiated function type. |
| /// |
| /// \param Info if substitution fails for any reason, this object will be |
| /// populated with more information about the failure. |
| /// |
| /// \returns TDK_Success if substitution was successful, or some failure |
| /// condition. |
| Sema::TemplateDeductionResult |
| Sema::SubstituteExplicitTemplateArguments( |
| FunctionTemplateDecl *FunctionTemplate, |
| const TemplateArgumentLoc *ExplicitTemplateArgs, |
| unsigned NumExplicitTemplateArgs, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced, |
| llvm::SmallVectorImpl<QualType> &ParamTypes, |
| QualType *FunctionType, |
| TemplateDeductionInfo &Info) { |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| |
| if (NumExplicitTemplateArgs == 0) { |
| // No arguments to substitute; just copy over the parameter types and |
| // fill in the function type. |
| for (FunctionDecl::param_iterator P = Function->param_begin(), |
| PEnd = Function->param_end(); |
| P != PEnd; |
| ++P) |
| ParamTypes.push_back((*P)->getType()); |
| |
| if (FunctionType) |
| *FunctionType = Function->getType(); |
| return TDK_Success; |
| } |
| |
| // Substitution of the explicit template arguments into a function template |
| /// is a SFINAE context. Trap any errors that might occur. |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.arg.explicit]p3: |
| // Template arguments that are present shall be specified in the |
| // declaration order of their corresponding template-parameters. The |
| // template argument list shall not specify more template-arguments than |
| // there are corresponding template-parameters. |
| TemplateArgumentListBuilder Builder(TemplateParams, |
| NumExplicitTemplateArgs); |
| |
| // Enter a new template instantiation context where we check the |
| // explicitly-specified template arguments against this function template, |
| // and then substitute them into the function parameter types. |
| InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(), |
| FunctionTemplate, Deduced.data(), Deduced.size(), |
| ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution); |
| if (Inst) |
| return TDK_InstantiationDepth; |
| |
| if (CheckTemplateArgumentList(FunctionTemplate, |
| SourceLocation(), SourceLocation(), |
| ExplicitTemplateArgs, |
| NumExplicitTemplateArgs, |
| SourceLocation(), |
| true, |
| Builder) || Trap.hasErrorOccurred()) |
| return TDK_InvalidExplicitArguments; |
| |
| // Form the template argument list from the explicitly-specified |
| // template arguments. |
| TemplateArgumentList *ExplicitArgumentList |
| = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true); |
| Info.reset(ExplicitArgumentList); |
| |
| // Instantiate the types of each of the function parameters given the |
| // explicitly-specified template arguments. |
| for (FunctionDecl::param_iterator P = Function->param_begin(), |
| PEnd = Function->param_end(); |
| P != PEnd; |
| ++P) { |
| QualType ParamType |
| = SubstType((*P)->getType(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| (*P)->getLocation(), (*P)->getDeclName()); |
| if (ParamType.isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| |
| ParamTypes.push_back(ParamType); |
| } |
| |
| // If the caller wants a full function type back, instantiate the return |
| // type and form that function type. |
| if (FunctionType) { |
| // FIXME: exception-specifications? |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| assert(Proto && "Function template does not have a prototype?"); |
| |
| QualType ResultType |
| = SubstType(Proto->getResultType(), |
| MultiLevelTemplateArgumentList(*ExplicitArgumentList), |
| Function->getTypeSpecStartLoc(), |
| Function->getDeclName()); |
| if (ResultType.isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| |
| *FunctionType = BuildFunctionType(ResultType, |
| ParamTypes.data(), ParamTypes.size(), |
| Proto->isVariadic(), |
| Proto->getTypeQuals(), |
| Function->getLocation(), |
| Function->getDeclName()); |
| if (FunctionType->isNull() || Trap.hasErrorOccurred()) |
| return TDK_SubstitutionFailure; |
| } |
| |
| // C++ [temp.arg.explicit]p2: |
| // Trailing template arguments that can be deduced (14.8.2) may be |
| // omitted from the list of explicit template-arguments. If all of the |
| // template arguments can be deduced, they may all be omitted; in this |
| // case, the empty template argument list <> itself may also be omitted. |
| // |
| // Take all of the explicitly-specified arguments and put them into the |
| // set of deduced template arguments. |
| Deduced.reserve(TemplateParams->size()); |
| for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) |
| Deduced.push_back(ExplicitArgumentList->get(I)); |
| |
| return TDK_Success; |
| } |
| |
| /// \brief Finish template argument deduction for a function template, |
| /// checking the deduced template arguments for completeness and forming |
| /// the function template specialization. |
| Sema::TemplateDeductionResult |
| Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| |
| // C++ [temp.deduct.type]p2: |
| // [...] or if any template argument remains neither deduced nor |
| // explicitly specified, template argument deduction fails. |
| TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size()); |
| for (unsigned I = 0, N = Deduced.size(); I != N; ++I) { |
| if (Deduced[I].isNull()) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| return TDK_Incomplete; |
| } |
| |
| Builder.Append(Deduced[I]); |
| } |
| |
| // Form the template argument list from the deduced template arguments. |
| TemplateArgumentList *DeducedArgumentList |
| = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true); |
| Info.reset(DeducedArgumentList); |
| |
| // Template argument deduction for function templates in a SFINAE context. |
| // Trap any errors that might occur. |
| SFINAETrap Trap(*this); |
| |
| // Enter a new template instantiation context while we instantiate the |
| // actual function declaration. |
| InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(), |
| FunctionTemplate, Deduced.data(), Deduced.size(), |
| ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution); |
| if (Inst) |
| return TDK_InstantiationDepth; |
| |
| // Substitute the deduced template arguments into the function template |
| // declaration to produce the function template specialization. |
| Specialization = cast_or_null<FunctionDecl>( |
| SubstDecl(FunctionTemplate->getTemplatedDecl(), |
| FunctionTemplate->getDeclContext(), |
| MultiLevelTemplateArgumentList(*DeducedArgumentList))); |
| if (!Specialization) |
| return TDK_SubstitutionFailure; |
| |
| assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == |
| FunctionTemplate->getCanonicalDecl()); |
| |
| // If the template argument list is owned by the function template |
| // specialization, release it. |
| if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList) |
| Info.take(); |
| |
| // There may have been an error that did not prevent us from constructing a |
| // declaration. Mark the declaration invalid and return with a substitution |
| // failure. |
| if (Trap.hasErrorOccurred()) { |
| Specialization->setInvalidDecl(true); |
| return TDK_SubstitutionFailure; |
| } |
| |
| return TDK_Success; |
| } |
| |
| /// \brief Perform template argument deduction from a function call |
| /// (C++ [temp.deduct.call]). |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param HasExplicitTemplateArgs whether any template arguments were |
| /// explicitly specified. |
| /// |
| /// \param ExplicitTemplateArguments when @p HasExplicitTemplateArgs is true, |
| /// the explicitly-specified template arguments. |
| /// |
| /// \param NumExplicitTemplateArguments when @p HasExplicitTemplateArgs is true, |
| /// the number of explicitly-specified template arguments in |
| /// @p ExplicitTemplateArguments. This value may be zero. |
| /// |
| /// \param Args the function call arguments |
| /// |
| /// \param NumArgs the number of arguments in Args |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| bool HasExplicitTemplateArgs, |
| const TemplateArgumentLoc *ExplicitTemplateArgs, |
| unsigned NumExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| |
| // C++ [temp.deduct.call]p1: |
| // Template argument deduction is done by comparing each function template |
| // parameter type (call it P) with the type of the corresponding argument |
| // of the call (call it A) as described below. |
| unsigned CheckArgs = NumArgs; |
| if (NumArgs < Function->getMinRequiredArguments()) |
| return TDK_TooFewArguments; |
| else if (NumArgs > Function->getNumParams()) { |
| const FunctionProtoType *Proto |
| = Function->getType()->getAs<FunctionProtoType>(); |
| if (!Proto->isVariadic()) |
| return TDK_TooManyArguments; |
| |
| CheckArgs = Function->getNumParams(); |
| } |
| |
| // The types of the parameters from which we will perform template argument |
| // deduction. |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| llvm::SmallVector<TemplateArgument, 4> Deduced; |
| llvm::SmallVector<QualType, 4> ParamTypes; |
| if (NumExplicitTemplateArgs) { |
| TemplateDeductionResult Result = |
| SubstituteExplicitTemplateArguments(FunctionTemplate, |
| ExplicitTemplateArgs, |
| NumExplicitTemplateArgs, |
| Deduced, |
| ParamTypes, |
| 0, |
| Info); |
| if (Result) |
| return Result; |
| } else { |
| // Just fill in the parameter types from the function declaration. |
| for (unsigned I = 0; I != CheckArgs; ++I) |
| ParamTypes.push_back(Function->getParamDecl(I)->getType()); |
| } |
| |
| // Deduce template arguments from the function parameters. |
| Deduced.resize(TemplateParams->size()); |
| for (unsigned I = 0; I != CheckArgs; ++I) { |
| QualType ParamType = ParamTypes[I]; |
| QualType ArgType = Args[I]->getType(); |
| |
| // C++ [temp.deduct.call]p2: |
| // If P is not a reference type: |
| QualType CanonParamType = Context.getCanonicalType(ParamType); |
| bool ParamWasReference = isa<ReferenceType>(CanonParamType); |
| if (!ParamWasReference) { |
| // - If A is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place of |
| // A for type deduction; otherwise, |
| if (ArgType->isArrayType()) |
| ArgType = Context.getArrayDecayedType(ArgType); |
| // - If A is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in place |
| // of A for type deduction; otherwise, |
| else if (ArgType->isFunctionType()) |
| ArgType = Context.getPointerType(ArgType); |
| else { |
| // - If A is a cv-qualified type, the top level cv-qualifiers of A’s |
| // type are ignored for type deduction. |
| QualType CanonArgType = Context.getCanonicalType(ArgType); |
| if (CanonArgType.getCVRQualifiers()) |
| ArgType = CanonArgType.getUnqualifiedType(); |
| } |
| } |
| |
| // C++0x [temp.deduct.call]p3: |
| // If P is a cv-qualified type, the top level cv-qualifiers of P’s type |
| // are ignored for type deduction. |
| if (CanonParamType.getCVRQualifiers()) |
| ParamType = CanonParamType.getUnqualifiedType(); |
| if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { |
| // [...] If P is a reference type, the type referred to by P is used |
| // for type deduction. |
| ParamType = ParamRefType->getPointeeType(); |
| |
| // [...] If P is of the form T&&, where T is a template parameter, and |
| // the argument is an lvalue, the type A& is used in place of A for |
| // type deduction. |
| if (isa<RValueReferenceType>(ParamRefType) && |
| ParamRefType->getAs<TemplateTypeParmType>() && |
| Args[I]->isLvalue(Context) == Expr::LV_Valid) |
| ArgType = Context.getLValueReferenceType(ArgType); |
| } |
| |
| // C++0x [temp.deduct.call]p4: |
| // In general, the deduction process attempts to find template argument |
| // values that will make the deduced A identical to A (after the type A |
| // is transformed as described above). [...] |
| unsigned TDF = TDF_SkipNonDependent; |
| |
| // - If the original P is a reference type, the deduced A (i.e., the |
| // type referred to by the reference) can be more cv-qualified than |
| // the transformed A. |
| if (ParamWasReference) |
| TDF |= TDF_ParamWithReferenceType; |
| // - The transformed A can be another pointer or pointer to member |
| // type that can be converted to the deduced A via a qualification |
| // conversion (4.4). |
| if (ArgType->isPointerType() || ArgType->isMemberPointerType()) |
| TDF |= TDF_IgnoreQualifiers; |
| // - If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise, |
| // if P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by |
| // the deduced A. |
| if (isSimpleTemplateIdType(ParamType) || |
| (isa<PointerType>(ParamType) && |
| isSimpleTemplateIdType( |
| ParamType->getAs<PointerType>()->getPointeeType()))) |
| TDF |= TDF_DerivedClass; |
| |
| if (TemplateDeductionResult Result |
| = ::DeduceTemplateArguments(Context, TemplateParams, |
| ParamType, ArgType, Info, Deduced, |
| TDF)) |
| return Result; |
| |
| // FIXME: C++0x [temp.deduct.call] paragraphs 6-9 deal with function |
| // pointer parameters. |
| |
| // FIXME: we need to check that the deduced A is the same as A, |
| // modulo the various allowed differences. |
| } |
| |
| return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, |
| Specialization, Info); |
| } |
| |
| /// \brief Deduce template arguments when taking the address of a function |
| /// template (C++ [temp.deduct.funcaddr]) or matching a |
| /// |
| /// \param FunctionTemplate the function template for which we are performing |
| /// template argument deduction. |
| /// |
| /// \param HasExplicitTemplateArgs whether any template arguments were |
| /// explicitly specified. |
| /// |
| /// \param ExplicitTemplateArguments when @p HasExplicitTemplateArgs is true, |
| /// the explicitly-specified template arguments. |
| /// |
| /// \param NumExplicitTemplateArguments when @p HasExplicitTemplateArgs is true, |
| /// the number of explicitly-specified template arguments in |
| /// @p ExplicitTemplateArguments. This value may be zero. |
| /// |
| /// \param ArgFunctionType the function type that will be used as the |
| /// "argument" type (A) when performing template argument deduction from the |
| /// function template's function type. |
| /// |
| /// \param Specialization if template argument deduction was successful, |
| /// this will be set to the function template specialization produced by |
| /// template argument deduction. |
| /// |
| /// \param Info the argument will be updated to provide additional information |
| /// about template argument deduction. |
| /// |
| /// \returns the result of template argument deduction. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| bool HasExplicitTemplateArgs, |
| const TemplateArgumentLoc *ExplicitTemplateArgs, |
| unsigned NumExplicitTemplateArgs, |
| QualType ArgFunctionType, |
| FunctionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| QualType FunctionType = Function->getType(); |
| |
| // Substitute any explicit template arguments. |
| llvm::SmallVector<TemplateArgument, 4> Deduced; |
| llvm::SmallVector<QualType, 4> ParamTypes; |
| if (HasExplicitTemplateArgs) { |
| if (TemplateDeductionResult Result |
| = SubstituteExplicitTemplateArguments(FunctionTemplate, |
| ExplicitTemplateArgs, |
| NumExplicitTemplateArgs, |
| Deduced, ParamTypes, |
| &FunctionType, Info)) |
| return Result; |
| } |
| |
| // Template argument deduction for function templates in a SFINAE context. |
| // Trap any errors that might occur. |
| SFINAETrap Trap(*this); |
| |
| // Deduce template arguments from the function type. |
| Deduced.resize(TemplateParams->size()); |
| if (TemplateDeductionResult Result |
| = ::DeduceTemplateArguments(Context, TemplateParams, |
| FunctionType, ArgFunctionType, Info, |
| Deduced, 0)) |
| return Result; |
| |
| return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, |
| Specialization, Info); |
| } |
| |
| /// \brief Deduce template arguments for a templated conversion |
| /// function (C++ [temp.deduct.conv]) and, if successful, produce a |
| /// conversion function template specialization. |
| Sema::TemplateDeductionResult |
| Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, |
| QualType ToType, |
| CXXConversionDecl *&Specialization, |
| TemplateDeductionInfo &Info) { |
| CXXConversionDecl *Conv |
| = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()); |
| QualType FromType = Conv->getConversionType(); |
| |
| // Canonicalize the types for deduction. |
| QualType P = Context.getCanonicalType(FromType); |
| QualType A = Context.getCanonicalType(ToType); |
| |
| // C++0x [temp.deduct.conv]p3: |
| // If P is a reference type, the type referred to by P is used for |
| // type deduction. |
| if (const ReferenceType *PRef = P->getAs<ReferenceType>()) |
| P = PRef->getPointeeType(); |
| |
| // C++0x [temp.deduct.conv]p3: |
| // If A is a reference type, the type referred to by A is used |
| // for type deduction. |
| if (const ReferenceType *ARef = A->getAs<ReferenceType>()) |
| A = ARef->getPointeeType(); |
| // C++ [temp.deduct.conv]p2: |
| // |
| // If A is not a reference type: |
| else { |
| assert(!A->isReferenceType() && "Reference types were handled above"); |
| |
| // - If P is an array type, the pointer type produced by the |
| // array-to-pointer standard conversion (4.2) is used in place |
| // of P for type deduction; otherwise, |
| if (P->isArrayType()) |
| P = Context.getArrayDecayedType(P); |
| // - If P is a function type, the pointer type produced by the |
| // function-to-pointer standard conversion (4.3) is used in |
| // place of P for type deduction; otherwise, |
| else if (P->isFunctionType()) |
| P = Context.getPointerType(P); |
| // - If P is a cv-qualified type, the top level cv-qualifiers of |
| // P’s type are ignored for type deduction. |
| else |
| P = P.getUnqualifiedType(); |
| |
| // C++0x [temp.deduct.conv]p3: |
| // If A is a cv-qualified type, the top level cv-qualifiers of A’s |
| // type are ignored for type deduction. |
| A = A.getUnqualifiedType(); |
| } |
| |
| // Template argument deduction for function templates in a SFINAE context. |
| // Trap any errors that might occur. |
| SFINAETrap Trap(*this); |
| |
| // C++ [temp.deduct.conv]p1: |
| // Template argument deduction is done by comparing the return |
| // type of the template conversion function (call it P) with the |
| // type that is required as the result of the conversion (call it |
| // A) as described in 14.8.2.4. |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| llvm::SmallVector<TemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.conv]p4: |
| // In general, the deduction process attempts to find template |
| // argument values that will make the deduced A identical to |
| // A. However, there are two cases that allow a difference: |
| unsigned TDF = 0; |
| // - If the original A is a reference type, A can be more |
| // cv-qualified than the deduced A (i.e., the type referred to |
| // by the reference) |
| if (ToType->isReferenceType()) |
| TDF |= TDF_ParamWithReferenceType; |
| // - The deduced A can be another pointer or pointer to member |
| // type that can be converted to A via a qualification |
| // conversion. |
| // |
| // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when |
| // both P and A are pointers or member pointers. In this case, we |
| // just ignore cv-qualifiers completely). |
| if ((P->isPointerType() && A->isPointerType()) || |
| (P->isMemberPointerType() && P->isMemberPointerType())) |
| TDF |= TDF_IgnoreQualifiers; |
| if (TemplateDeductionResult Result |
| = ::DeduceTemplateArguments(Context, TemplateParams, |
| P, A, Info, Deduced, TDF)) |
| return Result; |
| |
| // FIXME: we need to check that the deduced A is the same as A, |
| // modulo the various allowed differences. |
| |
| // Finish template argument deduction. |
| FunctionDecl *Spec = 0; |
| TemplateDeductionResult Result |
| = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, Spec, Info); |
| Specialization = cast_or_null<CXXConversionDecl>(Spec); |
| return Result; |
| } |
| |
| /// \brief Stores the result of comparing the qualifiers of two types. |
| enum DeductionQualifierComparison { |
| NeitherMoreQualified = 0, |
| ParamMoreQualified, |
| ArgMoreQualified |
| }; |
| |
| /// \brief Deduce the template arguments during partial ordering by comparing |
| /// the parameter type and the argument type (C++0x [temp.deduct.partial]). |
| /// |
| /// \param Context the AST context in which this deduction occurs. |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param ParamIn the parameter type |
| /// |
| /// \param ArgIn the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArgumentsDuringPartialOrdering(ASTContext &Context, |
| TemplateParameterList *TemplateParams, |
| QualType ParamIn, QualType ArgIn, |
| Sema::TemplateDeductionInfo &Info, |
| llvm::SmallVectorImpl<TemplateArgument> &Deduced, |
| llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) { |
| CanQualType Param = Context.getCanonicalType(ParamIn); |
| CanQualType Arg = Context.getCanonicalType(ArgIn); |
| |
| // C++0x [temp.deduct.partial]p5: |
| // Before the partial ordering is done, certain transformations are |
| // performed on the types used for partial ordering: |
| // - If P is a reference type, P is replaced by the type referred to. |
| CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>(); |
| if (!ParamRef.isNull()) |
| Param = ParamRef->getPointeeType(); |
| |
| // - If A is a reference type, A is replaced by the type referred to. |
| CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>(); |
| if (!ArgRef.isNull()) |
| Arg = ArgRef->getPointeeType(); |
| |
| if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) { |
| // C++0x [temp.deduct.partial]p6: |
| // If both P and A were reference types (before being replaced with the |
| // type referred to above), determine which of the two types (if any) is |
| // more cv-qualified than the other; otherwise the types are considered to |
| // be equally cv-qualified for partial ordering purposes. The result of this |
| // determination will be used below. |
| // |
| // We save this information for later, using it only when deduction |
| // succeeds in both directions. |
| DeductionQualifierComparison QualifierResult = NeitherMoreQualified; |
| if (Param.isMoreQualifiedThan(Arg)) |
| QualifierResult = ParamMoreQualified; |
| else if (Arg.isMoreQualifiedThan(Param)) |
| QualifierResult = ArgMoreQualified; |
| QualifierComparisons->push_back(QualifierResult); |
| } |
| |
| // C++0x [temp.deduct.partial]p7: |
| // Remove any top-level cv-qualifiers: |
| // - If P is a cv-qualified type, P is replaced by the cv-unqualified |
| // version of P. |
| Param = Param.getUnqualifiedType(); |
| // - If A is a cv-qualified type, A is replaced by the cv-unqualified |
| // version of A. |
| Arg = Arg.getUnqualifiedType(); |
| |
| // C++0x [temp.deduct.partial]p8: |
| // Using the resulting types P and A the deduction is then done as |
| // described in 14.9.2.5. If deduction succeeds for a given type, the type |
| // from the argument template is considered to be at least as specialized |
| // as the type from the parameter template. |
| return DeduceTemplateArguments(Context, TemplateParams, Param, Arg, Info, |
| Deduced, TDF_None); |
| } |
| |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, QualType T, |
| bool OnlyDeduced, |
| unsigned Level, |
| llvm::SmallVectorImpl<bool> &Deduced); |
| |
| /// \brief Determine whether the function template \p FT1 is at least as |
| /// specialized as \p FT2. |
| static bool isAtLeastAsSpecializedAs(Sema &S, |
| FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, |
| TemplatePartialOrderingContext TPOC, |
| llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) { |
| FunctionDecl *FD1 = FT1->getTemplatedDecl(); |
| FunctionDecl *FD2 = FT2->getTemplatedDecl(); |
| const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); |
| const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); |
| |
| assert(Proto1 && Proto2 && "Function templates must have prototypes"); |
| TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); |
| llvm::SmallVector<TemplateArgument, 4> Deduced; |
| Deduced.resize(TemplateParams->size()); |
| |
| // C++0x [temp.deduct.partial]p3: |
| // The types used to determine the ordering depend on the context in which |
| // the partial ordering is done: |
| Sema::TemplateDeductionInfo Info(S.Context); |
| switch (TPOC) { |
| case TPOC_Call: { |
| // - In the context of a function call, the function parameter types are |
| // used. |
| unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs()); |
| for (unsigned I = 0; I != NumParams; ++I) |
| if (DeduceTemplateArgumentsDuringPartialOrdering(S.Context, |
| TemplateParams, |
| Proto2->getArgType(I), |
| Proto1->getArgType(I), |
| Info, |
| Deduced, |
| QualifierComparisons)) |
| return false; |
| |
| break; |
| } |
| |
| case TPOC_Conversion: |
| // - In the context of a call to a conversion operator, the return types |
| // of the conversion function templates are used. |
| if (DeduceTemplateArgumentsDuringPartialOrdering(S.Context, |
| TemplateParams, |
| Proto2->getResultType(), |
| Proto1->getResultType(), |
| Info, |
| Deduced, |
| QualifierComparisons)) |
| return false; |
| break; |
| |
| case TPOC_Other: |
| // - In other contexts (14.6.6.2) the function template’s function type |
| // is used. |
| if (DeduceTemplateArgumentsDuringPartialOrdering(S.Context, |
| TemplateParams, |
| FD2->getType(), |
| FD1->getType(), |
| Info, |
| Deduced, |
| QualifierComparisons)) |
| return false; |
| break; |
| } |
| |
| // C++0x [temp.deduct.partial]p11: |
| // In most cases, all template parameters must have values in order for |
| // deduction to succeed, but for partial ordering purposes a template |
| // parameter may remain without a value provided it is not used in the |
| // types being used for partial ordering. [ Note: a template parameter used |
| // in a non-deduced context is considered used. -end note] |
| unsigned ArgIdx = 0, NumArgs = Deduced.size(); |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| if (Deduced[ArgIdx].isNull()) |
| break; |
| |
| if (ArgIdx == NumArgs) { |
| // All template arguments were deduced. FT1 is at least as specialized |
| // as FT2. |
| return true; |
| } |
| |
| // Figure out which template parameters were used. |
| llvm::SmallVector<bool, 4> UsedParameters; |
| UsedParameters.resize(TemplateParams->size()); |
| switch (TPOC) { |
| case TPOC_Call: { |
| unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs()); |
| for (unsigned I = 0; I != NumParams; ++I) |
| ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| } |
| |
| case TPOC_Conversion: |
| ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| |
| case TPOC_Other: |
| ::MarkUsedTemplateParameters(S, FD2->getType(), false, |
| TemplateParams->getDepth(), |
| UsedParameters); |
| break; |
| } |
| |
| for (; ArgIdx != NumArgs; ++ArgIdx) |
| // If this argument had no value deduced but was used in one of the types |
| // used for partial ordering, then deduction fails. |
| if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) |
| return false; |
| |
| return true; |
| } |
| |
| |
| /// \brief Returns the more specialized function template according |
| /// to the rules of function template partial ordering (C++ [temp.func.order]). |
| /// |
| /// \param FT1 the first function template |
| /// |
| /// \param FT2 the second function template |
| /// |
| /// \param TPOC the context in which we are performing partial ordering of |
| /// function templates. |
| /// |
| /// \returns the more specialized function template. If neither |
| /// template is more specialized, returns NULL. |
| FunctionTemplateDecl * |
| Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, |
| FunctionTemplateDecl *FT2, |
| TemplatePartialOrderingContext TPOC) { |
| llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons; |
| bool Better1 = isAtLeastAsSpecializedAs(*this, FT1, FT2, TPOC, 0); |
| bool Better2 = isAtLeastAsSpecializedAs(*this, FT2, FT1, TPOC, |
| &QualifierComparisons); |
| |
| if (Better1 != Better2) // We have a clear winner |
| return Better1? FT1 : FT2; |
| |
| if (!Better1 && !Better2) // Neither is better than the other |
| return 0; |
| |
| |
| // C++0x [temp.deduct.partial]p10: |
| // If for each type being considered a given template is at least as |
| // specialized for all types and more specialized for some set of types and |
| // the other template is not more specialized for any types or is not at |
| // least as specialized for any types, then the given template is more |
| // specialized than the other template. Otherwise, neither template is more |
| // specialized than the other. |
| Better1 = false; |
| Better2 = false; |
| for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) { |
| // C++0x [temp.deduct.partial]p9: |
| // If, for a given type, deduction succeeds in both directions (i.e., the |
| // types are identical after the transformations above) and if the type |
| // from the argument template is more cv-qualified than the type from the |
| // parameter template (as described above) that type is considered to be |
| // more specialized than the other. If neither type is more cv-qualified |
| // than the other then neither type is more specialized than the other. |
| switch (QualifierComparisons[I]) { |
| case NeitherMoreQualified: |
| break; |
| |
| case ParamMoreQualified: |
| Better1 = true; |
| if (Better2) |
| return 0; |
| break; |
| |
| case ArgMoreQualified: |
| Better2 = true; |
| if (Better1) |
| return 0; |
| break; |
| } |
| } |
| |
| assert(!(Better1 && Better2) && "Should have broken out in the loop above"); |
| if (Better1) |
| return FT1; |
| else if (Better2) |
| return FT2; |
| else |
| return 0; |
| } |
| |
| /// \brief Determine if the two templates are equivalent. |
| static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { |
| if (T1 == T2) |
| return true; |
| |
| if (!T1 || !T2) |
| return false; |
| |
| return T1->getCanonicalDecl() == T2->getCanonicalDecl(); |
| } |
| |
| /// \brief Retrieve the most specialized of the given function template |
| /// specializations. |
| /// |
| /// \param Specializations the set of function template specializations that |
| /// we will be comparing. |
| /// |
| /// \param NumSpecializations the number of function template specializations in |
| /// \p Specializations |
| /// |
| /// \param TPOC the partial ordering context to use to compare the function |
| /// template specializations. |
| /// |
| /// \param Loc the location where the ambiguity or no-specializations |
| /// diagnostic should occur. |
| /// |
| /// \param NoneDiag partial diagnostic used to diagnose cases where there are |
| /// no matching candidates. |
| /// |
| /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one |
| /// occurs. |
| /// |
| /// \param CandidateDiag partial diagnostic used for each function template |
| /// specialization that is a candidate in the ambiguous ordering. One parameter |
| /// in this diagnostic should be unbound, which will correspond to the string |
| /// describing the template arguments for the function template specialization. |
| /// |
| /// \param Index if non-NULL and the result of this function is non-nULL, |
| /// receives the index corresponding to the resulting function template |
| /// specialization. |
| /// |
| /// \returns the most specialized function template specialization, if |
| /// found. Otherwise, returns NULL. |
| /// |
| /// \todo FIXME: Consider passing in the "also-ran" candidates that failed |
| /// template argument deduction. |
| FunctionDecl *Sema::getMostSpecialized(FunctionDecl **Specializations, |
| unsigned NumSpecializations, |
| TemplatePartialOrderingContext TPOC, |
| SourceLocation Loc, |
| const PartialDiagnostic &NoneDiag, |
| const PartialDiagnostic &AmbigDiag, |
| const PartialDiagnostic &CandidateDiag, |
| unsigned *Index) { |
| if (NumSpecializations == 0) { |
| Diag(Loc, NoneDiag); |
| return 0; |
| } |
| |
| if (NumSpecializations == 1) { |
| if (Index) |
| *Index = 0; |
| |
| return Specializations[0]; |
| } |
| |
| |
| // Find the function template that is better than all of the templates it |
| // has been compared to. |
| unsigned Best = 0; |
| FunctionTemplateDecl *BestTemplate |
| = Specializations[Best]->getPrimaryTemplate(); |
| assert(BestTemplate && "Not a function template specialization?"); |
| for (unsigned I = 1; I != NumSpecializations; ++I) { |
| FunctionTemplateDecl *Challenger = Specializations[I]->getPrimaryTemplate(); |
| assert(Challenger && "Not a function template specialization?"); |
| if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| TPOC), |
| Challenger)) { |
| Best = I; |
| BestTemplate = Challenger; |
| } |
| } |
| |
| // Make sure that the "best" function template is more specialized than all |
| // of the others. |
| bool Ambiguous = false; |
| for (unsigned I = 0; I != NumSpecializations; ++I) { |
| FunctionTemplateDecl *Challenger = Specializations[I]->getPrimaryTemplate(); |
| if (I != Best && |
| !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, |
| TPOC), |
| BestTemplate)) { |
| Ambiguous = true; |
| break; |
| } |
| } |
| |
| if (!Ambiguous) { |
| // We found an answer. Return it. |
| if (Index) |
| *Index = Best; |
| return Specializations[Best]; |
| } |
| |
| // Diagnose the ambiguity. |
| Diag(Loc, AmbigDiag); |
| |
| // FIXME: Can we order the candidates in some sane way? |
| for (unsigned I = 0; I != NumSpecializations; ++I) |
| Diag(Specializations[I]->getLocation(), CandidateDiag) |
| << getTemplateArgumentBindingsText( |
| Specializations[I]->getPrimaryTemplate()->getTemplateParameters(), |
| *Specializations[I]->getTemplateSpecializationArgs()); |
| |
| return 0; |
| } |
| |
| /// \brief Returns the more specialized class template partial specialization |
| /// according to the rules of partial ordering of class template partial |
| /// specializations (C++ [temp.class.order]). |
| /// |
| /// \param PS1 the first class template partial specialization |
| /// |
| /// \param PS2 the second class template partial specialization |
| /// |
| /// \returns the more specialized class template partial specialization. If |
| /// neither partial specialization is more specialized, returns NULL. |
| ClassTemplatePartialSpecializationDecl * |
| Sema::getMoreSpecializedPartialSpecialization( |
| ClassTemplatePartialSpecializationDecl *PS1, |
| ClassTemplatePartialSpecializationDecl *PS2) { |
| // C++ [temp.class.order]p1: |
| // For two class template partial specializations, the first is at least as |
| // specialized as the second if, given the following rewrite to two |
| // function templates, the first function template is at least as |
| // specialized as the second according to the ordering rules for function |
| // templates (14.6.6.2): |
| // - the first function template has the same template parameters as the |
| // first partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the first partial specialization, and |
| // - the second function template has the same template parameters as the |
| // second partial specialization and has a single function parameter |
| // whose type is a class template specialization with the template |
| // arguments of the second partial specialization. |
| // |
| // Rather than synthesize function templates, we merely perform the |
| // equivalent partial ordering by performing deduction directly on the |
| // template arguments of the class template partial specializations. This |
| // computation is slightly simpler than the general problem of function |
| // template partial ordering, because class template partial specializations |
| // are more constrained. We know that every template parameter is deduc |
| llvm::SmallVector<TemplateArgument, 4> Deduced; |
| Sema::TemplateDeductionInfo Info(Context); |
| |
| // Determine whether PS1 is at least as specialized as PS2 |
| Deduced.resize(PS2->getTemplateParameters()->size()); |
| bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(Context, |
| PS2->getTemplateParameters(), |
| Context.getTypeDeclType(PS2), |
| Context.getTypeDeclType(PS1), |
| Info, |
| Deduced, |
| 0); |
| |
| // Determine whether PS2 is at least as specialized as PS1 |
| Deduced.resize(PS1->getTemplateParameters()->size()); |
| bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(Context, |
| PS1->getTemplateParameters(), |
| Context.getTypeDeclType(PS1), |
| Context.getTypeDeclType(PS2), |
| Info, |
| Deduced, |
| 0); |
| |
| if (Better1 == Better2) |
| return 0; |
| |
| return Better1? PS1 : PS2; |
| } |
| |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used); |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// expression. |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, |
| const Expr *E, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used) { |
| // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to |
| // find other occurrences of template parameters. |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!E) |
| return; |
| |
| const NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); |
| if (!NTTP) |
| return; |
| |
| if (NTTP->getDepth() == Depth) |
| Used[NTTP->getIndex()] = true; |
| } |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// nested name specifier. |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, |
| NestedNameSpecifier *NNS, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used) { |
| if (!NNS) |
| return; |
| |
| MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth, |
| Used); |
| MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0), |
| OnlyDeduced, Depth, Used); |
| } |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// template name. |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, |
| TemplateName Name, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used) { |
| if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(Template)) { |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| } |
| return; |
| } |
| |
| if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) |
| MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// \brief Mark the template parameters that are used by the given |
| /// type. |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, QualType T, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used) { |
| if (T.isNull()) |
| return; |
| |
| // Non-dependent types have nothing deducible |
| if (!T->isDependentType()) |
| return; |
| |
| T = SemaRef.Context.getCanonicalType(T); |
| switch (T->getTypeClass()) { |
| case Type::Pointer: |
| MarkUsedTemplateParameters(SemaRef, |
| cast<PointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::BlockPointer: |
| MarkUsedTemplateParameters(SemaRef, |
| cast<BlockPointerType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| MarkUsedTemplateParameters(SemaRef, |
| cast<ReferenceType>(T)->getPointeeType(), |
| OnlyDeduced, |
| Depth, |
| Used); |
| break; |
| |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); |
| MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0), |
| OnlyDeduced, Depth, Used); |
| break; |
| } |
| |
| case Type::DependentSizedArray: |
| MarkUsedTemplateParameters(SemaRef, |
| cast<DependentSizedArrayType>(T)->getSizeExpr(), |
| OnlyDeduced, Depth, Used); |
| // Fall through to check the element type |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| MarkUsedTemplateParameters(SemaRef, |
| cast<ArrayType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Vector: |
| case Type::ExtVector: |
| MarkUsedTemplateParameters(SemaRef, |
| cast<VectorType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *VecType |
| = cast<DependentSizedExtVectorType>(T); |
| MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced, |
| Depth, Used); |
| MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced, |
| Depth, Used); |
| for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced, |
| Depth, Used); |
| break; |
| } |
| |
| case Type::TemplateTypeParm: { |
| const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| break; |
| } |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *Spec |
| = cast<TemplateSpecializationType>(T); |
| MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced, |
| Depth, Used); |
| for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) |
| MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth, |
| Used); |
| break; |
| } |
| |
| case Type::Complex: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(SemaRef, |
| cast<ComplexType>(T)->getElementType(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| case Type::Typename: |
| if (!OnlyDeduced) |
| MarkUsedTemplateParameters(SemaRef, |
| cast<TypenameType>(T)->getQualifier(), |
| OnlyDeduced, Depth, Used); |
| break; |
| |
| // None of these types have any template parameters in them. |
| case Type::Builtin: |
| case Type::FixedWidthInt: |
| case Type::VariableArray: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| #include "clang/AST/TypeNodes.def" |
| break; |
| } |
| } |
| |
| /// \brief Mark the template parameters that are used by this |
| /// template argument. |
| static void |
| MarkUsedTemplateParameters(Sema &SemaRef, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, |
| unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used) { |
| switch (TemplateArg.getKind()) { |
| case TemplateArgument::Null: |
| case TemplateArgument::Integral: |
| break; |
| |
| case TemplateArgument::Type: |
| MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Declaration: |
| if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(TemplateArg.getAsDecl())) { |
| if (TTP->getDepth() == Depth) |
| Used[TTP->getIndex()] = true; |
| } |
| break; |
| |
| case TemplateArgument::Expression: |
| MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced, |
| Depth, Used); |
| break; |
| |
| case TemplateArgument::Pack: |
| for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(), |
| PEnd = TemplateArg.pack_end(); |
| P != PEnd; ++P) |
| MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used); |
| break; |
| } |
| } |
| |
| /// \brief Mark the template parameters can be deduced by the given |
| /// template argument list. |
| /// |
| /// \param TemplateArgs the template argument list from which template |
| /// parameters will be deduced. |
| /// |
| /// \param Deduced a bit vector whose elements will be set to \c true |
| /// to indicate when the corresponding template parameter will be |
| /// deduced. |
| void |
| Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallVectorImpl<bool> &Used) { |
| for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
| ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced, |
| Depth, Used); |
| } |
| |
| /// \brief Marks all of the template parameters that will be deduced by a |
| /// call to the given function template. |
| void Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate, |
| llvm::SmallVectorImpl<bool> &Deduced) { |
| TemplateParameterList *TemplateParams |
| = FunctionTemplate->getTemplateParameters(); |
| Deduced.clear(); |
| Deduced.resize(TemplateParams->size()); |
| |
| FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); |
| for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) |
| ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(), |
| true, TemplateParams->getDepth(), Deduced); |
| } |