blob: 9161c1c0807a9142bc001fe74be9ebff1e6c4e36 [file] [log] [blame]
//===--- ExprCXX.cpp - (C++) Expression AST Node Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the subclesses of Expr class declared in ExprCXX.h
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/IdentifierTable.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TypeLoc.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
QualType CXXTypeidExpr::getTypeOperand() const {
assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
return Operand.get<TypeSourceInfo *>()->getType().getNonReferenceType()
.getUnqualifiedType();
}
// CXXTypeidExpr - has child iterators if the operand is an expression
Stmt::child_iterator CXXTypeidExpr::child_begin() {
return isTypeOperand() ? child_iterator()
: reinterpret_cast<Stmt **>(&Operand);
}
Stmt::child_iterator CXXTypeidExpr::child_end() {
return isTypeOperand() ? child_iterator()
: reinterpret_cast<Stmt **>(&Operand) + 1;
}
// CXXBoolLiteralExpr
Stmt::child_iterator CXXBoolLiteralExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXBoolLiteralExpr::child_end() {
return child_iterator();
}
// CXXNullPtrLiteralExpr
Stmt::child_iterator CXXNullPtrLiteralExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXNullPtrLiteralExpr::child_end() {
return child_iterator();
}
// CXXThisExpr
Stmt::child_iterator CXXThisExpr::child_begin() { return child_iterator(); }
Stmt::child_iterator CXXThisExpr::child_end() { return child_iterator(); }
// CXXThrowExpr
Stmt::child_iterator CXXThrowExpr::child_begin() { return &Op; }
Stmt::child_iterator CXXThrowExpr::child_end() {
// If Op is 0, we are processing throw; which has no children.
return Op ? &Op+1 : &Op;
}
// CXXDefaultArgExpr
Stmt::child_iterator CXXDefaultArgExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXDefaultArgExpr::child_end() {
return child_iterator();
}
// CXXScalarValueInitExpr
Stmt::child_iterator CXXScalarValueInitExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator CXXScalarValueInitExpr::child_end() {
return child_iterator();
}
// CXXNewExpr
CXXNewExpr::CXXNewExpr(ASTContext &C, bool globalNew, FunctionDecl *operatorNew,
Expr **placementArgs, unsigned numPlaceArgs,
SourceRange TypeIdParens, Expr *arraySize,
CXXConstructorDecl *constructor, bool initializer,
Expr **constructorArgs, unsigned numConsArgs,
FunctionDecl *operatorDelete, QualType ty,
SourceLocation startLoc, SourceLocation endLoc)
: Expr(CXXNewExprClass, ty, ty->isDependentType(), ty->isDependentType()),
GlobalNew(globalNew),
Initializer(initializer), SubExprs(0), OperatorNew(operatorNew),
OperatorDelete(operatorDelete), Constructor(constructor),
TypeIdParens(TypeIdParens), StartLoc(startLoc), EndLoc(endLoc) {
AllocateArgsArray(C, arraySize != 0, numPlaceArgs, numConsArgs);
unsigned i = 0;
if (Array)
SubExprs[i++] = arraySize;
for (unsigned j = 0; j < NumPlacementArgs; ++j)
SubExprs[i++] = placementArgs[j];
for (unsigned j = 0; j < NumConstructorArgs; ++j)
SubExprs[i++] = constructorArgs[j];
}
void CXXNewExpr::AllocateArgsArray(ASTContext &C, bool isArray,
unsigned numPlaceArgs, unsigned numConsArgs){
assert(SubExprs == 0 && "SubExprs already allocated");
Array = isArray;
NumPlacementArgs = numPlaceArgs;
NumConstructorArgs = numConsArgs;
unsigned TotalSize = Array + NumPlacementArgs + NumConstructorArgs;
SubExprs = new (C) Stmt*[TotalSize];
}
Stmt::child_iterator CXXNewExpr::child_begin() { return &SubExprs[0]; }
Stmt::child_iterator CXXNewExpr::child_end() {
return &SubExprs[0] + Array + getNumPlacementArgs() + getNumConstructorArgs();
}
// CXXDeleteExpr
Stmt::child_iterator CXXDeleteExpr::child_begin() { return &Argument; }
Stmt::child_iterator CXXDeleteExpr::child_end() { return &Argument+1; }
// CXXPseudoDestructorExpr
Stmt::child_iterator CXXPseudoDestructorExpr::child_begin() { return &Base; }
Stmt::child_iterator CXXPseudoDestructorExpr::child_end() {
return &Base + 1;
}
PseudoDestructorTypeStorage::PseudoDestructorTypeStorage(TypeSourceInfo *Info)
: Type(Info)
{
Location = Info->getTypeLoc().getLocalSourceRange().getBegin();
}
QualType CXXPseudoDestructorExpr::getDestroyedType() const {
if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
return TInfo->getType();
return QualType();
}
SourceRange CXXPseudoDestructorExpr::getSourceRange() const {
SourceLocation End = DestroyedType.getLocation();
if (TypeSourceInfo *TInfo = DestroyedType.getTypeSourceInfo())
End = TInfo->getTypeLoc().getLocalSourceRange().getEnd();
return SourceRange(Base->getLocStart(), End);
}
// UnresolvedLookupExpr
UnresolvedLookupExpr *
UnresolvedLookupExpr::Create(ASTContext &C, bool Dependent,
CXXRecordDecl *NamingClass,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const DeclarationNameInfo &NameInfo,
bool ADL,
const TemplateArgumentListInfo &Args,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
{
void *Mem = C.Allocate(sizeof(UnresolvedLookupExpr) +
ExplicitTemplateArgumentList::sizeFor(Args));
UnresolvedLookupExpr *ULE
= new (Mem) UnresolvedLookupExpr(C,
Dependent ? C.DependentTy : C.OverloadTy,
Dependent, NamingClass,
Qualifier, QualifierRange, NameInfo,
ADL,
/*Overload*/ true,
/*ExplicitTemplateArgs*/ true,
Begin, End);
reinterpret_cast<ExplicitTemplateArgumentList*>(ULE+1)->initializeFrom(Args);
return ULE;
}
UnresolvedLookupExpr *
UnresolvedLookupExpr::CreateEmpty(ASTContext &C, unsigned NumTemplateArgs) {
std::size_t size = sizeof(UnresolvedLookupExpr);
if (NumTemplateArgs != 0)
size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignof<UnresolvedLookupExpr>());
UnresolvedLookupExpr *E = new (Mem) UnresolvedLookupExpr(EmptyShell());
E->HasExplicitTemplateArgs = NumTemplateArgs != 0;
return E;
}
OverloadExpr::OverloadExpr(StmtClass K, ASTContext &C, QualType T,
bool Dependent, NestedNameSpecifier *Qualifier,
SourceRange QRange,
const DeclarationNameInfo &NameInfo,
bool HasTemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
: Expr(K, T, Dependent, Dependent),
Results(0), NumResults(0), NameInfo(NameInfo), Qualifier(Qualifier),
QualifierRange(QRange), HasExplicitTemplateArgs(HasTemplateArgs)
{
initializeResults(C, Begin, End);
}
void OverloadExpr::initializeResults(ASTContext &C,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
assert(Results == 0 && "Results already initialized!");
NumResults = End - Begin;
if (NumResults) {
Results = static_cast<DeclAccessPair *>(
C.Allocate(sizeof(DeclAccessPair) * NumResults,
llvm::alignof<DeclAccessPair>()));
memcpy(Results, &*Begin.getIterator(),
NumResults * sizeof(DeclAccessPair));
}
}
bool OverloadExpr::ComputeDependence(UnresolvedSetIterator Begin,
UnresolvedSetIterator End,
const TemplateArgumentListInfo *Args) {
for (UnresolvedSetImpl::const_iterator I = Begin; I != End; ++I)
if ((*I)->getDeclContext()->isDependentContext())
return true;
if (Args && TemplateSpecializationType::anyDependentTemplateArguments(*Args))
return true;
return false;
}
CXXRecordDecl *OverloadExpr::getNamingClass() const {
if (isa<UnresolvedLookupExpr>(this))
return cast<UnresolvedLookupExpr>(this)->getNamingClass();
else
return cast<UnresolvedMemberExpr>(this)->getNamingClass();
}
Stmt::child_iterator UnresolvedLookupExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator UnresolvedLookupExpr::child_end() {
return child_iterator();
}
// UnaryTypeTraitExpr
Stmt::child_iterator UnaryTypeTraitExpr::child_begin() {
return child_iterator();
}
Stmt::child_iterator UnaryTypeTraitExpr::child_end() {
return child_iterator();
}
// DependentScopeDeclRefExpr
DependentScopeDeclRefExpr *
DependentScopeDeclRefExpr::Create(ASTContext &C,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const DeclarationNameInfo &NameInfo,
const TemplateArgumentListInfo *Args) {
std::size_t size = sizeof(DependentScopeDeclRefExpr);
if (Args) size += ExplicitTemplateArgumentList::sizeFor(*Args);
void *Mem = C.Allocate(size);
DependentScopeDeclRefExpr *DRE
= new (Mem) DependentScopeDeclRefExpr(C.DependentTy,
Qualifier, QualifierRange,
NameInfo, Args != 0);
if (Args)
reinterpret_cast<ExplicitTemplateArgumentList*>(DRE+1)
->initializeFrom(*Args);
return DRE;
}
DependentScopeDeclRefExpr *
DependentScopeDeclRefExpr::CreateEmpty(ASTContext &C,
unsigned NumTemplateArgs) {
std::size_t size = sizeof(DependentScopeDeclRefExpr);
if (NumTemplateArgs)
size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size);
return new (Mem) DependentScopeDeclRefExpr(QualType(), 0, SourceRange(),
DeclarationNameInfo(),
NumTemplateArgs != 0);
}
StmtIterator DependentScopeDeclRefExpr::child_begin() {
return child_iterator();
}
StmtIterator DependentScopeDeclRefExpr::child_end() {
return child_iterator();
}
bool UnaryTypeTraitExpr::EvaluateTrait(ASTContext& C) const {
switch(UTT) {
default: assert(false && "Unknown type trait or not implemented");
case UTT_IsPOD: return QueriedType->isPODType();
case UTT_IsLiteral: return QueriedType->isLiteralType();
case UTT_IsClass: // Fallthrough
case UTT_IsUnion:
if (const RecordType *Record = QueriedType->getAs<RecordType>()) {
bool Union = Record->getDecl()->isUnion();
return UTT == UTT_IsUnion ? Union : !Union;
}
return false;
case UTT_IsEnum: return QueriedType->isEnumeralType();
case UTT_IsPolymorphic:
if (const RecordType *Record = QueriedType->getAs<RecordType>()) {
// Type traits are only parsed in C++, so we've got CXXRecords.
return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
}
return false;
case UTT_IsAbstract:
if (const RecordType *RT = QueriedType->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
return false;
case UTT_IsEmpty:
if (const RecordType *Record = QueriedType->getAs<RecordType>()) {
return !Record->getDecl()->isUnion()
&& cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
}
return false;
case UTT_HasTrivialConstructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true then the trait is true, else if type is
// a cv class or union type (or array thereof) with a trivial default
// constructor ([class.ctor]) then the trait is true, else it is false.
if (QueriedType->isPODType())
return true;
if (const RecordType *RT =
C.getBaseElementType(QueriedType)->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
return false;
case UTT_HasTrivialCopy:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true or type is a reference type then
// the trait is true, else if type is a cv class or union type
// with a trivial copy constructor ([class.copy]) then the trait
// is true, else it is false.
if (QueriedType->isPODType() || QueriedType->isReferenceType())
return true;
if (const RecordType *RT = QueriedType->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
return false;
case UTT_HasTrivialAssign:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If type is const qualified or is a reference type then the
// trait is false. Otherwise if __is_pod (type) is true then the
// trait is true, else if type is a cv class or union type with
// a trivial copy assignment ([class.copy]) then the trait is
// true, else it is false.
// Note: the const and reference restrictions are interesting,
// given that const and reference members don't prevent a class
// from having a trivial copy assignment operator (but do cause
// errors if the copy assignment operator is actually used, q.v.
// [class.copy]p12).
if (C.getBaseElementType(QueriedType).isConstQualified())
return false;
if (QueriedType->isPODType())
return true;
if (const RecordType *RT = QueriedType->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
return false;
case UTT_HasTrivialDestructor:
// http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
// If __is_pod (type) is true or type is a reference type
// then the trait is true, else if type is a cv class or union
// type (or array thereof) with a trivial destructor
// ([class.dtor]) then the trait is true, else it is
// false.
if (QueriedType->isPODType() || QueriedType->isReferenceType())
return true;
if (const RecordType *RT =
C.getBaseElementType(QueriedType)->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
return false;
}
}
SourceRange CXXConstructExpr::getSourceRange() const {
// FIXME: Should we know where the parentheses are, if there are any?
for (std::reverse_iterator<Stmt**> I(&Args[NumArgs]), E(&Args[0]); I!=E;++I) {
// Ignore CXXDefaultExprs when computing the range, as they don't
// have a range.
if (!isa<CXXDefaultArgExpr>(*I))
return SourceRange(Loc, (*I)->getLocEnd());
}
return SourceRange(Loc);
}
SourceRange CXXOperatorCallExpr::getSourceRange() const {
OverloadedOperatorKind Kind = getOperator();
if (Kind == OO_PlusPlus || Kind == OO_MinusMinus) {
if (getNumArgs() == 1)
// Prefix operator
return SourceRange(getOperatorLoc(),
getArg(0)->getSourceRange().getEnd());
else
// Postfix operator
return SourceRange(getArg(0)->getSourceRange().getEnd(),
getOperatorLoc());
} else if (Kind == OO_Call) {
return SourceRange(getArg(0)->getSourceRange().getBegin(), getRParenLoc());
} else if (Kind == OO_Subscript) {
return SourceRange(getArg(0)->getSourceRange().getBegin(), getRParenLoc());
} else if (getNumArgs() == 1) {
return SourceRange(getOperatorLoc(), getArg(0)->getSourceRange().getEnd());
} else if (getNumArgs() == 2) {
return SourceRange(getArg(0)->getSourceRange().getBegin(),
getArg(1)->getSourceRange().getEnd());
} else {
return SourceRange();
}
}
Expr *CXXMemberCallExpr::getImplicitObjectArgument() {
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(getCallee()->IgnoreParens()))
return MemExpr->getBase();
// FIXME: Will eventually need to cope with member pointers.
return 0;
}
SourceRange CXXMemberCallExpr::getSourceRange() const {
SourceLocation LocStart = getCallee()->getLocStart();
if (LocStart.isInvalid() && getNumArgs() > 0)
LocStart = getArg(0)->getLocStart();
return SourceRange(LocStart, getRParenLoc());
}
//===----------------------------------------------------------------------===//
// Named casts
//===----------------------------------------------------------------------===//
/// getCastName - Get the name of the C++ cast being used, e.g.,
/// "static_cast", "dynamic_cast", "reinterpret_cast", or
/// "const_cast". The returned pointer must not be freed.
const char *CXXNamedCastExpr::getCastName() const {
switch (getStmtClass()) {
case CXXStaticCastExprClass: return "static_cast";
case CXXDynamicCastExprClass: return "dynamic_cast";
case CXXReinterpretCastExprClass: return "reinterpret_cast";
case CXXConstCastExprClass: return "const_cast";
default: return "<invalid cast>";
}
}
CXXStaticCastExpr *CXXStaticCastExpr::Create(ASTContext &C, QualType T,
CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(sizeof(CXXStaticCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
CXXStaticCastExpr *E =
new (Buffer) CXXStaticCastExpr(T, K, Op, PathSize, WrittenTy, L);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXStaticCastExpr *CXXStaticCastExpr::CreateEmpty(ASTContext &C,
unsigned PathSize) {
void *Buffer =
C.Allocate(sizeof(CXXStaticCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXStaticCastExpr(EmptyShell(), PathSize);
}
CXXDynamicCastExpr *CXXDynamicCastExpr::Create(ASTContext &C, QualType T,
CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(sizeof(CXXDynamicCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
CXXDynamicCastExpr *E =
new (Buffer) CXXDynamicCastExpr(T, K, Op, PathSize, WrittenTy, L);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXDynamicCastExpr *CXXDynamicCastExpr::CreateEmpty(ASTContext &C,
unsigned PathSize) {
void *Buffer =
C.Allocate(sizeof(CXXDynamicCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXDynamicCastExpr(EmptyShell(), PathSize);
}
CXXReinterpretCastExpr *
CXXReinterpretCastExpr::Create(ASTContext &C, QualType T, CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy, SourceLocation L) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer =
C.Allocate(sizeof(CXXReinterpretCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
CXXReinterpretCastExpr *E =
new (Buffer) CXXReinterpretCastExpr(T, K, Op, PathSize, WrittenTy, L);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXReinterpretCastExpr *
CXXReinterpretCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
void *Buffer = C.Allocate(sizeof(CXXReinterpretCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXReinterpretCastExpr(EmptyShell(), PathSize);
}
CXXConstCastExpr *CXXConstCastExpr::Create(ASTContext &C, QualType T, Expr *Op,
TypeSourceInfo *WrittenTy,
SourceLocation L) {
return new (C) CXXConstCastExpr(T, Op, WrittenTy, L);
}
CXXConstCastExpr *CXXConstCastExpr::CreateEmpty(ASTContext &C) {
return new (C) CXXConstCastExpr(EmptyShell());
}
CXXFunctionalCastExpr *
CXXFunctionalCastExpr::Create(ASTContext &C, QualType T,
TypeSourceInfo *Written, SourceLocation L,
CastKind K, Expr *Op, const CXXCastPath *BasePath,
SourceLocation R) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer = C.Allocate(sizeof(CXXFunctionalCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
CXXFunctionalCastExpr *E =
new (Buffer) CXXFunctionalCastExpr(T, Written, L, K, Op, PathSize, R);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CXXFunctionalCastExpr *
CXXFunctionalCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
void *Buffer = C.Allocate(sizeof(CXXFunctionalCastExpr)
+ PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CXXFunctionalCastExpr(EmptyShell(), PathSize);
}
CXXDefaultArgExpr *
CXXDefaultArgExpr::Create(ASTContext &C, SourceLocation Loc,
ParmVarDecl *Param, Expr *SubExpr) {
void *Mem = C.Allocate(sizeof(CXXDefaultArgExpr) + sizeof(Stmt *));
return new (Mem) CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param,
SubExpr);
}
CXXTemporary *CXXTemporary::Create(ASTContext &C,
const CXXDestructorDecl *Destructor) {
return new (C) CXXTemporary(Destructor);
}
CXXBindTemporaryExpr *CXXBindTemporaryExpr::Create(ASTContext &C,
CXXTemporary *Temp,
Expr* SubExpr) {
assert(SubExpr->getType()->isRecordType() &&
"Expression bound to a temporary must have record type!");
return new (C) CXXBindTemporaryExpr(Temp, SubExpr);
}
CXXBindReferenceExpr *CXXBindReferenceExpr::Create(ASTContext &C, Expr *SubExpr,
bool ExtendsLifetime,
bool RequiresTemporaryCopy) {
return new (C) CXXBindReferenceExpr(SubExpr,
ExtendsLifetime,
RequiresTemporaryCopy);
}
CXXTemporaryObjectExpr::CXXTemporaryObjectExpr(ASTContext &C,
CXXConstructorDecl *Cons,
QualType writtenTy,
SourceLocation tyBeginLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation rParenLoc,
bool ZeroInitialization)
: CXXConstructExpr(C, CXXTemporaryObjectExprClass, writtenTy, tyBeginLoc,
Cons, false, Args, NumArgs, ZeroInitialization),
TyBeginLoc(tyBeginLoc), RParenLoc(rParenLoc) {
}
CXXConstructExpr *CXXConstructExpr::Create(ASTContext &C, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool Elidable,
Expr **Args, unsigned NumArgs,
bool ZeroInitialization,
ConstructionKind ConstructKind) {
return new (C) CXXConstructExpr(C, CXXConstructExprClass, T, Loc, D,
Elidable, Args, NumArgs, ZeroInitialization,
ConstructKind);
}
CXXConstructExpr::CXXConstructExpr(ASTContext &C, StmtClass SC, QualType T,
SourceLocation Loc,
CXXConstructorDecl *D, bool elidable,
Expr **args, unsigned numargs,
bool ZeroInitialization,
ConstructionKind ConstructKind)
: Expr(SC, T,
T->isDependentType(),
(T->isDependentType() ||
CallExpr::hasAnyValueDependentArguments(args, numargs))),
Constructor(D), Loc(Loc), Elidable(elidable),
ZeroInitialization(ZeroInitialization), ConstructKind(ConstructKind),
Args(0), NumArgs(numargs)
{
if (NumArgs) {
Args = new (C) Stmt*[NumArgs];
for (unsigned i = 0; i != NumArgs; ++i) {
assert(args[i] && "NULL argument in CXXConstructExpr");
Args[i] = args[i];
}
}
}
CXXExprWithTemporaries::CXXExprWithTemporaries(ASTContext &C,
Expr *subexpr,
CXXTemporary **temps,
unsigned numtemps)
: Expr(CXXExprWithTemporariesClass, subexpr->getType(),
subexpr->isTypeDependent(), subexpr->isValueDependent()),
SubExpr(subexpr), Temps(0), NumTemps(0) {
if (numtemps) {
setNumTemporaries(C, numtemps);
for (unsigned i = 0; i != numtemps; ++i)
Temps[i] = temps[i];
}
}
void CXXExprWithTemporaries::setNumTemporaries(ASTContext &C, unsigned N) {
assert(Temps == 0 && "Cannot resize with this");
NumTemps = N;
Temps = new (C) CXXTemporary*[NumTemps];
}
CXXExprWithTemporaries *CXXExprWithTemporaries::Create(ASTContext &C,
Expr *SubExpr,
CXXTemporary **Temps,
unsigned NumTemps) {
return new (C) CXXExprWithTemporaries(C, SubExpr, Temps, NumTemps);
}
// CXXBindTemporaryExpr
Stmt::child_iterator CXXBindTemporaryExpr::child_begin() {
return &SubExpr;
}
Stmt::child_iterator CXXBindTemporaryExpr::child_end() {
return &SubExpr + 1;
}
// CXXBindReferenceExpr
Stmt::child_iterator CXXBindReferenceExpr::child_begin() {
return &SubExpr;
}
Stmt::child_iterator CXXBindReferenceExpr::child_end() {
return &SubExpr + 1;
}
// CXXConstructExpr
Stmt::child_iterator CXXConstructExpr::child_begin() {
return &Args[0];
}
Stmt::child_iterator CXXConstructExpr::child_end() {
return &Args[0]+NumArgs;
}
// CXXExprWithTemporaries
Stmt::child_iterator CXXExprWithTemporaries::child_begin() {
return &SubExpr;
}
Stmt::child_iterator CXXExprWithTemporaries::child_end() {
return &SubExpr + 1;
}
CXXUnresolvedConstructExpr::CXXUnresolvedConstructExpr(
SourceLocation TyBeginLoc,
QualType T,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc)
: Expr(CXXUnresolvedConstructExprClass, T.getNonReferenceType(),
T->isDependentType(), true),
TyBeginLoc(TyBeginLoc),
Type(T),
LParenLoc(LParenLoc),
RParenLoc(RParenLoc),
NumArgs(NumArgs) {
Stmt **StoredArgs = reinterpret_cast<Stmt **>(this + 1);
memcpy(StoredArgs, Args, sizeof(Expr *) * NumArgs);
}
CXXUnresolvedConstructExpr *
CXXUnresolvedConstructExpr::Create(ASTContext &C,
SourceLocation TyBegin,
QualType T,
SourceLocation LParenLoc,
Expr **Args,
unsigned NumArgs,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
sizeof(Expr *) * NumArgs);
return new (Mem) CXXUnresolvedConstructExpr(TyBegin, T, LParenLoc,
Args, NumArgs, RParenLoc);
}
CXXUnresolvedConstructExpr *
CXXUnresolvedConstructExpr::CreateEmpty(ASTContext &C, unsigned NumArgs) {
Stmt::EmptyShell Empty;
void *Mem = C.Allocate(sizeof(CXXUnresolvedConstructExpr) +
sizeof(Expr *) * NumArgs);
return new (Mem) CXXUnresolvedConstructExpr(Empty, NumArgs);
}
Stmt::child_iterator CXXUnresolvedConstructExpr::child_begin() {
return child_iterator(reinterpret_cast<Stmt **>(this + 1));
}
Stmt::child_iterator CXXUnresolvedConstructExpr::child_end() {
return child_iterator(reinterpret_cast<Stmt **>(this + 1) + NumArgs);
}
CXXDependentScopeMemberExpr::CXXDependentScopeMemberExpr(ASTContext &C,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs)
: Expr(CXXDependentScopeMemberExprClass, C.DependentTy, true, true),
Base(Base), BaseType(BaseType), IsArrow(IsArrow),
HasExplicitTemplateArgs(TemplateArgs != 0),
OperatorLoc(OperatorLoc),
Qualifier(Qualifier), QualifierRange(QualifierRange),
FirstQualifierFoundInScope(FirstQualifierFoundInScope),
MemberNameInfo(MemberNameInfo) {
if (TemplateArgs)
getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
}
CXXDependentScopeMemberExpr *
CXXDependentScopeMemberExpr::Create(ASTContext &C,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
NamedDecl *FirstQualifierFoundInScope,
DeclarationNameInfo MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs) {
if (!TemplateArgs)
return new (C) CXXDependentScopeMemberExpr(C, Base, BaseType,
IsArrow, OperatorLoc,
Qualifier, QualifierRange,
FirstQualifierFoundInScope,
MemberNameInfo);
std::size_t size = sizeof(CXXDependentScopeMemberExpr);
if (TemplateArgs)
size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
void *Mem = C.Allocate(size, llvm::alignof<CXXDependentScopeMemberExpr>());
return new (Mem) CXXDependentScopeMemberExpr(C, Base, BaseType,
IsArrow, OperatorLoc,
Qualifier, QualifierRange,
FirstQualifierFoundInScope,
MemberNameInfo, TemplateArgs);
}
CXXDependentScopeMemberExpr *
CXXDependentScopeMemberExpr::CreateEmpty(ASTContext &C,
unsigned NumTemplateArgs) {
if (NumTemplateArgs == 0)
return new (C) CXXDependentScopeMemberExpr(C, 0, QualType(),
0, SourceLocation(), 0,
SourceRange(), 0,
DeclarationNameInfo());
std::size_t size = sizeof(CXXDependentScopeMemberExpr) +
ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignof<CXXDependentScopeMemberExpr>());
CXXDependentScopeMemberExpr *E
= new (Mem) CXXDependentScopeMemberExpr(C, 0, QualType(),
0, SourceLocation(), 0,
SourceRange(), 0,
DeclarationNameInfo(), 0);
E->HasExplicitTemplateArgs = true;
return E;
}
Stmt::child_iterator CXXDependentScopeMemberExpr::child_begin() {
return child_iterator(&Base);
}
Stmt::child_iterator CXXDependentScopeMemberExpr::child_end() {
if (isImplicitAccess())
return child_iterator(&Base);
return child_iterator(&Base + 1);
}
UnresolvedMemberExpr::UnresolvedMemberExpr(ASTContext &C, QualType T,
bool Dependent,
bool HasUnresolvedUsing,
Expr *Base, QualType BaseType,
bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End)
: OverloadExpr(UnresolvedMemberExprClass, C, T, Dependent,
Qualifier, QualifierRange, MemberNameInfo,
TemplateArgs != 0, Begin, End),
IsArrow(IsArrow), HasUnresolvedUsing(HasUnresolvedUsing),
Base(Base), BaseType(BaseType), OperatorLoc(OperatorLoc) {
if (TemplateArgs)
getExplicitTemplateArgs().initializeFrom(*TemplateArgs);
}
UnresolvedMemberExpr *
UnresolvedMemberExpr::Create(ASTContext &C, bool Dependent,
bool HasUnresolvedUsing,
Expr *Base, QualType BaseType, bool IsArrow,
SourceLocation OperatorLoc,
NestedNameSpecifier *Qualifier,
SourceRange QualifierRange,
const DeclarationNameInfo &MemberNameInfo,
const TemplateArgumentListInfo *TemplateArgs,
UnresolvedSetIterator Begin,
UnresolvedSetIterator End) {
std::size_t size = sizeof(UnresolvedMemberExpr);
if (TemplateArgs)
size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
void *Mem = C.Allocate(size, llvm::alignof<UnresolvedMemberExpr>());
return new (Mem) UnresolvedMemberExpr(C,
Dependent ? C.DependentTy : C.OverloadTy,
Dependent, HasUnresolvedUsing, Base, BaseType,
IsArrow, OperatorLoc, Qualifier, QualifierRange,
MemberNameInfo, TemplateArgs, Begin, End);
}
UnresolvedMemberExpr *
UnresolvedMemberExpr::CreateEmpty(ASTContext &C, unsigned NumTemplateArgs) {
std::size_t size = sizeof(UnresolvedMemberExpr);
if (NumTemplateArgs != 0)
size += ExplicitTemplateArgumentList::sizeFor(NumTemplateArgs);
void *Mem = C.Allocate(size, llvm::alignof<UnresolvedMemberExpr>());
UnresolvedMemberExpr *E = new (Mem) UnresolvedMemberExpr(EmptyShell());
E->HasExplicitTemplateArgs = NumTemplateArgs != 0;
return E;
}
CXXRecordDecl *UnresolvedMemberExpr::getNamingClass() const {
// Unlike for UnresolvedLookupExpr, it is very easy to re-derive this.
// If there was a nested name specifier, it names the naming class.
// It can't be dependent: after all, we were actually able to do the
// lookup.
CXXRecordDecl *Record = 0;
if (getQualifier()) {
Type *T = getQualifier()->getAsType();
assert(T && "qualifier in member expression does not name type");
Record = T->getAsCXXRecordDecl();
assert(Record && "qualifier in member expression does not name record");
}
// Otherwise the naming class must have been the base class.
else {
QualType BaseType = getBaseType().getNonReferenceType();
if (isArrow()) {
const PointerType *PT = BaseType->getAs<PointerType>();
assert(PT && "base of arrow member access is not pointer");
BaseType = PT->getPointeeType();
}
Record = BaseType->getAsCXXRecordDecl();
assert(Record && "base of member expression does not name record");
}
return Record;
}
Stmt::child_iterator UnresolvedMemberExpr::child_begin() {
return child_iterator(&Base);
}
Stmt::child_iterator UnresolvedMemberExpr::child_end() {
if (isImplicitAccess())
return child_iterator(&Base);
return child_iterator(&Base + 1);
}