| //===--- Decl.cpp - Declaration AST Node Implementation -------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Decl subclasses. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/Decl.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/ASTMutationListener.h" | 
 | #include "clang/AST/Attr.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/PrettyPrinter.h" | 
 | #include "clang/AST/Stmt.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/IdentifierTable.h" | 
 | #include "clang/Basic/Module.h" | 
 | #include "clang/Basic/Specifiers.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include <algorithm> | 
 |  | 
 | using namespace clang; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // NamedDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Visibility rules aren't rigorously externally specified, but here | 
 | // are the basic principles behind what we implement: | 
 | // | 
 | // 1. An explicit visibility attribute is generally a direct expression | 
 | // of the user's intent and should be honored.  Only the innermost | 
 | // visibility attribute applies.  If no visibility attribute applies, | 
 | // global visibility settings are considered. | 
 | // | 
 | // 2. There is one caveat to the above: on or in a template pattern, | 
 | // an explicit visibility attribute is just a default rule, and | 
 | // visibility can be decreased by the visibility of template | 
 | // arguments.  But this, too, has an exception: an attribute on an | 
 | // explicit specialization or instantiation causes all the visibility | 
 | // restrictions of the template arguments to be ignored. | 
 | // | 
 | // 3. A variable that does not otherwise have explicit visibility can | 
 | // be restricted by the visibility of its type. | 
 | // | 
 | // 4. A visibility restriction is explicit if it comes from an | 
 | // attribute (or something like it), not a global visibility setting. | 
 | // When emitting a reference to an external symbol, visibility | 
 | // restrictions are ignored unless they are explicit. | 
 | // | 
 | // 5. When computing the visibility of a non-type, including a | 
 | // non-type member of a class, only non-type visibility restrictions | 
 | // are considered: the 'visibility' attribute, global value-visibility | 
 | // settings, and a few special cases like __private_extern. | 
 | // | 
 | // 6. When computing the visibility of a type, including a type member | 
 | // of a class, only type visibility restrictions are considered: | 
 | // the 'type_visibility' attribute and global type-visibility settings. | 
 | // However, a 'visibility' attribute counts as a 'type_visibility' | 
 | // attribute on any declaration that only has the former. | 
 | // | 
 | // The visibility of a "secondary" entity, like a template argument, | 
 | // is computed using the kind of that entity, not the kind of the | 
 | // primary entity for which we are computing visibility.  For example, | 
 | // the visibility of a specialization of either of these templates: | 
 | //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); | 
 | //   template <class T, bool (&compare)(T, X)> class matcher; | 
 | // is restricted according to the type visibility of the argument 'T', | 
 | // the type visibility of 'bool(&)(T,X)', and the value visibility of | 
 | // the argument function 'compare'.  That 'has_match' is a value | 
 | // and 'matcher' is a type only matters when looking for attributes | 
 | // and settings from the immediate context. | 
 |  | 
 | /// Kinds of LV computation.  The linkage side of the computation is | 
 | /// always the same, but different things can change how visibility is | 
 | /// computed. | 
 | enum LVComputationKind { | 
 |   /// Do a normal LV computation for, ultimately, a type. | 
 |   LVForType = NamedDecl::VisibilityForType, | 
 |  | 
 |   /// Do a normal LV computation for, ultimately, a non-type declaration. | 
 |   LVForValue = NamedDecl::VisibilityForValue, | 
 |  | 
 |   /// Do a normal LV computation for, ultimately, a type that already | 
 |   /// has some sort of explicit visibility. | 
 |   LVForExplicitType, | 
 |  | 
 |   /// Do a normal LV computation for, ultimately, a non-type declaration | 
 |   /// that already has some sort of explicit visibility. | 
 |   LVForExplicitValue | 
 | }; | 
 |  | 
 | /// Does this computation kind permit us to consider additional | 
 | /// visibility settings from attributes and the like? | 
 | static bool hasExplicitVisibilityAlready(LVComputationKind computation) { | 
 |   return ((unsigned(computation) & 2) != 0); | 
 | } | 
 |  | 
 | /// Given an LVComputationKind, return one of the same type/value sort | 
 | /// that records that it already has explicit visibility. | 
 | static LVComputationKind | 
 | withExplicitVisibilityAlready(LVComputationKind oldKind) { | 
 |   LVComputationKind newKind = | 
 |     static_cast<LVComputationKind>(unsigned(oldKind) | 2); | 
 |   assert(oldKind != LVForType          || newKind == LVForExplicitType); | 
 |   assert(oldKind != LVForValue         || newKind == LVForExplicitValue); | 
 |   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType); | 
 |   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); | 
 |   return newKind; | 
 | } | 
 |  | 
 | static llvm::Optional<Visibility> getExplicitVisibility(const NamedDecl *D, | 
 |                                                         LVComputationKind kind) { | 
 |   assert(!hasExplicitVisibilityAlready(kind) && | 
 |          "asking for explicit visibility when we shouldn't be"); | 
 |   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); | 
 | } | 
 |  | 
 | typedef NamedDecl::LinkageInfo LinkageInfo; | 
 |  | 
 | /// Is the given declaration a "type" or a "value" for the purposes of | 
 | /// visibility computation? | 
 | static bool usesTypeVisibility(const NamedDecl *D) { | 
 |   return isa<TypeDecl>(D) || | 
 |          isa<ClassTemplateDecl>(D) || | 
 |          isa<ObjCInterfaceDecl>(D); | 
 | } | 
 |  | 
 | /// Given a visibility attribute, return the explicit visibility | 
 | /// associated with it. | 
 | template <class T> | 
 | static Visibility getVisibilityFromAttr(const T *attr) { | 
 |   switch (attr->getVisibility()) { | 
 |   case T::Default: | 
 |     return DefaultVisibility; | 
 |   case T::Hidden: | 
 |     return HiddenVisibility; | 
 |   case T::Protected: | 
 |     return ProtectedVisibility; | 
 |   } | 
 |   llvm_unreachable("bad visibility kind"); | 
 | } | 
 |  | 
 | /// Return the explicit visibility of the given declaration. | 
 | static llvm::Optional<Visibility> getVisibilityOf(const NamedDecl *D, | 
 |                                     NamedDecl::ExplicitVisibilityKind kind) { | 
 |   // If we're ultimately computing the visibility of a type, look for | 
 |   // a 'type_visibility' attribute before looking for 'visibility'. | 
 |   if (kind == NamedDecl::VisibilityForType) { | 
 |     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) { | 
 |       return getVisibilityFromAttr(A); | 
 |     } | 
 |   } | 
 |  | 
 |   // If this declaration has an explicit visibility attribute, use it. | 
 |   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) { | 
 |     return getVisibilityFromAttr(A); | 
 |   } | 
 |  | 
 |   // If we're on Mac OS X, an 'availability' for Mac OS X attribute | 
 |   // implies visibility(default). | 
 |   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { | 
 |     for (specific_attr_iterator<AvailabilityAttr>  | 
 |               A = D->specific_attr_begin<AvailabilityAttr>(), | 
 |            AEnd = D->specific_attr_end<AvailabilityAttr>(); | 
 |          A != AEnd; ++A) | 
 |       if ((*A)->getPlatform()->getName().equals("macosx")) | 
 |         return DefaultVisibility; | 
 |   } | 
 |  | 
 |   return llvm::Optional<Visibility>(); | 
 | } | 
 |  | 
 | static LinkageInfo getLVForType(QualType T) { | 
 |   std::pair<Linkage,Visibility> P = T->getLinkageAndVisibility(); | 
 |   return LinkageInfo(P.first, P.second, T->isVisibilityExplicit()); | 
 | } | 
 |  | 
 | /// \brief Get the most restrictive linkage for the types in the given | 
 | /// template parameter list.  For visibility purposes, template | 
 | /// parameters are part of the signature of a template. | 
 | static LinkageInfo | 
 | getLVForTemplateParameterList(const TemplateParameterList *params) { | 
 |   LinkageInfo LV; | 
 |   for (TemplateParameterList::const_iterator P = params->begin(), | 
 |                                           PEnd = params->end(); | 
 |        P != PEnd; ++P) { | 
 |  | 
 |     // Template type parameters are the most common and never | 
 |     // contribute to visibility, pack or not. | 
 |     if (isa<TemplateTypeParmDecl>(*P)) | 
 |       continue; | 
 |  | 
 |     // Non-type template parameters can be restricted by the value type, e.g. | 
 |     //   template <enum X> class A { ... }; | 
 |     // We have to be careful here, though, because we can be dealing with | 
 |     // dependent types. | 
 |     if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
 |       // Handle the non-pack case first. | 
 |       if (!NTTP->isExpandedParameterPack()) { | 
 |         if (!NTTP->getType()->isDependentType()) { | 
 |           LV.merge(getLVForType(NTTP->getType())); | 
 |         } | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Look at all the types in an expanded pack. | 
 |       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { | 
 |         QualType type = NTTP->getExpansionType(i); | 
 |         if (!type->isDependentType()) | 
 |           LV.merge(getLVForType(type)); | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Template template parameters can be restricted by their | 
 |     // template parameters, recursively. | 
 |     TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P); | 
 |  | 
 |     // Handle the non-pack case first. | 
 |     if (!TTP->isExpandedParameterPack()) { | 
 |       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters())); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Look at all expansions in an expanded pack. | 
 |     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); | 
 |            i != n; ++i) { | 
 |       LV.merge(getLVForTemplateParameterList( | 
 |                                     TTP->getExpansionTemplateParameters(i))); | 
 |     } | 
 |   } | 
 |  | 
 |   return LV; | 
 | } | 
 |  | 
 | /// getLVForDecl - Get the linkage and visibility for the given declaration. | 
 | static LinkageInfo getLVForDecl(const NamedDecl *D, | 
 |                                 LVComputationKind computation); | 
 |  | 
 | /// \brief Get the most restrictive linkage for the types and | 
 | /// declarations in the given template argument list. | 
 | /// | 
 | /// Note that we don't take an LVComputationKind because we always | 
 | /// want to honor the visibility of template arguments in the same way. | 
 | static LinkageInfo | 
 | getLVForTemplateArgumentList(ArrayRef<TemplateArgument> args) { | 
 |   LinkageInfo LV; | 
 |  | 
 |   for (unsigned i = 0, e = args.size(); i != e; ++i) { | 
 |     const TemplateArgument &arg = args[i]; | 
 |     switch (arg.getKind()) { | 
 |     case TemplateArgument::Null: | 
 |     case TemplateArgument::Integral: | 
 |     case TemplateArgument::Expression: | 
 |       continue; | 
 |  | 
 |     case TemplateArgument::Type: | 
 |       LV.merge(getLVForType(arg.getAsType())); | 
 |       continue; | 
 |  | 
 |     case TemplateArgument::Declaration: | 
 |       if (NamedDecl *ND = dyn_cast<NamedDecl>(arg.getAsDecl())) { | 
 |         assert(!usesTypeVisibility(ND)); | 
 |         LV.merge(getLVForDecl(ND, LVForValue)); | 
 |       } | 
 |       continue; | 
 |  | 
 |     case TemplateArgument::NullPtr: | 
 |       LV.merge(getLVForType(arg.getNullPtrType())); | 
 |       continue; | 
 |  | 
 |     case TemplateArgument::Template: | 
 |     case TemplateArgument::TemplateExpansion: | 
 |       if (TemplateDecl *Template | 
 |                 = arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) | 
 |         LV.merge(getLVForDecl(Template, LVForValue)); | 
 |       continue; | 
 |  | 
 |     case TemplateArgument::Pack: | 
 |       LV.merge(getLVForTemplateArgumentList(arg.getPackAsArray())); | 
 |       continue; | 
 |     } | 
 |     llvm_unreachable("bad template argument kind"); | 
 |   } | 
 |  | 
 |   return LV; | 
 | } | 
 |  | 
 | static LinkageInfo | 
 | getLVForTemplateArgumentList(const TemplateArgumentList &TArgs) { | 
 |   return getLVForTemplateArgumentList(TArgs.asArray()); | 
 | } | 
 |  | 
 | /// Merge in template-related linkage and visibility for the given | 
 | /// function template specialization. | 
 | /// | 
 | /// We don't need a computation kind here because we can assume | 
 | /// LVForValue. | 
 | static void mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, | 
 |                       const FunctionTemplateSpecializationInfo *specInfo) { | 
 |   bool hasExplicitVisibility = fn->hasAttr<VisibilityAttr>(); | 
 |   FunctionTemplateDecl *temp = specInfo->getTemplate(); | 
 |  | 
 |   // Include visibility from the template parameters and arguments | 
 |   // only if this is not an explicit instantiation or specialization | 
 |   // with direct explicit visibility.  (Implicit instantiations won't | 
 |   // have a direct attribute.) | 
 |   bool considerVisibility = !hasExplicitVisibility; | 
 |  | 
 |   // Merge information from the template parameters. | 
 |   LinkageInfo tempLV = | 
 |     getLVForTemplateParameterList(temp->getTemplateParameters()); | 
 |   LV.mergeMaybeWithVisibility(tempLV, considerVisibility); | 
 |  | 
 |   // Merge information from the template arguments. | 
 |   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; | 
 |   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs); | 
 |   LV.mergeMaybeWithVisibility(argsLV, considerVisibility); | 
 | } | 
 |  | 
 | /// Should we consider visibility associated with the template | 
 | /// arguments and parameters of the given class template specialization? | 
 | static bool shouldConsiderTemplateVisibility( | 
 |                                  const ClassTemplateSpecializationDecl *spec, | 
 |                                  LVComputationKind computation) { | 
 |   // Include visibility from the template parameters and arguments | 
 |   // only if this is not an explicit instantiation or specialization | 
 |   // with direct explicit visibility (and note that implicit | 
 |   // instantiations won't have a direct attribute). | 
 |   // | 
 |   // Furthermore, we want to ignore template parameters and arguments | 
 |   // for an explicit specialization when computing the visibility of a | 
 |   // member thereof with explicit visibility. | 
 |   // | 
 |   // This is a bit complex; let's unpack it. | 
 |   // | 
 |   // An explicit class specialization is an independent, top-level | 
 |   // declaration.  As such, if it or any of its members has an | 
 |   // explicit visibility attribute, that must directly express the | 
 |   // user's intent, and we should honor it.  The same logic applies to | 
 |   // an explicit instantiation of a member of such a thing. | 
 |  | 
 |   // Fast path: if this is not an explicit instantiation or | 
 |   // specialization, we always want to consider template-related | 
 |   // visibility restrictions. | 
 |   if (!spec->isExplicitInstantiationOrSpecialization()) | 
 |     return true; | 
 |  | 
 |   // This is the 'member thereof' check. | 
 |   if (spec->isExplicitSpecialization() && | 
 |       hasExplicitVisibilityAlready(computation)) | 
 |     return false; | 
 |  | 
 |   // Otherwise, look to see if we have an attribute. | 
 |   switch (computation) { | 
 |   case LVForType: | 
 |   case LVForExplicitType: | 
 |     if (spec->hasAttr<TypeVisibilityAttr>()) | 
 |       return false; | 
 |     // fallthrough | 
 |   case LVForValue: | 
 |   case LVForExplicitValue: | 
 |     if (spec->hasAttr<VisibilityAttr>()) | 
 |       return false; | 
 |     return true; | 
 |   } | 
 |   llvm_unreachable("bad visibility computation kind"); | 
 | } | 
 |  | 
 | /// Merge in template-related linkage and visibility for the given | 
 | /// class template specialization. | 
 | static void mergeTemplateLV(LinkageInfo &LV, | 
 |                             const ClassTemplateSpecializationDecl *spec, | 
 |                             LVComputationKind computation) { | 
 |   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); | 
 |  | 
 |   // Merge information from the template parameters, but ignore | 
 |   // visibility if we're only considering template arguments. | 
 |  | 
 |   ClassTemplateDecl *temp = spec->getSpecializedTemplate(); | 
 |   LinkageInfo tempLV = | 
 |     getLVForTemplateParameterList(temp->getTemplateParameters()); | 
 |   LV.mergeMaybeWithVisibility(tempLV, | 
 |            considerVisibility && !hasExplicitVisibilityAlready(computation)); | 
 |  | 
 |   // Merge information from the template arguments.  We ignore | 
 |   // template-argument visibility if we've got an explicit | 
 |   // instantiation with a visibility attribute. | 
 |   const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); | 
 |   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs); | 
 |   LV.mergeMaybeWithVisibility(argsLV, considerVisibility); | 
 | } | 
 |  | 
 | static bool useInlineVisibilityHidden(const NamedDecl *D) { | 
 |   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. | 
 |   const LangOptions &Opts = D->getASTContext().getLangOpts(); | 
 |   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) | 
 |     return false; | 
 |  | 
 |   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); | 
 |   if (!FD) | 
 |     return false; | 
 |  | 
 |   TemplateSpecializationKind TSK = TSK_Undeclared; | 
 |   if (FunctionTemplateSpecializationInfo *spec | 
 |       = FD->getTemplateSpecializationInfo()) { | 
 |     TSK = spec->getTemplateSpecializationKind(); | 
 |   } else if (MemberSpecializationInfo *MSI = | 
 |              FD->getMemberSpecializationInfo()) { | 
 |     TSK = MSI->getTemplateSpecializationKind(); | 
 |   } | 
 |  | 
 |   const FunctionDecl *Def = 0; | 
 |   // InlineVisibilityHidden only applies to definitions, and | 
 |   // isInlined() only gives meaningful answers on definitions | 
 |   // anyway. | 
 |   return TSK != TSK_ExplicitInstantiationDeclaration && | 
 |     TSK != TSK_ExplicitInstantiationDefinition && | 
 |     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); | 
 | } | 
 |  | 
 | template <typename T> static bool isInExternCContext(T *D) { | 
 |   const T *First = D->getFirstDeclaration(); | 
 |   return First->getDeclContext()->isExternCContext(); | 
 | } | 
 |  | 
 | static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, | 
 |                                               LVComputationKind computation) { | 
 |   assert(D->getDeclContext()->getRedeclContext()->isFileContext() && | 
 |          "Not a name having namespace scope"); | 
 |   ASTContext &Context = D->getASTContext(); | 
 |  | 
 |   // C++ [basic.link]p3: | 
 |   //   A name having namespace scope (3.3.6) has internal linkage if it | 
 |   //   is the name of | 
 |   //     - an object, reference, function or function template that is | 
 |   //       explicitly declared static; or, | 
 |   // (This bullet corresponds to C99 6.2.2p3.) | 
 |   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
 |     // Explicitly declared static. | 
 |     if (Var->getStorageClass() == SC_Static) | 
 |       return LinkageInfo::internal(); | 
 |  | 
 |     // - a non-volatile object or reference that is explicitly declared const | 
 |     //   or constexpr and neither explicitly declared extern nor previously | 
 |     //   declared to have external linkage; or (there is no equivalent in C99) | 
 |     if (Context.getLangOpts().CPlusPlus && | 
 |         Var->getType().isConstQualified() &&  | 
 |         !Var->getType().isVolatileQualified() && | 
 |         Var->getStorageClass() != SC_Extern && | 
 |         Var->getStorageClass() != SC_PrivateExtern) { | 
 |       bool FoundExtern = false; | 
 |       for (const VarDecl *PrevVar = Var->getPreviousDecl(); | 
 |            PrevVar && !FoundExtern;  | 
 |            PrevVar = PrevVar->getPreviousDecl()) | 
 |         if (isExternalLinkage(PrevVar->getLinkage())) | 
 |           FoundExtern = true; | 
 |        | 
 |       if (!FoundExtern) | 
 |         return LinkageInfo::internal(); | 
 |     } | 
 |     if (Var->getStorageClass() == SC_None) { | 
 |       const VarDecl *PrevVar = Var->getPreviousDecl(); | 
 |       for (; PrevVar; PrevVar = PrevVar->getPreviousDecl()) | 
 |         if (PrevVar->getStorageClass() == SC_PrivateExtern) | 
 |           break; | 
 |       if (PrevVar) | 
 |         return PrevVar->getLinkageAndVisibility(); | 
 |     } | 
 |   } else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) { | 
 |     // C++ [temp]p4: | 
 |     //   A non-member function template can have internal linkage; any | 
 |     //   other template name shall have external linkage. | 
 |     const FunctionDecl *Function = 0; | 
 |     if (const FunctionTemplateDecl *FunTmpl | 
 |                                         = dyn_cast<FunctionTemplateDecl>(D)) | 
 |       Function = FunTmpl->getTemplatedDecl(); | 
 |     else | 
 |       Function = cast<FunctionDecl>(D); | 
 |  | 
 |     // Explicitly declared static. | 
 |     if (Function->getStorageClass() == SC_Static) | 
 |       return LinkageInfo(InternalLinkage, DefaultVisibility, false); | 
 |   } else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) { | 
 |     //   - a data member of an anonymous union. | 
 |     if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()) | 
 |       return LinkageInfo::internal(); | 
 |   } | 
 |  | 
 |   if (D->isInAnonymousNamespace()) { | 
 |     const VarDecl *Var = dyn_cast<VarDecl>(D); | 
 |     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D); | 
 |     if ((!Var || !isInExternCContext(Var)) && | 
 |         (!Func || !isInExternCContext(Func))) | 
 |       return LinkageInfo::uniqueExternal(); | 
 |   } | 
 |  | 
 |   // Set up the defaults. | 
 |  | 
 |   // C99 6.2.2p5: | 
 |   //   If the declaration of an identifier for an object has file | 
 |   //   scope and no storage-class specifier, its linkage is | 
 |   //   external. | 
 |   LinkageInfo LV; | 
 |  | 
 |   if (!hasExplicitVisibilityAlready(computation)) { | 
 |     if (llvm::Optional<Visibility> Vis | 
 |           = getExplicitVisibility(D, computation)) { | 
 |       LV.mergeVisibility(*Vis, true); | 
 |     } else { | 
 |       // If we're declared in a namespace with a visibility attribute, | 
 |       // use that namespace's visibility, and it still counts as explicit. | 
 |       for (const DeclContext *DC = D->getDeclContext(); | 
 |            !isa<TranslationUnitDecl>(DC); | 
 |            DC = DC->getParent()) { | 
 |         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC); | 
 |         if (!ND) continue; | 
 |         if (llvm::Optional<Visibility> Vis | 
 |               = getExplicitVisibility(ND, computation)) { | 
 |           LV.mergeVisibility(*Vis, true); | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Add in global settings if the above didn't give us direct visibility. | 
 |     if (!LV.visibilityExplicit()) { | 
 |       // Use global type/value visibility as appropriate. | 
 |       Visibility globalVisibility; | 
 |       if (computation == LVForValue) { | 
 |         globalVisibility = Context.getLangOpts().getValueVisibilityMode(); | 
 |       } else { | 
 |         assert(computation == LVForType); | 
 |         globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); | 
 |       } | 
 |       LV.mergeVisibility(globalVisibility, /*explicit*/ false); | 
 |  | 
 |       // If we're paying attention to global visibility, apply | 
 |       // -finline-visibility-hidden if this is an inline method. | 
 |       if (useInlineVisibilityHidden(D)) | 
 |         LV.mergeVisibility(HiddenVisibility, true); | 
 |     } | 
 |   } | 
 |  | 
 |   // C++ [basic.link]p4: | 
 |  | 
 |   //   A name having namespace scope has external linkage if it is the | 
 |   //   name of | 
 |   // | 
 |   //     - an object or reference, unless it has internal linkage; or | 
 |   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
 |     // GCC applies the following optimization to variables and static | 
 |     // data members, but not to functions: | 
 |     // | 
 |     // Modify the variable's LV by the LV of its type unless this is | 
 |     // C or extern "C".  This follows from [basic.link]p9: | 
 |     //   A type without linkage shall not be used as the type of a | 
 |     //   variable or function with external linkage unless | 
 |     //    - the entity has C language linkage, or | 
 |     //    - the entity is declared within an unnamed namespace, or | 
 |     //    - the entity is not used or is defined in the same | 
 |     //      translation unit. | 
 |     // and [basic.link]p10: | 
 |     //   ...the types specified by all declarations referring to a | 
 |     //   given variable or function shall be identical... | 
 |     // C does not have an equivalent rule. | 
 |     // | 
 |     // Ignore this if we've got an explicit attribute;  the user | 
 |     // probably knows what they're doing. | 
 |     // | 
 |     // Note that we don't want to make the variable non-external | 
 |     // because of this, but unique-external linkage suits us. | 
 |     if (Context.getLangOpts().CPlusPlus && | 
 |         !Var->getDeclContext()->isExternCContext()) { | 
 |       LinkageInfo TypeLV = getLVForType(Var->getType()); | 
 |       if (TypeLV.linkage() != ExternalLinkage) | 
 |         return LinkageInfo::uniqueExternal(); | 
 |       if (!LV.visibilityExplicit()) | 
 |         LV.mergeVisibility(TypeLV); | 
 |     } | 
 |  | 
 |     if (Var->getStorageClass() == SC_PrivateExtern) | 
 |       LV.mergeVisibility(HiddenVisibility, true); | 
 |  | 
 |     // Note that Sema::MergeVarDecl already takes care of implementing | 
 |     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have | 
 |     // to do it here. | 
 |  | 
 |   //     - a function, unless it has internal linkage; or | 
 |   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { | 
 |     // In theory, we can modify the function's LV by the LV of its | 
 |     // type unless it has C linkage (see comment above about variables | 
 |     // for justification).  In practice, GCC doesn't do this, so it's | 
 |     // just too painful to make work. | 
 |  | 
 |     if (Function->getStorageClass() == SC_PrivateExtern) | 
 |       LV.mergeVisibility(HiddenVisibility, true); | 
 |  | 
 |     // Note that Sema::MergeCompatibleFunctionDecls already takes care of | 
 |     // merging storage classes and visibility attributes, so we don't have to | 
 |     // look at previous decls in here. | 
 |  | 
 |     // In C++, then if the type of the function uses a type with | 
 |     // unique-external linkage, it's not legally usable from outside | 
 |     // this translation unit.  However, we should use the C linkage | 
 |     // rules instead for extern "C" declarations. | 
 |     if (Context.getLangOpts().CPlusPlus && | 
 |         !Function->getDeclContext()->isExternCContext() && | 
 |         Function->getType()->getLinkage() == UniqueExternalLinkage) | 
 |       return LinkageInfo::uniqueExternal(); | 
 |  | 
 |     // Consider LV from the template and the template arguments unless | 
 |     // this is an explicit specialization with a visibility attribute. | 
 |     if (FunctionTemplateSpecializationInfo *specInfo | 
 |                                = Function->getTemplateSpecializationInfo()) { | 
 |       mergeTemplateLV(LV, Function, specInfo); | 
 |     } | 
 |  | 
 |   //     - a named class (Clause 9), or an unnamed class defined in a | 
 |   //       typedef declaration in which the class has the typedef name | 
 |   //       for linkage purposes (7.1.3); or | 
 |   //     - a named enumeration (7.2), or an unnamed enumeration | 
 |   //       defined in a typedef declaration in which the enumeration | 
 |   //       has the typedef name for linkage purposes (7.1.3); or | 
 |   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) { | 
 |     // Unnamed tags have no linkage. | 
 |     if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) | 
 |       return LinkageInfo::none(); | 
 |  | 
 |     // If this is a class template specialization, consider the | 
 |     // linkage of the template and template arguments. | 
 |     if (const ClassTemplateSpecializationDecl *spec | 
 |           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { | 
 |       mergeTemplateLV(LV, spec, computation); | 
 |     } | 
 |  | 
 |   //     - an enumerator belonging to an enumeration with external linkage; | 
 |   } else if (isa<EnumConstantDecl>(D)) { | 
 |     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), | 
 |                                       computation); | 
 |     if (!isExternalLinkage(EnumLV.linkage())) | 
 |       return LinkageInfo::none(); | 
 |     LV.merge(EnumLV); | 
 |  | 
 |   //     - a template, unless it is a function template that has | 
 |   //       internal linkage (Clause 14); | 
 |   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { | 
 |     bool considerVisibility = !hasExplicitVisibilityAlready(computation); | 
 |     LinkageInfo tempLV = | 
 |       getLVForTemplateParameterList(temp->getTemplateParameters()); | 
 |     LV.mergeMaybeWithVisibility(tempLV, considerVisibility); | 
 |  | 
 |   //     - a namespace (7.3), unless it is declared within an unnamed | 
 |   //       namespace. | 
 |   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { | 
 |     return LV; | 
 |  | 
 |   // By extension, we assign external linkage to Objective-C | 
 |   // interfaces. | 
 |   } else if (isa<ObjCInterfaceDecl>(D)) { | 
 |     // fallout | 
 |  | 
 |   // Everything not covered here has no linkage. | 
 |   } else { | 
 |     return LinkageInfo::none(); | 
 |   } | 
 |  | 
 |   // If we ended up with non-external linkage, visibility should | 
 |   // always be default. | 
 |   if (LV.linkage() != ExternalLinkage) | 
 |     return LinkageInfo(LV.linkage(), DefaultVisibility, false); | 
 |  | 
 |   return LV; | 
 | } | 
 |  | 
 | static LinkageInfo getLVForClassMember(const NamedDecl *D, | 
 |                                        LVComputationKind computation) { | 
 |   // Only certain class members have linkage.  Note that fields don't | 
 |   // really have linkage, but it's convenient to say they do for the | 
 |   // purposes of calculating linkage of pointer-to-data-member | 
 |   // template arguments. | 
 |   if (!(isa<CXXMethodDecl>(D) || | 
 |         isa<VarDecl>(D) || | 
 |         isa<FieldDecl>(D) || | 
 |         isa<TagDecl>(D))) | 
 |     return LinkageInfo::none(); | 
 |  | 
 |   LinkageInfo LV; | 
 |  | 
 |   // If we have an explicit visibility attribute, merge that in. | 
 |   if (!hasExplicitVisibilityAlready(computation)) { | 
 |     if (llvm::Optional<Visibility> Vis | 
 |           = getExplicitVisibility(D, computation)) | 
 |       LV.mergeVisibility(*Vis, true); | 
 |     // If we're paying attention to global visibility, apply | 
 |     // -finline-visibility-hidden if this is an inline method. | 
 |     // | 
 |     // Note that we do this before merging information about | 
 |     // the class visibility. | 
 |     if (!LV.visibilityExplicit() && useInlineVisibilityHidden(D)) | 
 |       LV.mergeVisibility(HiddenVisibility, true); | 
 |   } | 
 |  | 
 |   // If this class member has an explicit visibility attribute, the only | 
 |   // thing that can change its visibility is the template arguments, so | 
 |   // only look for them when processing the class. | 
 |   LVComputationKind classComputation = computation; | 
 |   if (LV.visibilityExplicit()) | 
 |     classComputation = withExplicitVisibilityAlready(computation); | 
 |  | 
 |   // If this member has an visibility attribute, ClassF will exclude | 
 |   // attributes on the class or command line options, keeping only information | 
 |   // about the template instantiation. If the member has no visibility | 
 |   // attributes, mergeWithMin behaves like merge, so in both cases mergeWithMin | 
 |   // produces the desired result. | 
 |   LV.merge(getLVForDecl(cast<RecordDecl>(D->getDeclContext()), | 
 |                         classComputation)); | 
 |   if (!isExternalLinkage(LV.linkage())) | 
 |     return LinkageInfo::none(); | 
 |  | 
 |   // If the class already has unique-external linkage, we can't improve. | 
 |   if (LV.linkage() == UniqueExternalLinkage) | 
 |     return LinkageInfo::uniqueExternal(); | 
 |  | 
 |   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { | 
 |     // If the type of the function uses a type with unique-external | 
 |     // linkage, it's not legally usable from outside this translation unit. | 
 |     if (MD->getType()->getLinkage() == UniqueExternalLinkage) | 
 |       return LinkageInfo::uniqueExternal(); | 
 |  | 
 |     // If this is a method template specialization, use the linkage for | 
 |     // the template parameters and arguments. | 
 |     if (FunctionTemplateSpecializationInfo *spec | 
 |            = MD->getTemplateSpecializationInfo()) { | 
 |       mergeTemplateLV(LV, MD, spec); | 
 |     } | 
 |  | 
 |     // Note that in contrast to basically every other situation, we | 
 |     // *do* apply -fvisibility to method declarations. | 
 |  | 
 |   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { | 
 |     if (const ClassTemplateSpecializationDecl *spec | 
 |         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { | 
 |       mergeTemplateLV(LV, spec, computation); | 
 |     } | 
 |  | 
 |   // Static data members. | 
 |   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { | 
 |     // Modify the variable's linkage by its type, but ignore the | 
 |     // type's visibility unless it's a definition. | 
 |     LinkageInfo typeLV = getLVForType(VD->getType()); | 
 |     if (typeLV.linkage() != ExternalLinkage) | 
 |       LV.mergeLinkage(UniqueExternalLinkage); | 
 |     if (!LV.visibilityExplicit()) | 
 |       LV.mergeVisibility(typeLV); | 
 |  | 
 |   // Template members. | 
 |   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) { | 
 |     bool considerVisibility = | 
 |       (!LV.visibilityExplicit() && | 
 |        !hasExplicitVisibilityAlready(computation)); | 
 |     LinkageInfo tempLV = | 
 |       getLVForTemplateParameterList(temp->getTemplateParameters()); | 
 |     LV.mergeMaybeWithVisibility(tempLV, considerVisibility); | 
 |   } | 
 |  | 
 |   return LV; | 
 | } | 
 |  | 
 | static void clearLinkageForClass(const CXXRecordDecl *record) { | 
 |   for (CXXRecordDecl::decl_iterator | 
 |          i = record->decls_begin(), e = record->decls_end(); i != e; ++i) { | 
 |     Decl *child = *i; | 
 |     if (isa<NamedDecl>(child)) | 
 |       cast<NamedDecl>(child)->ClearLinkageCache(); | 
 |   } | 
 | } | 
 |  | 
 | void NamedDecl::anchor() { } | 
 |  | 
 | void NamedDecl::ClearLinkageCache() { | 
 |   // Note that we can't skip clearing the linkage of children just | 
 |   // because the parent doesn't have cached linkage:  we don't cache | 
 |   // when computing linkage for parent contexts. | 
 |  | 
 |   HasCachedLinkage = 0; | 
 |  | 
 |   // If we're changing the linkage of a class, we need to reset the | 
 |   // linkage of child declarations, too. | 
 |   if (const CXXRecordDecl *record = dyn_cast<CXXRecordDecl>(this)) | 
 |     clearLinkageForClass(record); | 
 |  | 
 |   if (ClassTemplateDecl *temp = dyn_cast<ClassTemplateDecl>(this)) { | 
 |     // Clear linkage for the template pattern. | 
 |     CXXRecordDecl *record = temp->getTemplatedDecl(); | 
 |     record->HasCachedLinkage = 0; | 
 |     clearLinkageForClass(record); | 
 |  | 
 |     // We need to clear linkage for specializations, too. | 
 |     for (ClassTemplateDecl::spec_iterator | 
 |            i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i) | 
 |       i->ClearLinkageCache(); | 
 |   } | 
 |  | 
 |   // Clear cached linkage for function template decls, too. | 
 |   if (FunctionTemplateDecl *temp = dyn_cast<FunctionTemplateDecl>(this)) { | 
 |     temp->getTemplatedDecl()->ClearLinkageCache(); | 
 |     for (FunctionTemplateDecl::spec_iterator | 
 |            i = temp->spec_begin(), e = temp->spec_end(); i != e; ++i) | 
 |       i->ClearLinkageCache(); | 
 |   } | 
 |      | 
 | } | 
 |  | 
 | Linkage NamedDecl::getLinkage() const { | 
 |   if (HasCachedLinkage) | 
 |     return Linkage(CachedLinkage); | 
 |  | 
 |   // We don't care about visibility here, so ask for the cheapest | 
 |   // possible visibility analysis. | 
 |   CachedLinkage = getLVForDecl(this, LVForExplicitValue).linkage(); | 
 |   HasCachedLinkage = 1; | 
 |  | 
 | #ifndef NDEBUG | 
 |   verifyLinkage(); | 
 | #endif | 
 |  | 
 |   return Linkage(CachedLinkage); | 
 | } | 
 |  | 
 | LinkageInfo NamedDecl::getLinkageAndVisibility() const { | 
 |   LVComputationKind computation = | 
 |     (usesTypeVisibility(this) ? LVForType : LVForValue); | 
 |   LinkageInfo LI = getLVForDecl(this, computation); | 
 |   if (HasCachedLinkage) { | 
 |     assert(Linkage(CachedLinkage) == LI.linkage()); | 
 |     return LI; | 
 |   } | 
 |   HasCachedLinkage = 1; | 
 |   CachedLinkage = LI.linkage(); | 
 |  | 
 | #ifndef NDEBUG | 
 |   verifyLinkage(); | 
 | #endif | 
 |  | 
 |   return LI; | 
 | } | 
 |  | 
 | void NamedDecl::verifyLinkage() const { | 
 |   // In C (because of gnu inline) and in c++ with microsoft extensions an | 
 |   // static can follow an extern, so we can have two decls with different | 
 |   // linkages. | 
 |   const LangOptions &Opts = getASTContext().getLangOpts(); | 
 |   if (!Opts.CPlusPlus || Opts.MicrosoftExt) | 
 |     return; | 
 |  | 
 |   // We have just computed the linkage for this decl. By induction we know | 
 |   // that all other computed linkages match, check that the one we just computed | 
 |   // also does. | 
 |   NamedDecl *D = NULL; | 
 |   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { | 
 |     NamedDecl *T = cast<NamedDecl>(*I); | 
 |     if (T == this) | 
 |       continue; | 
 |     if (T->HasCachedLinkage != 0) { | 
 |       D = T; | 
 |       break; | 
 |     } | 
 |   } | 
 |   assert(!D || D->CachedLinkage == CachedLinkage); | 
 | } | 
 |  | 
 | llvm::Optional<Visibility> | 
 | NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { | 
 |   // Use the most recent declaration of a variable. | 
 |   if (const VarDecl *Var = dyn_cast<VarDecl>(this)) { | 
 |     if (llvm::Optional<Visibility> V = getVisibilityOf(Var, kind)) | 
 |       return V; | 
 |  | 
 |     if (Var->isStaticDataMember()) { | 
 |       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); | 
 |       if (InstantiatedFrom) | 
 |         return getVisibilityOf(InstantiatedFrom, kind); | 
 |     } | 
 |  | 
 |     return llvm::Optional<Visibility>(); | 
 |   } | 
 |   // Use the most recent declaration of a function, and also handle | 
 |   // function template specializations. | 
 |   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(this)) { | 
 |     if (llvm::Optional<Visibility> V = getVisibilityOf(fn, kind)) | 
 |       return V; | 
 |  | 
 |     // If the function is a specialization of a template with an | 
 |     // explicit visibility attribute, use that. | 
 |     if (FunctionTemplateSpecializationInfo *templateInfo | 
 |           = fn->getTemplateSpecializationInfo()) | 
 |       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), | 
 |                              kind); | 
 |  | 
 |     // If the function is a member of a specialization of a class template | 
 |     // and the corresponding decl has explicit visibility, use that. | 
 |     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); | 
 |     if (InstantiatedFrom) | 
 |       return getVisibilityOf(InstantiatedFrom, kind); | 
 |  | 
 |     return llvm::Optional<Visibility>(); | 
 |   } | 
 |  | 
 |   // Otherwise, just check the declaration itself first. | 
 |   if (llvm::Optional<Visibility> V = getVisibilityOf(this, kind)) | 
 |     return V; | 
 |  | 
 |   // The visibility of a template is stored in the templated decl. | 
 |   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(this)) | 
 |     return getVisibilityOf(TD->getTemplatedDecl(), kind); | 
 |  | 
 |   // If there wasn't explicit visibility there, and this is a | 
 |   // specialization of a class template, check for visibility | 
 |   // on the pattern. | 
 |   if (const ClassTemplateSpecializationDecl *spec | 
 |         = dyn_cast<ClassTemplateSpecializationDecl>(this)) | 
 |     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), | 
 |                            kind); | 
 |  | 
 |   // If this is a member class of a specialization of a class template | 
 |   // and the corresponding decl has explicit visibility, use that. | 
 |   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(this)) { | 
 |     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); | 
 |     if (InstantiatedFrom) | 
 |       return getVisibilityOf(InstantiatedFrom, kind); | 
 |   } | 
 |  | 
 |   return llvm::Optional<Visibility>(); | 
 | } | 
 |  | 
 | static LinkageInfo getLVForLocalDecl(const NamedDecl *D, | 
 |                                      LVComputationKind computation) { | 
 |   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { | 
 |     if (Function->isInAnonymousNamespace() && | 
 |         !Function->getDeclContext()->isExternCContext()) | 
 |       return LinkageInfo::uniqueExternal(); | 
 |  | 
 |     // This is a "void f();" which got merged with a file static. | 
 |     if (Function->getStorageClass() == SC_Static) | 
 |       return LinkageInfo::internal(); | 
 |  | 
 |     LinkageInfo LV; | 
 |     if (!hasExplicitVisibilityAlready(computation)) { | 
 |       if (llvm::Optional<Visibility> Vis | 
 |             = getExplicitVisibility(Function, computation)) | 
 |         LV.mergeVisibility(*Vis, true); | 
 |     } | 
 |  | 
 |     // Note that Sema::MergeCompatibleFunctionDecls already takes care of | 
 |     // merging storage classes and visibility attributes, so we don't have to | 
 |     // look at previous decls in here. | 
 |  | 
 |     return LV; | 
 |   } | 
 |  | 
 |   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { | 
 |     if (Var->getStorageClassAsWritten() == SC_Extern || | 
 |         Var->getStorageClassAsWritten() == SC_PrivateExtern) { | 
 |       if (Var->isInAnonymousNamespace() && | 
 |           !Var->getDeclContext()->isExternCContext()) | 
 |         return LinkageInfo::uniqueExternal(); | 
 |  | 
 |       // This is an "extern int foo;" which got merged with a file static. | 
 |       if (Var->getStorageClass() == SC_Static) | 
 |         return LinkageInfo::internal(); | 
 |  | 
 |       LinkageInfo LV; | 
 |       if (Var->getStorageClass() == SC_PrivateExtern) | 
 |         LV.mergeVisibility(HiddenVisibility, true); | 
 |       else if (!hasExplicitVisibilityAlready(computation)) { | 
 |         if (llvm::Optional<Visibility> Vis | 
 |               = getExplicitVisibility(Var, computation)) | 
 |           LV.mergeVisibility(*Vis, true); | 
 |       } | 
 |  | 
 |       // Note that Sema::MergeVarDecl already takes care of implementing | 
 |       // C99 6.2.2p4 and propagating the visibility attribute, so we don't | 
 |       // have to do it here. | 
 |       return LV; | 
 |     } | 
 |   } | 
 |  | 
 |   return LinkageInfo::none(); | 
 | } | 
 |  | 
 | static LinkageInfo getLVForDecl(const NamedDecl *D, | 
 |                                 LVComputationKind computation) { | 
 |   // Objective-C: treat all Objective-C declarations as having external | 
 |   // linkage. | 
 |   switch (D->getKind()) { | 
 |     default: | 
 |       break; | 
 |     case Decl::ParmVar: | 
 |       return LinkageInfo::none(); | 
 |     case Decl::TemplateTemplateParm: // count these as external | 
 |     case Decl::NonTypeTemplateParm: | 
 |     case Decl::ObjCAtDefsField: | 
 |     case Decl::ObjCCategory: | 
 |     case Decl::ObjCCategoryImpl: | 
 |     case Decl::ObjCCompatibleAlias: | 
 |     case Decl::ObjCImplementation: | 
 |     case Decl::ObjCMethod: | 
 |     case Decl::ObjCProperty: | 
 |     case Decl::ObjCPropertyImpl: | 
 |     case Decl::ObjCProtocol: | 
 |       return LinkageInfo::external(); | 
 |        | 
 |     case Decl::CXXRecord: { | 
 |       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D); | 
 |       if (Record->isLambda()) { | 
 |         if (!Record->getLambdaManglingNumber()) { | 
 |           // This lambda has no mangling number, so it's internal. | 
 |           return LinkageInfo::internal(); | 
 |         } | 
 |          | 
 |         // This lambda has its linkage/visibility determined by its owner. | 
 |         const DeclContext *DC = D->getDeclContext()->getRedeclContext(); | 
 |         if (Decl *ContextDecl = Record->getLambdaContextDecl()) { | 
 |           if (isa<ParmVarDecl>(ContextDecl)) | 
 |             DC = ContextDecl->getDeclContext()->getRedeclContext(); | 
 |           else | 
 |             return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); | 
 |         } | 
 |  | 
 |         if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC)) | 
 |           return getLVForDecl(ND, computation); | 
 |          | 
 |         return LinkageInfo::external(); | 
 |       } | 
 |        | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle linkage for namespace-scope names. | 
 |   if (D->getDeclContext()->getRedeclContext()->isFileContext()) | 
 |     return getLVForNamespaceScopeDecl(D, computation); | 
 |    | 
 |   // C++ [basic.link]p5: | 
 |   //   In addition, a member function, static data member, a named | 
 |   //   class or enumeration of class scope, or an unnamed class or | 
 |   //   enumeration defined in a class-scope typedef declaration such | 
 |   //   that the class or enumeration has the typedef name for linkage | 
 |   //   purposes (7.1.3), has external linkage if the name of the class | 
 |   //   has external linkage. | 
 |   if (D->getDeclContext()->isRecord()) | 
 |     return getLVForClassMember(D, computation); | 
 |  | 
 |   // C++ [basic.link]p6: | 
 |   //   The name of a function declared in block scope and the name of | 
 |   //   an object declared by a block scope extern declaration have | 
 |   //   linkage. If there is a visible declaration of an entity with | 
 |   //   linkage having the same name and type, ignoring entities | 
 |   //   declared outside the innermost enclosing namespace scope, the | 
 |   //   block scope declaration declares that same entity and receives | 
 |   //   the linkage of the previous declaration. If there is more than | 
 |   //   one such matching entity, the program is ill-formed. Otherwise, | 
 |   //   if no matching entity is found, the block scope entity receives | 
 |   //   external linkage. | 
 |   if (D->getDeclContext()->isFunctionOrMethod()) | 
 |     return getLVForLocalDecl(D, computation); | 
 |  | 
 |   // C++ [basic.link]p6: | 
 |   //   Names not covered by these rules have no linkage. | 
 |   return LinkageInfo::none(); | 
 | } | 
 |  | 
 | std::string NamedDecl::getQualifiedNameAsString() const { | 
 |   return getQualifiedNameAsString(getASTContext().getPrintingPolicy()); | 
 | } | 
 |  | 
 | std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const { | 
 |   const DeclContext *Ctx = getDeclContext(); | 
 |  | 
 |   if (Ctx->isFunctionOrMethod()) | 
 |     return getNameAsString(); | 
 |  | 
 |   typedef SmallVector<const DeclContext *, 8> ContextsTy; | 
 |   ContextsTy Contexts; | 
 |  | 
 |   // Collect contexts. | 
 |   while (Ctx && isa<NamedDecl>(Ctx)) { | 
 |     Contexts.push_back(Ctx); | 
 |     Ctx = Ctx->getParent(); | 
 |   }; | 
 |  | 
 |   std::string QualName; | 
 |   llvm::raw_string_ostream OS(QualName); | 
 |  | 
 |   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend(); | 
 |        I != E; ++I) { | 
 |     if (const ClassTemplateSpecializationDecl *Spec | 
 |           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) { | 
 |       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
 |       std::string TemplateArgsStr | 
 |         = TemplateSpecializationType::PrintTemplateArgumentList( | 
 |                                            TemplateArgs.data(), | 
 |                                            TemplateArgs.size(), | 
 |                                            P); | 
 |       OS << Spec->getName() << TemplateArgsStr; | 
 |     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) { | 
 |       if (ND->isAnonymousNamespace()) | 
 |         OS << "<anonymous namespace>"; | 
 |       else | 
 |         OS << *ND; | 
 |     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) { | 
 |       if (!RD->getIdentifier()) | 
 |         OS << "<anonymous " << RD->getKindName() << '>'; | 
 |       else | 
 |         OS << *RD; | 
 |     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { | 
 |       const FunctionProtoType *FT = 0; | 
 |       if (FD->hasWrittenPrototype()) | 
 |         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); | 
 |  | 
 |       OS << *FD << '('; | 
 |       if (FT) { | 
 |         unsigned NumParams = FD->getNumParams(); | 
 |         for (unsigned i = 0; i < NumParams; ++i) { | 
 |           if (i) | 
 |             OS << ", "; | 
 |           OS << FD->getParamDecl(i)->getType().stream(P); | 
 |         } | 
 |  | 
 |         if (FT->isVariadic()) { | 
 |           if (NumParams > 0) | 
 |             OS << ", "; | 
 |           OS << "..."; | 
 |         } | 
 |       } | 
 |       OS << ')'; | 
 |     } else { | 
 |       OS << *cast<NamedDecl>(*I); | 
 |     } | 
 |     OS << "::"; | 
 |   } | 
 |  | 
 |   if (getDeclName()) | 
 |     OS << *this; | 
 |   else | 
 |     OS << "<anonymous>"; | 
 |  | 
 |   return OS.str(); | 
 | } | 
 |  | 
 | bool NamedDecl::declarationReplaces(NamedDecl *OldD) const { | 
 |   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); | 
 |  | 
 |   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. | 
 |   // We want to keep it, unless it nominates same namespace. | 
 |   if (getKind() == Decl::UsingDirective) { | 
 |     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() | 
 |              ->getOriginalNamespace() == | 
 |            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() | 
 |              ->getOriginalNamespace(); | 
 |   } | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this)) | 
 |     // For function declarations, we keep track of redeclarations. | 
 |     return FD->getPreviousDecl() == OldD; | 
 |  | 
 |   // For function templates, the underlying function declarations are linked. | 
 |   if (const FunctionTemplateDecl *FunctionTemplate | 
 |         = dyn_cast<FunctionTemplateDecl>(this)) | 
 |     if (const FunctionTemplateDecl *OldFunctionTemplate | 
 |           = dyn_cast<FunctionTemplateDecl>(OldD)) | 
 |       return FunctionTemplate->getTemplatedDecl() | 
 |                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl()); | 
 |  | 
 |   // For method declarations, we keep track of redeclarations. | 
 |   if (isa<ObjCMethodDecl>(this)) | 
 |     return false; | 
 |  | 
 |   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD)) | 
 |     return true; | 
 |  | 
 |   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD)) | 
 |     return cast<UsingShadowDecl>(this)->getTargetDecl() == | 
 |            cast<UsingShadowDecl>(OldD)->getTargetDecl(); | 
 |  | 
 |   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) { | 
 |     ASTContext &Context = getASTContext(); | 
 |     return Context.getCanonicalNestedNameSpecifier( | 
 |                                      cast<UsingDecl>(this)->getQualifier()) == | 
 |            Context.getCanonicalNestedNameSpecifier( | 
 |                                         cast<UsingDecl>(OldD)->getQualifier()); | 
 |   } | 
 |  | 
 |   // A typedef of an Objective-C class type can replace an Objective-C class | 
 |   // declaration or definition, and vice versa. | 
 |   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) || | 
 |       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD))) | 
 |     return true; | 
 |    | 
 |   // For non-function declarations, if the declarations are of the | 
 |   // same kind then this must be a redeclaration, or semantic analysis | 
 |   // would not have given us the new declaration. | 
 |   return this->getKind() == OldD->getKind(); | 
 | } | 
 |  | 
 | bool NamedDecl::hasLinkage() const { | 
 |   return getLinkage() != NoLinkage; | 
 | } | 
 |  | 
 | NamedDecl *NamedDecl::getUnderlyingDeclImpl() { | 
 |   NamedDecl *ND = this; | 
 |   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND)) | 
 |     ND = UD->getTargetDecl(); | 
 |  | 
 |   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) | 
 |     return AD->getClassInterface(); | 
 |  | 
 |   return ND; | 
 | } | 
 |  | 
 | bool NamedDecl::isCXXInstanceMember() const { | 
 |   if (!isCXXClassMember()) | 
 |     return false; | 
 |    | 
 |   const NamedDecl *D = this; | 
 |   if (isa<UsingShadowDecl>(D)) | 
 |     D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
 |  | 
 |   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) | 
 |     return true; | 
 |   if (isa<CXXMethodDecl>(D)) | 
 |     return cast<CXXMethodDecl>(D)->isInstance(); | 
 |   if (isa<FunctionTemplateDecl>(D)) | 
 |     return cast<CXXMethodDecl>(cast<FunctionTemplateDecl>(D) | 
 |                                  ->getTemplatedDecl())->isInstance(); | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // DeclaratorDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | template <typename DeclT> | 
 | static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { | 
 |   if (decl->getNumTemplateParameterLists() > 0) | 
 |     return decl->getTemplateParameterList(0)->getTemplateLoc(); | 
 |   else | 
 |     return decl->getInnerLocStart(); | 
 | } | 
 |  | 
 | SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { | 
 |   TypeSourceInfo *TSI = getTypeSourceInfo(); | 
 |   if (TSI) return TSI->getTypeLoc().getBeginLoc(); | 
 |   return SourceLocation(); | 
 | } | 
 |  | 
 | void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { | 
 |   if (QualifierLoc) { | 
 |     // Make sure the extended decl info is allocated. | 
 |     if (!hasExtInfo()) { | 
 |       // Save (non-extended) type source info pointer. | 
 |       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); | 
 |       // Allocate external info struct. | 
 |       DeclInfo = new (getASTContext()) ExtInfo; | 
 |       // Restore savedTInfo into (extended) decl info. | 
 |       getExtInfo()->TInfo = savedTInfo; | 
 |     } | 
 |     // Set qualifier info. | 
 |     getExtInfo()->QualifierLoc = QualifierLoc; | 
 |   } else { | 
 |     // Here Qualifier == 0, i.e., we are removing the qualifier (if any). | 
 |     if (hasExtInfo()) { | 
 |       if (getExtInfo()->NumTemplParamLists == 0) { | 
 |         // Save type source info pointer. | 
 |         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; | 
 |         // Deallocate the extended decl info. | 
 |         getASTContext().Deallocate(getExtInfo()); | 
 |         // Restore savedTInfo into (non-extended) decl info. | 
 |         DeclInfo = savedTInfo; | 
 |       } | 
 |       else | 
 |         getExtInfo()->QualifierLoc = QualifierLoc; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context, | 
 |                                               unsigned NumTPLists, | 
 |                                               TemplateParameterList **TPLists) { | 
 |   assert(NumTPLists > 0); | 
 |   // Make sure the extended decl info is allocated. | 
 |   if (!hasExtInfo()) { | 
 |     // Save (non-extended) type source info pointer. | 
 |     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); | 
 |     // Allocate external info struct. | 
 |     DeclInfo = new (getASTContext()) ExtInfo; | 
 |     // Restore savedTInfo into (extended) decl info. | 
 |     getExtInfo()->TInfo = savedTInfo; | 
 |   } | 
 |   // Set the template parameter lists info. | 
 |   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); | 
 | } | 
 |  | 
 | SourceLocation DeclaratorDecl::getOuterLocStart() const { | 
 |   return getTemplateOrInnerLocStart(this); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // Helper function: returns true if QT is or contains a type | 
 | // having a postfix component. | 
 | bool typeIsPostfix(clang::QualType QT) { | 
 |   while (true) { | 
 |     const Type* T = QT.getTypePtr(); | 
 |     switch (T->getTypeClass()) { | 
 |     default: | 
 |       return false; | 
 |     case Type::Pointer: | 
 |       QT = cast<PointerType>(T)->getPointeeType(); | 
 |       break; | 
 |     case Type::BlockPointer: | 
 |       QT = cast<BlockPointerType>(T)->getPointeeType(); | 
 |       break; | 
 |     case Type::MemberPointer: | 
 |       QT = cast<MemberPointerType>(T)->getPointeeType(); | 
 |       break; | 
 |     case Type::LValueReference: | 
 |     case Type::RValueReference: | 
 |       QT = cast<ReferenceType>(T)->getPointeeType(); | 
 |       break; | 
 |     case Type::PackExpansion: | 
 |       QT = cast<PackExpansionType>(T)->getPattern(); | 
 |       break; | 
 |     case Type::Paren: | 
 |     case Type::ConstantArray: | 
 |     case Type::DependentSizedArray: | 
 |     case Type::IncompleteArray: | 
 |     case Type::VariableArray: | 
 |     case Type::FunctionProto: | 
 |     case Type::FunctionNoProto: | 
 |       return true; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | SourceRange DeclaratorDecl::getSourceRange() const { | 
 |   SourceLocation RangeEnd = getLocation(); | 
 |   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { | 
 |     if (typeIsPostfix(TInfo->getType())) | 
 |       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); | 
 |   } | 
 |   return SourceRange(getOuterLocStart(), RangeEnd); | 
 | } | 
 |  | 
 | void | 
 | QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context, | 
 |                                              unsigned NumTPLists, | 
 |                                              TemplateParameterList **TPLists) { | 
 |   assert((NumTPLists == 0 || TPLists != 0) && | 
 |          "Empty array of template parameters with positive size!"); | 
 |  | 
 |   // Free previous template parameters (if any). | 
 |   if (NumTemplParamLists > 0) { | 
 |     Context.Deallocate(TemplParamLists); | 
 |     TemplParamLists = 0; | 
 |     NumTemplParamLists = 0; | 
 |   } | 
 |   // Set info on matched template parameter lists (if any). | 
 |   if (NumTPLists > 0) { | 
 |     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists]; | 
 |     NumTemplParamLists = NumTPLists; | 
 |     for (unsigned i = NumTPLists; i-- > 0; ) | 
 |       TemplParamLists[i] = TPLists[i]; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // VarDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { | 
 |   switch (SC) { | 
 |   case SC_None:                 break; | 
 |   case SC_Auto:                 return "auto"; | 
 |   case SC_Extern:               return "extern"; | 
 |   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>"; | 
 |   case SC_PrivateExtern:        return "__private_extern__"; | 
 |   case SC_Register:             return "register"; | 
 |   case SC_Static:               return "static"; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid storage class"); | 
 | } | 
 |  | 
 | VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                          SourceLocation StartL, SourceLocation IdL, | 
 |                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, | 
 |                          StorageClass S, StorageClass SCAsWritten) { | 
 |   return new (C) VarDecl(Var, DC, StartL, IdL, Id, T, TInfo, S, SCAsWritten); | 
 | } | 
 |  | 
 | VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(VarDecl)); | 
 |   return new (Mem) VarDecl(Var, 0, SourceLocation(), SourceLocation(), 0,  | 
 |                            QualType(), 0, SC_None, SC_None); | 
 | } | 
 |  | 
 | void VarDecl::setStorageClass(StorageClass SC) { | 
 |   assert(isLegalForVariable(SC)); | 
 |   if (getStorageClass() != SC) | 
 |     ClearLinkageCache(); | 
 |    | 
 |   VarDeclBits.SClass = SC; | 
 | } | 
 |  | 
 | SourceRange VarDecl::getSourceRange() const { | 
 |   if (const Expr *Init = getInit()) { | 
 |     SourceLocation InitEnd = Init->getLocEnd(); | 
 |     // If Init is implicit, ignore its source range and fallback on  | 
 |     // DeclaratorDecl::getSourceRange() to handle postfix elements. | 
 |     if (InitEnd.isValid() && InitEnd != getLocation()) | 
 |       return SourceRange(getOuterLocStart(), InitEnd); | 
 |   } | 
 |   return DeclaratorDecl::getSourceRange(); | 
 | } | 
 |  | 
 | template<typename T> | 
 | static LanguageLinkage getLanguageLinkageTemplate(const T &D) { | 
 |   // C++ [dcl.link]p1: All function types, function names with external linkage, | 
 |   // and variable names with external linkage have a language linkage. | 
 |   if (!isExternalLinkage(D.getLinkage())) | 
 |     return NoLanguageLinkage; | 
 |  | 
 |   // Language linkage is a C++ concept, but saying that everything else in C has | 
 |   // C language linkage fits the implementation nicely. | 
 |   ASTContext &Context = D.getASTContext(); | 
 |   if (!Context.getLangOpts().CPlusPlus) | 
 |     return CLanguageLinkage; | 
 |  | 
 |   // C++ [dcl.link]p4: A C language linkage is ignored in determining the | 
 |   // language linkage of the names of class members and the function type of | 
 |   // class member functions. | 
 |   const DeclContext *DC = D.getDeclContext(); | 
 |   if (DC->isRecord()) | 
 |     return CXXLanguageLinkage; | 
 |  | 
 |   // If the first decl is in an extern "C" context, any other redeclaration | 
 |   // will have C language linkage. If the first one is not in an extern "C" | 
 |   // context, we would have reported an error for any other decl being in one. | 
 |   const T *First = D.getFirstDeclaration(); | 
 |   if (First->getDeclContext()->isExternCContext()) | 
 |     return CLanguageLinkage; | 
 |   return CXXLanguageLinkage; | 
 | } | 
 |  | 
 | LanguageLinkage VarDecl::getLanguageLinkage() const { | 
 |   return getLanguageLinkageTemplate(*this); | 
 | } | 
 |  | 
 | VarDecl *VarDecl::getCanonicalDecl() { | 
 |   return getFirstDeclaration(); | 
 | } | 
 |  | 
 | VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition( | 
 |   ASTContext &C) const | 
 | { | 
 |   // C++ [basic.def]p2: | 
 |   //   A declaration is a definition unless [...] it contains the 'extern' | 
 |   //   specifier or a linkage-specification and neither an initializer [...], | 
 |   //   it declares a static data member in a class declaration [...]. | 
 |   // C++ [temp.expl.spec]p15: | 
 |   //   An explicit specialization of a static data member of a template is a | 
 |   //   definition if the declaration includes an initializer; otherwise, it is | 
 |   //   a declaration. | 
 |   if (isStaticDataMember()) { | 
 |     if (isOutOfLine() && (hasInit() || | 
 |           getTemplateSpecializationKind() != TSK_ExplicitSpecialization)) | 
 |       return Definition; | 
 |     else | 
 |       return DeclarationOnly; | 
 |   } | 
 |   // C99 6.7p5: | 
 |   //   A definition of an identifier is a declaration for that identifier that | 
 |   //   [...] causes storage to be reserved for that object. | 
 |   // Note: that applies for all non-file-scope objects. | 
 |   // C99 6.9.2p1: | 
 |   //   If the declaration of an identifier for an object has file scope and an | 
 |   //   initializer, the declaration is an external definition for the identifier | 
 |   if (hasInit()) | 
 |     return Definition; | 
 |   // AST for 'extern "C" int foo;' is annotated with 'extern'. | 
 |   if (hasExternalStorage()) | 
 |     return DeclarationOnly; | 
 |    | 
 |   if (getStorageClassAsWritten() == SC_Extern || | 
 |        getStorageClassAsWritten() == SC_PrivateExtern) { | 
 |     for (const VarDecl *PrevVar = getPreviousDecl(); | 
 |          PrevVar; PrevVar = PrevVar->getPreviousDecl()) { | 
 |       if (PrevVar->getLinkage() == InternalLinkage) | 
 |         return DeclarationOnly; | 
 |     } | 
 |   } | 
 |   // C99 6.9.2p2: | 
 |   //   A declaration of an object that has file scope without an initializer, | 
 |   //   and without a storage class specifier or the scs 'static', constitutes | 
 |   //   a tentative definition. | 
 |   // No such thing in C++. | 
 |   if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) | 
 |     return TentativeDefinition; | 
 |  | 
 |   // What's left is (in C, block-scope) declarations without initializers or | 
 |   // external storage. These are definitions. | 
 |   return Definition; | 
 | } | 
 |  | 
 | VarDecl *VarDecl::getActingDefinition() { | 
 |   DefinitionKind Kind = isThisDeclarationADefinition(); | 
 |   if (Kind != TentativeDefinition) | 
 |     return 0; | 
 |  | 
 |   VarDecl *LastTentative = 0; | 
 |   VarDecl *First = getFirstDeclaration(); | 
 |   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); | 
 |        I != E; ++I) { | 
 |     Kind = (*I)->isThisDeclarationADefinition(); | 
 |     if (Kind == Definition) | 
 |       return 0; | 
 |     else if (Kind == TentativeDefinition) | 
 |       LastTentative = *I; | 
 |   } | 
 |   return LastTentative; | 
 | } | 
 |  | 
 | bool VarDecl::isTentativeDefinitionNow() const { | 
 |   DefinitionKind Kind = isThisDeclarationADefinition(); | 
 |   if (Kind != TentativeDefinition) | 
 |     return false; | 
 |  | 
 |   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { | 
 |     if ((*I)->isThisDeclarationADefinition() == Definition) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | VarDecl *VarDecl::getDefinition(ASTContext &C) { | 
 |   VarDecl *First = getFirstDeclaration(); | 
 |   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); | 
 |        I != E; ++I) { | 
 |     if ((*I)->isThisDeclarationADefinition(C) == Definition) | 
 |       return *I; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { | 
 |   DefinitionKind Kind = DeclarationOnly; | 
 |    | 
 |   const VarDecl *First = getFirstDeclaration(); | 
 |   for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end(); | 
 |        I != E; ++I) { | 
 |     Kind = std::max(Kind, (*I)->isThisDeclarationADefinition(C)); | 
 |     if (Kind == Definition) | 
 |       break; | 
 |   } | 
 |  | 
 |   return Kind; | 
 | } | 
 |  | 
 | const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { | 
 |   redecl_iterator I = redecls_begin(), E = redecls_end(); | 
 |   while (I != E && !I->getInit()) | 
 |     ++I; | 
 |  | 
 |   if (I != E) { | 
 |     D = *I; | 
 |     return I->getInit(); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | bool VarDecl::isOutOfLine() const { | 
 |   if (Decl::isOutOfLine()) | 
 |     return true; | 
 |  | 
 |   if (!isStaticDataMember()) | 
 |     return false; | 
 |  | 
 |   // If this static data member was instantiated from a static data member of | 
 |   // a class template, check whether that static data member was defined  | 
 |   // out-of-line. | 
 |   if (VarDecl *VD = getInstantiatedFromStaticDataMember()) | 
 |     return VD->isOutOfLine(); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | VarDecl *VarDecl::getOutOfLineDefinition() { | 
 |   if (!isStaticDataMember()) | 
 |     return 0; | 
 |    | 
 |   for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end(); | 
 |        RD != RDEnd; ++RD) { | 
 |     if (RD->getLexicalDeclContext()->isFileContext()) | 
 |       return *RD; | 
 |   } | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 | void VarDecl::setInit(Expr *I) { | 
 |   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) { | 
 |     Eval->~EvaluatedStmt(); | 
 |     getASTContext().Deallocate(Eval); | 
 |   } | 
 |  | 
 |   Init = I; | 
 | } | 
 |  | 
 | bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { | 
 |   const LangOptions &Lang = C.getLangOpts(); | 
 |  | 
 |   if (!Lang.CPlusPlus) | 
 |     return false; | 
 |  | 
 |   // In C++11, any variable of reference type can be used in a constant | 
 |   // expression if it is initialized by a constant expression. | 
 |   if (Lang.CPlusPlus11 && getType()->isReferenceType()) | 
 |     return true; | 
 |  | 
 |   // Only const objects can be used in constant expressions in C++. C++98 does | 
 |   // not require the variable to be non-volatile, but we consider this to be a | 
 |   // defect. | 
 |   if (!getType().isConstQualified() || getType().isVolatileQualified()) | 
 |     return false; | 
 |  | 
 |   // In C++, const, non-volatile variables of integral or enumeration types | 
 |   // can be used in constant expressions. | 
 |   if (getType()->isIntegralOrEnumerationType()) | 
 |     return true; | 
 |  | 
 |   // Additionally, in C++11, non-volatile constexpr variables can be used in | 
 |   // constant expressions. | 
 |   return Lang.CPlusPlus11 && isConstexpr(); | 
 | } | 
 |  | 
 | /// Convert the initializer for this declaration to the elaborated EvaluatedStmt | 
 | /// form, which contains extra information on the evaluated value of the | 
 | /// initializer. | 
 | EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { | 
 |   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>(); | 
 |   if (!Eval) { | 
 |     Stmt *S = Init.get<Stmt *>(); | 
 |     Eval = new (getASTContext()) EvaluatedStmt; | 
 |     Eval->Value = S; | 
 |     Init = Eval; | 
 |   } | 
 |   return Eval; | 
 | } | 
 |  | 
 | APValue *VarDecl::evaluateValue() const { | 
 |   SmallVector<PartialDiagnosticAt, 8> Notes; | 
 |   return evaluateValue(Notes); | 
 | } | 
 |  | 
 | APValue *VarDecl::evaluateValue( | 
 |     SmallVectorImpl<PartialDiagnosticAt> &Notes) const { | 
 |   EvaluatedStmt *Eval = ensureEvaluatedStmt(); | 
 |  | 
 |   // We only produce notes indicating why an initializer is non-constant the | 
 |   // first time it is evaluated. FIXME: The notes won't always be emitted the | 
 |   // first time we try evaluation, so might not be produced at all. | 
 |   if (Eval->WasEvaluated) | 
 |     return Eval->Evaluated.isUninit() ? 0 : &Eval->Evaluated; | 
 |  | 
 |   const Expr *Init = cast<Expr>(Eval->Value); | 
 |   assert(!Init->isValueDependent()); | 
 |  | 
 |   if (Eval->IsEvaluating) { | 
 |     // FIXME: Produce a diagnostic for self-initialization. | 
 |     Eval->CheckedICE = true; | 
 |     Eval->IsICE = false; | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Eval->IsEvaluating = true; | 
 |  | 
 |   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), | 
 |                                             this, Notes); | 
 |  | 
 |   // Ensure the result is an uninitialized APValue if evaluation fails. | 
 |   if (!Result) | 
 |     Eval->Evaluated = APValue(); | 
 |  | 
 |   Eval->IsEvaluating = false; | 
 |   Eval->WasEvaluated = true; | 
 |  | 
 |   // In C++11, we have determined whether the initializer was a constant | 
 |   // expression as a side-effect. | 
 |   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { | 
 |     Eval->CheckedICE = true; | 
 |     Eval->IsICE = Result && Notes.empty(); | 
 |   } | 
 |  | 
 |   return Result ? &Eval->Evaluated : 0; | 
 | } | 
 |  | 
 | bool VarDecl::checkInitIsICE() const { | 
 |   // Initializers of weak variables are never ICEs. | 
 |   if (isWeak()) | 
 |     return false; | 
 |  | 
 |   EvaluatedStmt *Eval = ensureEvaluatedStmt(); | 
 |   if (Eval->CheckedICE) | 
 |     // We have already checked whether this subexpression is an | 
 |     // integral constant expression. | 
 |     return Eval->IsICE; | 
 |  | 
 |   const Expr *Init = cast<Expr>(Eval->Value); | 
 |   assert(!Init->isValueDependent()); | 
 |  | 
 |   // In C++11, evaluate the initializer to check whether it's a constant | 
 |   // expression. | 
 |   if (getASTContext().getLangOpts().CPlusPlus11) { | 
 |     SmallVector<PartialDiagnosticAt, 8> Notes; | 
 |     evaluateValue(Notes); | 
 |     return Eval->IsICE; | 
 |   } | 
 |  | 
 |   // It's an ICE whether or not the definition we found is | 
 |   // out-of-line.  See DR 721 and the discussion in Clang PR | 
 |   // 6206 for details. | 
 |  | 
 |   if (Eval->CheckingICE) | 
 |     return false; | 
 |   Eval->CheckingICE = true; | 
 |  | 
 |   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); | 
 |   Eval->CheckingICE = false; | 
 |   Eval->CheckedICE = true; | 
 |   return Eval->IsICE; | 
 | } | 
 |  | 
 | bool VarDecl::extendsLifetimeOfTemporary() const { | 
 |   assert(getType()->isReferenceType() &&"Non-references never extend lifetime"); | 
 |    | 
 |   const Expr *E = getInit(); | 
 |   if (!E) | 
 |     return false; | 
 |    | 
 |   if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(E)) | 
 |     E = Cleanups->getSubExpr(); | 
 |    | 
 |   return isa<MaterializeTemporaryExpr>(E); | 
 | } | 
 |  | 
 | VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { | 
 |   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
 |     return cast<VarDecl>(MSI->getInstantiatedFrom()); | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 | TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { | 
 |   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
 |     return MSI->getTemplateSpecializationKind(); | 
 |    | 
 |   return TSK_Undeclared; | 
 | } | 
 |  | 
 | MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { | 
 |   return getASTContext().getInstantiatedFromStaticDataMember(this); | 
 | } | 
 |  | 
 | void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, | 
 |                                          SourceLocation PointOfInstantiation) { | 
 |   MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); | 
 |   assert(MSI && "Not an instantiated static data member?"); | 
 |   MSI->setTemplateSpecializationKind(TSK); | 
 |   if (TSK != TSK_ExplicitSpecialization && | 
 |       PointOfInstantiation.isValid() && | 
 |       MSI->getPointOfInstantiation().isInvalid()) | 
 |     MSI->setPointOfInstantiation(PointOfInstantiation); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // ParmVarDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                  SourceLocation StartLoc, | 
 |                                  SourceLocation IdLoc, IdentifierInfo *Id, | 
 |                                  QualType T, TypeSourceInfo *TInfo, | 
 |                                  StorageClass S, StorageClass SCAsWritten, | 
 |                                  Expr *DefArg) { | 
 |   return new (C) ParmVarDecl(ParmVar, DC, StartLoc, IdLoc, Id, T, TInfo, | 
 |                              S, SCAsWritten, DefArg); | 
 | } | 
 |  | 
 | ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ParmVarDecl)); | 
 |   return new (Mem) ParmVarDecl(ParmVar, 0, SourceLocation(), SourceLocation(), | 
 |                                0, QualType(), 0, SC_None, SC_None, 0); | 
 | } | 
 |  | 
 | SourceRange ParmVarDecl::getSourceRange() const { | 
 |   if (!hasInheritedDefaultArg()) { | 
 |     SourceRange ArgRange = getDefaultArgRange(); | 
 |     if (ArgRange.isValid()) | 
 |       return SourceRange(getOuterLocStart(), ArgRange.getEnd()); | 
 |   } | 
 |  | 
 |   return DeclaratorDecl::getSourceRange(); | 
 | } | 
 |  | 
 | Expr *ParmVarDecl::getDefaultArg() { | 
 |   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); | 
 |   assert(!hasUninstantiatedDefaultArg() && | 
 |          "Default argument is not yet instantiated!"); | 
 |    | 
 |   Expr *Arg = getInit(); | 
 |   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) | 
 |     return E->getSubExpr(); | 
 |  | 
 |   return Arg; | 
 | } | 
 |  | 
 | SourceRange ParmVarDecl::getDefaultArgRange() const { | 
 |   if (const Expr *E = getInit()) | 
 |     return E->getSourceRange(); | 
 |  | 
 |   if (hasUninstantiatedDefaultArg()) | 
 |     return getUninstantiatedDefaultArg()->getSourceRange(); | 
 |  | 
 |   return SourceRange(); | 
 | } | 
 |  | 
 | bool ParmVarDecl::isParameterPack() const { | 
 |   return isa<PackExpansionType>(getType()); | 
 | } | 
 |  | 
 | void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { | 
 |   getASTContext().setParameterIndex(this, parameterIndex); | 
 |   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; | 
 | } | 
 |  | 
 | unsigned ParmVarDecl::getParameterIndexLarge() const { | 
 |   return getASTContext().getParameterIndex(this); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // FunctionDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void FunctionDecl::getNameForDiagnostic(std::string &S, | 
 |                                         const PrintingPolicy &Policy, | 
 |                                         bool Qualified) const { | 
 |   NamedDecl::getNameForDiagnostic(S, Policy, Qualified); | 
 |   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); | 
 |   if (TemplateArgs) | 
 |     S += TemplateSpecializationType::PrintTemplateArgumentList( | 
 |                                                          TemplateArgs->data(), | 
 |                                                          TemplateArgs->size(), | 
 |                                                                Policy); | 
 |      | 
 | } | 
 |  | 
 | bool FunctionDecl::isVariadic() const { | 
 |   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>()) | 
 |     return FT->isVariadic(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { | 
 |   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { | 
 |     if (I->Body || I->IsLateTemplateParsed) { | 
 |       Definition = *I; | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool FunctionDecl::hasTrivialBody() const | 
 | { | 
 |   Stmt *S = getBody(); | 
 |   if (!S) { | 
 |     // Since we don't have a body for this function, we don't know if it's | 
 |     // trivial or not. | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) | 
 |     return true; | 
 |   return false; | 
 | } | 
 |  | 
 | bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { | 
 |   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { | 
 |     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed) { | 
 |       Definition = I->IsDeleted ? I->getCanonicalDecl() : *I; | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { | 
 |   for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) { | 
 |     if (I->Body) { | 
 |       Definition = *I; | 
 |       return I->Body.get(getASTContext().getExternalSource()); | 
 |     } else if (I->IsLateTemplateParsed) { | 
 |       Definition = *I; | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | void FunctionDecl::setBody(Stmt *B) { | 
 |   Body = B; | 
 |   if (B) | 
 |     EndRangeLoc = B->getLocEnd(); | 
 | } | 
 |  | 
 | void FunctionDecl::setPure(bool P) { | 
 |   IsPure = P; | 
 |   if (P) | 
 |     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) | 
 |       Parent->markedVirtualFunctionPure(); | 
 | } | 
 |  | 
 | bool FunctionDecl::isMain() const { | 
 |   const TranslationUnitDecl *tunit = | 
 |     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); | 
 |   return tunit && | 
 |          !tunit->getASTContext().getLangOpts().Freestanding && | 
 |          getIdentifier() && | 
 |          getIdentifier()->isStr("main"); | 
 | } | 
 |  | 
 | bool FunctionDecl::isReservedGlobalPlacementOperator() const { | 
 |   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); | 
 |   assert(getDeclName().getCXXOverloadedOperator() == OO_New || | 
 |          getDeclName().getCXXOverloadedOperator() == OO_Delete || | 
 |          getDeclName().getCXXOverloadedOperator() == OO_Array_New || | 
 |          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); | 
 |  | 
 |   if (isa<CXXRecordDecl>(getDeclContext())) return false; | 
 |   assert(getDeclContext()->getRedeclContext()->isTranslationUnit()); | 
 |  | 
 |   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>(); | 
 |   if (proto->getNumArgs() != 2 || proto->isVariadic()) return false; | 
 |  | 
 |   ASTContext &Context = | 
 |     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) | 
 |       ->getASTContext(); | 
 |  | 
 |   // The result type and first argument type are constant across all | 
 |   // these operators.  The second argument must be exactly void*. | 
 |   return (proto->getArgType(1).getCanonicalType() == Context.VoidPtrTy); | 
 | } | 
 |  | 
 | LanguageLinkage FunctionDecl::getLanguageLinkage() const { | 
 |   // Users expect to be able to write | 
 |   // extern "C" void *__builtin_alloca (size_t); | 
 |   // so consider builtins as having C language linkage. | 
 |   if (getBuiltinID()) | 
 |     return CLanguageLinkage; | 
 |  | 
 |   return getLanguageLinkageTemplate(*this); | 
 | } | 
 |  | 
 | bool FunctionDecl::isGlobal() const { | 
 |   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this)) | 
 |     return Method->isStatic(); | 
 |  | 
 |   if (getStorageClass() == SC_Static) | 
 |     return false; | 
 |  | 
 |   for (const DeclContext *DC = getDeclContext(); | 
 |        DC->isNamespace(); | 
 |        DC = DC->getParent()) { | 
 |     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) { | 
 |       if (!Namespace->getDeclName()) | 
 |         return false; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool FunctionDecl::isNoReturn() const { | 
 |   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || | 
 |          hasAttr<C11NoReturnAttr>() || | 
 |          getType()->getAs<FunctionType>()->getNoReturnAttr(); | 
 | } | 
 |  | 
 | void | 
 | FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { | 
 |   redeclarable_base::setPreviousDeclaration(PrevDecl); | 
 |  | 
 |   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { | 
 |     FunctionTemplateDecl *PrevFunTmpl | 
 |       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0; | 
 |     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); | 
 |     FunTmpl->setPreviousDeclaration(PrevFunTmpl); | 
 |   } | 
 |    | 
 |   if (PrevDecl && PrevDecl->IsInline) | 
 |     IsInline = true; | 
 | } | 
 |  | 
 | const FunctionDecl *FunctionDecl::getCanonicalDecl() const { | 
 |   return getFirstDeclaration(); | 
 | } | 
 |  | 
 | FunctionDecl *FunctionDecl::getCanonicalDecl() { | 
 |   return getFirstDeclaration(); | 
 | } | 
 |  | 
 | void FunctionDecl::setStorageClass(StorageClass SC) { | 
 |   assert(isLegalForFunction(SC)); | 
 |   if (getStorageClass() != SC) | 
 |     ClearLinkageCache(); | 
 |    | 
 |   SClass = SC; | 
 | } | 
 |  | 
 | /// \brief Returns a value indicating whether this function | 
 | /// corresponds to a builtin function. | 
 | /// | 
 | /// The function corresponds to a built-in function if it is | 
 | /// declared at translation scope or within an extern "C" block and | 
 | /// its name matches with the name of a builtin. The returned value | 
 | /// will be 0 for functions that do not correspond to a builtin, a | 
 | /// value of type \c Builtin::ID if in the target-independent range | 
 | /// \c [1,Builtin::First), or a target-specific builtin value. | 
 | unsigned FunctionDecl::getBuiltinID() const { | 
 |   if (!getIdentifier()) | 
 |     return 0; | 
 |  | 
 |   unsigned BuiltinID = getIdentifier()->getBuiltinID(); | 
 |   if (!BuiltinID) | 
 |     return 0; | 
 |  | 
 |   ASTContext &Context = getASTContext(); | 
 |   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) | 
 |     return BuiltinID; | 
 |  | 
 |   // This function has the name of a known C library | 
 |   // function. Determine whether it actually refers to the C library | 
 |   // function or whether it just has the same name. | 
 |  | 
 |   // If this is a static function, it's not a builtin. | 
 |   if (getStorageClass() == SC_Static) | 
 |     return 0; | 
 |  | 
 |   // If this function is at translation-unit scope and we're not in | 
 |   // C++, it refers to the C library function. | 
 |   if (!Context.getLangOpts().CPlusPlus && | 
 |       getDeclContext()->isTranslationUnit()) | 
 |     return BuiltinID; | 
 |  | 
 |   // If the function is in an extern "C" linkage specification and is | 
 |   // not marked "overloadable", it's the real function. | 
 |   if (isa<LinkageSpecDecl>(getDeclContext()) && | 
 |       cast<LinkageSpecDecl>(getDeclContext())->getLanguage() | 
 |         == LinkageSpecDecl::lang_c && | 
 |       !getAttr<OverloadableAttr>()) | 
 |     return BuiltinID; | 
 |  | 
 |   // Not a builtin | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// getNumParams - Return the number of parameters this function must have | 
 | /// based on its FunctionType.  This is the length of the ParamInfo array | 
 | /// after it has been created. | 
 | unsigned FunctionDecl::getNumParams() const { | 
 |   const FunctionType *FT = getType()->castAs<FunctionType>(); | 
 |   if (isa<FunctionNoProtoType>(FT)) | 
 |     return 0; | 
 |   return cast<FunctionProtoType>(FT)->getNumArgs(); | 
 |  | 
 | } | 
 |  | 
 | void FunctionDecl::setParams(ASTContext &C, | 
 |                              ArrayRef<ParmVarDecl *> NewParamInfo) { | 
 |   assert(ParamInfo == 0 && "Already has param info!"); | 
 |   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); | 
 |  | 
 |   // Zero params -> null pointer. | 
 |   if (!NewParamInfo.empty()) { | 
 |     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; | 
 |     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); | 
 |   } | 
 | } | 
 |  | 
 | void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { | 
 |   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); | 
 |  | 
 |   if (!NewDecls.empty()) { | 
 |     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; | 
 |     std::copy(NewDecls.begin(), NewDecls.end(), A); | 
 |     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size()); | 
 |   } | 
 | } | 
 |  | 
 | /// getMinRequiredArguments - Returns the minimum number of arguments | 
 | /// needed to call this function. This may be fewer than the number of | 
 | /// function parameters, if some of the parameters have default | 
 | /// arguments (in C++) or the last parameter is a parameter pack. | 
 | unsigned FunctionDecl::getMinRequiredArguments() const { | 
 |   if (!getASTContext().getLangOpts().CPlusPlus) | 
 |     return getNumParams(); | 
 |    | 
 |   unsigned NumRequiredArgs = getNumParams();   | 
 |    | 
 |   // If the last parameter is a parameter pack, we don't need an argument for  | 
 |   // it. | 
 |   if (NumRequiredArgs > 0 && | 
 |       getParamDecl(NumRequiredArgs - 1)->isParameterPack()) | 
 |     --NumRequiredArgs; | 
 |        | 
 |   // If this parameter has a default argument, we don't need an argument for | 
 |   // it. | 
 |   while (NumRequiredArgs > 0 && | 
 |          getParamDecl(NumRequiredArgs-1)->hasDefaultArg()) | 
 |     --NumRequiredArgs; | 
 |  | 
 |   // We might have parameter packs before the end. These can't be deduced, | 
 |   // but they can still handle multiple arguments. | 
 |   unsigned ArgIdx = NumRequiredArgs; | 
 |   while (ArgIdx > 0) { | 
 |     if (getParamDecl(ArgIdx - 1)->isParameterPack()) | 
 |       NumRequiredArgs = ArgIdx; | 
 |      | 
 |     --ArgIdx; | 
 |   } | 
 |    | 
 |   return NumRequiredArgs; | 
 | } | 
 |  | 
 | static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { | 
 |   // Only consider file-scope declarations in this test. | 
 |   if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) | 
 |     return false; | 
 |  | 
 |   // Only consider explicit declarations; the presence of a builtin for a | 
 |   // libcall shouldn't affect whether a definition is externally visible. | 
 |   if (Redecl->isImplicit()) | 
 |     return false; | 
 |  | 
 |   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)  | 
 |     return true; // Not an inline definition | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief For a function declaration in C or C++, determine whether this | 
 | /// declaration causes the definition to be externally visible. | 
 | /// | 
 | /// Specifically, this determines if adding the current declaration to the set | 
 | /// of redeclarations of the given functions causes | 
 | /// isInlineDefinitionExternallyVisible to change from false to true. | 
 | bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { | 
 |   assert(!doesThisDeclarationHaveABody() && | 
 |          "Must have a declaration without a body."); | 
 |  | 
 |   ASTContext &Context = getASTContext(); | 
 |  | 
 |   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { | 
 |     // With GNU inlining, a declaration with 'inline' but not 'extern', forces | 
 |     // an externally visible definition. | 
 |     // | 
 |     // FIXME: What happens if gnu_inline gets added on after the first | 
 |     // declaration? | 
 |     if (!isInlineSpecified() || getStorageClassAsWritten() == SC_Extern) | 
 |       return false; | 
 |  | 
 |     const FunctionDecl *Prev = this; | 
 |     bool FoundBody = false; | 
 |     while ((Prev = Prev->getPreviousDecl())) { | 
 |       FoundBody |= Prev->Body; | 
 |  | 
 |       if (Prev->Body) { | 
 |         // If it's not the case that both 'inline' and 'extern' are | 
 |         // specified on the definition, then it is always externally visible. | 
 |         if (!Prev->isInlineSpecified() || | 
 |             Prev->getStorageClassAsWritten() != SC_Extern) | 
 |           return false; | 
 |       } else if (Prev->isInlineSpecified() &&  | 
 |                  Prev->getStorageClassAsWritten() != SC_Extern) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return FoundBody; | 
 |   } | 
 |  | 
 |   if (Context.getLangOpts().CPlusPlus) | 
 |     return false; | 
 |  | 
 |   // C99 6.7.4p6: | 
 |   //   [...] If all of the file scope declarations for a function in a  | 
 |   //   translation unit include the inline function specifier without extern,  | 
 |   //   then the definition in that translation unit is an inline definition. | 
 |   if (isInlineSpecified() && getStorageClass() != SC_Extern) | 
 |     return false; | 
 |   const FunctionDecl *Prev = this; | 
 |   bool FoundBody = false; | 
 |   while ((Prev = Prev->getPreviousDecl())) { | 
 |     FoundBody |= Prev->Body; | 
 |     if (RedeclForcesDefC99(Prev)) | 
 |       return false; | 
 |   } | 
 |   return FoundBody; | 
 | } | 
 |  | 
 | /// \brief For an inline function definition in C, or for a gnu_inline function | 
 | /// in C++, determine whether the definition will be externally visible. | 
 | /// | 
 | /// Inline function definitions are always available for inlining optimizations. | 
 | /// However, depending on the language dialect, declaration specifiers, and | 
 | /// attributes, the definition of an inline function may or may not be | 
 | /// "externally" visible to other translation units in the program. | 
 | /// | 
 | /// In C99, inline definitions are not externally visible by default. However, | 
 | /// if even one of the global-scope declarations is marked "extern inline", the | 
 | /// inline definition becomes externally visible (C99 6.7.4p6). | 
 | /// | 
 | /// In GNU89 mode, or if the gnu_inline attribute is attached to the function | 
 | /// definition, we use the GNU semantics for inline, which are nearly the  | 
 | /// opposite of C99 semantics. In particular, "inline" by itself will create  | 
 | /// an externally visible symbol, but "extern inline" will not create an  | 
 | /// externally visible symbol. | 
 | bool FunctionDecl::isInlineDefinitionExternallyVisible() const { | 
 |   assert(doesThisDeclarationHaveABody() && "Must have the function definition"); | 
 |   assert(isInlined() && "Function must be inline"); | 
 |   ASTContext &Context = getASTContext(); | 
 |    | 
 |   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { | 
 |     // Note: If you change the logic here, please change | 
 |     // doesDeclarationForceExternallyVisibleDefinition as well. | 
 |     // | 
 |     // If it's not the case that both 'inline' and 'extern' are | 
 |     // specified on the definition, then this inline definition is | 
 |     // externally visible. | 
 |     if (!(isInlineSpecified() && getStorageClassAsWritten() == SC_Extern)) | 
 |       return true; | 
 |      | 
 |     // If any declaration is 'inline' but not 'extern', then this definition | 
 |     // is externally visible. | 
 |     for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); | 
 |          Redecl != RedeclEnd; | 
 |          ++Redecl) { | 
 |       if (Redecl->isInlineSpecified() &&  | 
 |           Redecl->getStorageClassAsWritten() != SC_Extern) | 
 |         return true; | 
 |     }     | 
 |      | 
 |     return false; | 
 |   } | 
 |  | 
 |   // The rest of this function is C-only. | 
 |   assert(!Context.getLangOpts().CPlusPlus && | 
 |          "should not use C inline rules in C++"); | 
 |  | 
 |   // C99 6.7.4p6: | 
 |   //   [...] If all of the file scope declarations for a function in a  | 
 |   //   translation unit include the inline function specifier without extern,  | 
 |   //   then the definition in that translation unit is an inline definition. | 
 |   for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end(); | 
 |        Redecl != RedeclEnd; | 
 |        ++Redecl) { | 
 |     if (RedeclForcesDefC99(*Redecl)) | 
 |       return true; | 
 |   } | 
 |    | 
 |   // C99 6.7.4p6: | 
 |   //   An inline definition does not provide an external definition for the  | 
 |   //   function, and does not forbid an external definition in another  | 
 |   //   translation unit. | 
 |   return false; | 
 | } | 
 |  | 
 | /// getOverloadedOperator - Which C++ overloaded operator this | 
 | /// function represents, if any. | 
 | OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { | 
 |   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) | 
 |     return getDeclName().getCXXOverloadedOperator(); | 
 |   else | 
 |     return OO_None; | 
 | } | 
 |  | 
 | /// getLiteralIdentifier - The literal suffix identifier this function | 
 | /// represents, if any. | 
 | const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { | 
 |   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) | 
 |     return getDeclName().getCXXLiteralIdentifier(); | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { | 
 |   if (TemplateOrSpecialization.isNull()) | 
 |     return TK_NonTemplate; | 
 |   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) | 
 |     return TK_FunctionTemplate; | 
 |   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) | 
 |     return TK_MemberSpecialization; | 
 |   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) | 
 |     return TK_FunctionTemplateSpecialization; | 
 |   if (TemplateOrSpecialization.is | 
 |                                <DependentFunctionTemplateSpecializationInfo*>()) | 
 |     return TK_DependentFunctionTemplateSpecialization; | 
 |  | 
 |   llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); | 
 | } | 
 |  | 
 | FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { | 
 |   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) | 
 |     return cast<FunctionDecl>(Info->getInstantiatedFrom()); | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 | MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { | 
 |   return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); | 
 | } | 
 |  | 
 | void  | 
 | FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, | 
 |                                                FunctionDecl *FD, | 
 |                                                TemplateSpecializationKind TSK) { | 
 |   assert(TemplateOrSpecialization.isNull() &&  | 
 |          "Member function is already a specialization"); | 
 |   MemberSpecializationInfo *Info  | 
 |     = new (C) MemberSpecializationInfo(FD, TSK); | 
 |   TemplateOrSpecialization = Info; | 
 | } | 
 |  | 
 | bool FunctionDecl::isImplicitlyInstantiable() const { | 
 |   // If the function is invalid, it can't be implicitly instantiated. | 
 |   if (isInvalidDecl()) | 
 |     return false; | 
 |    | 
 |   switch (getTemplateSpecializationKind()) { | 
 |   case TSK_Undeclared: | 
 |   case TSK_ExplicitInstantiationDefinition: | 
 |     return false; | 
 |        | 
 |   case TSK_ImplicitInstantiation: | 
 |     return true; | 
 |  | 
 |   // It is possible to instantiate TSK_ExplicitSpecialization kind | 
 |   // if the FunctionDecl has a class scope specialization pattern. | 
 |   case TSK_ExplicitSpecialization: | 
 |     return getClassScopeSpecializationPattern() != 0; | 
 |  | 
 |   case TSK_ExplicitInstantiationDeclaration: | 
 |     // Handled below. | 
 |     break; | 
 |   } | 
 |  | 
 |   // Find the actual template from which we will instantiate. | 
 |   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); | 
 |   bool HasPattern = false; | 
 |   if (PatternDecl) | 
 |     HasPattern = PatternDecl->hasBody(PatternDecl); | 
 |    | 
 |   // C++0x [temp.explicit]p9: | 
 |   //   Except for inline functions, other explicit instantiation declarations | 
 |   //   have the effect of suppressing the implicit instantiation of the entity | 
 |   //   to which they refer.  | 
 |   if (!HasPattern || !PatternDecl)  | 
 |     return true; | 
 |  | 
 |   return PatternDecl->isInlined(); | 
 | } | 
 |  | 
 | bool FunctionDecl::isTemplateInstantiation() const { | 
 |   switch (getTemplateSpecializationKind()) { | 
 |     case TSK_Undeclared: | 
 |     case TSK_ExplicitSpecialization: | 
 |       return false;       | 
 |     case TSK_ImplicitInstantiation: | 
 |     case TSK_ExplicitInstantiationDeclaration: | 
 |     case TSK_ExplicitInstantiationDefinition: | 
 |       return true; | 
 |   } | 
 |   llvm_unreachable("All TSK values handled."); | 
 | } | 
 |     | 
 | FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { | 
 |   // Handle class scope explicit specialization special case. | 
 |   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) | 
 |     return getClassScopeSpecializationPattern(); | 
 |  | 
 |   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { | 
 |     while (Primary->getInstantiatedFromMemberTemplate()) { | 
 |       // If we have hit a point where the user provided a specialization of | 
 |       // this template, we're done looking. | 
 |       if (Primary->isMemberSpecialization()) | 
 |         break; | 
 |        | 
 |       Primary = Primary->getInstantiatedFromMemberTemplate(); | 
 |     } | 
 |      | 
 |     return Primary->getTemplatedDecl(); | 
 |   }  | 
 |      | 
 |   return getInstantiatedFromMemberFunction(); | 
 | } | 
 |  | 
 | FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { | 
 |   if (FunctionTemplateSpecializationInfo *Info | 
 |         = TemplateOrSpecialization | 
 |             .dyn_cast<FunctionTemplateSpecializationInfo*>()) { | 
 |     return Info->Template.getPointer(); | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { | 
 |     return getASTContext().getClassScopeSpecializationPattern(this); | 
 | } | 
 |  | 
 | const TemplateArgumentList * | 
 | FunctionDecl::getTemplateSpecializationArgs() const { | 
 |   if (FunctionTemplateSpecializationInfo *Info | 
 |         = TemplateOrSpecialization | 
 |             .dyn_cast<FunctionTemplateSpecializationInfo*>()) { | 
 |     return Info->TemplateArguments; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | const ASTTemplateArgumentListInfo * | 
 | FunctionDecl::getTemplateSpecializationArgsAsWritten() const { | 
 |   if (FunctionTemplateSpecializationInfo *Info | 
 |         = TemplateOrSpecialization | 
 |             .dyn_cast<FunctionTemplateSpecializationInfo*>()) { | 
 |     return Info->TemplateArgumentsAsWritten; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | void | 
 | FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, | 
 |                                                 FunctionTemplateDecl *Template, | 
 |                                      const TemplateArgumentList *TemplateArgs, | 
 |                                                 void *InsertPos, | 
 |                                                 TemplateSpecializationKind TSK, | 
 |                         const TemplateArgumentListInfo *TemplateArgsAsWritten, | 
 |                                           SourceLocation PointOfInstantiation) { | 
 |   assert(TSK != TSK_Undeclared &&  | 
 |          "Must specify the type of function template specialization"); | 
 |   FunctionTemplateSpecializationInfo *Info | 
 |     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); | 
 |   if (!Info) | 
 |     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, | 
 |                                                       TemplateArgs, | 
 |                                                       TemplateArgsAsWritten, | 
 |                                                       PointOfInstantiation); | 
 |   TemplateOrSpecialization = Info; | 
 |   Template->addSpecialization(Info, InsertPos); | 
 | } | 
 |  | 
 | void | 
 | FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, | 
 |                                     const UnresolvedSetImpl &Templates, | 
 |                              const TemplateArgumentListInfo &TemplateArgs) { | 
 |   assert(TemplateOrSpecialization.isNull()); | 
 |   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo); | 
 |   Size += Templates.size() * sizeof(FunctionTemplateDecl*); | 
 |   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc); | 
 |   void *Buffer = Context.Allocate(Size); | 
 |   DependentFunctionTemplateSpecializationInfo *Info = | 
 |     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates, | 
 |                                                              TemplateArgs); | 
 |   TemplateOrSpecialization = Info; | 
 | } | 
 |  | 
 | DependentFunctionTemplateSpecializationInfo:: | 
 | DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, | 
 |                                       const TemplateArgumentListInfo &TArgs) | 
 |   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { | 
 |  | 
 |   d.NumTemplates = Ts.size(); | 
 |   d.NumArgs = TArgs.size(); | 
 |  | 
 |   FunctionTemplateDecl **TsArray = | 
 |     const_cast<FunctionTemplateDecl**>(getTemplates()); | 
 |   for (unsigned I = 0, E = Ts.size(); I != E; ++I) | 
 |     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); | 
 |  | 
 |   TemplateArgumentLoc *ArgsArray = | 
 |     const_cast<TemplateArgumentLoc*>(getTemplateArgs()); | 
 |   for (unsigned I = 0, E = TArgs.size(); I != E; ++I) | 
 |     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); | 
 | } | 
 |  | 
 | TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { | 
 |   // For a function template specialization, query the specialization | 
 |   // information object. | 
 |   FunctionTemplateSpecializationInfo *FTSInfo | 
 |     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); | 
 |   if (FTSInfo) | 
 |     return FTSInfo->getTemplateSpecializationKind(); | 
 |  | 
 |   MemberSpecializationInfo *MSInfo | 
 |     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); | 
 |   if (MSInfo) | 
 |     return MSInfo->getTemplateSpecializationKind(); | 
 |    | 
 |   return TSK_Undeclared; | 
 | } | 
 |  | 
 | void | 
 | FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, | 
 |                                           SourceLocation PointOfInstantiation) { | 
 |   if (FunctionTemplateSpecializationInfo *FTSInfo | 
 |         = TemplateOrSpecialization.dyn_cast< | 
 |                                     FunctionTemplateSpecializationInfo*>()) { | 
 |     FTSInfo->setTemplateSpecializationKind(TSK); | 
 |     if (TSK != TSK_ExplicitSpecialization && | 
 |         PointOfInstantiation.isValid() && | 
 |         FTSInfo->getPointOfInstantiation().isInvalid()) | 
 |       FTSInfo->setPointOfInstantiation(PointOfInstantiation); | 
 |   } else if (MemberSpecializationInfo *MSInfo | 
 |              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { | 
 |     MSInfo->setTemplateSpecializationKind(TSK); | 
 |     if (TSK != TSK_ExplicitSpecialization && | 
 |         PointOfInstantiation.isValid() && | 
 |         MSInfo->getPointOfInstantiation().isInvalid()) | 
 |       MSInfo->setPointOfInstantiation(PointOfInstantiation); | 
 |   } else | 
 |     llvm_unreachable("Function cannot have a template specialization kind"); | 
 | } | 
 |  | 
 | SourceLocation FunctionDecl::getPointOfInstantiation() const { | 
 |   if (FunctionTemplateSpecializationInfo *FTSInfo | 
 |         = TemplateOrSpecialization.dyn_cast< | 
 |                                         FunctionTemplateSpecializationInfo*>()) | 
 |     return FTSInfo->getPointOfInstantiation(); | 
 |   else if (MemberSpecializationInfo *MSInfo | 
 |              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) | 
 |     return MSInfo->getPointOfInstantiation(); | 
 |    | 
 |   return SourceLocation(); | 
 | } | 
 |  | 
 | bool FunctionDecl::isOutOfLine() const { | 
 |   if (Decl::isOutOfLine()) | 
 |     return true; | 
 |    | 
 |   // If this function was instantiated from a member function of a  | 
 |   // class template, check whether that member function was defined out-of-line. | 
 |   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { | 
 |     const FunctionDecl *Definition; | 
 |     if (FD->hasBody(Definition)) | 
 |       return Definition->isOutOfLine(); | 
 |   } | 
 |    | 
 |   // If this function was instantiated from a function template, | 
 |   // check whether that function template was defined out-of-line. | 
 |   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { | 
 |     const FunctionDecl *Definition; | 
 |     if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) | 
 |       return Definition->isOutOfLine(); | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | SourceRange FunctionDecl::getSourceRange() const { | 
 |   return SourceRange(getOuterLocStart(), EndRangeLoc); | 
 | } | 
 |  | 
 | unsigned FunctionDecl::getMemoryFunctionKind() const { | 
 |   IdentifierInfo *FnInfo = getIdentifier(); | 
 |  | 
 |   if (!FnInfo) | 
 |     return 0; | 
 |      | 
 |   // Builtin handling. | 
 |   switch (getBuiltinID()) { | 
 |   case Builtin::BI__builtin_memset: | 
 |   case Builtin::BI__builtin___memset_chk: | 
 |   case Builtin::BImemset: | 
 |     return Builtin::BImemset; | 
 |  | 
 |   case Builtin::BI__builtin_memcpy: | 
 |   case Builtin::BI__builtin___memcpy_chk: | 
 |   case Builtin::BImemcpy: | 
 |     return Builtin::BImemcpy; | 
 |  | 
 |   case Builtin::BI__builtin_memmove: | 
 |   case Builtin::BI__builtin___memmove_chk: | 
 |   case Builtin::BImemmove: | 
 |     return Builtin::BImemmove; | 
 |  | 
 |   case Builtin::BIstrlcpy: | 
 |     return Builtin::BIstrlcpy; | 
 |   case Builtin::BIstrlcat: | 
 |     return Builtin::BIstrlcat; | 
 |  | 
 |   case Builtin::BI__builtin_memcmp: | 
 |   case Builtin::BImemcmp: | 
 |     return Builtin::BImemcmp; | 
 |  | 
 |   case Builtin::BI__builtin_strncpy: | 
 |   case Builtin::BI__builtin___strncpy_chk: | 
 |   case Builtin::BIstrncpy: | 
 |     return Builtin::BIstrncpy; | 
 |  | 
 |   case Builtin::BI__builtin_strncmp: | 
 |   case Builtin::BIstrncmp: | 
 |     return Builtin::BIstrncmp; | 
 |  | 
 |   case Builtin::BI__builtin_strncasecmp: | 
 |   case Builtin::BIstrncasecmp: | 
 |     return Builtin::BIstrncasecmp; | 
 |  | 
 |   case Builtin::BI__builtin_strncat: | 
 |   case Builtin::BI__builtin___strncat_chk: | 
 |   case Builtin::BIstrncat: | 
 |     return Builtin::BIstrncat; | 
 |  | 
 |   case Builtin::BI__builtin_strndup: | 
 |   case Builtin::BIstrndup: | 
 |     return Builtin::BIstrndup; | 
 |  | 
 |   case Builtin::BI__builtin_strlen: | 
 |   case Builtin::BIstrlen: | 
 |     return Builtin::BIstrlen; | 
 |  | 
 |   default: | 
 |     if (isExternC()) { | 
 |       if (FnInfo->isStr("memset")) | 
 |         return Builtin::BImemset; | 
 |       else if (FnInfo->isStr("memcpy")) | 
 |         return Builtin::BImemcpy; | 
 |       else if (FnInfo->isStr("memmove")) | 
 |         return Builtin::BImemmove; | 
 |       else if (FnInfo->isStr("memcmp")) | 
 |         return Builtin::BImemcmp; | 
 |       else if (FnInfo->isStr("strncpy")) | 
 |         return Builtin::BIstrncpy; | 
 |       else if (FnInfo->isStr("strncmp")) | 
 |         return Builtin::BIstrncmp; | 
 |       else if (FnInfo->isStr("strncasecmp")) | 
 |         return Builtin::BIstrncasecmp; | 
 |       else if (FnInfo->isStr("strncat")) | 
 |         return Builtin::BIstrncat; | 
 |       else if (FnInfo->isStr("strndup")) | 
 |         return Builtin::BIstrndup; | 
 |       else if (FnInfo->isStr("strlen")) | 
 |         return Builtin::BIstrlen; | 
 |     } | 
 |     break; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // FieldDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, | 
 |                              SourceLocation StartLoc, SourceLocation IdLoc, | 
 |                              IdentifierInfo *Id, QualType T, | 
 |                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable, | 
 |                              InClassInitStyle InitStyle) { | 
 |   return new (C) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, | 
 |                            BW, Mutable, InitStyle); | 
 | } | 
 |  | 
 | FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FieldDecl)); | 
 |   return new (Mem) FieldDecl(Field, 0, SourceLocation(), SourceLocation(), | 
 |                              0, QualType(), 0, 0, false, ICIS_NoInit); | 
 | } | 
 |  | 
 | bool FieldDecl::isAnonymousStructOrUnion() const { | 
 |   if (!isImplicit() || getDeclName()) | 
 |     return false; | 
 |  | 
 |   if (const RecordType *Record = getType()->getAs<RecordType>()) | 
 |     return Record->getDecl()->isAnonymousStructOrUnion(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { | 
 |   assert(isBitField() && "not a bitfield"); | 
 |   Expr *BitWidth = InitializerOrBitWidth.getPointer(); | 
 |   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); | 
 | } | 
 |  | 
 | unsigned FieldDecl::getFieldIndex() const { | 
 |   if (CachedFieldIndex) return CachedFieldIndex - 1; | 
 |  | 
 |   unsigned Index = 0; | 
 |   const RecordDecl *RD = getParent(); | 
 |   const FieldDecl *LastFD = 0; | 
 |   bool IsMsStruct = RD->isMsStruct(getASTContext()); | 
 |  | 
 |   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); | 
 |        I != E; ++I, ++Index) { | 
 |     I->CachedFieldIndex = Index + 1; | 
 |  | 
 |     if (IsMsStruct) { | 
 |       // Zero-length bitfields following non-bitfield members are ignored. | 
 |       if (getASTContext().ZeroBitfieldFollowsNonBitfield(*I, LastFD)) { | 
 |         --Index; | 
 |         continue; | 
 |       } | 
 |       LastFD = *I; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(CachedFieldIndex && "failed to find field in parent"); | 
 |   return CachedFieldIndex - 1; | 
 | } | 
 |  | 
 | SourceRange FieldDecl::getSourceRange() const { | 
 |   if (const Expr *E = InitializerOrBitWidth.getPointer()) | 
 |     return SourceRange(getInnerLocStart(), E->getLocEnd()); | 
 |   return DeclaratorDecl::getSourceRange(); | 
 | } | 
 |  | 
 | void FieldDecl::setBitWidth(Expr *Width) { | 
 |   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() && | 
 |          "bit width or initializer already set"); | 
 |   InitializerOrBitWidth.setPointer(Width); | 
 | } | 
 |  | 
 | void FieldDecl::setInClassInitializer(Expr *Init) { | 
 |   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() && | 
 |          "bit width or initializer already set"); | 
 |   InitializerOrBitWidth.setPointer(Init); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // TagDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | SourceLocation TagDecl::getOuterLocStart() const { | 
 |   return getTemplateOrInnerLocStart(this); | 
 | } | 
 |  | 
 | SourceRange TagDecl::getSourceRange() const { | 
 |   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); | 
 |   return SourceRange(getOuterLocStart(), E); | 
 | } | 
 |  | 
 | TagDecl* TagDecl::getCanonicalDecl() { | 
 |   return getFirstDeclaration(); | 
 | } | 
 |  | 
 | void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {  | 
 |   TypedefNameDeclOrQualifier = TDD;  | 
 |   if (TypeForDecl) | 
 |     const_cast<Type*>(TypeForDecl)->ClearLinkageCache(); | 
 |   ClearLinkageCache(); | 
 | } | 
 |  | 
 | void TagDecl::startDefinition() { | 
 |   IsBeingDefined = true; | 
 |  | 
 |   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) { | 
 |     struct CXXRecordDecl::DefinitionData *Data =  | 
 |       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); | 
 |     for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) | 
 |       cast<CXXRecordDecl>(*I)->DefinitionData = Data; | 
 |   } | 
 | } | 
 |  | 
 | void TagDecl::completeDefinition() { | 
 |   assert((!isa<CXXRecordDecl>(this) || | 
 |           cast<CXXRecordDecl>(this)->hasDefinition()) && | 
 |          "definition completed but not started"); | 
 |  | 
 |   IsCompleteDefinition = true; | 
 |   IsBeingDefined = false; | 
 |  | 
 |   if (ASTMutationListener *L = getASTMutationListener()) | 
 |     L->CompletedTagDefinition(this); | 
 | } | 
 |  | 
 | TagDecl *TagDecl::getDefinition() const { | 
 |   if (isCompleteDefinition()) | 
 |     return const_cast<TagDecl *>(this); | 
 |  | 
 |   // If it's possible for us to have an out-of-date definition, check now. | 
 |   if (MayHaveOutOfDateDef) { | 
 |     if (IdentifierInfo *II = getIdentifier()) { | 
 |       if (II->isOutOfDate()) { | 
 |         updateOutOfDate(*II); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this)) | 
 |     return CXXRD->getDefinition(); | 
 |  | 
 |   for (redecl_iterator R = redecls_begin(), REnd = redecls_end(); | 
 |        R != REnd; ++R) | 
 |     if (R->isCompleteDefinition()) | 
 |       return *R; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { | 
 |   if (QualifierLoc) { | 
 |     // Make sure the extended qualifier info is allocated. | 
 |     if (!hasExtInfo()) | 
 |       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; | 
 |     // Set qualifier info. | 
 |     getExtInfo()->QualifierLoc = QualifierLoc; | 
 |   } else { | 
 |     // Here Qualifier == 0, i.e., we are removing the qualifier (if any). | 
 |     if (hasExtInfo()) { | 
 |       if (getExtInfo()->NumTemplParamLists == 0) { | 
 |         getASTContext().Deallocate(getExtInfo()); | 
 |         TypedefNameDeclOrQualifier = (TypedefNameDecl*) 0; | 
 |       } | 
 |       else | 
 |         getExtInfo()->QualifierLoc = QualifierLoc; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void TagDecl::setTemplateParameterListsInfo(ASTContext &Context, | 
 |                                             unsigned NumTPLists, | 
 |                                             TemplateParameterList **TPLists) { | 
 |   assert(NumTPLists > 0); | 
 |   // Make sure the extended decl info is allocated. | 
 |   if (!hasExtInfo()) | 
 |     // Allocate external info struct. | 
 |     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; | 
 |   // Set the template parameter lists info. | 
 |   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // EnumDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void EnumDecl::anchor() { } | 
 |  | 
 | EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                            SourceLocation StartLoc, SourceLocation IdLoc, | 
 |                            IdentifierInfo *Id, | 
 |                            EnumDecl *PrevDecl, bool IsScoped, | 
 |                            bool IsScopedUsingClassTag, bool IsFixed) { | 
 |   EnumDecl *Enum = new (C) EnumDecl(DC, StartLoc, IdLoc, Id, PrevDecl, | 
 |                                     IsScoped, IsScopedUsingClassTag, IsFixed); | 
 |   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; | 
 |   C.getTypeDeclType(Enum, PrevDecl); | 
 |   return Enum; | 
 | } | 
 |  | 
 | EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumDecl)); | 
 |   EnumDecl *Enum = new (Mem) EnumDecl(0, SourceLocation(), SourceLocation(), | 
 |                                       0, 0, false, false, false); | 
 |   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; | 
 |   return Enum; | 
 | } | 
 |  | 
 | void EnumDecl::completeDefinition(QualType NewType, | 
 |                                   QualType NewPromotionType, | 
 |                                   unsigned NumPositiveBits, | 
 |                                   unsigned NumNegativeBits) { | 
 |   assert(!isCompleteDefinition() && "Cannot redefine enums!"); | 
 |   if (!IntegerType) | 
 |     IntegerType = NewType.getTypePtr(); | 
 |   PromotionType = NewPromotionType; | 
 |   setNumPositiveBits(NumPositiveBits); | 
 |   setNumNegativeBits(NumNegativeBits); | 
 |   TagDecl::completeDefinition(); | 
 | } | 
 |  | 
 | TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { | 
 |   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) | 
 |     return MSI->getTemplateSpecializationKind(); | 
 |  | 
 |   return TSK_Undeclared; | 
 | } | 
 |  | 
 | void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, | 
 |                                          SourceLocation PointOfInstantiation) { | 
 |   MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); | 
 |   assert(MSI && "Not an instantiated member enumeration?"); | 
 |   MSI->setTemplateSpecializationKind(TSK); | 
 |   if (TSK != TSK_ExplicitSpecialization && | 
 |       PointOfInstantiation.isValid() && | 
 |       MSI->getPointOfInstantiation().isInvalid()) | 
 |     MSI->setPointOfInstantiation(PointOfInstantiation); | 
 | } | 
 |  | 
 | EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { | 
 |   if (SpecializationInfo) | 
 |     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, | 
 |                                             TemplateSpecializationKind TSK) { | 
 |   assert(!SpecializationInfo && "Member enum is already a specialization"); | 
 |   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // RecordDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC, | 
 |                        SourceLocation StartLoc, SourceLocation IdLoc, | 
 |                        IdentifierInfo *Id, RecordDecl *PrevDecl) | 
 |   : TagDecl(DK, TK, DC, IdLoc, Id, PrevDecl, StartLoc) { | 
 |   HasFlexibleArrayMember = false; | 
 |   AnonymousStructOrUnion = false; | 
 |   HasObjectMember = false; | 
 |   HasVolatileMember = false; | 
 |   LoadedFieldsFromExternalStorage = false; | 
 |   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); | 
 | } | 
 |  | 
 | RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, | 
 |                                SourceLocation StartLoc, SourceLocation IdLoc, | 
 |                                IdentifierInfo *Id, RecordDecl* PrevDecl) { | 
 |   RecordDecl* R = new (C) RecordDecl(Record, TK, DC, StartLoc, IdLoc, Id, | 
 |                                      PrevDecl); | 
 |   R->MayHaveOutOfDateDef = C.getLangOpts().Modules; | 
 |  | 
 |   C.getTypeDeclType(R, PrevDecl); | 
 |   return R; | 
 | } | 
 |  | 
 | RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(RecordDecl)); | 
 |   RecordDecl *R = new (Mem) RecordDecl(Record, TTK_Struct, 0, SourceLocation(), | 
 |                                        SourceLocation(), 0, 0); | 
 |   R->MayHaveOutOfDateDef = C.getLangOpts().Modules; | 
 |   return R; | 
 | } | 
 |  | 
 | bool RecordDecl::isInjectedClassName() const { | 
 |   return isImplicit() && getDeclName() && getDeclContext()->isRecord() && | 
 |     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); | 
 | } | 
 |  | 
 | RecordDecl::field_iterator RecordDecl::field_begin() const { | 
 |   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) | 
 |     LoadFieldsFromExternalStorage(); | 
 |  | 
 |   return field_iterator(decl_iterator(FirstDecl)); | 
 | } | 
 |  | 
 | /// completeDefinition - Notes that the definition of this type is now | 
 | /// complete. | 
 | void RecordDecl::completeDefinition() { | 
 |   assert(!isCompleteDefinition() && "Cannot redefine record!"); | 
 |   TagDecl::completeDefinition(); | 
 | } | 
 |  | 
 | /// isMsStruct - Get whether or not this record uses ms_struct layout. | 
 | /// This which can be turned on with an attribute, pragma, or the | 
 | /// -mms-bitfields command-line option. | 
 | bool RecordDecl::isMsStruct(const ASTContext &C) const { | 
 |   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1; | 
 | } | 
 |  | 
 | static bool isFieldOrIndirectField(Decl::Kind K) { | 
 |   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); | 
 | } | 
 |  | 
 | void RecordDecl::LoadFieldsFromExternalStorage() const { | 
 |   ExternalASTSource *Source = getASTContext().getExternalSource(); | 
 |   assert(hasExternalLexicalStorage() && Source && "No external storage?"); | 
 |  | 
 |   // Notify that we have a RecordDecl doing some initialization. | 
 |   ExternalASTSource::Deserializing TheFields(Source); | 
 |  | 
 |   SmallVector<Decl*, 64> Decls; | 
 |   LoadedFieldsFromExternalStorage = true;   | 
 |   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField, | 
 |                                            Decls)) { | 
 |   case ELR_Success: | 
 |     break; | 
 |      | 
 |   case ELR_AlreadyLoaded: | 
 |   case ELR_Failure: | 
 |     return; | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Check that all decls we got were FieldDecls. | 
 |   for (unsigned i=0, e=Decls.size(); i != e; ++i) | 
 |     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); | 
 | #endif | 
 |  | 
 |   if (Decls.empty()) | 
 |     return; | 
 |  | 
 |   llvm::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, | 
 |                                                  /*FieldsAlreadyLoaded=*/false); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // BlockDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { | 
 |   assert(ParamInfo == 0 && "Already has param info!"); | 
 |  | 
 |   // Zero params -> null pointer. | 
 |   if (!NewParamInfo.empty()) { | 
 |     NumParams = NewParamInfo.size(); | 
 |     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; | 
 |     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); | 
 |   } | 
 | } | 
 |  | 
 | void BlockDecl::setCaptures(ASTContext &Context, | 
 |                             const Capture *begin, | 
 |                             const Capture *end, | 
 |                             bool capturesCXXThis) { | 
 |   CapturesCXXThis = capturesCXXThis; | 
 |  | 
 |   if (begin == end) { | 
 |     NumCaptures = 0; | 
 |     Captures = 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   NumCaptures = end - begin; | 
 |  | 
 |   // Avoid new Capture[] because we don't want to provide a default | 
 |   // constructor. | 
 |   size_t allocationSize = NumCaptures * sizeof(Capture); | 
 |   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*)); | 
 |   memcpy(buffer, begin, allocationSize); | 
 |   Captures = static_cast<Capture*>(buffer); | 
 | } | 
 |  | 
 | bool BlockDecl::capturesVariable(const VarDecl *variable) const { | 
 |   for (capture_const_iterator | 
 |          i = capture_begin(), e = capture_end(); i != e; ++i) | 
 |     // Only auto vars can be captured, so no redeclaration worries. | 
 |     if (i->getVariable() == variable) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | SourceRange BlockDecl::getSourceRange() const { | 
 |   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Other Decl Allocation/Deallocation Method Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void TranslationUnitDecl::anchor() { } | 
 |  | 
 | TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { | 
 |   return new (C) TranslationUnitDecl(C); | 
 | } | 
 |  | 
 | void LabelDecl::anchor() { } | 
 |  | 
 | LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                              SourceLocation IdentL, IdentifierInfo *II) { | 
 |   return new (C) LabelDecl(DC, IdentL, II, 0, IdentL); | 
 | } | 
 |  | 
 | LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                              SourceLocation IdentL, IdentifierInfo *II, | 
 |                              SourceLocation GnuLabelL) { | 
 |   assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); | 
 |   return new (C) LabelDecl(DC, IdentL, II, 0, GnuLabelL); | 
 | } | 
 |  | 
 | LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LabelDecl)); | 
 |   return new (Mem) LabelDecl(0, SourceLocation(), 0, 0, SourceLocation()); | 
 | } | 
 |  | 
 | void ValueDecl::anchor() { } | 
 |  | 
 | bool ValueDecl::isWeak() const { | 
 |   for (attr_iterator I = attr_begin(), E = attr_end(); I != E; ++I) | 
 |     if (isa<WeakAttr>(*I) || isa<WeakRefAttr>(*I)) | 
 |       return true; | 
 |  | 
 |   return isWeakImported(); | 
 | } | 
 |  | 
 | void ImplicitParamDecl::anchor() { } | 
 |  | 
 | ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                              SourceLocation IdLoc, | 
 |                                              IdentifierInfo *Id, | 
 |                                              QualType Type) { | 
 |   return new (C) ImplicitParamDecl(DC, IdLoc, Id, Type); | 
 | } | 
 |  | 
 | ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,  | 
 |                                                          unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(ImplicitParamDecl)); | 
 |   return new (Mem) ImplicitParamDecl(0, SourceLocation(), 0, QualType()); | 
 | } | 
 |  | 
 | FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                    SourceLocation StartLoc, | 
 |                                    const DeclarationNameInfo &NameInfo, | 
 |                                    QualType T, TypeSourceInfo *TInfo, | 
 |                                    StorageClass SC, StorageClass SCAsWritten, | 
 |                                    bool isInlineSpecified,  | 
 |                                    bool hasWrittenPrototype, | 
 |                                    bool isConstexprSpecified) { | 
 |   FunctionDecl *New = new (C) FunctionDecl(Function, DC, StartLoc, NameInfo, | 
 |                                            T, TInfo, SC, SCAsWritten, | 
 |                                            isInlineSpecified, | 
 |                                            isConstexprSpecified); | 
 |   New->HasWrittenPrototype = hasWrittenPrototype; | 
 |   return New; | 
 | } | 
 |  | 
 | FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FunctionDecl)); | 
 |   return new (Mem) FunctionDecl(Function, 0, SourceLocation(),  | 
 |                                 DeclarationNameInfo(), QualType(), 0, | 
 |                                 SC_None, SC_None, false, false); | 
 | } | 
 |  | 
 | BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { | 
 |   return new (C) BlockDecl(DC, L); | 
 | } | 
 |  | 
 | BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(BlockDecl)); | 
 |   return new (Mem) BlockDecl(0, SourceLocation()); | 
 | } | 
 |  | 
 | EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, | 
 |                                            SourceLocation L, | 
 |                                            IdentifierInfo *Id, QualType T, | 
 |                                            Expr *E, const llvm::APSInt &V) { | 
 |   return new (C) EnumConstantDecl(CD, L, Id, T, E, V); | 
 | } | 
 |  | 
 | EnumConstantDecl * | 
 | EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(EnumConstantDecl)); | 
 |   return new (Mem) EnumConstantDecl(0, SourceLocation(), 0, QualType(), 0,  | 
 |                                     llvm::APSInt()); | 
 | } | 
 |  | 
 | void IndirectFieldDecl::anchor() { } | 
 |  | 
 | IndirectFieldDecl * | 
 | IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, | 
 |                           IdentifierInfo *Id, QualType T, NamedDecl **CH, | 
 |                           unsigned CHS) { | 
 |   return new (C) IndirectFieldDecl(DC, L, Id, T, CH, CHS); | 
 | } | 
 |  | 
 | IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, | 
 |                                                          unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(IndirectFieldDecl)); | 
 |   return new (Mem) IndirectFieldDecl(0, SourceLocation(), DeclarationName(), | 
 |                                      QualType(), 0, 0); | 
 | } | 
 |  | 
 | SourceRange EnumConstantDecl::getSourceRange() const { | 
 |   SourceLocation End = getLocation(); | 
 |   if (Init) | 
 |     End = Init->getLocEnd(); | 
 |   return SourceRange(getLocation(), End); | 
 | } | 
 |  | 
 | void TypeDecl::anchor() { } | 
 |  | 
 | TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                  SourceLocation StartLoc, SourceLocation IdLoc, | 
 |                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) { | 
 |   return new (C) TypedefDecl(DC, StartLoc, IdLoc, Id, TInfo); | 
 | } | 
 |  | 
 | void TypedefNameDecl::anchor() { } | 
 |  | 
 | TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypedefDecl)); | 
 |   return new (Mem) TypedefDecl(0, SourceLocation(), SourceLocation(), 0, 0); | 
 | } | 
 |  | 
 | TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                      SourceLocation StartLoc, | 
 |                                      SourceLocation IdLoc, IdentifierInfo *Id, | 
 |                                      TypeSourceInfo *TInfo) { | 
 |   return new (C) TypeAliasDecl(DC, StartLoc, IdLoc, Id, TInfo); | 
 | } | 
 |  | 
 | TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(TypeAliasDecl)); | 
 |   return new (Mem) TypeAliasDecl(0, SourceLocation(), SourceLocation(), 0, 0); | 
 | } | 
 |  | 
 | SourceRange TypedefDecl::getSourceRange() const { | 
 |   SourceLocation RangeEnd = getLocation(); | 
 |   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { | 
 |     if (typeIsPostfix(TInfo->getType())) | 
 |       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); | 
 |   } | 
 |   return SourceRange(getLocStart(), RangeEnd); | 
 | } | 
 |  | 
 | SourceRange TypeAliasDecl::getSourceRange() const { | 
 |   SourceLocation RangeEnd = getLocStart(); | 
 |   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) | 
 |     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); | 
 |   return SourceRange(getLocStart(), RangeEnd); | 
 | } | 
 |  | 
 | void FileScopeAsmDecl::anchor() { } | 
 |  | 
 | FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, | 
 |                                            StringLiteral *Str, | 
 |                                            SourceLocation AsmLoc, | 
 |                                            SourceLocation RParenLoc) { | 
 |   return new (C) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); | 
 | } | 
 |  | 
 | FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,  | 
 |                                                        unsigned ID) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(FileScopeAsmDecl)); | 
 |   return new (Mem) FileScopeAsmDecl(0, 0, SourceLocation(), SourceLocation()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // ImportDecl Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// \brief Retrieve the number of module identifiers needed to name the given | 
 | /// module. | 
 | static unsigned getNumModuleIdentifiers(Module *Mod) { | 
 |   unsigned Result = 1; | 
 |   while (Mod->Parent) { | 
 |     Mod = Mod->Parent; | 
 |     ++Result; | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,  | 
 |                        Module *Imported, | 
 |                        ArrayRef<SourceLocation> IdentifierLocs) | 
 |   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), | 
 |     NextLocalImport() | 
 | { | 
 |   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); | 
 |   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1); | 
 |   memcpy(StoredLocs, IdentifierLocs.data(),  | 
 |          IdentifierLocs.size() * sizeof(SourceLocation)); | 
 | } | 
 |  | 
 | ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,  | 
 |                        Module *Imported, SourceLocation EndLoc) | 
 |   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), | 
 |     NextLocalImport() | 
 | { | 
 |   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc; | 
 | } | 
 |  | 
 | ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,  | 
 |                                SourceLocation StartLoc, Module *Imported, | 
 |                                ArrayRef<SourceLocation> IdentifierLocs) { | 
 |   void *Mem = C.Allocate(sizeof(ImportDecl) +  | 
 |                          IdentifierLocs.size() * sizeof(SourceLocation)); | 
 |   return new (Mem) ImportDecl(DC, StartLoc, Imported, IdentifierLocs); | 
 | } | 
 |  | 
 | ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,  | 
 |                                        SourceLocation StartLoc, | 
 |                                        Module *Imported,  | 
 |                                        SourceLocation EndLoc) { | 
 |   void *Mem = C.Allocate(sizeof(ImportDecl) + sizeof(SourceLocation)); | 
 |   ImportDecl *Import = new (Mem) ImportDecl(DC, StartLoc, Imported, EndLoc); | 
 |   Import->setImplicit(); | 
 |   return Import; | 
 | } | 
 |  | 
 | ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, | 
 |                                            unsigned NumLocations) { | 
 |   void *Mem = AllocateDeserializedDecl(C, ID,  | 
 |                                        (sizeof(ImportDecl) +  | 
 |                                         NumLocations * sizeof(SourceLocation))); | 
 |   return new (Mem) ImportDecl(EmptyShell());   | 
 | } | 
 |  | 
 | ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { | 
 |   if (!ImportedAndComplete.getInt()) | 
 |     return ArrayRef<SourceLocation>(); | 
 |  | 
 |   const SourceLocation *StoredLocs | 
 |     = reinterpret_cast<const SourceLocation *>(this + 1); | 
 |   return ArrayRef<SourceLocation>(StoredLocs,  | 
 |                                   getNumModuleIdentifiers(getImportedModule())); | 
 | } | 
 |  | 
 | SourceRange ImportDecl::getSourceRange() const { | 
 |   if (!ImportedAndComplete.getInt()) | 
 |     return SourceRange(getLocation(),  | 
 |                        *reinterpret_cast<const SourceLocation *>(this + 1)); | 
 |    | 
 |   return SourceRange(getLocation(), getIdentifierLocs().back()); | 
 | } |