| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr constant evaluator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include <cstring> |
| |
| using namespace clang; |
| using llvm::APSInt; |
| using llvm::APFloat; |
| |
| /// EvalInfo - This is a private struct used by the evaluator to capture |
| /// information about a subexpression as it is folded. It retains information |
| /// about the AST context, but also maintains information about the folded |
| /// expression. |
| /// |
| /// If an expression could be evaluated, it is still possible it is not a C |
| /// "integer constant expression" or constant expression. If not, this struct |
| /// captures information about how and why not. |
| /// |
| /// One bit of information passed *into* the request for constant folding |
| /// indicates whether the subexpression is "evaluated" or not according to C |
| /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
| /// evaluate the expression regardless of what the RHS is, but C only allows |
| /// certain things in certain situations. |
| namespace { |
| struct CallStackFrame; |
| struct EvalInfo; |
| |
| /// A core constant value. This can be the value of any constant expression, |
| /// or a pointer or reference to a non-static object or function parameter. |
| class CCValue : public APValue { |
| typedef llvm::APSInt APSInt; |
| typedef llvm::APFloat APFloat; |
| /// If the value is a reference or pointer into a parameter or temporary, |
| /// this is the corresponding call stack frame. |
| CallStackFrame *CallFrame; |
| public: |
| struct GlobalValue {}; |
| |
| CCValue() {} |
| explicit CCValue(const APSInt &I) : APValue(I) {} |
| explicit CCValue(const APFloat &F) : APValue(F) {} |
| CCValue(const APValue *E, unsigned N) : APValue(E, N) {} |
| CCValue(const APSInt &R, const APSInt &I) : APValue(R, I) {} |
| CCValue(const APFloat &R, const APFloat &I) : APValue(R, I) {} |
| CCValue(const CCValue &V) : APValue(V), CallFrame(V.CallFrame) {} |
| CCValue(const Expr *B, const CharUnits &O, CallStackFrame *F) : |
| APValue(B, O), CallFrame(F) {} |
| CCValue(const APValue &V, GlobalValue) : |
| APValue(V), CallFrame(0) {} |
| |
| CallStackFrame *getLValueFrame() const { |
| assert(getKind() == LValue); |
| return CallFrame; |
| } |
| }; |
| |
| /// A stack frame in the constexpr call stack. |
| struct CallStackFrame { |
| EvalInfo &Info; |
| |
| /// Parent - The caller of this stack frame. |
| CallStackFrame *Caller; |
| |
| /// ParmBindings - Parameter bindings for this function call, indexed by |
| /// parameters' function scope indices. |
| const CCValue *Arguments; |
| |
| typedef llvm::DenseMap<const Expr*, CCValue> MapTy; |
| typedef MapTy::const_iterator temp_iterator; |
| /// Temporaries - Temporary lvalues materialized within this stack frame. |
| MapTy Temporaries; |
| |
| CallStackFrame(EvalInfo &Info, const CCValue *Arguments); |
| ~CallStackFrame(); |
| }; |
| |
| struct EvalInfo { |
| const ASTContext &Ctx; |
| |
| /// EvalStatus - Contains information about the evaluation. |
| Expr::EvalStatus &EvalStatus; |
| |
| /// CurrentCall - The top of the constexpr call stack. |
| CallStackFrame *CurrentCall; |
| |
| /// NumCalls - The number of calls we've evaluated so far. |
| unsigned NumCalls; |
| |
| /// CallStackDepth - The number of calls in the call stack right now. |
| unsigned CallStackDepth; |
| |
| typedef llvm::DenseMap<const OpaqueValueExpr*, CCValue> MapTy; |
| /// OpaqueValues - Values used as the common expression in a |
| /// BinaryConditionalOperator. |
| MapTy OpaqueValues; |
| |
| /// BottomFrame - The frame in which evaluation started. This must be |
| /// initialized last. |
| CallStackFrame BottomFrame; |
| |
| |
| EvalInfo(const ASTContext &C, Expr::EvalStatus &S) |
| : Ctx(C), EvalStatus(S), CurrentCall(0), NumCalls(0), CallStackDepth(0), |
| BottomFrame(*this, 0) {} |
| |
| const CCValue *getOpaqueValue(const OpaqueValueExpr *e) const { |
| MapTy::const_iterator i = OpaqueValues.find(e); |
| if (i == OpaqueValues.end()) return 0; |
| return &i->second; |
| } |
| |
| const LangOptions &getLangOpts() { return Ctx.getLangOptions(); } |
| }; |
| |
| CallStackFrame::CallStackFrame(EvalInfo &Info, const CCValue *Arguments) |
| : Info(Info), Caller(Info.CurrentCall), Arguments(Arguments) { |
| Info.CurrentCall = this; |
| ++Info.CallStackDepth; |
| } |
| |
| CallStackFrame::~CallStackFrame() { |
| assert(Info.CurrentCall == this && "calls retired out of order"); |
| --Info.CallStackDepth; |
| Info.CurrentCall = Caller; |
| } |
| |
| struct ComplexValue { |
| private: |
| bool IsInt; |
| |
| public: |
| APSInt IntReal, IntImag; |
| APFloat FloatReal, FloatImag; |
| |
| ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {} |
| |
| void makeComplexFloat() { IsInt = false; } |
| bool isComplexFloat() const { return !IsInt; } |
| APFloat &getComplexFloatReal() { return FloatReal; } |
| APFloat &getComplexFloatImag() { return FloatImag; } |
| |
| void makeComplexInt() { IsInt = true; } |
| bool isComplexInt() const { return IsInt; } |
| APSInt &getComplexIntReal() { return IntReal; } |
| APSInt &getComplexIntImag() { return IntImag; } |
| |
| void moveInto(CCValue &v) const { |
| if (isComplexFloat()) |
| v = CCValue(FloatReal, FloatImag); |
| else |
| v = CCValue(IntReal, IntImag); |
| } |
| void setFrom(const CCValue &v) { |
| assert(v.isComplexFloat() || v.isComplexInt()); |
| if (v.isComplexFloat()) { |
| makeComplexFloat(); |
| FloatReal = v.getComplexFloatReal(); |
| FloatImag = v.getComplexFloatImag(); |
| } else { |
| makeComplexInt(); |
| IntReal = v.getComplexIntReal(); |
| IntImag = v.getComplexIntImag(); |
| } |
| } |
| }; |
| |
| struct LValue { |
| const Expr *Base; |
| CharUnits Offset; |
| CallStackFrame *Frame; |
| |
| const Expr *getLValueBase() const { return Base; } |
| CharUnits &getLValueOffset() { return Offset; } |
| const CharUnits &getLValueOffset() const { return Offset; } |
| CallStackFrame *getLValueFrame() const { return Frame; } |
| |
| void moveInto(CCValue &V) const { |
| V = CCValue(Base, Offset, Frame); |
| } |
| void setFrom(const CCValue &V) { |
| assert(V.isLValue()); |
| Base = V.getLValueBase(); |
| Offset = V.getLValueOffset(); |
| Frame = V.getLValueFrame(); |
| } |
| }; |
| } |
| |
| static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E); |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info); |
| static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info); |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
| static bool EvaluateIntegerOrLValue(const Expr *E, CCValue &Result, |
| EvalInfo &Info); |
| static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); |
| |
| //===----------------------------------------------------------------------===// |
| // Misc utilities |
| //===----------------------------------------------------------------------===// |
| |
| static bool IsGlobalLValue(const Expr* E) { |
| if (!E) return true; |
| |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (isa<FunctionDecl>(DRE->getDecl())) |
| return true; |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) |
| return VD->hasGlobalStorage(); |
| return false; |
| } |
| |
| if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(E)) |
| return CLE->isFileScope(); |
| |
| if (isa<MemberExpr>(E) || isa<MaterializeTemporaryExpr>(E)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Check that this core constant expression value is a valid value for a |
| /// constant expression. |
| static bool CheckConstantExpression(const CCValue &Value) { |
| return !Value.isLValue() || IsGlobalLValue(Value.getLValueBase()); |
| } |
| |
| const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { |
| if (!LVal.Base) |
| return 0; |
| |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVal.Base)) |
| return DRE->getDecl(); |
| |
| // FIXME: Static data members accessed via a MemberExpr are represented as |
| // that MemberExpr. We should use the Decl directly instead. |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(LVal.Base)) { |
| assert(!isa<FieldDecl>(ME->getMemberDecl()) && "shouldn't see fields here"); |
| return ME->getMemberDecl(); |
| } |
| |
| return 0; |
| } |
| |
| static bool IsLiteralLValue(const LValue &Value) { |
| return Value.Base && |
| !isa<DeclRefExpr>(Value.Base) && |
| !isa<MemberExpr>(Value.Base) && |
| !isa<MaterializeTemporaryExpr>(Value.Base); |
| } |
| |
| static bool IsWeakDecl(const ValueDecl *Decl) { |
| return Decl->hasAttr<WeakAttr>() || |
| Decl->hasAttr<WeakRefAttr>() || |
| Decl->isWeakImported(); |
| } |
| |
| static bool IsWeakLValue(const LValue &Value) { |
| const ValueDecl *Decl = GetLValueBaseDecl(Value); |
| return Decl && IsWeakDecl(Decl); |
| } |
| |
| static bool EvalPointerValueAsBool(const LValue &Value, bool &Result) { |
| const Expr* Base = Value.Base; |
| |
| // A null base expression indicates a null pointer. These are always |
| // evaluatable, and they are false unless the offset is zero. |
| if (!Base) { |
| Result = !Value.Offset.isZero(); |
| return true; |
| } |
| |
| // Require the base expression to be a global l-value. |
| // FIXME: C++11 requires such conversions. Remove this check. |
| if (!IsGlobalLValue(Base)) return false; |
| |
| // We have a non-null base expression. These are generally known to |
| // be true, but if it'a decl-ref to a weak symbol it can be null at |
| // runtime. |
| Result = true; |
| return !IsWeakLValue(Value); |
| } |
| |
| static bool HandleConversionToBool(const CCValue &Val, bool &Result) { |
| switch (Val.getKind()) { |
| case APValue::Uninitialized: |
| return false; |
| case APValue::Int: |
| Result = Val.getInt().getBoolValue(); |
| return true; |
| case APValue::Float: |
| Result = !Val.getFloat().isZero(); |
| return true; |
| case APValue::ComplexInt: |
| Result = Val.getComplexIntReal().getBoolValue() || |
| Val.getComplexIntImag().getBoolValue(); |
| return true; |
| case APValue::ComplexFloat: |
| Result = !Val.getComplexFloatReal().isZero() || |
| !Val.getComplexFloatImag().isZero(); |
| return true; |
| case APValue::LValue: { |
| LValue PointerResult; |
| PointerResult.setFrom(Val); |
| return EvalPointerValueAsBool(PointerResult, Result); |
| } |
| case APValue::Vector: |
| return false; |
| } |
| |
| llvm_unreachable("unknown APValue kind"); |
| } |
| |
| static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition"); |
| CCValue Val; |
| if (!Evaluate(Val, Info, E)) |
| return false; |
| return HandleConversionToBool(Val, Result); |
| } |
| |
| static APSInt HandleFloatToIntCast(QualType DestType, QualType SrcType, |
| APFloat &Value, const ASTContext &Ctx) { |
| unsigned DestWidth = Ctx.getIntWidth(DestType); |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); |
| |
| // FIXME: Warning for overflow. |
| APSInt Result(DestWidth, !DestSigned); |
| bool ignored; |
| (void)Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored); |
| return Result; |
| } |
| |
| static APFloat HandleFloatToFloatCast(QualType DestType, QualType SrcType, |
| APFloat &Value, const ASTContext &Ctx) { |
| bool ignored; |
| APFloat Result = Value; |
| Result.convert(Ctx.getFloatTypeSemantics(DestType), |
| APFloat::rmNearestTiesToEven, &ignored); |
| return Result; |
| } |
| |
| static APSInt HandleIntToIntCast(QualType DestType, QualType SrcType, |
| APSInt &Value, const ASTContext &Ctx) { |
| unsigned DestWidth = Ctx.getIntWidth(DestType); |
| APSInt Result = Value; |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| Result = Result.extOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); |
| return Result; |
| } |
| |
| static APFloat HandleIntToFloatCast(QualType DestType, QualType SrcType, |
| APSInt &Value, const ASTContext &Ctx) { |
| |
| APFloat Result(Ctx.getFloatTypeSemantics(DestType), 1); |
| Result.convertFromAPInt(Value, Value.isSigned(), |
| APFloat::rmNearestTiesToEven); |
| return Result; |
| } |
| |
| /// Try to evaluate the initializer for a variable declaration. |
| static bool EvaluateVarDeclInit(EvalInfo &Info, const VarDecl *VD, |
| CallStackFrame *Frame, CCValue &Result) { |
| // If this is a parameter to an active constexpr function call, perform |
| // argument substitution. |
| if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) { |
| if (!Frame || !Frame->Arguments) |
| return false; |
| Result = Frame->Arguments[PVD->getFunctionScopeIndex()]; |
| return true; |
| } |
| |
| // Never evaluate the initializer of a weak variable. We can't be sure that |
| // this is the definition which will be used. |
| if (IsWeakDecl(VD)) |
| return false; |
| |
| const Expr *Init = VD->getAnyInitializer(); |
| if (!Init) |
| return false; |
| |
| if (APValue *V = VD->getEvaluatedValue()) { |
| Result = CCValue(*V, CCValue::GlobalValue()); |
| return !Result.isUninit(); |
| } |
| |
| if (VD->isEvaluatingValue()) |
| return false; |
| |
| VD->setEvaluatingValue(); |
| |
| Expr::EvalStatus EStatus; |
| EvalInfo InitInfo(Info.Ctx, EStatus); |
| // FIXME: The caller will need to know whether the value was a constant |
| // expression. If not, we should propagate up a diagnostic. |
| if (!Evaluate(Result, InitInfo, Init) || !CheckConstantExpression(Result)) { |
| VD->setEvaluatedValue(APValue()); |
| return false; |
| } |
| |
| VD->setEvaluatedValue(Result); |
| return true; |
| } |
| |
| static bool IsConstNonVolatile(QualType T) { |
| Qualifiers Quals = T.getQualifiers(); |
| return Quals.hasConst() && !Quals.hasVolatile(); |
| } |
| |
| bool HandleLValueToRValueConversion(EvalInfo &Info, QualType Type, |
| const LValue &LVal, CCValue &RVal) { |
| const Expr *Base = LVal.Base; |
| CallStackFrame *Frame = LVal.Frame; |
| |
| // FIXME: Indirection through a null pointer deserves a diagnostic. |
| if (!Base) |
| return false; |
| |
| // FIXME: Support accessing subobjects of objects of literal types. A simple |
| // byte offset is insufficient for C++11 semantics: we need to know how the |
| // reference was formed (which union member was named, for instance). |
| // FIXME: Support subobjects of StringLiteral and PredefinedExpr. |
| if (!LVal.Offset.isZero()) |
| return false; |
| |
| if (const ValueDecl *D = GetLValueBaseDecl(LVal)) { |
| // If the lvalue has been cast to some other type, don't try to read it. |
| // FIXME: Could simulate a bitcast here. |
| if (!Info.Ctx.hasSameUnqualifiedType(Type, D->getType())) |
| return 0; |
| |
| // In C++98, const, non-volatile integers initialized with ICEs are ICEs. |
| // In C++11, constexpr, non-volatile variables initialized with constant |
| // expressions are constant expressions too. Inside constexpr functions, |
| // parameters are constant expressions even if they're non-const. |
| // In C, such things can also be folded, although they are not ICEs. |
| // |
| // FIXME: volatile-qualified ParmVarDecls need special handling. A literal |
| // interpretation of C++11 suggests that volatile parameters are OK if |
| // they're never read (there's no prohibition against constructing volatile |
| // objects in constant expressions), but lvalue-to-rvalue conversions on |
| // them are not permitted. |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (!VD || !(IsConstNonVolatile(VD->getType()) || isa<ParmVarDecl>(VD)) || |
| !(Type->isIntegralOrEnumerationType() || Type->isRealFloatingType()) || |
| !EvaluateVarDeclInit(Info, VD, Frame, RVal)) |
| return false; |
| |
| if (isa<ParmVarDecl>(VD) || !VD->getAnyInitializer()->isLValue()) |
| return true; |
| |
| // The declaration was initialized by an lvalue, with no lvalue-to-rvalue |
| // conversion. This happens when the declaration and the lvalue should be |
| // considered synonymous, for instance when initializing an array of char |
| // from a string literal. Continue as if the initializer lvalue was the |
| // value we were originally given. |
| if (!RVal.getLValueOffset().isZero()) |
| return false; |
| Base = RVal.getLValueBase(); |
| Frame = RVal.getLValueFrame(); |
| } |
| |
| // If this is a temporary expression with a nontrivial initializer, grab the |
| // value from the relevant stack frame. |
| if (Frame) { |
| RVal = Frame->Temporaries[Base]; |
| return true; |
| } |
| |
| // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the |
| // initializer until now for such expressions. Such an expression can't be |
| // an ICE in C, so this only matters for fold. |
| if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { |
| assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?"); |
| return Evaluate(RVal, Info, CLE->getInitializer()); |
| } |
| |
| return false; |
| } |
| |
| namespace { |
| enum EvalStmtResult { |
| /// Evaluation failed. |
| ESR_Failed, |
| /// Hit a 'return' statement. |
| ESR_Returned, |
| /// Evaluation succeeded. |
| ESR_Succeeded |
| }; |
| } |
| |
| // Evaluate a statement. |
| static EvalStmtResult EvaluateStmt(CCValue &Result, EvalInfo &Info, |
| const Stmt *S) { |
| switch (S->getStmtClass()) { |
| default: |
| return ESR_Failed; |
| |
| case Stmt::NullStmtClass: |
| case Stmt::DeclStmtClass: |
| return ESR_Succeeded; |
| |
| case Stmt::ReturnStmtClass: |
| if (Evaluate(Result, Info, cast<ReturnStmt>(S)->getRetValue())) |
| return ESR_Returned; |
| return ESR_Failed; |
| |
| case Stmt::CompoundStmtClass: { |
| const CompoundStmt *CS = cast<CompoundStmt>(S); |
| for (CompoundStmt::const_body_iterator BI = CS->body_begin(), |
| BE = CS->body_end(); BI != BE; ++BI) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); |
| if (ESR != ESR_Succeeded) |
| return ESR; |
| } |
| return ESR_Succeeded; |
| } |
| } |
| } |
| |
| /// Evaluate a function call. |
| static bool HandleFunctionCall(ArrayRef<const Expr*> Args, const Stmt *Body, |
| EvalInfo &Info, CCValue &Result) { |
| // FIXME: Implement a proper call limit, along with a command-line flag. |
| if (Info.NumCalls >= 1000000 || Info.CallStackDepth >= 512) |
| return false; |
| |
| SmallVector<CCValue, 16> ArgValues(Args.size()); |
| // FIXME: Deal with default arguments and 'this'. |
| for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); |
| I != E; ++I) |
| if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) |
| return false; |
| |
| CallStackFrame Frame(Info, ArgValues.data()); |
| return EvaluateStmt(Result, Info, Body) == ESR_Returned; |
| } |
| |
| namespace { |
| class HasSideEffect |
| : public ConstStmtVisitor<HasSideEffect, bool> { |
| const ASTContext &Ctx; |
| public: |
| |
| HasSideEffect(const ASTContext &C) : Ctx(C) {} |
| |
| // Unhandled nodes conservatively default to having side effects. |
| bool VisitStmt(const Stmt *S) { |
| return true; |
| } |
| |
| bool VisitParenExpr(const ParenExpr *E) { return Visit(E->getSubExpr()); } |
| bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) { |
| return Visit(E->getResultExpr()); |
| } |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (Ctx.getCanonicalType(E->getType()).isVolatileQualified()) |
| return true; |
| return false; |
| } |
| bool VisitObjCIvarRefExpr(const ObjCIvarRefExpr *E) { |
| if (Ctx.getCanonicalType(E->getType()).isVolatileQualified()) |
| return true; |
| return false; |
| } |
| bool VisitBlockDeclRefExpr (const BlockDeclRefExpr *E) { |
| if (Ctx.getCanonicalType(E->getType()).isVolatileQualified()) |
| return true; |
| return false; |
| } |
| |
| // We don't want to evaluate BlockExprs multiple times, as they generate |
| // a ton of code. |
| bool VisitBlockExpr(const BlockExpr *E) { return true; } |
| bool VisitPredefinedExpr(const PredefinedExpr *E) { return false; } |
| bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) |
| { return Visit(E->getInitializer()); } |
| bool VisitMemberExpr(const MemberExpr *E) { return Visit(E->getBase()); } |
| bool VisitIntegerLiteral(const IntegerLiteral *E) { return false; } |
| bool VisitFloatingLiteral(const FloatingLiteral *E) { return false; } |
| bool VisitStringLiteral(const StringLiteral *E) { return false; } |
| bool VisitCharacterLiteral(const CharacterLiteral *E) { return false; } |
| bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E) |
| { return false; } |
| bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E) |
| { return Visit(E->getLHS()) || Visit(E->getRHS()); } |
| bool VisitChooseExpr(const ChooseExpr *E) |
| { return Visit(E->getChosenSubExpr(Ctx)); } |
| bool VisitCastExpr(const CastExpr *E) { return Visit(E->getSubExpr()); } |
| bool VisitBinAssign(const BinaryOperator *E) { return true; } |
| bool VisitCompoundAssignOperator(const BinaryOperator *E) { return true; } |
| bool VisitBinaryOperator(const BinaryOperator *E) |
| { return Visit(E->getLHS()) || Visit(E->getRHS()); } |
| bool VisitUnaryPreInc(const UnaryOperator *E) { return true; } |
| bool VisitUnaryPostInc(const UnaryOperator *E) { return true; } |
| bool VisitUnaryPreDec(const UnaryOperator *E) { return true; } |
| bool VisitUnaryPostDec(const UnaryOperator *E) { return true; } |
| bool VisitUnaryDeref(const UnaryOperator *E) { |
| if (Ctx.getCanonicalType(E->getType()).isVolatileQualified()) |
| return true; |
| return Visit(E->getSubExpr()); |
| } |
| bool VisitUnaryOperator(const UnaryOperator *E) { return Visit(E->getSubExpr()); } |
| |
| // Has side effects if any element does. |
| bool VisitInitListExpr(const InitListExpr *E) { |
| for (unsigned i = 0, e = E->getNumInits(); i != e; ++i) |
| if (Visit(E->getInit(i))) return true; |
| if (const Expr *filler = E->getArrayFiller()) |
| return Visit(filler); |
| return false; |
| } |
| |
| bool VisitSizeOfPackExpr(const SizeOfPackExpr *) { return false; } |
| }; |
| |
| class OpaqueValueEvaluation { |
| EvalInfo &info; |
| OpaqueValueExpr *opaqueValue; |
| |
| public: |
| OpaqueValueEvaluation(EvalInfo &info, OpaqueValueExpr *opaqueValue, |
| Expr *value) |
| : info(info), opaqueValue(opaqueValue) { |
| |
| // If evaluation fails, fail immediately. |
| if (!Evaluate(info.OpaqueValues[opaqueValue], info, value)) { |
| this->opaqueValue = 0; |
| return; |
| } |
| } |
| |
| bool hasError() const { return opaqueValue == 0; } |
| |
| ~OpaqueValueEvaluation() { |
| // FIXME: This will not work for recursive constexpr functions using opaque |
| // values. Restore the former value. |
| if (opaqueValue) info.OpaqueValues.erase(opaqueValue); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Evaluation |
| //===----------------------------------------------------------------------===// |
| namespace { |
| |
| template <class Derived, typename RetTy=void> |
| class ExprEvaluatorBase |
| : public ConstStmtVisitor<Derived, RetTy> { |
| private: |
| RetTy DerivedSuccess(const CCValue &V, const Expr *E) { |
| return static_cast<Derived*>(this)->Success(V, E); |
| } |
| RetTy DerivedError(const Expr *E) { |
| return static_cast<Derived*>(this)->Error(E); |
| } |
| RetTy DerivedValueInitialization(const Expr *E) { |
| return static_cast<Derived*>(this)->ValueInitialization(E); |
| } |
| |
| protected: |
| EvalInfo &Info; |
| typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy; |
| typedef ExprEvaluatorBase ExprEvaluatorBaseTy; |
| |
| RetTy ValueInitialization(const Expr *E) { return DerivedError(E); } |
| |
| bool MakeTemporary(const Expr *Key, const Expr *Value, LValue &Result) { |
| if (!Evaluate(Info.CurrentCall->Temporaries[Key], Info, Value)) |
| return false; |
| Result.Base = Key; |
| Result.Offset = CharUnits::Zero(); |
| Result.Frame = Info.CurrentCall; |
| return true; |
| } |
| public: |
| ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
| |
| RetTy VisitStmt(const Stmt *) { |
| llvm_unreachable("Expression evaluator should not be called on stmts"); |
| } |
| RetTy VisitExpr(const Expr *E) { |
| return DerivedError(E); |
| } |
| |
| RetTy VisitParenExpr(const ParenExpr *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| RetTy VisitUnaryExtension(const UnaryOperator *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| RetTy VisitUnaryPlus(const UnaryOperator *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| RetTy VisitChooseExpr(const ChooseExpr *E) |
| { return StmtVisitorTy::Visit(E->getChosenSubExpr(Info.Ctx)); } |
| RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E) |
| { return StmtVisitorTy::Visit(E->getResultExpr()); } |
| RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) |
| { return StmtVisitorTy::Visit(E->getReplacement()); } |
| |
| RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { |
| OpaqueValueEvaluation opaque(Info, E->getOpaqueValue(), E->getCommon()); |
| if (opaque.hasError()) |
| return DerivedError(E); |
| |
| bool cond; |
| if (!EvaluateAsBooleanCondition(E->getCond(), cond, Info)) |
| return DerivedError(E); |
| |
| return StmtVisitorTy::Visit(cond ? E->getTrueExpr() : E->getFalseExpr()); |
| } |
| |
| RetTy VisitConditionalOperator(const ConditionalOperator *E) { |
| bool BoolResult; |
| if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) |
| return DerivedError(E); |
| |
| Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
| return StmtVisitorTy::Visit(EvalExpr); |
| } |
| |
| RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
| const CCValue *Value = Info.getOpaqueValue(E); |
| if (!Value) |
| return (E->getSourceExpr() ? StmtVisitorTy::Visit(E->getSourceExpr()) |
| : DerivedError(E)); |
| return DerivedSuccess(*Value, E); |
| } |
| |
| RetTy VisitCallExpr(const CallExpr *E) { |
| const Expr *Callee = E->getCallee(); |
| QualType CalleeType = Callee->getType(); |
| |
| // FIXME: Handle the case where Callee is a (parenthesized) MemberExpr for a |
| // non-static member function. |
| if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) |
| return DerivedError(E); |
| |
| if (!CalleeType->isFunctionType() && !CalleeType->isFunctionPointerType()) |
| return DerivedError(E); |
| |
| CCValue Call; |
| if (!Evaluate(Call, Info, Callee) || !Call.isLValue() || |
| !Call.getLValueBase() || !Call.getLValueOffset().isZero()) |
| return DerivedError(Callee); |
| |
| const FunctionDecl *FD = 0; |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Call.getLValueBase())) |
| FD = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Call.getLValueBase())) |
| FD = dyn_cast<FunctionDecl>(ME->getMemberDecl()); |
| if (!FD) |
| return DerivedError(Callee); |
| |
| // Don't call function pointers which have been cast to some other type. |
| if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType())) |
| return DerivedError(E); |
| |
| const FunctionDecl *Definition; |
| Stmt *Body = FD->getBody(Definition); |
| CCValue Result; |
| llvm::ArrayRef<const Expr*> Args(E->getArgs(), E->getNumArgs()); |
| |
| if (Body && Definition->isConstexpr() && !Definition->isInvalidDecl() && |
| HandleFunctionCall(Args, Body, Info, Result) && |
| CheckConstantExpression(Result)) |
| return DerivedSuccess(Result, E); |
| |
| return DerivedError(E); |
| } |
| |
| RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| return StmtVisitorTy::Visit(E->getInitializer()); |
| } |
| RetTy VisitInitListExpr(const InitListExpr *E) { |
| if (Info.getLangOpts().CPlusPlus0x) { |
| if (E->getNumInits() == 0) |
| return DerivedValueInitialization(E); |
| if (E->getNumInits() == 1) |
| return StmtVisitorTy::Visit(E->getInit(0)); |
| } |
| return DerivedError(E); |
| } |
| RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| return DerivedValueInitialization(E); |
| } |
| RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
| return DerivedValueInitialization(E); |
| } |
| |
| RetTy VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| break; |
| |
| case CK_NoOp: |
| return StmtVisitorTy::Visit(E->getSubExpr()); |
| |
| case CK_LValueToRValue: { |
| LValue LVal; |
| if (EvaluateLValue(E->getSubExpr(), LVal, Info)) { |
| CCValue RVal; |
| if (HandleLValueToRValueConversion(Info, E->getType(), LVal, RVal)) |
| return DerivedSuccess(RVal, E); |
| } |
| break; |
| } |
| } |
| |
| return DerivedError(E); |
| } |
| |
| /// Visit a value which is evaluated, but whose value is ignored. |
| void VisitIgnoredValue(const Expr *E) { |
| CCValue Scratch; |
| if (!Evaluate(Scratch, Info, E)) |
| Info.EvalStatus.HasSideEffects = true; |
| } |
| }; |
| |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Evaluation |
| // |
| // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), |
| // function designators (in C), decl references to void objects (in C), and |
| // temporaries (if building with -Wno-address-of-temporary). |
| // |
| // LValue evaluation produces values comprising a base expression of one of the |
| // following types: |
| // * DeclRefExpr |
| // * MemberExpr for a static member |
| // * CompoundLiteralExpr in C |
| // * StringLiteral |
| // * PredefinedExpr |
| // * ObjCEncodeExpr |
| // * AddrLabelExpr |
| // * BlockExpr |
| // * CallExpr for a MakeStringConstant builtin |
| // plus an offset in bytes. It can also produce lvalues referring to locals. In |
| // that case, the Frame will point to a stack frame, and the Expr is used as a |
| // key to find the relevant temporary's value. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| class LValueExprEvaluator |
| : public ExprEvaluatorBase<LValueExprEvaluator, bool> { |
| LValue &Result; |
| const Decl *PrevDecl; |
| |
| bool Success(const Expr *E) { |
| Result.Base = E; |
| Result.Offset = CharUnits::Zero(); |
| Result.Frame = 0; |
| return true; |
| } |
| public: |
| |
| LValueExprEvaluator(EvalInfo &info, LValue &Result) : |
| ExprEvaluatorBaseTy(info), Result(Result), PrevDecl(0) {} |
| |
| bool Success(const CCValue &V, const Expr *E) { |
| Result.setFrom(V); |
| return true; |
| } |
| bool Error(const Expr *E) { |
| return false; |
| } |
| |
| bool VisitVarDecl(const Expr *E, const VarDecl *VD); |
| |
| bool VisitDeclRefExpr(const DeclRefExpr *E); |
| bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } |
| bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
| bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
| bool VisitMemberExpr(const MemberExpr *E); |
| bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } |
| bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } |
| bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); |
| bool VisitUnaryDeref(const UnaryOperator *E); |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_LValueBitCast: |
| return Visit(E->getSubExpr()); |
| |
| // FIXME: Support CK_DerivedToBase and CK_UncheckedDerivedToBase. |
| // Reuse PointerExprEvaluator::VisitCastExpr for these. |
| } |
| } |
| |
| // FIXME: Missing: __real__, __imag__ |
| |
| }; |
| } // end anonymous namespace |
| |
| /// Evaluate an expression as an lvalue. This can be legitimately called on |
| /// expressions which are not glvalues, in a few cases: |
| /// * function designators in C, |
| /// * "extern void" objects, |
| /// * temporaries, if building with -Wno-address-of-temporary. |
| static bool EvaluateLValue(const Expr* E, LValue& Result, EvalInfo &Info) { |
| assert((E->isGLValue() || E->getType()->isFunctionType() || |
| E->getType()->isVoidType() || isa<CXXTemporaryObjectExpr>(E)) && |
| "can't evaluate expression as an lvalue"); |
| return LValueExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (isa<FunctionDecl>(E->getDecl())) |
| return Success(E); |
| if (const VarDecl* VD = dyn_cast<VarDecl>(E->getDecl())) |
| return VisitVarDecl(E, VD); |
| return Error(E); |
| } |
| |
| bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { |
| if (!VD->getType()->isReferenceType()) { |
| if (isa<ParmVarDecl>(VD)) { |
| Result.Base = E; |
| Result.Offset = CharUnits::Zero(); |
| Result.Frame = Info.CurrentCall; |
| return true; |
| } |
| return Success(E); |
| } |
| |
| CCValue V; |
| if (EvaluateVarDeclInit(Info, VD, Info.CurrentCall, V)) |
| return Success(V, E); |
| |
| return Error(E); |
| } |
| |
| bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( |
| const MaterializeTemporaryExpr *E) { |
| return MakeTemporary(E, E->GetTemporaryExpr(), Result); |
| } |
| |
| bool |
| LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?"); |
| // Defer visiting the literal until the lvalue-to-rvalue conversion. We can |
| // only see this when folding in C, so there's no standard to follow here. |
| return Success(E); |
| } |
| |
| bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { |
| // Handle static data members. |
| if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { |
| VisitIgnoredValue(E->getBase()); |
| return VisitVarDecl(E, VD); |
| } |
| |
| // Handle static member functions. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { |
| if (MD->isStatic()) { |
| VisitIgnoredValue(E->getBase()); |
| return Success(E); |
| } |
| } |
| |
| QualType Ty; |
| if (E->isArrow()) { |
| if (!EvaluatePointer(E->getBase(), Result, Info)) |
| return false; |
| Ty = E->getBase()->getType()->getAs<PointerType>()->getPointeeType(); |
| } else { |
| if (!Visit(E->getBase())) |
| return false; |
| Ty = E->getBase()->getType(); |
| } |
| |
| const RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| |
| const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
| if (!FD) // FIXME: deal with other kinds of member expressions |
| return false; |
| |
| if (FD->getType()->isReferenceType()) |
| return false; |
| |
| unsigned i = FD->getFieldIndex(); |
| Result.Offset += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); |
| return true; |
| } |
| |
| bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| // FIXME: Deal with vectors as array subscript bases. |
| if (E->getBase()->getType()->isVectorType()) |
| return false; |
| |
| if (!EvaluatePointer(E->getBase(), Result, Info)) |
| return false; |
| |
| APSInt Index; |
| if (!EvaluateInteger(E->getIdx(), Index, Info)) |
| return false; |
| |
| CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(E->getType()); |
| Result.Offset += Index.getSExtValue() * ElementSize; |
| return true; |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { |
| return EvaluatePointer(E->getSubExpr(), Result, Info); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class PointerExprEvaluator |
| : public ExprEvaluatorBase<PointerExprEvaluator, bool> { |
| LValue &Result; |
| |
| bool Success(const Expr *E) { |
| Result.Base = E; |
| Result.Offset = CharUnits::Zero(); |
| Result.Frame = 0; |
| return true; |
| } |
| public: |
| |
| PointerExprEvaluator(EvalInfo &info, LValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(const CCValue &V, const Expr *E) { |
| Result.setFrom(V); |
| return true; |
| } |
| bool Error(const Stmt *S) { |
| return false; |
| } |
| bool ValueInitialization(const Expr *E) { |
| return Success((Expr*)0); |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitUnaryAddrOf(const UnaryOperator *E); |
| bool VisitObjCStringLiteral(const ObjCStringLiteral *E) |
| { return Success(E); } |
| bool VisitAddrLabelExpr(const AddrLabelExpr *E) |
| { return Success(E); } |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBlockExpr(const BlockExpr *E) { |
| if (!E->getBlockDecl()->hasCaptures()) |
| return Success(E); |
| return false; |
| } |
| bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) |
| { return ValueInitialization(E); } |
| |
| // FIXME: Missing: @protocol, @selector |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->hasPointerRepresentation()); |
| return PointerExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() != BO_Add && |
| E->getOpcode() != BO_Sub) |
| return false; |
| |
| const Expr *PExp = E->getLHS(); |
| const Expr *IExp = E->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| if (!EvaluatePointer(PExp, Result, Info)) |
| return false; |
| |
| llvm::APSInt Offset; |
| if (!EvaluateInteger(IExp, Offset, Info)) |
| return false; |
| int64_t AdditionalOffset |
| = Offset.isSigned() ? Offset.getSExtValue() |
| : static_cast<int64_t>(Offset.getZExtValue()); |
| |
| // Compute the new offset in the appropriate width. |
| |
| QualType PointeeType = |
| PExp->getType()->getAs<PointerType>()->getPointeeType(); |
| CharUnits SizeOfPointee; |
| |
| // Explicitly handle GNU void* and function pointer arithmetic extensions. |
| if (PointeeType->isVoidType() || PointeeType->isFunctionType()) |
| SizeOfPointee = CharUnits::One(); |
| else |
| SizeOfPointee = Info.Ctx.getTypeSizeInChars(PointeeType); |
| |
| if (E->getOpcode() == BO_Add) |
| Result.Offset += AdditionalOffset * SizeOfPointee; |
| else |
| Result.Offset -= AdditionalOffset * SizeOfPointee; |
| |
| return true; |
| } |
| |
| bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
| return EvaluateLValue(E->getSubExpr(), Result, Info); |
| } |
| |
| |
| bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| switch (E->getCastKind()) { |
| default: |
| break; |
| |
| case CK_BitCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| return Visit(SubExpr); |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: { |
| if (!EvaluatePointer(E->getSubExpr(), Result, Info)) |
| return false; |
| |
| // Now figure out the necessary offset to add to the baseLV to get from |
| // the derived class to the base class. |
| CharUnits Offset = CharUnits::Zero(); |
| |
| QualType Ty = E->getSubExpr()->getType(); |
| const CXXRecordDecl *DerivedDecl = |
| Ty->getAs<PointerType>()->getPointeeType()->getAsCXXRecordDecl(); |
| |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); PathI != PathE; ++PathI) { |
| const CXXBaseSpecifier *Base = *PathI; |
| |
| // FIXME: If the base is virtual, we'd need to determine the type of the |
| // most derived class and we don't support that right now. |
| if (Base->isVirtual()) |
| return false; |
| |
| const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); |
| |
| Result.getLValueOffset() += Layout.getBaseClassOffset(BaseDecl); |
| DerivedDecl = BaseDecl; |
| } |
| |
| return true; |
| } |
| |
| case CK_NullToPointer: |
| return ValueInitialization(E); |
| |
| case CK_IntegralToPointer: { |
| CCValue Value; |
| if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) |
| break; |
| |
| if (Value.isInt()) { |
| unsigned Size = Info.Ctx.getTypeSize(E->getType()); |
| uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); |
| Result.Base = 0; |
| Result.Offset = CharUnits::fromQuantity(N); |
| Result.Frame = 0; |
| return true; |
| } else { |
| // Cast is of an lvalue, no need to change value. |
| Result.setFrom(Value); |
| return true; |
| } |
| } |
| case CK_ArrayToPointerDecay: |
| // FIXME: Support array-to-pointer decay on array rvalues. |
| if (!SubExpr->isGLValue()) |
| return Error(E); |
| return EvaluateLValue(SubExpr, Result, Info); |
| |
| case CK_FunctionToPointerDecay: |
| return EvaluateLValue(SubExpr, Result, Info); |
| } |
| |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| } |
| |
| bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (E->isBuiltinCall(Info.Ctx) == |
| Builtin::BI__builtin___CFStringMakeConstantString || |
| E->isBuiltinCall(Info.Ctx) == |
| Builtin::BI__builtin___NSStringMakeConstantString) |
| return Success(E); |
| |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VectorExprEvaluator |
| : public ExprEvaluatorBase<VectorExprEvaluator, bool> { |
| APValue &Result; |
| public: |
| |
| VectorExprEvaluator(EvalInfo &info, APValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(const ArrayRef<APValue> &V, const Expr *E) { |
| assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); |
| // FIXME: remove this APValue copy. |
| Result = APValue(V.data(), V.size()); |
| return true; |
| } |
| bool Success(const APValue &V, const Expr *E) { |
| Result = V; |
| return true; |
| } |
| bool Error(const Expr *E) { return false; } |
| bool ValueInitialization(const Expr *E); |
| |
| bool VisitUnaryReal(const UnaryOperator *E) |
| { return Visit(E->getSubExpr()); } |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div, |
| // binary comparisons, binary and/or/xor, |
| // shufflevector, ExtVectorElementExpr |
| // (Note that these require implementing conversions |
| // between vector types.) |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue"); |
| return VectorExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) { |
| const VectorType *VTy = E->getType()->castAs<VectorType>(); |
| QualType EltTy = VTy->getElementType(); |
| unsigned NElts = VTy->getNumElements(); |
| unsigned EltWidth = Info.Ctx.getTypeSize(EltTy); |
| |
| const Expr* SE = E->getSubExpr(); |
| QualType SETy = SE->getType(); |
| |
| switch (E->getCastKind()) { |
| case CK_VectorSplat: { |
| APValue Val = APValue(); |
| if (SETy->isIntegerType()) { |
| APSInt IntResult; |
| if (!EvaluateInteger(SE, IntResult, Info)) |
| return Error(E); |
| Val = APValue(IntResult); |
| } else if (SETy->isRealFloatingType()) { |
| APFloat F(0.0); |
| if (!EvaluateFloat(SE, F, Info)) |
| return Error(E); |
| Val = APValue(F); |
| } else { |
| return Error(E); |
| } |
| |
| // Splat and create vector APValue. |
| SmallVector<APValue, 4> Elts(NElts, Val); |
| return Success(Elts, E); |
| } |
| case CK_BitCast: { |
| // FIXME: this is wrong for any cast other than a no-op cast. |
| if (SETy->isVectorType()) |
| return Visit(SE); |
| |
| if (!SETy->isIntegerType()) |
| return Error(E); |
| |
| APSInt Init; |
| if (!EvaluateInteger(SE, Init, Info)) |
| return Error(E); |
| |
| assert((EltTy->isIntegerType() || EltTy->isRealFloatingType()) && |
| "Vectors must be composed of ints or floats"); |
| |
| SmallVector<APValue, 4> Elts; |
| for (unsigned i = 0; i != NElts; ++i) { |
| APSInt Tmp = Init.extOrTrunc(EltWidth); |
| |
| if (EltTy->isIntegerType()) |
| Elts.push_back(APValue(Tmp)); |
| else |
| Elts.push_back(APValue(APFloat(Tmp))); |
| |
| Init >>= EltWidth; |
| } |
| return Success(Elts, E); |
| } |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| } |
| } |
| |
| bool |
| VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| const VectorType *VT = E->getType()->castAs<VectorType>(); |
| unsigned NumInits = E->getNumInits(); |
| unsigned NumElements = VT->getNumElements(); |
| |
| QualType EltTy = VT->getElementType(); |
| SmallVector<APValue, 4> Elements; |
| |
| // If a vector is initialized with a single element, that value |
| // becomes every element of the vector, not just the first. |
| // This is the behavior described in the IBM AltiVec documentation. |
| if (NumInits == 1) { |
| |
| // Handle the case where the vector is initialized by another |
| // vector (OpenCL 6.1.6). |
| if (E->getInit(0)->getType()->isVectorType()) |
| return Visit(E->getInit(0)); |
| |
| APValue InitValue; |
| if (EltTy->isIntegerType()) { |
| llvm::APSInt sInt(32); |
| if (!EvaluateInteger(E->getInit(0), sInt, Info)) |
| return Error(E); |
| InitValue = APValue(sInt); |
| } else { |
| llvm::APFloat f(0.0); |
| if (!EvaluateFloat(E->getInit(0), f, Info)) |
| return Error(E); |
| InitValue = APValue(f); |
| } |
| for (unsigned i = 0; i < NumElements; i++) { |
| Elements.push_back(InitValue); |
| } |
| } else { |
| for (unsigned i = 0; i < NumElements; i++) { |
| if (EltTy->isIntegerType()) { |
| llvm::APSInt sInt(32); |
| if (i < NumInits) { |
| if (!EvaluateInteger(E->getInit(i), sInt, Info)) |
| return Error(E); |
| } else { |
| sInt = Info.Ctx.MakeIntValue(0, EltTy); |
| } |
| Elements.push_back(APValue(sInt)); |
| } else { |
| llvm::APFloat f(0.0); |
| if (i < NumInits) { |
| if (!EvaluateFloat(E->getInit(i), f, Info)) |
| return Error(E); |
| } else { |
| f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); |
| } |
| Elements.push_back(APValue(f)); |
| } |
| } |
| } |
| return Success(Elements, E); |
| } |
| |
| bool |
| VectorExprEvaluator::ValueInitialization(const Expr *E) { |
| const VectorType *VT = E->getType()->getAs<VectorType>(); |
| QualType EltTy = VT->getElementType(); |
| APValue ZeroElement; |
| if (EltTy->isIntegerType()) |
| ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); |
| else |
| ZeroElement = |
| APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); |
| |
| SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); |
| return Success(Elements, E); |
| } |
| |
| bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| VisitIgnoredValue(E->getSubExpr()); |
| return ValueInitialization(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Evaluation |
| // |
| // As a GNU extension, we support casting pointers to sufficiently-wide integer |
| // types and back in constant folding. Integer values are thus represented |
| // either as an integer-valued APValue, or as an lvalue-valued APValue. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class IntExprEvaluator |
| : public ExprEvaluatorBase<IntExprEvaluator, bool> { |
| CCValue &Result; |
| public: |
| IntExprEvaluator(EvalInfo &info, CCValue &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const llvm::APSInt &SI, const Expr *E) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = CCValue(SI); |
| return true; |
| } |
| |
| bool Success(const llvm::APInt &I, const Expr *E) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = CCValue(APSInt(I)); |
| Result.getInt().setIsUnsigned( |
| E->getType()->isUnsignedIntegerOrEnumerationType()); |
| return true; |
| } |
| |
| bool Success(uint64_t Value, const Expr *E) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| Result = CCValue(Info.Ctx.MakeIntValue(Value, E->getType())); |
| return true; |
| } |
| |
| bool Success(CharUnits Size, const Expr *E) { |
| return Success(Size.getQuantity(), E); |
| } |
| |
| |
| bool Error(SourceLocation L, diag::kind D, const Expr *E) { |
| // Take the first error. |
| if (Info.EvalStatus.Diag == 0) { |
| Info.EvalStatus.DiagLoc = L; |
| Info.EvalStatus.Diag = D; |
| Info.EvalStatus.DiagExpr = E; |
| } |
| return false; |
| } |
| |
| bool Success(const CCValue &V, const Expr *E) { |
| if (V.isLValue()) { |
| Result = V; |
| return true; |
| } |
| return Success(V.getInt(), E); |
| } |
| bool Error(const Expr *E) { |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| } |
| |
| bool ValueInitialization(const Expr *E) { return Success(0, E); } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitIntegerLiteral(const IntegerLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| bool VisitCharacterLiteral(const CharacterLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool CheckReferencedDecl(const Expr *E, const Decl *D); |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (CheckReferencedDecl(E, E->getDecl())) |
| return true; |
| |
| return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); |
| } |
| bool VisitMemberExpr(const MemberExpr *E) { |
| if (CheckReferencedDecl(E, E->getMemberDecl())) { |
| VisitIgnoredValue(E->getBase()); |
| return true; |
| } |
| |
| return ExprEvaluatorBaseTy::VisitMemberExpr(E); |
| } |
| |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitOffsetOfExpr(const OffsetOfExpr *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
| |
| bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| // Note, GNU defines __null as an integer, not a pointer. |
| bool VisitGNUNullExpr(const GNUNullExpr *E) { |
| return ValueInitialization(E); |
| } |
| |
| bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| |
| bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); |
| bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); |
| |
| private: |
| CharUnits GetAlignOfExpr(const Expr *E); |
| CharUnits GetAlignOfType(QualType T); |
| static QualType GetObjectType(const Expr *E); |
| bool TryEvaluateBuiltinObjectSize(const CallExpr *E); |
| // FIXME: Missing: array subscript of vector, member of vector |
| }; |
| } // end anonymous namespace |
| |
| /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and |
| /// produce either the integer value or a pointer. |
| /// |
| /// GCC has a heinous extension which folds casts between pointer types and |
| /// pointer-sized integral types. We support this by allowing the evaluation of |
| /// an integer rvalue to produce a pointer (represented as an lvalue) instead. |
| /// Some simple arithmetic on such values is supported (they are treated much |
| /// like char*). |
| static bool EvaluateIntegerOrLValue(const Expr* E, CCValue &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType()); |
| return IntExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) { |
| CCValue Val; |
| if (!EvaluateIntegerOrLValue(E, Val, Info) || !Val.isInt()) |
| return false; |
| Result = Val.getInt(); |
| return true; |
| } |
| |
| bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { |
| // Enums are integer constant exprs. |
| if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { |
| // Check for signedness/width mismatches between E type and ECD value. |
| bool SameSign = (ECD->getInitVal().isSigned() |
| == E->getType()->isSignedIntegerOrEnumerationType()); |
| bool SameWidth = (ECD->getInitVal().getBitWidth() |
| == Info.Ctx.getIntWidth(E->getType())); |
| if (SameSign && SameWidth) |
| return Success(ECD->getInitVal(), E); |
| else { |
| // Get rid of mismatch (otherwise Success assertions will fail) |
| // by computing a new value matching the type of E. |
| llvm::APSInt Val = ECD->getInitVal(); |
| if (!SameSign) |
| Val.setIsSigned(!ECD->getInitVal().isSigned()); |
| if (!SameWidth) |
| Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); |
| return Success(Val, E); |
| } |
| } |
| return false; |
| } |
| |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| /// as GCC. |
| static int EvaluateBuiltinClassifyType(const CallExpr *E) { |
| // The following enum mimics the values returned by GCC. |
| // FIXME: Does GCC differ between lvalue and rvalue references here? |
| enum gcc_type_class { |
| no_type_class = -1, |
| void_type_class, integer_type_class, char_type_class, |
| enumeral_type_class, boolean_type_class, |
| pointer_type_class, reference_type_class, offset_type_class, |
| real_type_class, complex_type_class, |
| function_type_class, method_type_class, |
| record_type_class, union_type_class, |
| array_type_class, string_type_class, |
| lang_type_class |
| }; |
| |
| // If no argument was supplied, default to "no_type_class". This isn't |
| // ideal, however it is what gcc does. |
| if (E->getNumArgs() == 0) |
| return no_type_class; |
| |
| QualType ArgTy = E->getArg(0)->getType(); |
| if (ArgTy->isVoidType()) |
| return void_type_class; |
| else if (ArgTy->isEnumeralType()) |
| return enumeral_type_class; |
| else if (ArgTy->isBooleanType()) |
| return boolean_type_class; |
| else if (ArgTy->isCharType()) |
| return string_type_class; // gcc doesn't appear to use char_type_class |
| else if (ArgTy->isIntegerType()) |
| return integer_type_class; |
| else if (ArgTy->isPointerType()) |
| return pointer_type_class; |
| else if (ArgTy->isReferenceType()) |
| return reference_type_class; |
| else if (ArgTy->isRealType()) |
| return real_type_class; |
| else if (ArgTy->isComplexType()) |
| return complex_type_class; |
| else if (ArgTy->isFunctionType()) |
| return function_type_class; |
| else if (ArgTy->isStructureOrClassType()) |
| return record_type_class; |
| else if (ArgTy->isUnionType()) |
| return union_type_class; |
| else if (ArgTy->isArrayType()) |
| return array_type_class; |
| else if (ArgTy->isUnionType()) |
| return union_type_class; |
| else // FIXME: offset_type_class, method_type_class, & lang_type_class? |
| llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type"); |
| return -1; |
| } |
| |
| /// Retrieves the "underlying object type" of the given expression, |
| /// as used by __builtin_object_size. |
| QualType IntExprEvaluator::GetObjectType(const Expr *E) { |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) |
| return VD->getType(); |
| } else if (isa<CompoundLiteralExpr>(E)) { |
| return E->getType(); |
| } |
| |
| return QualType(); |
| } |
| |
| bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) { |
| // TODO: Perhaps we should let LLVM lower this? |
| LValue Base; |
| if (!EvaluatePointer(E->getArg(0), Base, Info)) |
| return false; |
| |
| // If we can prove the base is null, lower to zero now. |
| const Expr *LVBase = Base.getLValueBase(); |
| if (!LVBase) return Success(0, E); |
| |
| QualType T = GetObjectType(LVBase); |
| if (T.isNull() || |
| T->isIncompleteType() || |
| T->isFunctionType() || |
| T->isVariablyModifiedType() || |
| T->isDependentType()) |
| return false; |
| |
| CharUnits Size = Info.Ctx.getTypeSizeInChars(T); |
| CharUnits Offset = Base.getLValueOffset(); |
| |
| if (!Offset.isNegative() && Offset <= Size) |
| Size -= Offset; |
| else |
| Size = CharUnits::Zero(); |
| return Success(Size, E); |
| } |
| |
| bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| switch (E->isBuiltinCall(Info.Ctx)) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| case Builtin::BI__builtin_object_size: { |
| if (TryEvaluateBuiltinObjectSize(E)) |
| return true; |
| |
| // If evaluating the argument has side-effects we can't determine |
| // the size of the object and lower it to unknown now. |
| if (E->getArg(0)->HasSideEffects(Info.Ctx)) { |
| if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1) |
| return Success(-1ULL, E); |
| return Success(0, E); |
| } |
| |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| } |
| |
| case Builtin::BI__builtin_classify_type: |
| return Success(EvaluateBuiltinClassifyType(E), E); |
| |
| case Builtin::BI__builtin_constant_p: |
| // __builtin_constant_p always has one operand: it returns true if that |
| // operand can be folded, false otherwise. |
| return Success(E->getArg(0)->isEvaluatable(Info.Ctx), E); |
| |
| case Builtin::BI__builtin_eh_return_data_regno: { |
| int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
| Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); |
| return Success(Operand, E); |
| } |
| |
| case Builtin::BI__builtin_expect: |
| return Visit(E->getArg(0)); |
| |
| case Builtin::BIstrlen: |
| case Builtin::BI__builtin_strlen: |
| // As an extension, we support strlen() and __builtin_strlen() as constant |
| // expressions when the argument is a string literal. |
| if (const StringLiteral *S |
| = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) { |
| // The string literal may have embedded null characters. Find the first |
| // one and truncate there. |
| StringRef Str = S->getString(); |
| StringRef::size_type Pos = Str.find(0); |
| if (Pos != StringRef::npos) |
| Str = Str.substr(0, Pos); |
| |
| return Success(Str.size(), E); |
| } |
| |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| |
| case Builtin::BI__atomic_is_lock_free: { |
| APSInt SizeVal; |
| if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) |
| return false; |
| |
| // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
| // of two less than the maximum inline atomic width, we know it is |
| // lock-free. If the size isn't a power of two, or greater than the |
| // maximum alignment where we promote atomics, we know it is not lock-free |
| // (at least not in the sense of atomic_is_lock_free). Otherwise, |
| // the answer can only be determined at runtime; for example, 16-byte |
| // atomics have lock-free implementations on some, but not all, |
| // x86-64 processors. |
| |
| // Check power-of-two. |
| CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); |
| if (!Size.isPowerOfTwo()) |
| #if 0 |
| // FIXME: Suppress this folding until the ABI for the promotion width |
| // settles. |
| return Success(0, E); |
| #else |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| #endif |
| |
| #if 0 |
| // Check against promotion width. |
| // FIXME: Suppress this folding until the ABI for the promotion width |
| // settles. |
| unsigned PromoteWidthBits = |
| Info.Ctx.getTargetInfo().getMaxAtomicPromoteWidth(); |
| if (Size > Info.Ctx.toCharUnitsFromBits(PromoteWidthBits)) |
| return Success(0, E); |
| #endif |
| |
| // Check against inlining width. |
| unsigned InlineWidthBits = |
| Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); |
| if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) |
| return Success(1, E); |
| |
| return Error(E->getLocStart(), diag::note_invalid_subexpr_in_ice, E); |
| } |
| } |
| } |
| |
| static bool HasSameBase(const LValue &A, const LValue &B) { |
| if (!A.getLValueBase()) |
| return !B.getLValueBase(); |
| if (!B.getLValueBase()) |
| return false; |
| |
| if (A.getLValueBase() != B.getLValueBase()) { |
| const Decl *ADecl = GetLValueBaseDecl(A); |
| if (!ADecl) |
| return false; |
| const Decl *BDecl = GetLValueBaseDecl(B); |
| if (ADecl != BDecl) |
| return false; |
| } |
| |
| return IsGlobalLValue(A.getLValueBase()) || |
| A.getLValueFrame() == B.getLValueFrame(); |
| } |
| |
| bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->isAssignmentOp()) |
| return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| |
| if (E->getOpcode() == BO_Comma) { |
| VisitIgnoredValue(E->getLHS()); |
| return Visit(E->getRHS()); |
| } |
| |
| if (E->isLogicalOp()) { |
| // These need to be handled specially because the operands aren't |
| // necessarily integral |
| bool lhsResult, rhsResult; |
| |
| if (EvaluateAsBooleanCondition(E->getLHS(), lhsResult, Info)) { |
| // We were able to evaluate the LHS, see if we can get away with not |
| // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
| if (lhsResult == (E->getOpcode() == BO_LOr)) |
| return Success(lhsResult, E); |
| |
| if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) { |
| if (E->getOpcode() == BO_LOr) |
| return Success(lhsResult || rhsResult, E); |
| else |
| return Success(lhsResult && rhsResult, E); |
| } |
| } else { |
| if (EvaluateAsBooleanCondition(E->getRHS(), rhsResult, Info)) { |
| // We can't evaluate the LHS; however, sometimes the result |
| // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| if (rhsResult == (E->getOpcode() == BO_LOr) || |
| !rhsResult == (E->getOpcode() == BO_LAnd)) { |
| // Since we weren't able to evaluate the left hand side, it |
| // must have had side effects. |
| Info.EvalStatus.HasSideEffects = true; |
| |
| return Success(rhsResult, E); |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| |
| if (LHSTy->isAnyComplexType()) { |
| assert(RHSTy->isAnyComplexType() && "Invalid comparison"); |
| ComplexValue LHS, RHS; |
| |
| if (!EvaluateComplex(E->getLHS(), LHS, Info)) |
| return false; |
| |
| if (!EvaluateComplex(E->getRHS(), RHS, Info)) |
| return false; |
| |
| if (LHS.isComplexFloat()) { |
| APFloat::cmpResult CR_r = |
| LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); |
| APFloat::cmpResult CR_i = |
| LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); |
| |
| if (E->getOpcode() == BO_EQ) |
| return Success((CR_r == APFloat::cmpEqual && |
| CR_i == APFloat::cmpEqual), E); |
| else { |
| assert(E->getOpcode() == BO_NE && |
| "Invalid complex comparison."); |
| return Success(((CR_r == APFloat::cmpGreaterThan || |
| CR_r == APFloat::cmpLessThan || |
| CR_r == APFloat::cmpUnordered) || |
| (CR_i == APFloat::cmpGreaterThan || |
| CR_i == APFloat::cmpLessThan || |
| CR_i == APFloat::cmpUnordered)), E); |
| } |
| } else { |
| if (E->getOpcode() == BO_EQ) |
| return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() && |
| LHS.getComplexIntImag() == RHS.getComplexIntImag()), E); |
| else { |
| assert(E->getOpcode() == BO_NE && |
| "Invalid compex comparison."); |
| return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() || |
| LHS.getComplexIntImag() != RHS.getComplexIntImag()), E); |
| } |
| } |
| } |
| |
| if (LHSTy->isRealFloatingType() && |
| RHSTy->isRealFloatingType()) { |
| APFloat RHS(0.0), LHS(0.0); |
| |
| if (!EvaluateFloat(E->getRHS(), RHS, Info)) |
| return false; |
| |
| if (!EvaluateFloat(E->getLHS(), LHS, Info)) |
| return false; |
| |
| APFloat::cmpResult CR = LHS.compare(RHS); |
| |
| switch (E->getOpcode()) { |
| default: |
| llvm_unreachable("Invalid binary operator!"); |
| case BO_LT: |
| return Success(CR == APFloat::cmpLessThan, E); |
| case BO_GT: |
| return Success(CR == APFloat::cmpGreaterThan, E); |
| case BO_LE: |
| return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E); |
| case BO_GE: |
| return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual, |
| E); |
| case BO_EQ: |
| return Success(CR == APFloat::cmpEqual, E); |
| case BO_NE: |
| return Success(CR == APFloat::cmpGreaterThan |
| || CR == APFloat::cmpLessThan |
| || CR == APFloat::cmpUnordered, E); |
| } |
| } |
| |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
| if (E->getOpcode() == BO_Sub || E->isComparisonOp()) { |
| LValue LHSValue; |
| if (!EvaluatePointer(E->getLHS(), LHSValue, Info)) |
| return false; |
| |
| LValue RHSValue; |
| if (!EvaluatePointer(E->getRHS(), RHSValue, Info)) |
| return false; |
| |
| // Reject differing bases from the normal codepath; we special-case |
| // comparisons to null. |
| if (!HasSameBase(LHSValue, RHSValue)) { |
| // Inequalities and subtractions between unrelated pointers have |
| // unspecified or undefined behavior. |
| if (!E->isEqualityOp()) |
| return false; |
| // A constant address may compare equal to the address of a symbol. |
| // The one exception is that address of an object cannot compare equal |
| // to a null pointer constant. |
| if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || |
| (!RHSValue.Base && !RHSValue.Offset.isZero())) |
| return false; |
| // It's implementation-defined whether distinct literals will have |
| // distinct addresses. In clang, we do not guarantee the addresses are |
| // distinct. |
| if (IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) |
| return false; |
| // We can't tell whether weak symbols will end up pointing to the same |
| // object. |
| if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) |
| return false; |
| // Pointers with different bases cannot represent the same object. |
| // (Note that clang defaults to -fmerge-all-constants, which can |
| // lead to inconsistent results for comparisons involving the address |
| // of a constant; this generally doesn't matter in practice.) |
| return Success(E->getOpcode() == BO_NE, E); |
| } |
| |
| if (E->getOpcode() == BO_Sub) { |
| QualType Type = E->getLHS()->getType(); |
| QualType ElementType = Type->getAs<PointerType>()->getPointeeType(); |
| |
| CharUnits ElementSize = CharUnits::One(); |
| if (!ElementType->isVoidType() && !ElementType->isFunctionType()) |
| ElementSize = Info.Ctx.getTypeSizeInChars(ElementType); |
| |
| CharUnits Diff = LHSValue.getLValueOffset() - |
| RHSValue.getLValueOffset(); |
| return Success(Diff / ElementSize, E); |
| } |
| |
| const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
| const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
| switch (E->getOpcode()) { |
| default: llvm_unreachable("missing comparison operator"); |
| case BO_LT: return Success(LHSOffset < RHSOffset, E); |
| case BO_GT: return Success(LHSOffset > RHSOffset, E); |
| case BO_LE: return Success(LHSOffset <= RHSOffset, E); |
| case BO_GE: return Success(LHSOffset >= RHSOffset, E); |
| case BO_EQ: return Success(LHSOffset == RHSOffset, E); |
| case BO_NE: return Success(LHSOffset != RHSOffset, E); |
| } |
| } |
| } |
| if (!LHSTy->isIntegralOrEnumerationType() || |
| !RHSTy->isIntegralOrEnumerationType()) { |
| // We can't continue from here for non-integral types, and they |
| // could potentially confuse the following operations. |
| return false; |
| } |
| |
| // The LHS of a constant expr is always evaluated and needed. |
| CCValue LHSVal; |
| if (!EvaluateIntegerOrLValue(E->getLHS(), LHSVal, Info)) |
| return false; // error in subexpression. |
| |
| if (!Visit(E->getRHS())) |
| return false; |
| CCValue &RHSVal = Result; |
| |
| // Handle cases like (unsigned long)&a + 4. |
| if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { |
| CharUnits AdditionalOffset = CharUnits::fromQuantity( |
| RHSVal.getInt().getZExtValue()); |
| if (E->getOpcode() == BO_Add) |
| LHSVal.getLValueOffset() += AdditionalOffset; |
| else |
| LHSVal.getLValueOffset() -= AdditionalOffset; |
| Result = LHSVal; |
| return true; |
| } |
| |
| // Handle cases like 4 + (unsigned long)&a |
| if (E->getOpcode() == BO_Add && |
| RHSVal.isLValue() && LHSVal.isInt()) { |
| RHSVal.getLValueOffset() += CharUnits::fromQuantity( |
| LHSVal.getInt().getZExtValue()); |
| // Note that RHSVal is Result. |
| return true; |
| } |
| |
| // All the following cases expect both operands to be an integer |
| if (!LHSVal.isInt() || !RHSVal.isInt()) |
| return false; |
| |
| APSInt &LHS = LHSVal.getInt(); |
| APSInt &RHS = RHSVal.getInt(); |
| |
| switch (E->getOpcode()) { |
| default: |
| return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| case BO_Mul: return Success(LHS * RHS, E); |
| case BO_Add: return Success(LHS + RHS, E); |
| case BO_Sub: return Success(LHS - RHS, E); |
| case BO_And: return Success(LHS & RHS, E); |
| case BO_Xor: return Success(LHS ^ RHS, E); |
| case BO_Or: return Success(LHS | RHS, E); |
| case BO_Div: |
| if (RHS == 0) |
| return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); |
| return Success(LHS / RHS, E); |
| case BO_Rem: |
| if (RHS == 0) |
| return Error(E->getOperatorLoc(), diag::note_expr_divide_by_zero, E); |
| return Success(LHS % RHS, E); |
| case BO_Shl: { |
| // During constant-folding, a negative shift is an opposite shift. |
| if (RHS.isSigned() && RHS.isNegative()) { |
| RHS = -RHS; |
| goto shift_right; |
| } |
| |
| shift_left: |
| unsigned SA |
| = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
| return Success(LHS << SA, E); |
| } |
| case BO_Shr: { |
| // During constant-folding, a negative shift is an opposite shift. |
| if (RHS.isSigned() && RHS.isNegative()) { |
| RHS = -RHS; |
| goto shift_left; |
| } |
| |
| shift_right: |
| unsigned SA = |
| (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
| return Success(LHS >> SA, E); |
| } |
| |
| case BO_LT: return Success(LHS < RHS, E); |
| case BO_GT: return Success(LHS > RHS, E); |
| case BO_LE: return Success(LHS <= RHS, E); |
| case BO_GE: return Success(LHS >= RHS, E); |
| case BO_EQ: return Success(LHS == RHS, E); |
| case BO_NE: return Success(LHS != RHS, E); |
| } |
| } |
| |
| CharUnits IntExprEvaluator::GetAlignOfType(QualType T) { |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| // result shall be the alignment of the referenced type." |
| if (const ReferenceType *Ref = T->getAs<ReferenceType>()) |
| T = Ref->getPointeeType(); |
| |
| // __alignof is defined to return the preferred alignment. |
| return Info.Ctx.toCharUnitsFromBits( |
| Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); |
| } |
| |
| CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // alignof decl is always accepted, even if it doesn't make sense: we default |
| // to 1 in those cases. |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| return Info.Ctx.getDeclAlign(DRE->getDecl(), |
| /*RefAsPointee*/true); |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| return Info.Ctx.getDeclAlign(ME->getMemberDecl(), |
| /*RefAsPointee*/true); |
| |
| return GetAlignOfType(E->getType()); |
| } |
| |
| |
| /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with |
| /// a result as the expression's type. |
| bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( |
| const UnaryExprOrTypeTraitExpr *E) { |
| switch(E->getKind()) { |
| case UETT_AlignOf: { |
| if (E->isArgumentType()) |
| return Success(GetAlignOfType(E->getArgumentType()), E); |
| else |
| return Success(GetAlignOfExpr(E->getArgumentExpr()), E); |
| } |
| |
| case UETT_VecStep: { |
| QualType Ty = E->getTypeOfArgument(); |
| |
| if (Ty->isVectorType()) { |
| unsigned n = Ty->getAs<VectorType>()->getNumElements(); |
| |
| // The vec_step built-in functions that take a 3-component |
| // vector return 4. (OpenCL 1.1 spec 6.11.12) |
| if (n == 3) |
| n = 4; |
| |
| return Success(n, E); |
| } else |
| return Success(1, E); |
| } |
| |
| case UETT_SizeOf: { |
| QualType SrcTy = E->getTypeOfArgument(); |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the |
| // result shall be the alignment of the referenced type." |
| if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) |
| SrcTy = Ref->getPointeeType(); |
| |
| // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
| // extension. |
| if (SrcTy->isVoidType() || SrcTy->isFunctionType()) |
| return Success(1, E); |
| |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| if (!SrcTy->isConstantSizeType()) |
| return false; |
| |
| // Get information about the size. |
| return Success(Info.Ctx.getTypeSizeInChars(SrcTy), E); |
| } |
| } |
| |
| llvm_unreachable("unknown expr/type trait"); |
| return false; |
| } |
| |
| bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { |
| CharUnits Result; |
| unsigned n = OOE->getNumComponents(); |
| if (n == 0) |
| return false; |
| QualType CurrentType = OOE->getTypeSourceInfo()->getType(); |
| for (unsigned i = 0; i != n; ++i) { |
| OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i); |
| switch (ON.getKind()) { |
| case OffsetOfExpr::OffsetOfNode::Array: { |
| const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); |
| APSInt IdxResult; |
| if (!EvaluateInteger(Idx, IdxResult, Info)) |
| return false; |
| const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); |
| if (!AT) |
| return false; |
| CurrentType = AT->getElementType(); |
| CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); |
| Result += IdxResult.getSExtValue() * ElementSize; |
| break; |
| } |
| |
| case OffsetOfExpr::OffsetOfNode::Field: { |
| FieldDecl *MemberDecl = ON.getField(); |
| const RecordType *RT = CurrentType->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| unsigned i = MemberDecl->getFieldIndex(); |
| assert(i < RL.getFieldCount() && "offsetof field in wrong type"); |
| Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); |
| CurrentType = MemberDecl->getType().getNonReferenceType(); |
| break; |
| } |
| |
| case OffsetOfExpr::OffsetOfNode::Identifier: |
| llvm_unreachable("dependent __builtin_offsetof"); |
| return false; |
| |
| case OffsetOfExpr::OffsetOfNode::Base: { |
| CXXBaseSpecifier *BaseSpec = ON.getBase(); |
| if (BaseSpec->isVirtual()) |
| return false; |
| |
| // Find the layout of the class whose base we are looking into. |
| const RecordType *RT = CurrentType->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| RecordDecl *RD = RT->getDecl(); |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| |
| // Find the base class itself. |
| CurrentType = BaseSpec->getType(); |
| const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
| if (!BaseRT) |
| return false; |
| |
| // Add the offset to the base. |
| Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); |
| break; |
| } |
| } |
| } |
| return Success(Result, OOE); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| if (E->getOpcode() == UO_LNot) { |
| // LNot's operand isn't necessarily an integer, so we handle it specially. |
| bool bres; |
| if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
| return false; |
| return Success(!bres, E); |
| } |
| |
| // Only handle integral operations... |
| if (!E->getSubExpr()->getType()->isIntegralOrEnumerationType()) |
| return false; |
| |
| // Get the operand value. |
| CCValue Val; |
| if (!Evaluate(Val, Info, E->getSubExpr())) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| return Error(E->getOperatorLoc(), diag::note_invalid_subexpr_in_ice, E); |
| case UO_Extension: |
| // FIXME: Should extension allow i-c-e extension expressions in its scope? |
| // If so, we could clear the diagnostic ID. |
| return Success(Val, E); |
| case UO_Plus: |
| // The result is just the value. |
| return Success(Val, E); |
| case UO_Minus: |
| if (!Val.isInt()) return false; |
| return Success(-Val.getInt(), E); |
| case UO_Not: |
| if (!Val.isInt()) return false; |
| return Success(~Val.getInt(), E); |
| } |
| } |
| |
| /// HandleCast - This is used to evaluate implicit or explicit casts where the |
| /// result type is integer. |
| bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| QualType DestType = E->getType(); |
| QualType SrcType = SubExpr->getType(); |
| |
| switch (E->getCastKind()) { |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralToFloating: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| llvm_unreachable("invalid cast kind for integral value"); |
| |
| case CK_BitCast: |
| case CK_Dependent: |
| case CK_GetObjCProperty: |
| case CK_LValueBitCast: |
| case CK_UserDefinedConversion: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| return false; |
| |
| case CK_LValueToRValue: |
| case CK_NoOp: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_MemberPointerToBoolean: |
| case CK_PointerToBoolean: |
| case CK_IntegralToBoolean: |
| case CK_FloatingToBoolean: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToBoolean: { |
| bool BoolResult; |
| if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) |
| return false; |
| return Success(BoolResult, E); |
| } |
| |
| case CK_IntegralCast: { |
| if (!Visit(SubExpr)) |
| return false; |
| |
| if (!Result.isInt()) { |
| // Only allow casts of lvalues if they are lossless. |
| return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); |
| } |
| |
| return Success(HandleIntToIntCast(DestType, SrcType, |
| Result.getInt(), Info.Ctx), E); |
| } |
| |
| case CK_PointerToIntegral: { |
| LValue LV; |
| if (!EvaluatePointer(SubExpr, LV, Info)) |
| return false; |
| |
| if (LV.getLValueBase()) { |
| // Only allow based lvalue casts if they are lossless. |
| if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) |
| return false; |
| |
| LV.moveInto(Result); |
| return true; |
| } |
| |
| APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), |
| SrcType); |
| return Success(HandleIntToIntCast(DestType, SrcType, AsInt, Info.Ctx), E); |
| } |
| |
| case CK_IntegralComplexToReal: { |
| ComplexValue C; |
| if (!EvaluateComplex(SubExpr, C, Info)) |
| return false; |
| return Success(C.getComplexIntReal(), E); |
| } |
| |
| case CK_FloatingToIntegral: { |
| APFloat F(0.0); |
| if (!EvaluateFloat(SubExpr, F, Info)) |
| return false; |
| |
| return Success(HandleFloatToIntCast(DestType, SrcType, F, Info.Ctx), E); |
| } |
| } |
| |
| llvm_unreachable("unknown cast resulting in integral value"); |
| return false; |
| } |
| |
| bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue LV; |
| if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) |
| return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| return Success(LV.getComplexIntReal(), E); |
| } |
| |
| return Visit(E->getSubExpr()); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isComplexIntegerType()) { |
| ComplexValue LV; |
| if (!EvaluateComplex(E->getSubExpr(), LV, Info) || !LV.isComplexInt()) |
| return Error(E->getExprLoc(), diag::note_invalid_subexpr_in_ice, E); |
| return Success(LV.getComplexIntImag(), E); |
| } |
| |
| VisitIgnoredValue(E->getSubExpr()); |
| return Success(0, E); |
| } |
| |
| bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
| return Success(E->getPackLength(), E); |
| } |
| |
| bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Float Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class FloatExprEvaluator |
| : public ExprEvaluatorBase<FloatExprEvaluator, bool> { |
| APFloat &Result; |
| public: |
| FloatExprEvaluator(EvalInfo &info, APFloat &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const CCValue &V, const Expr *e) { |
| Result = V.getFloat(); |
| return true; |
| } |
| bool Error(const Stmt *S) { |
| return false; |
| } |
| |
| bool ValueInitialization(const Expr *E) { |
| Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); |
| return true; |
| } |
| |
| bool VisitCallExpr(const CallExpr *E); |
| |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitFloatingLiteral(const FloatingLiteral *E); |
| bool VisitCastExpr(const CastExpr *E); |
| |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| |
| // FIXME: Missing: array subscript of vector, member of vector, |
| // ImplicitValueInitExpr |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isRealFloatingType()); |
| return FloatExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| static bool TryEvaluateBuiltinNaN(const ASTContext &Context, |
| QualType ResultTy, |
| const Expr *Arg, |
| bool SNaN, |
| llvm::APFloat &Result) { |
| const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| if (!S) return false; |
| |
| const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); |
| |
| llvm::APInt fill; |
| |
| // Treat empty strings as if they were zero. |
| if (S->getString().empty()) |
| fill = llvm::APInt(32, 0); |
| else if (S->getString().getAsInteger(0, fill)) |
| return false; |
| |
| if (SNaN) |
| Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
| else |
| Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| switch (E->isBuiltinCall(Info.Ctx)) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| case Builtin::BI__builtin_huge_val: |
| case Builtin::BI__builtin_huge_valf: |
| case Builtin::BI__builtin_huge_vall: |
| case Builtin::BI__builtin_inf: |
| case Builtin::BI__builtin_inff: |
| case Builtin::BI__builtin_infl: { |
| const llvm::fltSemantics &Sem = |
| Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getInf(Sem); |
| return true; |
| } |
| |
| case Builtin::BI__builtin_nans: |
| case Builtin::BI__builtin_nansf: |
| case Builtin::BI__builtin_nansl: |
| return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
| true, Result); |
| |
| case Builtin::BI__builtin_nan: |
| case Builtin::BI__builtin_nanf: |
| case Builtin::BI__builtin_nanl: |
| // If this is __builtin_nan() turn this into a nan, otherwise we |
| // can't constant fold it. |
| return TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
| false, Result); |
| |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsl: |
| if (!EvaluateFloat(E->getArg(0), Result, Info)) |
| return false; |
| |
| if (Result.isNegative()) |
| Result.changeSign(); |
| return true; |
| |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignl: { |
| APFloat RHS(0.); |
| if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| Result.copySign(RHS); |
| return true; |
| } |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue CV; |
| if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
| return false; |
| Result = CV.FloatReal; |
| return true; |
| } |
| |
| return Visit(E->getSubExpr()); |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue CV; |
| if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
| return false; |
| Result = CV.FloatImag; |
| return true; |
| } |
| |
| VisitIgnoredValue(E->getSubExpr()); |
| const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getZero(Sem); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: return false; |
| case UO_Plus: |
| return EvaluateFloat(E->getSubExpr(), Result, Info); |
| case UO_Minus: |
| if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
| return false; |
| Result.changeSign(); |
| return true; |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() == BO_Comma) { |
| VisitIgnoredValue(E->getLHS()); |
| return Visit(E->getRHS()); |
| } |
| |
| // We can't evaluate pointer-to-member operations or assignments. |
| if (E->isPtrMemOp() || E->isAssignmentOp()) |
| return false; |
| |
| // FIXME: Diagnostics? I really don't understand how the warnings |
| // and errors are supposed to work. |
| APFloat RHS(0.0); |
| if (!EvaluateFloat(E->getLHS(), Result, Info)) |
| return false; |
| if (!EvaluateFloat(E->getRHS(), RHS, Info)) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: return false; |
| case BO_Mul: |
| Result.multiply(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BO_Add: |
| Result.add(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BO_Sub: |
| Result.subtract(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| case BO_Div: |
| Result.divide(RHS, APFloat::rmNearestTiesToEven); |
| return true; |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
| Result = E->getValue(); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_IntegralToFloating: { |
| APSInt IntResult; |
| if (!EvaluateInteger(SubExpr, IntResult, Info)) |
| return false; |
| Result = HandleIntToFloatCast(E->getType(), SubExpr->getType(), |
| IntResult, Info.Ctx); |
| return true; |
| } |
| |
| case CK_FloatingCast: { |
| if (!Visit(SubExpr)) |
| return false; |
| Result = HandleFloatToFloatCast(E->getType(), SubExpr->getType(), |
| Result, Info.Ctx); |
| return true; |
| } |
| |
| case CK_FloatingComplexToReal: { |
| ComplexValue V; |
| if (!EvaluateComplex(SubExpr, V, Info)) |
| return false; |
| Result = V.getComplexFloatReal(); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Complex Evaluation (for float and integer) |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ComplexExprEvaluator |
| : public ExprEvaluatorBase<ComplexExprEvaluator, bool> { |
| ComplexValue &Result; |
| |
| public: |
| ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(const CCValue &V, const Expr *e) { |
| Result.setFrom(V); |
| return true; |
| } |
| bool Error(const Expr *E) { |
| return false; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitImaginaryLiteral(const ImaginaryLiteral *E); |
| |
| bool VisitCastExpr(const CastExpr *E); |
| |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| // FIXME Missing: ImplicitValueInitExpr, InitListExpr |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Result, |
| EvalInfo &Info) { |
| assert(E->isRValue() && E->getType()->isAnyComplexType()); |
| return ComplexExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| if (SubExpr->getType()->isRealFloatingType()) { |
| Result.makeComplexFloat(); |
| APFloat &Imag = Result.FloatImag; |
| if (!EvaluateFloat(SubExpr, Imag, Info)) |
| return false; |
| |
| Result.FloatReal = APFloat(Imag.getSemantics()); |
| return true; |
| } else { |
| assert(SubExpr->getType()->isIntegerType() && |
| "Unexpected imaginary literal."); |
| |
| Result.makeComplexInt(); |
| APSInt &Imag = Result.IntImag; |
| if (!EvaluateInteger(SubExpr, Imag, Info)) |
| return false; |
| |
| Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); |
| return true; |
| } |
| } |
| |
| bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| |
| switch (E->getCastKind()) { |
| case CK_BitCast: |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| llvm_unreachable("invalid cast kind for complex value"); |
| |
| case CK_LValueToRValue: |
| case CK_NoOp: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_Dependent: |
| case CK_GetObjCProperty: |
| case CK_LValueBitCast: |
| case CK_UserDefinedConversion: |
| return false; |
| |
| case CK_FloatingRealToComplex: { |
| APFloat &Real = Result.FloatReal; |
| if (!EvaluateFloat(E->getSubExpr(), Real, Info)) |
| return false; |
| |
| Result.makeComplexFloat(); |
| Result.FloatImag = APFloat(Real.getSemantics()); |
| return true; |
| } |
| |
| case CK_FloatingComplexCast: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| |
| Result.FloatReal |
| = HandleFloatToFloatCast(To, From, Result.FloatReal, Info.Ctx); |
| Result.FloatImag |
| = HandleFloatToFloatCast(To, From, Result.FloatImag, Info.Ctx); |
| return true; |
| } |
| |
| case CK_FloatingComplexToIntegralComplex: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| Result.makeComplexInt(); |
| Result.IntReal = HandleFloatToIntCast(To, From, Result.FloatReal, Info.Ctx); |
| Result.IntImag = HandleFloatToIntCast(To, From, Result.FloatImag, Info.Ctx); |
| return true; |
| } |
| |
| case CK_IntegralRealToComplex: { |
| APSInt &Real = Result.IntReal; |
| if (!EvaluateInteger(E->getSubExpr(), Real, Info)) |
| return false; |
| |
| Result.makeComplexInt(); |
| Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); |
| return true; |
| } |
| |
| case CK_IntegralComplexCast: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| |
| Result.IntReal = HandleIntToIntCast(To, From, Result.IntReal, Info.Ctx); |
| Result.IntImag = HandleIntToIntCast(To, From, Result.IntImag, Info.Ctx); |
| return true; |
| } |
| |
| case CK_IntegralComplexToFloatingComplex: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->getAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType(); |
| Result.makeComplexFloat(); |
| Result.FloatReal = HandleIntToFloatCast(To, From, Result.IntReal, Info.Ctx); |
| Result.FloatImag = HandleIntToFloatCast(To, From, Result.IntImag, Info.Ctx); |
| return true; |
| } |
| } |
| |
| llvm_unreachable("unknown cast resulting in complex value"); |
| return false; |
| } |
| |
| bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() == BO_Comma) { |
| VisitIgnoredValue(E->getLHS()); |
| return Visit(E->getRHS()); |
| } |
| if (!Visit(E->getLHS())) |
| return false; |
| |
| ComplexValue RHS; |
| if (!EvaluateComplex(E->getRHS(), RHS, Info)) |
| return false; |
| |
| assert(Result.isComplexFloat() == RHS.isComplexFloat() && |
| "Invalid operands to binary operator."); |
| switch (E->getOpcode()) { |
| default: return false; |
| case BO_Add: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } else { |
| Result.getComplexIntReal() += RHS.getComplexIntReal(); |
| Result.getComplexIntImag() += RHS.getComplexIntImag(); |
| } |
| break; |
| case BO_Sub: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } else { |
| Result.getComplexIntReal() -= RHS.getComplexIntReal(); |
| Result.getComplexIntImag() -= RHS.getComplexIntImag(); |
| } |
| break; |
| case BO_Mul: |
| if (Result.isComplexFloat()) { |
| ComplexValue LHS = Result; |
| APFloat &LHS_r = LHS.getComplexFloatReal(); |
| APFloat &LHS_i = LHS.getComplexFloatImag(); |
| APFloat &RHS_r = RHS.getComplexFloatReal(); |
| APFloat &RHS_i = RHS.getComplexFloatImag(); |
| |
| APFloat Tmp = LHS_r; |
| Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatReal() = Tmp; |
| Tmp = LHS_i; |
| Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven); |
| |
| Tmp = LHS_r; |
| Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatImag() = Tmp; |
| Tmp = LHS_i; |
| Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven); |
| } else { |
| ComplexValue LHS = Result; |
| Result.getComplexIntReal() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntReal() - |
| LHS.getComplexIntImag() * RHS.getComplexIntImag()); |
| Result.getComplexIntImag() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntImag() + |
| LHS.getComplexIntImag() * RHS.getComplexIntReal()); |
| } |
| break; |
| case BO_Div: |
| if (Result.isComplexFloat()) { |
| ComplexValue LHS = Result; |
| APFloat &LHS_r = LHS.getComplexFloatReal(); |
| APFloat &LHS_i = LHS.getComplexFloatImag(); |
| APFloat &RHS_r = RHS.getComplexFloatReal(); |
| APFloat &RHS_i = RHS.getComplexFloatImag(); |
| APFloat &Res_r = Result.getComplexFloatReal(); |
| APFloat &Res_i = Result.getComplexFloatImag(); |
| |
| APFloat Den = RHS_r; |
| Den.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| APFloat Tmp = RHS_i; |
| Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| Den.add(Tmp, APFloat::rmNearestTiesToEven); |
| |
| Res_r = LHS_r; |
| Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| Tmp = LHS_i; |
| Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| Res_r.add(Tmp, APFloat::rmNearestTiesToEven); |
| Res_r.divide(Den, APFloat::rmNearestTiesToEven); |
| |
| Res_i = LHS_i; |
| Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven); |
| Tmp = LHS_r; |
| Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven); |
| Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven); |
| Res_i.divide(Den, APFloat::rmNearestTiesToEven); |
| } else { |
| if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) { |
| // FIXME: what about diagnostics? |
| return false; |
| } |
| ComplexValue LHS = Result; |
| APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + |
| RHS.getComplexIntImag() * RHS.getComplexIntImag(); |
| Result.getComplexIntReal() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntReal() + |
| LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; |
| Result.getComplexIntImag() = |
| (LHS.getComplexIntImag() * RHS.getComplexIntReal() - |
| LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; |
| } |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| // Get the operand value into 'Result'. |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| // FIXME: what about diagnostics? |
| return false; |
| case UO_Extension: |
| return true; |
| case UO_Plus: |
| // The result is always just the subexpr. |
| return true; |
| case UO_Minus: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().changeSign(); |
| Result.getComplexFloatImag().changeSign(); |
| } |
| else { |
| Result.getComplexIntReal() = -Result.getComplexIntReal(); |
| Result.getComplexIntImag() = -Result.getComplexIntImag(); |
| } |
| return true; |
| case UO_Not: |
| if (Result.isComplexFloat()) |
| Result.getComplexFloatImag().changeSign(); |
| else |
| Result.getComplexIntImag() = -Result.getComplexIntImag(); |
| return true; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top level Expr::EvaluateAsRValue method. |
| //===----------------------------------------------------------------------===// |
| |
| static bool Evaluate(CCValue &Result, EvalInfo &Info, const Expr *E) { |
| // In C, function designators are not lvalues, but we evaluate them as if they |
| // are. |
| if (E->isGLValue() || E->getType()->isFunctionType()) { |
| LValue LV; |
| if (!EvaluateLValue(E, LV, Info)) |
| return false; |
| LV.moveInto(Result); |
| } else if (E->getType()->isVectorType()) { |
| if (!EvaluateVector(E, Result, Info)) |
| return false; |
| } else if (E->getType()->isIntegralOrEnumerationType()) { |
| if (!IntExprEvaluator(Info, Result).Visit(E)) |
| return false; |
| } else if (E->getType()->hasPointerRepresentation()) { |
| LValue LV; |
| if (!EvaluatePointer(E, LV, Info)) |
| return false; |
| LV.moveInto(Result); |
| } else if (E->getType()->isRealFloatingType()) { |
| llvm::APFloat F(0.0); |
| if (!EvaluateFloat(E, F, Info)) |
| return false; |
| Result = CCValue(F); |
| } else if (E->getType()->isAnyComplexType()) { |
| ComplexValue C; |
| if (!EvaluateComplex(E, C, Info)) |
| return false; |
| C.moveInto(Result); |
| } else |
| return false; |
| |
| return true; |
| } |
| |
| |
| /// EvaluateAsRValue - Return true if this is a constant which we can fold using |
| /// any crazy technique (that has nothing to do with language standards) that |
| /// we want to. If this function returns true, it returns the folded constant |
| /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion |
| /// will be applied to the result. |
| bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const { |
| EvalInfo Info(Ctx, Result); |
| |
| CCValue Value; |
| if (!::Evaluate(Value, Info, this)) |
| return false; |
| |
| if (isGLValue()) { |
| LValue LV; |
| LV.setFrom(Value); |
| if (!HandleLValueToRValueConversion(Info, getType(), LV, Value)) |
| return false; |
| } |
| |
| // Check this core constant expression is a constant expression, and if so, |
| // slice it down to one. |
| if (!CheckConstantExpression(Value)) |
| return false; |
| Result.Val = Value; |
| return true; |
| } |
| |
| bool Expr::EvaluateAsBooleanCondition(bool &Result, |
| const ASTContext &Ctx) const { |
| EvalResult Scratch; |
| return EvaluateAsRValue(Scratch, Ctx) && |
| HandleConversionToBool(CCValue(Scratch.Val, CCValue::GlobalValue()), |
| Result); |
| } |
| |
| bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx) const { |
| EvalResult ExprResult; |
| if (!EvaluateAsRValue(ExprResult, Ctx) || ExprResult.HasSideEffects || |
| !ExprResult.Val.isInt()) { |
| return false; |
| } |
| Result = ExprResult.Val.getInt(); |
| return true; |
| } |
| |
| bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const { |
| EvalInfo Info(Ctx, Result); |
| |
| LValue LV; |
| if (EvaluateLValue(this, LV, Info) && !Result.HasSideEffects && |
| IsGlobalLValue(LV.Base)) { |
| Result.Val = APValue(LV.Base, LV.Offset); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Expr::EvaluateAsAnyLValue(EvalResult &Result, |
| const ASTContext &Ctx) const { |
| EvalInfo Info(Ctx, Result); |
| |
| LValue LV; |
| if (EvaluateLValue(this, LV, Info)) { |
| Result.Val = APValue(LV.Base, LV.Offset); |
| return true; |
| } |
| return false; |
| } |
| |
| /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be |
| /// constant folded, but discard the result. |
| bool Expr::isEvaluatable(const ASTContext &Ctx) const { |
| EvalResult Result; |
| return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects; |
| } |
| |
| bool Expr::HasSideEffects(const ASTContext &Ctx) const { |
| return HasSideEffect(Ctx).Visit(this); |
| } |
| |
| APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx) const { |
| EvalResult EvalResult; |
| bool Result = EvaluateAsRValue(EvalResult, Ctx); |
| (void)Result; |
| assert(Result && "Could not evaluate expression"); |
| assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer"); |
| |
| return EvalResult.Val.getInt(); |
| } |
| |
| bool Expr::EvalResult::isGlobalLValue() const { |
| assert(Val.isLValue()); |
| return IsGlobalLValue(Val.getLValueBase()); |
| } |
| |
| |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| /// an integer constant expression. |
| |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| /// comma, etc |
| /// |
| /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof |
| /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer |
| /// cast+dereference. |
| |
| // CheckICE - This function does the fundamental ICE checking: the returned |
| // ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation. |
| // Note that to reduce code duplication, this helper does no evaluation |
| // itself; the caller checks whether the expression is evaluatable, and |
| // in the rare cases where CheckICE actually cares about the evaluated |
| // value, it calls into Evalute. |
| // |
| // Meanings of Val: |
| // 0: This expression is an ICE. |
| // 1: This expression is not an ICE, but if it isn't evaluated, it's |
| // a legal subexpression for an ICE. This return value is used to handle |
| // the comma operator in C99 mode. |
| // 2: This expression is not an ICE, and is not a legal subexpression for one. |
| |
| namespace { |
| |
| struct ICEDiag { |
| unsigned Val; |
| SourceLocation Loc; |
| |
| public: |
| ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {} |
| ICEDiag() : Val(0) {} |
| }; |
| |
| } |
| |
| static ICEDiag NoDiag() { return ICEDiag(); } |
| |
| static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) { |
| Expr::EvalResult EVResult; |
| if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects || |
| !EVResult.Val.isInt()) { |
| return ICEDiag(2, E->getLocStart()); |
| } |
| return NoDiag(); |
| } |
| |
| static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) { |
| assert(!E->isValueDependent() && "Should not see value dependent exprs!"); |
| if (!E->getType()->isIntegralOrEnumerationType()) { |
| return ICEDiag(2, E->getLocStart()); |
| } |
| |
| switch (E->getStmtClass()) { |
| #define ABSTRACT_STMT(Node) |
| #define STMT(Node, Base) case Expr::Node##Class: |
| #define EXPR(Node, Base) |
| #include "clang/AST/StmtNodes.inc" |
| case Expr::PredefinedExprClass: |
| case Expr::FloatingLiteralClass: |
| case Expr::ImaginaryLiteralClass: |
| case Expr::StringLiteralClass: |
| case Expr::ArraySubscriptExprClass: |
| case Expr::MemberExprClass: |
| case Expr::CompoundAssignOperatorClass: |
| case Expr::CompoundLiteralExprClass: |
| case Expr::ExtVectorElementExprClass: |
| case Expr::DesignatedInitExprClass: |
| case Expr::ImplicitValueInitExprClass: |
| case Expr::ParenListExprClass: |
| case Expr::VAArgExprClass: |
| case Expr::AddrLabelExprClass: |
| case Expr::StmtExprClass: |
| case Expr::CXXMemberCallExprClass: |
| case Expr::CUDAKernelCallExprClass: |
| case Expr::CXXDynamicCastExprClass: |
| case Expr::CXXTypeidExprClass: |
| case Expr::CXXUuidofExprClass: |
| case Expr::CXXNullPtrLiteralExprClass: |
| case Expr::CXXThisExprClass: |
| case Expr::CXXThrowExprClass: |
| case Expr::CXXNewExprClass: |
| case Expr::CXXDeleteExprClass: |
| case Expr::CXXPseudoDestructorExprClass: |
| case Expr::UnresolvedLookupExprClass: |
| case Expr::DependentScopeDeclRefExprClass: |
| case Expr::CXXConstructExprClass: |
| case Expr::CXXBindTemporaryExprClass: |
| case Expr::ExprWithCleanupsClass: |
| case Expr::CXXTemporaryObjectExprClass: |
| case Expr::CXXUnresolvedConstructExprClass: |
| case Expr::CXXDependentScopeMemberExprClass: |
| case Expr::UnresolvedMemberExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::ObjCMessageExprClass: |
| case Expr::ObjCSelectorExprClass: |
| case Expr::ObjCProtocolExprClass: |
| case Expr::ObjCIvarRefExprClass: |
| case Expr::ObjCPropertyRefExprClass: |
| case Expr::ObjCIsaExprClass: |
| case Expr::ShuffleVectorExprClass: |
| case Expr::BlockExprClass: |
| case Expr::BlockDeclRefExprClass: |
| case Expr::NoStmtClass: |
| case Expr::OpaqueValueExprClass: |
| case Expr::PackExpansionExprClass: |
| case Expr::SubstNonTypeTemplateParmPackExprClass: |
| case Expr::AsTypeExprClass: |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Expr::MaterializeTemporaryExprClass: |
| case Expr::AtomicExprClass: |
| return ICEDiag(2, E->getLocStart()); |
| |
| case Expr::InitListExprClass: |
| if (Ctx.getLangOptions().CPlusPlus0x) { |
| const InitListExpr *ILE = cast<InitListExpr>(E); |
| if (ILE->getNumInits() == 0) |
| return NoDiag(); |
| if (ILE->getNumInits() == 1) |
| return CheckICE(ILE->getInit(0), Ctx); |
| // Fall through for more than 1 expression. |
| } |
| return ICEDiag(2, E->getLocStart()); |
| |
| case Expr::SizeOfPackExprClass: |
| case Expr::GNUNullExprClass: |
| // GCC considers the GNU __null value to be an integral constant expression. |
| return NoDiag(); |
| |
| case Expr::SubstNonTypeTemplateParmExprClass: |
| return |
| CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); |
| |
| case Expr::ParenExprClass: |
| return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); |
| case Expr::GenericSelectionExprClass: |
| return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); |
| case Expr::IntegerLiteralClass: |
| case Expr::CharacterLiteralClass: |
| case Expr::CXXBoolLiteralExprClass: |
| case Expr::CXXScalarValueInitExprClass: |
| case Expr::UnaryTypeTraitExprClass: |
| case Expr::BinaryTypeTraitExprClass: |
| case Expr::ArrayTypeTraitExprClass: |
| case Expr::ExpressionTraitExprClass: |
| case Expr::CXXNoexceptExprClass: |
| return NoDiag(); |
| case Expr::CallExprClass: |
| case Expr::CXXOperatorCallExprClass: { |
| // C99 6.6/3 allows function calls within unevaluated subexpressions of |
| // constant expressions, but they can never be ICEs because an ICE cannot |
| // contain an operand of (pointer to) function type. |
| const CallExpr *CE = cast<CallExpr>(E); |
| if (CE->isBuiltinCall(Ctx)) |
| return CheckEvalInICE(E, Ctx); |
| return ICEDiag(2, E->getLocStart()); |
| } |
| case Expr::DeclRefExprClass: |
| if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl())) |
| return NoDiag(); |
| if (Ctx.getLangOptions().CPlusPlus && IsConstNonVolatile(E->getType())) { |
| const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); |
| |
| // Parameter variables are never constants. Without this check, |
| // getAnyInitializer() can find a default argument, which leads |
| // to chaos. |
| if (isa<ParmVarDecl>(D)) |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| |
| // C++ 7.1.5.1p2 |
| // A variable of non-volatile const-qualified integral or enumeration |
| // type initialized by an ICE can be used in ICEs. |
| if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) { |
| // Look for a declaration of this variable that has an initializer. |
| const VarDecl *ID = 0; |
| const Expr *Init = Dcl->getAnyInitializer(ID); |
| if (Init) { |
| if (ID->isInitKnownICE()) { |
| // We have already checked whether this subexpression is an |
| // integral constant expression. |
| if (ID->isInitICE()) |
| return NoDiag(); |
| else |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| } |
| |
| // It's an ICE whether or not the definition we found is |
| // out-of-line. See DR 721 and the discussion in Clang PR |
| // 6206 for details. |
| |
| if (Dcl->isCheckingICE()) { |
| return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation()); |
| } |
| |
| Dcl->setCheckingICE(); |
| ICEDiag Result = CheckICE(Init, Ctx); |
| // Cache the result of the ICE test. |
| Dcl->setInitKnownICE(Result.Val == 0); |
| return Result; |
| } |
| } |
| } |
| return ICEDiag(2, E->getLocStart()); |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_AddrOf: |
| case UO_Deref: |
| // C99 6.6/3 allows increment and decrement within unevaluated |
| // subexpressions of constant expressions, but they can never be ICEs |
| // because an ICE cannot contain an lvalue operand. |
| return ICEDiag(2, E->getLocStart()); |
| case UO_Extension: |
| case UO_LNot: |
| case UO_Plus: |
| case UO_Minus: |
| case UO_Not: |
| case UO_Real: |
| case UO_Imag: |
| return CheckICE(Exp->getSubExpr(), Ctx); |
| } |
| |
| // OffsetOf falls through here. |
| } |
| case Expr::OffsetOfExprClass: { |
| // Note that per C99, offsetof must be an ICE. And AFAIK, using |
| // EvaluateAsRValue matches the proposed gcc behavior for cases like |
| // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect |
| // compliance: we should warn earlier for offsetof expressions with |
| // array subscripts that aren't ICEs, and if the array subscripts |
| // are ICEs, the value of the offsetof must be an integer constant. |
| return CheckEvalInICE(E, Ctx); |
| } |
| case Expr::UnaryExprOrTypeTraitExprClass: { |
| const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); |
| if ((Exp->getKind() == UETT_SizeOf) && |
| Exp->getTypeOfArgument()->isVariableArrayType()) |
| return ICEDiag(2, E->getLocStart()); |
| return NoDiag(); |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| case BO_Assign: |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_AddAssign: |
| case BO_SubAssign: |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| case BO_AndAssign: |
| case BO_XorAssign: |
| case BO_OrAssign: |
| // C99 6.6/3 allows assignments within unevaluated subexpressions of |
| // constant expressions, but they can never be ICEs because an ICE cannot |
| // contain an lvalue operand. |
| return ICEDiag(2, E->getLocStart()); |
| |
| case BO_Mul: |
| case BO_Div: |
| case BO_Rem: |
| case BO_Add: |
| case BO_Sub: |
| case BO_Shl: |
| case BO_Shr: |
| case BO_LT: |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: |
| case BO_NE: |
| case BO_And: |
| case BO_Xor: |
| case BO_Or: |
| case BO_Comma: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (Exp->getOpcode() == BO_Div || |
| Exp->getOpcode() == BO_Rem) { |
| // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure |
| // we don't evaluate one. |
| if (LHSResult.Val == 0 && RHSResult.Val == 0) { |
| llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); |
| if (REval == 0) |
| return ICEDiag(1, E->getLocStart()); |
| if (REval.isSigned() && REval.isAllOnesValue()) { |
| llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); |
| if (LEval.isMinSignedValue()) |
| return ICEDiag(1, E->getLocStart()); |
| } |
| } |
| } |
| if (Exp->getOpcode() == BO_Comma) { |
| if (Ctx.getLangOptions().C99) { |
| // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
| // if it isn't evaluated. |
| if (LHSResult.Val == 0 && RHSResult.Val == 0) |
| return ICEDiag(1, E->getLocStart()); |
| } else { |
| // In both C89 and C++, commas in ICEs are illegal. |
| return ICEDiag(2, E->getLocStart()); |
| } |
| } |
| if (LHSResult.Val >= RHSResult.Val) |
| return LHSResult; |
| return RHSResult; |
| } |
| case BO_LAnd: |
| case BO_LOr: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| |
| // C++0x [expr.const]p2: |
| // [...] subexpressions of logical AND (5.14), logical OR |
| // (5.15), and condi- tional (5.16) operations that are not |
| // evaluated are not considered. |
| if (Ctx.getLangOptions().CPlusPlus0x && LHSResult.Val == 0) { |
| if (Exp->getOpcode() == BO_LAnd && |
| Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0) |
| return LHSResult; |
| |
| if (Exp->getOpcode() == BO_LOr && |
| Exp->getLHS()->EvaluateKnownConstInt(Ctx) != 0) |
| return LHSResult; |
| } |
| |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (LHSResult.Val == 0 && RHSResult.Val == 1) { |
| // Rare case where the RHS has a comma "side-effect"; we need |
| // to actually check the condition to see whether the side |
| // with the comma is evaluated. |
| if ((Exp->getOpcode() == BO_LAnd) != |
| (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) |
| return RHSResult; |
| return NoDiag(); |
| } |
| |
| if (LHSResult.Val >= RHSResult.Val) |
| return LHSResult; |
| return RHSResult; |
| } |
| } |
| } |
| case Expr::ImplicitCastExprClass: |
| case Expr::CStyleCastExprClass: |
| case Expr::CXXFunctionalCastExprClass: |
| case Expr::CXXStaticCastExprClass: |
| case Expr::CXXReinterpretCastExprClass: |
| case Expr::CXXConstCastExprClass: |
| case Expr::ObjCBridgedCastExprClass: { |
| const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| if (isa<ExplicitCastExpr>(E) && |
| isa<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) |
| return NoDiag(); |
| switch (cast<CastExpr>(E)->getCastKind()) { |
| case CK_LValueToRValue: |
| case CK_NoOp: |
| case CK_IntegralToBoolean: |
| case CK_IntegralCast: |
| return CheckICE(SubExpr, Ctx); |
| default: |
| return ICEDiag(2, E->getLocStart()); |
| } |
| } |
| case Expr::BinaryConditionalOperatorClass: { |
| const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); |
| ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); |
| if (CommonResult.Val == 2) return CommonResult; |
| ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| if (FalseResult.Val == 2) return FalseResult; |
| if (CommonResult.Val == 1) return CommonResult; |
| if (FalseResult.Val == 1 && |
| Exp->getCommon()->EvaluateKnownConstInt(Ctx) == 0) return NoDiag(); |
| return FalseResult; |
| } |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(E); |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // then only the true side is actually considered in an integer constant |
| // expression, and it is fully evaluated. This is an important GNU |
| // extension. See GCC PR38377 for discussion. |
| if (const CallExpr *CallCE |
| = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) |
| if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) { |
| Expr::EvalResult EVResult; |
| if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects || |
| !EVResult.Val.isInt()) { |
| return ICEDiag(2, E->getLocStart()); |
| } |
| return NoDiag(); |
| } |
| ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); |
| if (CondResult.Val == 2) |
| return CondResult; |
| |
| // C++0x [expr.const]p2: |
| // subexpressions of [...] conditional (5.16) operations that |
| // are not evaluated are not considered |
| bool TrueBranch = Ctx.getLangOptions().CPlusPlus0x |
| ? Exp->getCond()->EvaluateKnownConstInt(Ctx) != 0 |
| : false; |
| ICEDiag TrueResult = NoDiag(); |
| if (!Ctx.getLangOptions().CPlusPlus0x || TrueBranch) |
| TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); |
| ICEDiag FalseResult = NoDiag(); |
| if (!Ctx.getLangOptions().CPlusPlus0x || !TrueBranch) |
| FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| |
| if (TrueResult.Val == 2) |
| return TrueResult; |
| if (FalseResult.Val == 2) |
| return FalseResult; |
| if (CondResult.Val == 1) |
| return CondResult; |
| if (TrueResult.Val == 0 && FalseResult.Val == 0) |
| return NoDiag(); |
| // Rare case where the diagnostics depend on which side is evaluated |
| // Note that if we get here, CondResult is 0, and at least one of |
| // TrueResult and FalseResult is non-zero. |
| if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) { |
| return FalseResult; |
| } |
| return TrueResult; |
| } |
| case Expr::CXXDefaultArgExprClass: |
| return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); |
| case Expr::ChooseExprClass: { |
| return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx); |
| } |
| } |
| |
| // Silence a GCC warning |
| return ICEDiag(2, E->getLocStart()); |
| } |
| |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, |
| SourceLocation *Loc, bool isEvaluated) const { |
| ICEDiag d = CheckICE(this, Ctx); |
| if (d.Val != 0) { |
| if (Loc) *Loc = d.Loc; |
| return false; |
| } |
| if (!EvaluateAsInt(Result, Ctx)) |
| llvm_unreachable("ICE cannot be evaluated!"); |
| return true; |
| } |