| //===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ASTContext interface. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Bitcode/Serialize.h" |
| #include "llvm/Bitcode/Deserialize.h" |
| |
| using namespace clang; |
| |
| enum FloatingRank { |
| FloatRank, DoubleRank, LongDoubleRank |
| }; |
| |
| ASTContext::~ASTContext() { |
| // Deallocate all the types. |
| while (!Types.empty()) { |
| if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(Types.back())) { |
| // Destroy the object, but don't call delete. These are malloc'd. |
| FT->~FunctionTypeProto(); |
| free(FT); |
| } else { |
| delete Types.back(); |
| } |
| Types.pop_back(); |
| } |
| } |
| |
| void ASTContext::PrintStats() const { |
| fprintf(stderr, "*** AST Context Stats:\n"); |
| fprintf(stderr, " %d types total.\n", (int)Types.size()); |
| unsigned NumBuiltin = 0, NumPointer = 0, NumArray = 0, NumFunctionP = 0; |
| unsigned NumVector = 0, NumComplex = 0; |
| unsigned NumFunctionNP = 0, NumTypeName = 0, NumTagged = 0, NumReference = 0; |
| |
| unsigned NumTagStruct = 0, NumTagUnion = 0, NumTagEnum = 0, NumTagClass = 0; |
| unsigned NumObjCInterfaces = 0, NumObjCQualifiedInterfaces = 0; |
| unsigned NumObjCQualifiedIds = 0; |
| |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| Type *T = Types[i]; |
| if (isa<BuiltinType>(T)) |
| ++NumBuiltin; |
| else if (isa<PointerType>(T)) |
| ++NumPointer; |
| else if (isa<ReferenceType>(T)) |
| ++NumReference; |
| else if (isa<ComplexType>(T)) |
| ++NumComplex; |
| else if (isa<ArrayType>(T)) |
| ++NumArray; |
| else if (isa<VectorType>(T)) |
| ++NumVector; |
| else if (isa<FunctionTypeNoProto>(T)) |
| ++NumFunctionNP; |
| else if (isa<FunctionTypeProto>(T)) |
| ++NumFunctionP; |
| else if (isa<TypedefType>(T)) |
| ++NumTypeName; |
| else if (TagType *TT = dyn_cast<TagType>(T)) { |
| ++NumTagged; |
| switch (TT->getDecl()->getKind()) { |
| default: assert(0 && "Unknown tagged type!"); |
| case Decl::Struct: ++NumTagStruct; break; |
| case Decl::Union: ++NumTagUnion; break; |
| case Decl::Class: ++NumTagClass; break; |
| case Decl::Enum: ++NumTagEnum; break; |
| } |
| } else if (isa<ObjCInterfaceType>(T)) |
| ++NumObjCInterfaces; |
| else if (isa<ObjCQualifiedInterfaceType>(T)) |
| ++NumObjCQualifiedInterfaces; |
| else if (isa<ObjCQualifiedIdType>(T)) |
| ++NumObjCQualifiedIds; |
| else { |
| QualType(T, 0).dump(); |
| assert(0 && "Unknown type!"); |
| } |
| } |
| |
| fprintf(stderr, " %d builtin types\n", NumBuiltin); |
| fprintf(stderr, " %d pointer types\n", NumPointer); |
| fprintf(stderr, " %d reference types\n", NumReference); |
| fprintf(stderr, " %d complex types\n", NumComplex); |
| fprintf(stderr, " %d array types\n", NumArray); |
| fprintf(stderr, " %d vector types\n", NumVector); |
| fprintf(stderr, " %d function types with proto\n", NumFunctionP); |
| fprintf(stderr, " %d function types with no proto\n", NumFunctionNP); |
| fprintf(stderr, " %d typename (typedef) types\n", NumTypeName); |
| fprintf(stderr, " %d tagged types\n", NumTagged); |
| fprintf(stderr, " %d struct types\n", NumTagStruct); |
| fprintf(stderr, " %d union types\n", NumTagUnion); |
| fprintf(stderr, " %d class types\n", NumTagClass); |
| fprintf(stderr, " %d enum types\n", NumTagEnum); |
| fprintf(stderr, " %d interface types\n", NumObjCInterfaces); |
| fprintf(stderr, " %d protocol qualified interface types\n", |
| NumObjCQualifiedInterfaces); |
| fprintf(stderr, " %d protocol qualified id types\n", |
| NumObjCQualifiedIds); |
| fprintf(stderr, "Total bytes = %d\n", int(NumBuiltin*sizeof(BuiltinType)+ |
| NumPointer*sizeof(PointerType)+NumArray*sizeof(ArrayType)+ |
| NumComplex*sizeof(ComplexType)+NumVector*sizeof(VectorType)+ |
| NumFunctionP*sizeof(FunctionTypeProto)+ |
| NumFunctionNP*sizeof(FunctionTypeNoProto)+ |
| NumTypeName*sizeof(TypedefType)+NumTagged*sizeof(TagType))); |
| } |
| |
| |
| void ASTContext::InitBuiltinType(QualType &R, BuiltinType::Kind K) { |
| Types.push_back((R = QualType(new BuiltinType(K),0)).getTypePtr()); |
| } |
| |
| void ASTContext::InitBuiltinTypes() { |
| assert(VoidTy.isNull() && "Context reinitialized?"); |
| |
| // C99 6.2.5p19. |
| InitBuiltinType(VoidTy, BuiltinType::Void); |
| |
| // C99 6.2.5p2. |
| InitBuiltinType(BoolTy, BuiltinType::Bool); |
| // C99 6.2.5p3. |
| if (Target.isCharSigned(FullSourceLoc())) |
| InitBuiltinType(CharTy, BuiltinType::Char_S); |
| else |
| InitBuiltinType(CharTy, BuiltinType::Char_U); |
| // C99 6.2.5p4. |
| InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| InitBuiltinType(ShortTy, BuiltinType::Short); |
| InitBuiltinType(IntTy, BuiltinType::Int); |
| InitBuiltinType(LongTy, BuiltinType::Long); |
| InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| |
| // C99 6.2.5p6. |
| InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| |
| // C99 6.2.5p10. |
| InitBuiltinType(FloatTy, BuiltinType::Float); |
| InitBuiltinType(DoubleTy, BuiltinType::Double); |
| InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| |
| // C99 6.2.5p11. |
| FloatComplexTy = getComplexType(FloatTy); |
| DoubleComplexTy = getComplexType(DoubleTy); |
| LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| |
| BuiltinVaListType = QualType(); |
| ObjCIdType = QualType(); |
| IdStructType = 0; |
| ObjCClassType = QualType(); |
| ClassStructType = 0; |
| |
| ObjCConstantStringType = QualType(); |
| |
| // void * type |
| VoidPtrTy = getPointerType(VoidTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Sizing and Analysis |
| //===----------------------------------------------------------------------===// |
| |
| /// getTypeSize - Return the size of the specified type, in bits. This method |
| /// does not work on incomplete types. |
| std::pair<uint64_t, unsigned> |
| ASTContext::getTypeInfo(QualType T, SourceLocation L) { |
| T = T.getCanonicalType(); |
| uint64_t Size; |
| unsigned Align; |
| switch (T->getTypeClass()) { |
| case Type::TypeName: assert(0 && "Not a canonical type!"); |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| default: |
| assert(0 && "Incomplete types have no size!"); |
| case Type::VariableArray: |
| assert(0 && "VLAs not implemented yet!"); |
| case Type::ConstantArray: { |
| ConstantArrayType *CAT = cast<ConstantArrayType>(T); |
| |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(CAT->getElementType(), L); |
| Size = EltInfo.first*CAT->getSize().getZExtValue(); |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::OCUVector: |
| case Type::Vector: { |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<VectorType>(T)->getElementType(), L); |
| Size = EltInfo.first*cast<VectorType>(T)->getNumElements(); |
| // FIXME: Vector alignment is not the alignment of its elements. |
| Align = EltInfo.second; |
| break; |
| } |
| |
| case Type::Builtin: { |
| // FIXME: need to use TargetInfo to derive the target specific sizes. This |
| // implementation will suffice for play with vector support. |
| const llvm::fltSemantics *F; |
| switch (cast<BuiltinType>(T)->getKind()) { |
| default: assert(0 && "Unknown builtin type!"); |
| case BuiltinType::Void: |
| assert(0 && "Incomplete types have no size!"); |
| case BuiltinType::Bool: |
| Target.getBoolInfo(Size, Align, getFullLoc(L)); |
| break; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::SChar: |
| Target.getCharInfo(Size, Align, getFullLoc(L)); |
| break; |
| case BuiltinType::UShort: |
| case BuiltinType::Short: |
| Target.getShortInfo(Size, Align, getFullLoc(L)); |
| break; |
| case BuiltinType::UInt: |
| case BuiltinType::Int: |
| Target.getIntInfo(Size, Align, getFullLoc(L)); |
| break; |
| case BuiltinType::ULong: |
| case BuiltinType::Long: |
| Target.getLongInfo(Size, Align, getFullLoc(L)); |
| break; |
| case BuiltinType::ULongLong: |
| case BuiltinType::LongLong: |
| Target.getLongLongInfo(Size, Align, getFullLoc(L)); |
| break; |
| case BuiltinType::Float: |
| Target.getFloatInfo(Size, Align, F, getFullLoc(L)); |
| break; |
| case BuiltinType::Double: |
| Target.getDoubleInfo(Size, Align, F, getFullLoc(L)); |
| break; |
| case BuiltinType::LongDouble: |
| Target.getLongDoubleInfo(Size, Align, F, getFullLoc(L)); |
| break; |
| } |
| break; |
| } |
| case Type::ASQual: |
| return getTypeInfo(cast<ASQualType>(T)->getBaseType(), L); |
| case Type::ObjCQualifiedId: |
| Target.getPointerInfo(Size, Align, getFullLoc(L)); |
| break; |
| case Type::Pointer: |
| Target.getPointerInfo(Size, Align, getFullLoc(L)); |
| break; |
| case Type::Reference: |
| // "When applied to a reference or a reference type, the result is the size |
| // of the referenced type." C++98 5.3.3p2: expr.sizeof. |
| // FIXME: This is wrong for struct layout: a reference in a struct has |
| // pointer size. |
| return getTypeInfo(cast<ReferenceType>(T)->getReferenceeType(), L); |
| |
| case Type::Complex: { |
| // Complex types have the same alignment as their elements, but twice the |
| // size. |
| std::pair<uint64_t, unsigned> EltInfo = |
| getTypeInfo(cast<ComplexType>(T)->getElementType(), L); |
| Size = EltInfo.first*2; |
| Align = EltInfo.second; |
| break; |
| } |
| case Type::Tagged: |
| TagType *TT = cast<TagType>(T); |
| if (RecordType *RT = dyn_cast<RecordType>(TT)) { |
| const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl(), L); |
| Size = Layout.getSize(); |
| Align = Layout.getAlignment(); |
| } else if (EnumDecl *ED = dyn_cast<EnumDecl>(TT->getDecl())) { |
| return getTypeInfo(ED->getIntegerType(), L); |
| } else { |
| assert(0 && "Unimplemented type sizes!"); |
| } |
| break; |
| } |
| |
| assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2"); |
| return std::make_pair(Size, Align); |
| } |
| |
| /// getASTRecordLayout - Get or compute information about the layout of the |
| /// specified record (struct/union/class), which indicates its size and field |
| /// position information. |
| const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D, |
| SourceLocation L) { |
| assert(D->isDefinition() && "Cannot get layout of forward declarations!"); |
| |
| // Look up this layout, if already laid out, return what we have. |
| const ASTRecordLayout *&Entry = ASTRecordLayouts[D]; |
| if (Entry) return *Entry; |
| |
| // Allocate and assign into ASTRecordLayouts here. The "Entry" reference can |
| // be invalidated (dangle) if the ASTRecordLayouts hashtable is inserted into. |
| ASTRecordLayout *NewEntry = new ASTRecordLayout(); |
| Entry = NewEntry; |
| |
| uint64_t *FieldOffsets = new uint64_t[D->getNumMembers()]; |
| uint64_t RecordSize = 0; |
| unsigned RecordAlign = 8; // Default alignment = 1 byte = 8 bits. |
| |
| if (D->getKind() != Decl::Union) { |
| // Layout each field, for now, just sequentially, respecting alignment. In |
| // the future, this will need to be tweakable by targets. |
| for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { |
| const FieldDecl *FD = D->getMember(i); |
| uint64_t FieldSize; |
| unsigned FieldAlign; |
| if (FD->getType()->isIncompleteType()) { |
| // This must be a flexible array member; we can't directly |
| // query getTypeInfo about these, so we figure it out here. |
| // Flexible array members don't have any size, but they |
| // have to be aligned appropriately for their element type. |
| const ArrayType* ATy = FD->getType()->getAsArrayType(); |
| FieldAlign = getTypeAlign(ATy->getElementType(), L); |
| FieldSize = 0; |
| } else { |
| std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L); |
| FieldSize = FieldInfo.first; |
| FieldAlign = FieldInfo.second; |
| } |
| |
| // Round up the current record size to the field's alignment boundary. |
| RecordSize = (RecordSize+FieldAlign-1) & ~(FieldAlign-1); |
| |
| // Place this field at the current location. |
| FieldOffsets[i] = RecordSize; |
| |
| // Reserve space for this field. |
| RecordSize += FieldSize; |
| |
| // Remember max struct/class alignment. |
| RecordAlign = std::max(RecordAlign, FieldAlign); |
| } |
| |
| // Finally, round the size of the total struct up to the alignment of the |
| // struct itself. |
| RecordSize = (RecordSize+RecordAlign-1) & ~(RecordAlign-1); |
| } else { |
| // Union layout just puts each member at the start of the record. |
| for (unsigned i = 0, e = D->getNumMembers(); i != e; ++i) { |
| const FieldDecl *FD = D->getMember(i); |
| std::pair<uint64_t, unsigned> FieldInfo = getTypeInfo(FD->getType(), L); |
| uint64_t FieldSize = FieldInfo.first; |
| unsigned FieldAlign = FieldInfo.second; |
| |
| // Round up the current record size to the field's alignment boundary. |
| RecordSize = std::max(RecordSize, FieldSize); |
| |
| // Place this field at the start of the record. |
| FieldOffsets[i] = 0; |
| |
| // Remember max struct/class alignment. |
| RecordAlign = std::max(RecordAlign, FieldAlign); |
| } |
| } |
| |
| NewEntry->SetLayout(RecordSize, RecordAlign, FieldOffsets); |
| return *NewEntry; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type creation/memoization methods |
| //===----------------------------------------------------------------------===// |
| |
| QualType ASTContext::getASQualType(QualType T, unsigned AddressSpace) { |
| // Check if we've already instantiated an address space qual'd type of this type. |
| llvm::FoldingSetNodeID ID; |
| ASQualType::Profile(ID, T, AddressSpace); |
| void *InsertPos = 0; |
| if (ASQualType *ASQy = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ASQy, 0); |
| |
| // If the base type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getASQualType(T.getCanonicalType(), AddressSpace); |
| |
| // Get the new insert position for the node we care about. |
| ASQualType *NewIP = ASQualTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ASQualType *New = new ASQualType(T, Canonical, AddressSpace); |
| ASQualTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| |
| /// getComplexType - Return the uniqued reference to the type for a complex |
| /// number with the specified element type. |
| QualType ASTContext::getComplexType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ComplexType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(CT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getComplexType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| ComplexType *New = new ComplexType(T, Canonical); |
| Types.push_back(New); |
| ComplexTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| |
| /// getPointerType - Return the uniqued reference to the type for a pointer to |
| /// the specified type. |
| QualType ASTContext::getPointerType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| PointerType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(PT, 0); |
| |
| // If the pointee type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getPointerType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| PointerType *New = new PointerType(T, Canonical); |
| Types.push_back(New); |
| PointerTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getReferenceType - Return the uniqued reference to the type for a reference |
| /// to the specified type. |
| QualType ASTContext::getReferenceType(QualType T) { |
| // Unique pointers, to guarantee there is only one pointer of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| ReferenceType::Profile(ID, T); |
| |
| void *InsertPos = 0; |
| if (ReferenceType *RT = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(RT, 0); |
| |
| // If the referencee type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| if (!T->isCanonical()) { |
| Canonical = getReferenceType(T.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| ReferenceType *NewIP = ReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ReferenceType *New = new ReferenceType(T, Canonical); |
| Types.push_back(New); |
| ReferenceTypes.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getConstantArrayType - Return the unique reference to the type for an |
| /// array of the specified element type. |
| QualType ASTContext::getConstantArrayType(QualType EltTy, |
| const llvm::APInt &ArySize, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| llvm::FoldingSetNodeID ID; |
| ConstantArrayType::Profile(ID, EltTy, ArySize); |
| |
| void *InsertPos = 0; |
| if (ConstantArrayType *ATP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!EltTy->isCanonical()) { |
| Canonical = getConstantArrayType(EltTy.getCanonicalType(), ArySize, |
| ASM, EltTypeQuals); |
| // Get the new insert position for the node we care about. |
| ConstantArrayType *NewIP = |
| ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ConstantArrayType *New = new ConstantArrayType(EltTy, Canonical, ArySize, |
| ASM, EltTypeQuals); |
| ConstantArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getVariableArrayType - Returns a non-unique reference to the type for a |
| /// variable array of the specified element type. |
| QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
| ArrayType::ArraySizeModifier ASM, |
| unsigned EltTypeQuals) { |
| if (NumElts) { |
| // Since we don't unique expressions, it isn't possible to unique VLA's |
| // that have an expression provided for their size. |
| |
| VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, |
| ASM, EltTypeQuals); |
| |
| CompleteVariableArrayTypes.push_back(New); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| else { |
| // No size is provided for the VLA. These we can unique. |
| llvm::FoldingSetNodeID ID; |
| VariableArrayType::Profile(ID, EltTy); |
| |
| void *InsertPos = 0; |
| if (VariableArrayType *ATP = |
| IncompleteVariableArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(ATP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type |
| // either, so fill in the canonical type field. |
| QualType Canonical; |
| |
| if (!EltTy->isCanonical()) { |
| Canonical = getVariableArrayType(EltTy.getCanonicalType(), NumElts, |
| ASM, EltTypeQuals); |
| |
| // Get the new insert position for the node we care about. |
| VariableArrayType *NewIP = |
| IncompleteVariableArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| VariableArrayType *New = new VariableArrayType(EltTy, QualType(), NumElts, |
| ASM, EltTypeQuals); |
| |
| IncompleteVariableArrayTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| } |
| |
| /// getVectorType - Return the unique reference to a vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr()); |
| assert(baseType != 0 && "getVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::Vector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getVectorType(vecType.getCanonicalType(), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| VectorType *New = new VectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getOCUVectorType - Return the unique reference to an OCU vector type of |
| /// the specified element type and size. VectorType must be a built-in type. |
| QualType ASTContext::getOCUVectorType(QualType vecType, unsigned NumElts) { |
| BuiltinType *baseType; |
| |
| baseType = dyn_cast<BuiltinType>(vecType.getCanonicalType().getTypePtr()); |
| assert(baseType != 0 && "getOCUVectorType(): Expecting a built-in type"); |
| |
| // Check if we've already instantiated a vector of this type. |
| llvm::FoldingSetNodeID ID; |
| VectorType::Profile(ID, vecType, NumElts, Type::OCUVector); |
| void *InsertPos = 0; |
| if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(VTP, 0); |
| |
| // If the element type isn't canonical, this won't be a canonical type either, |
| // so fill in the canonical type field. |
| QualType Canonical; |
| if (!vecType->isCanonical()) { |
| Canonical = getOCUVectorType(vecType.getCanonicalType(), NumElts); |
| |
| // Get the new insert position for the node we care about. |
| VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| OCUVectorType *New = new OCUVectorType(vecType, NumElts, Canonical); |
| VectorTypes.InsertNode(New, InsertPos); |
| Types.push_back(New); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionTypeNoProto - Return a K&R style C function type like 'int()'. |
| /// |
| QualType ASTContext::getFunctionTypeNoProto(QualType ResultTy) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeNoProto::Profile(ID, ResultTy); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeNoProto *FT = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FT, 0); |
| |
| QualType Canonical; |
| if (!ResultTy->isCanonical()) { |
| Canonical = getFunctionTypeNoProto(ResultTy.getCanonicalType()); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeNoProto *NewIP = |
| FunctionTypeNoProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| FunctionTypeNoProto *New = new FunctionTypeNoProto(ResultTy, Canonical); |
| Types.push_back(New); |
| FunctionTypeProtos.InsertNode(New, InsertPos); |
| return QualType(New, 0); |
| } |
| |
| /// getFunctionType - Return a normal function type with a typed argument |
| /// list. isVariadic indicates whether the argument list includes '...'. |
| QualType ASTContext::getFunctionType(QualType ResultTy, QualType *ArgArray, |
| unsigned NumArgs, bool isVariadic) { |
| // Unique functions, to guarantee there is only one function of a particular |
| // structure. |
| llvm::FoldingSetNodeID ID; |
| FunctionTypeProto::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic); |
| |
| void *InsertPos = 0; |
| if (FunctionTypeProto *FTP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(FTP, 0); |
| |
| // Determine whether the type being created is already canonical or not. |
| bool isCanonical = ResultTy->isCanonical(); |
| for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| if (!ArgArray[i]->isCanonical()) |
| isCanonical = false; |
| |
| // If this type isn't canonical, get the canonical version of it. |
| QualType Canonical; |
| if (!isCanonical) { |
| llvm::SmallVector<QualType, 16> CanonicalArgs; |
| CanonicalArgs.reserve(NumArgs); |
| for (unsigned i = 0; i != NumArgs; ++i) |
| CanonicalArgs.push_back(ArgArray[i].getCanonicalType()); |
| |
| Canonical = getFunctionType(ResultTy.getCanonicalType(), |
| &CanonicalArgs[0], NumArgs, |
| isVariadic); |
| |
| // Get the new insert position for the node we care about. |
| FunctionTypeProto *NewIP = |
| FunctionTypeProtos.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewIP == 0 && "Shouldn't be in the map!"); |
| } |
| |
| // FunctionTypeProto objects are not allocated with new because they have a |
| // variable size array (for parameter types) at the end of them. |
| FunctionTypeProto *FTP = |
| (FunctionTypeProto*)malloc(sizeof(FunctionTypeProto) + |
| NumArgs*sizeof(QualType)); |
| new (FTP) FunctionTypeProto(ResultTy, ArgArray, NumArgs, isVariadic, |
| Canonical); |
| Types.push_back(FTP); |
| FunctionTypeProtos.InsertNode(FTP, InsertPos); |
| return QualType(FTP, 0); |
| } |
| |
| /// getTypedefType - Return the unique reference to the type for the |
| /// specified typename decl. |
| QualType ASTContext::getTypedefType(TypedefDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| QualType Canonical = Decl->getUnderlyingType().getCanonicalType(); |
| Decl->TypeForDecl = new TypedefType(Type::TypeName, Decl, Canonical); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getObjCInterfaceType - Return the unique reference to the type for the |
| /// specified ObjC interface decl. |
| QualType ASTContext::getObjCInterfaceType(ObjCInterfaceDecl *Decl) { |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| Decl->TypeForDecl = new ObjCInterfaceType(Type::ObjCInterface, Decl); |
| Types.push_back(Decl->TypeForDecl); |
| return QualType(Decl->TypeForDecl, 0); |
| } |
| |
| /// getObjCQualifiedInterfaceType - Return a |
| /// ObjCQualifiedInterfaceType type for the given interface decl and |
| /// the conforming protocol list. |
| QualType ASTContext::getObjCQualifiedInterfaceType(ObjCInterfaceDecl *Decl, |
| ObjCProtocolDecl **Protocols, unsigned NumProtocols) { |
| llvm::FoldingSetNodeID ID; |
| ObjCQualifiedInterfaceType::Profile(ID, Protocols, NumProtocols); |
| |
| void *InsertPos = 0; |
| if (ObjCQualifiedInterfaceType *QT = |
| ObjCQualifiedInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // No Match; |
| ObjCQualifiedInterfaceType *QType = |
| new ObjCQualifiedInterfaceType(Decl, Protocols, NumProtocols); |
| Types.push_back(QType); |
| ObjCQualifiedInterfaceTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getObjCQualifiedIdType - Return a |
| /// getObjCQualifiedIdType type for the 'id' decl and |
| /// the conforming protocol list. |
| QualType ASTContext::getObjCQualifiedIdType(QualType idType, |
| ObjCProtocolDecl **Protocols, |
| unsigned NumProtocols) { |
| llvm::FoldingSetNodeID ID; |
| ObjCQualifiedIdType::Profile(ID, Protocols, NumProtocols); |
| |
| void *InsertPos = 0; |
| if (ObjCQualifiedIdType *QT = |
| ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| return QualType(QT, 0); |
| |
| // No Match; |
| QualType Canonical; |
| if (!idType->isCanonical()) { |
| Canonical = getObjCQualifiedIdType(idType.getCanonicalType(), |
| Protocols, NumProtocols); |
| ObjCQualifiedIdType *NewQT = |
| ObjCQualifiedIdTypes.FindNodeOrInsertPos(ID, InsertPos); |
| assert(NewQT == 0 && "Shouldn't be in the map!"); |
| } |
| |
| ObjCQualifiedIdType *QType = |
| new ObjCQualifiedIdType(Canonical, Protocols, NumProtocols); |
| Types.push_back(QType); |
| ObjCQualifiedIdTypes.InsertNode(QType, InsertPos); |
| return QualType(QType, 0); |
| } |
| |
| /// getTypeOfExpr - Unlike many "get<Type>" functions, we can't unique |
| /// TypeOfExpr AST's (since expression's are never shared). For example, |
| /// multiple declarations that refer to "typeof(x)" all contain different |
| /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfExpr(Expr *tofExpr) { |
| QualType Canonical = tofExpr->getType().getCanonicalType(); |
| TypeOfExpr *toe = new TypeOfExpr(tofExpr, Canonical); |
| Types.push_back(toe); |
| return QualType(toe, 0); |
| } |
| |
| /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| /// TypeOfType AST's. The only motivation to unique these nodes would be |
| /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| /// an issue. This doesn't effect the type checker, since it operates |
| /// on canonical type's (which are always unique). |
| QualType ASTContext::getTypeOfType(QualType tofType) { |
| QualType Canonical = tofType.getCanonicalType(); |
| TypeOfType *tot = new TypeOfType(tofType, Canonical); |
| Types.push_back(tot); |
| return QualType(tot, 0); |
| } |
| |
| /// getTagDeclType - Return the unique reference to the type for the |
| /// specified TagDecl (struct/union/class/enum) decl. |
| QualType ASTContext::getTagDeclType(TagDecl *Decl) { |
| assert (Decl); |
| |
| // The decl stores the type cache. |
| if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| |
| TagType* T = new TagType(Decl, QualType()); |
| Types.push_back(T); |
| Decl->TypeForDecl = T; |
| |
| return QualType(T, 0); |
| } |
| |
| /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getSizeType() const { |
| // On Darwin, size_t is defined as a "long unsigned int". |
| // FIXME: should derive from "Target". |
| return UnsignedLongTy; |
| } |
| |
| /// getWcharType - Return the unique type for "wchar_t" (C99 7.17), the |
| /// width of characters in wide strings, The value is target dependent and |
| /// needs to agree with the definition in <stddef.h>. |
| QualType ASTContext::getWcharType() const { |
| // On Darwin, wchar_t is defined as a "int". |
| // FIXME: should derive from "Target". |
| return IntTy; |
| } |
| |
| /// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?) |
| /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| QualType ASTContext::getPointerDiffType() const { |
| // On Darwin, ptrdiff_t is defined as a "int". This seems like a bug... |
| // FIXME: should derive from "Target". |
| return IntTy; |
| } |
| |
| /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| /// routine will assert if passed a built-in type that isn't an integer or enum. |
| static int getIntegerRank(QualType t) { |
| if (const TagType *TT = dyn_cast<TagType>(t.getCanonicalType())) { |
| assert(TT->getDecl()->getKind() == Decl::Enum && "not an int or enum"); |
| return 4; |
| } |
| |
| const BuiltinType *BT = t.getCanonicalType()->getAsBuiltinType(); |
| switch (BT->getKind()) { |
| default: |
| assert(0 && "getIntegerRank(): not a built-in integer"); |
| case BuiltinType::Bool: |
| return 1; |
| case BuiltinType::Char_S: |
| case BuiltinType::Char_U: |
| case BuiltinType::SChar: |
| case BuiltinType::UChar: |
| return 2; |
| case BuiltinType::Short: |
| case BuiltinType::UShort: |
| return 3; |
| case BuiltinType::Int: |
| case BuiltinType::UInt: |
| return 4; |
| case BuiltinType::Long: |
| case BuiltinType::ULong: |
| return 5; |
| case BuiltinType::LongLong: |
| case BuiltinType::ULongLong: |
| return 6; |
| } |
| } |
| |
| /// getFloatingRank - Return a relative rank for floating point types. |
| /// This routine will assert if passed a built-in type that isn't a float. |
| static int getFloatingRank(QualType T) { |
| T = T.getCanonicalType(); |
| if (const ComplexType *CT = T->getAsComplexType()) |
| return getFloatingRank(CT->getElementType()); |
| |
| switch (T->getAsBuiltinType()->getKind()) { |
| default: assert(0 && "getFloatingRank(): not a floating type"); |
| case BuiltinType::Float: return FloatRank; |
| case BuiltinType::Double: return DoubleRank; |
| case BuiltinType::LongDouble: return LongDoubleRank; |
| } |
| } |
| |
| /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| /// point or a complex type (based on typeDomain/typeSize). |
| /// 'typeDomain' is a real floating point or complex type. |
| /// 'typeSize' is a real floating point or complex type. |
| QualType ASTContext::getFloatingTypeOfSizeWithinDomain( |
| QualType typeSize, QualType typeDomain) const { |
| if (typeDomain->isComplexType()) { |
| switch (getFloatingRank(typeSize)) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatComplexTy; |
| case DoubleRank: return DoubleComplexTy; |
| case LongDoubleRank: return LongDoubleComplexTy; |
| } |
| } |
| if (typeDomain->isRealFloatingType()) { |
| switch (getFloatingRank(typeSize)) { |
| default: assert(0 && "getFloatingRank(): illegal value for rank"); |
| case FloatRank: return FloatTy; |
| case DoubleRank: return DoubleTy; |
| case LongDoubleRank: return LongDoubleTy; |
| } |
| } |
| assert(0 && "getFloatingTypeOfSizeWithinDomain(): illegal domain"); |
| //an invalid return value, but the assert |
| //will ensure that this code is never reached. |
| return VoidTy; |
| } |
| |
| /// compareFloatingType - Handles 3 different combos: |
| /// float/float, float/complex, complex/complex. |
| /// If lt > rt, return 1. If lt == rt, return 0. If lt < rt, return -1. |
| int ASTContext::compareFloatingType(QualType lt, QualType rt) { |
| if (getFloatingRank(lt) == getFloatingRank(rt)) |
| return 0; |
| if (getFloatingRank(lt) > getFloatingRank(rt)) |
| return 1; |
| return -1; |
| } |
| |
| // maxIntegerType - Returns the highest ranked integer type. Handles 3 case: |
| // unsigned/unsigned, signed/signed, signed/unsigned. C99 6.3.1.8p1. |
| QualType ASTContext::maxIntegerType(QualType lhs, QualType rhs) { |
| if (lhs == rhs) return lhs; |
| |
| bool t1Unsigned = lhs->isUnsignedIntegerType(); |
| bool t2Unsigned = rhs->isUnsignedIntegerType(); |
| |
| if ((t1Unsigned && t2Unsigned) || (!t1Unsigned && !t2Unsigned)) |
| return getIntegerRank(lhs) >= getIntegerRank(rhs) ? lhs : rhs; |
| |
| // We have two integer types with differing signs |
| QualType unsignedType = t1Unsigned ? lhs : rhs; |
| QualType signedType = t1Unsigned ? rhs : lhs; |
| |
| if (getIntegerRank(unsignedType) >= getIntegerRank(signedType)) |
| return unsignedType; |
| else { |
| // FIXME: Need to check if the signed type can represent all values of the |
| // unsigned type. If it can, then the result is the signed type. |
| // If it can't, then the result is the unsigned version of the signed type. |
| // Should probably add a helper that returns a signed integer type from |
| // an unsigned (and vice versa). C99 6.3.1.8. |
| return signedType; |
| } |
| } |
| |
| // getCFConstantStringType - Return the type used for constant CFStrings. |
| QualType ASTContext::getCFConstantStringType() { |
| if (!CFConstantStringTypeDecl) { |
| CFConstantStringTypeDecl = new RecordDecl(Decl::Struct, SourceLocation(), |
| &Idents.get("NSConstantString"), |
| 0); |
| QualType FieldTypes[4]; |
| |
| // const int *isa; |
| FieldTypes[0] = getPointerType(IntTy.getQualifiedType(QualType::Const)); |
| // int flags; |
| FieldTypes[1] = IntTy; |
| // const char *str; |
| FieldTypes[2] = getPointerType(CharTy.getQualifiedType(QualType::Const)); |
| // long length; |
| FieldTypes[3] = LongTy; |
| // Create fields |
| FieldDecl *FieldDecls[4]; |
| |
| for (unsigned i = 0; i < 4; ++i) |
| FieldDecls[i] = new FieldDecl(SourceLocation(), 0, FieldTypes[i]); |
| |
| CFConstantStringTypeDecl->defineBody(FieldDecls, 4); |
| } |
| |
| return getTagDeclType(CFConstantStringTypeDecl); |
| } |
| |
| // This returns true if a type has been typedefed to BOOL: |
| // typedef <type> BOOL; |
| static bool isTypeTypedefedAsBOOL(QualType T) { |
| if (const TypedefType *TT = dyn_cast<TypedefType>(T)) |
| return !strcmp(TT->getDecl()->getName(), "BOOL"); |
| |
| return false; |
| } |
| |
| /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| /// purpose. |
| int ASTContext::getObjCEncodingTypeSize(QualType type) { |
| SourceLocation Loc; |
| uint64_t sz = getTypeSize(type, Loc); |
| |
| // Make all integer and enum types at least as large as an int |
| if (sz > 0 && type->isIntegralType()) |
| sz = std::max(sz, getTypeSize(IntTy, Loc)); |
| // Treat arrays as pointers, since that's how they're passed in. |
| else if (type->isArrayType()) |
| sz = getTypeSize(VoidPtrTy, Loc); |
| return sz / getTypeSize(CharTy, Loc); |
| } |
| |
| /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| /// declaration. |
| void ASTContext::getObjCEncodingForMethodDecl(ObjCMethodDecl *Decl, |
| std::string& S) |
| { |
| // Encode type qualifer, 'in', 'inout', etc. for the return type. |
| getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S); |
| // Encode result type. |
| getObjCEncodingForType(Decl->getResultType(), S, EncodingRecordTypes); |
| // Compute size of all parameters. |
| // Start with computing size of a pointer in number of bytes. |
| // FIXME: There might(should) be a better way of doing this computation! |
| SourceLocation Loc; |
| int PtrSize = getTypeSize(VoidPtrTy, Loc) / getTypeSize(CharTy, Loc); |
| // The first two arguments (self and _cmd) are pointers; account for |
| // their size. |
| int ParmOffset = 2 * PtrSize; |
| int NumOfParams = Decl->getNumParams(); |
| for (int i = 0; i < NumOfParams; i++) { |
| QualType PType = Decl->getParamDecl(i)->getType(); |
| int sz = getObjCEncodingTypeSize (PType); |
| assert (sz > 0 && "getObjCEncodingForMethodDecl - Incomplete param type"); |
| ParmOffset += sz; |
| } |
| S += llvm::utostr(ParmOffset); |
| S += "@0:"; |
| S += llvm::utostr(PtrSize); |
| |
| // Argument types. |
| ParmOffset = 2 * PtrSize; |
| for (int i = 0; i < NumOfParams; i++) { |
| QualType PType = Decl->getParamDecl(i)->getType(); |
| // Process argument qualifiers for user supplied arguments; such as, |
| // 'in', 'inout', etc. |
| getObjCEncodingForTypeQualifier( |
| Decl->getParamDecl(i)->getObjCDeclQualifier(), S); |
| getObjCEncodingForType(PType, S, EncodingRecordTypes); |
| S += llvm::utostr(ParmOffset); |
| ParmOffset += getObjCEncodingTypeSize(PType); |
| } |
| } |
| |
| void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| llvm::SmallVector<const RecordType *, 8> &ERType) const |
| { |
| // FIXME: This currently doesn't encode: |
| // @ An object (whether statically typed or typed id) |
| // # A class object (Class) |
| // : A method selector (SEL) |
| // {name=type...} A structure |
| // (name=type...) A union |
| // bnum A bit field of num bits |
| |
| if (const BuiltinType *BT = T->getAsBuiltinType()) { |
| char encoding; |
| switch (BT->getKind()) { |
| case BuiltinType::Void: |
| encoding = 'v'; |
| break; |
| case BuiltinType::Bool: |
| encoding = 'B'; |
| break; |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| encoding = 'C'; |
| break; |
| case BuiltinType::UShort: |
| encoding = 'S'; |
| break; |
| case BuiltinType::UInt: |
| encoding = 'I'; |
| break; |
| case BuiltinType::ULong: |
| encoding = 'L'; |
| break; |
| case BuiltinType::ULongLong: |
| encoding = 'Q'; |
| break; |
| case BuiltinType::Char_S: |
| case BuiltinType::SChar: |
| encoding = 'c'; |
| break; |
| case BuiltinType::Short: |
| encoding = 's'; |
| break; |
| case BuiltinType::Int: |
| encoding = 'i'; |
| break; |
| case BuiltinType::Long: |
| encoding = 'l'; |
| break; |
| case BuiltinType::LongLong: |
| encoding = 'q'; |
| break; |
| case BuiltinType::Float: |
| encoding = 'f'; |
| break; |
| case BuiltinType::Double: |
| encoding = 'd'; |
| break; |
| case BuiltinType::LongDouble: |
| encoding = 'd'; |
| break; |
| default: |
| assert(0 && "Unhandled builtin type kind"); |
| } |
| |
| S += encoding; |
| } |
| else if (T->isObjCQualifiedIdType()) { |
| // Treat id<P...> same as 'id' for encoding purposes. |
| return getObjCEncodingForType(getObjCIdType(), S, ERType); |
| |
| } |
| else if (const PointerType *PT = T->getAsPointerType()) { |
| QualType PointeeTy = PT->getPointeeType(); |
| if (isObjCIdType(PointeeTy) || PointeeTy->isObjCInterfaceType()) { |
| S += '@'; |
| return; |
| } else if (isObjCClassType(PointeeTy)) { |
| S += '#'; |
| return; |
| } else if (isObjCSelType(PointeeTy)) { |
| S += ':'; |
| return; |
| } |
| |
| if (PointeeTy->isCharType()) { |
| // char pointer types should be encoded as '*' unless it is a |
| // type that has been typedef'd to 'BOOL'. |
| if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
| S += '*'; |
| return; |
| } |
| } |
| |
| S += '^'; |
| getObjCEncodingForType(PT->getPointeeType(), S, ERType); |
| } else if (const ArrayType *AT = T->getAsArrayType()) { |
| S += '['; |
| |
| if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) |
| S += llvm::utostr(CAT->getSize().getZExtValue()); |
| else |
| assert(0 && "Unhandled array type!"); |
| |
| getObjCEncodingForType(AT->getElementType(), S, ERType); |
| S += ']'; |
| } else if (T->getAsFunctionType()) { |
| S += '?'; |
| } else if (const RecordType *RTy = T->getAsRecordType()) { |
| RecordDecl *RDecl= RTy->getDecl(); |
| S += '{'; |
| S += RDecl->getName(); |
| bool found = false; |
| for (unsigned i = 0, e = ERType.size(); i != e; ++i) |
| if (ERType[i] == RTy) { |
| found = true; |
| break; |
| } |
| if (!found) { |
| ERType.push_back(RTy); |
| S += '='; |
| for (int i = 0; i < RDecl->getNumMembers(); i++) { |
| FieldDecl *field = RDecl->getMember(i); |
| getObjCEncodingForType(field->getType(), S, ERType); |
| } |
| assert(ERType.back() == RTy && "Record Type stack mismatch."); |
| ERType.pop_back(); |
| } |
| S += '}'; |
| } else if (T->isEnumeralType()) { |
| S += 'i'; |
| } else |
| assert(0 && "@encode for type not implemented!"); |
| } |
| |
| void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| std::string& S) const { |
| if (QT & Decl::OBJC_TQ_In) |
| S += 'n'; |
| if (QT & Decl::OBJC_TQ_Inout) |
| S += 'N'; |
| if (QT & Decl::OBJC_TQ_Out) |
| S += 'o'; |
| if (QT & Decl::OBJC_TQ_Bycopy) |
| S += 'O'; |
| if (QT & Decl::OBJC_TQ_Byref) |
| S += 'R'; |
| if (QT & Decl::OBJC_TQ_Oneway) |
| S += 'V'; |
| } |
| |
| void ASTContext::setBuiltinVaListType(QualType T) |
| { |
| assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!"); |
| |
| BuiltinVaListType = T; |
| } |
| |
| void ASTContext::setObjCIdType(TypedefDecl *TD) |
| { |
| assert(ObjCIdType.isNull() && "'id' type already set!"); |
| |
| ObjCIdType = getTypedefType(TD); |
| |
| // typedef struct objc_object *id; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'id' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'id' incorrectly typed"); |
| IdStructType = rec; |
| } |
| |
| void ASTContext::setObjCSelType(TypedefDecl *TD) |
| { |
| assert(ObjCSelType.isNull() && "'SEL' type already set!"); |
| |
| ObjCSelType = getTypedefType(TD); |
| |
| // typedef struct objc_selector *SEL; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'SEL' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'SEL' incorrectly typed"); |
| SelStructType = rec; |
| } |
| |
| void ASTContext::setObjCProtoType(QualType QT) |
| { |
| assert(ObjCProtoType.isNull() && "'Protocol' type already set!"); |
| ObjCProtoType = QT; |
| } |
| |
| void ASTContext::setObjCClassType(TypedefDecl *TD) |
| { |
| assert(ObjCClassType.isNull() && "'Class' type already set!"); |
| |
| ObjCClassType = getTypedefType(TD); |
| |
| // typedef struct objc_class *Class; |
| const PointerType *ptr = TD->getUnderlyingType()->getAsPointerType(); |
| assert(ptr && "'Class' incorrectly typed"); |
| const RecordType *rec = ptr->getPointeeType()->getAsStructureType(); |
| assert(rec && "'Class' incorrectly typed"); |
| ClassStructType = rec; |
| } |
| |
| void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| assert(ObjCConstantStringType.isNull() && |
| "'NSConstantString' type already set!"); |
| |
| ObjCConstantStringType = getObjCInterfaceType(Decl); |
| } |
| |
| bool ASTContext::builtinTypesAreCompatible(QualType lhs, QualType rhs) { |
| const BuiltinType *lBuiltin = lhs->getAsBuiltinType(); |
| const BuiltinType *rBuiltin = rhs->getAsBuiltinType(); |
| |
| return lBuiltin->getKind() == rBuiltin->getKind(); |
| } |
| |
| /// objcTypesAreCompatible - This routine is called when two types |
| /// are of different class; one is interface type or is |
| /// a qualified interface type and the other type is of a different class. |
| /// Example, II or II<P>. |
| bool ASTContext::objcTypesAreCompatible(QualType lhs, QualType rhs) { |
| if (lhs->isObjCInterfaceType() && isObjCIdType(rhs)) |
| return true; |
| else if (isObjCIdType(lhs) && rhs->isObjCInterfaceType()) |
| return true; |
| if (ObjCInterfaceType *lhsIT = |
| dyn_cast<ObjCInterfaceType>(lhs.getCanonicalType().getTypePtr())) { |
| ObjCQualifiedInterfaceType *rhsQI = |
| dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr()); |
| return rhsQI && (lhsIT->getDecl() == rhsQI->getDecl()); |
| } |
| else if (ObjCInterfaceType *rhsIT = |
| dyn_cast<ObjCInterfaceType>(rhs.getCanonicalType().getTypePtr())) { |
| ObjCQualifiedInterfaceType *lhsQI = |
| dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr()); |
| return lhsQI && (rhsIT->getDecl() == lhsQI->getDecl()); |
| } |
| return false; |
| } |
| |
| /// Check that 'lhs' and 'rhs' are compatible interface types. Both types |
| /// must be canonical types. |
| bool ASTContext::interfaceTypesAreCompatible(QualType lhs, QualType rhs) { |
| assert (lhs->isCanonical() && |
| "interfaceTypesAreCompatible strip typedefs of lhs"); |
| assert (rhs->isCanonical() && |
| "interfaceTypesAreCompatible strip typedefs of rhs"); |
| if (lhs == rhs) |
| return true; |
| ObjCInterfaceType *lhsIT = cast<ObjCInterfaceType>(lhs.getTypePtr()); |
| ObjCInterfaceType *rhsIT = cast<ObjCInterfaceType>(rhs.getTypePtr()); |
| ObjCInterfaceDecl *rhsIDecl = rhsIT->getDecl(); |
| ObjCInterfaceDecl *lhsIDecl = lhsIT->getDecl(); |
| // rhs is derived from lhs it is OK; else it is not OK. |
| while (rhsIDecl != NULL) { |
| if (rhsIDecl == lhsIDecl) |
| return true; |
| rhsIDecl = rhsIDecl->getSuperClass(); |
| } |
| return false; |
| } |
| |
| bool ASTContext::QualifiedInterfaceTypesAreCompatible(QualType lhs, |
| QualType rhs) { |
| ObjCQualifiedInterfaceType *lhsQI = |
| dyn_cast<ObjCQualifiedInterfaceType>(lhs.getCanonicalType().getTypePtr()); |
| assert(lhsQI && "QualifiedInterfaceTypesAreCompatible - bad lhs type"); |
| ObjCQualifiedInterfaceType *rhsQI = |
| dyn_cast<ObjCQualifiedInterfaceType>(rhs.getCanonicalType().getTypePtr()); |
| assert(rhsQI && "QualifiedInterfaceTypesAreCompatible - bad rhs type"); |
| if (!interfaceTypesAreCompatible( |
| getObjCInterfaceType(lhsQI->getDecl()).getCanonicalType(), |
| getObjCInterfaceType(rhsQI->getDecl()).getCanonicalType())) |
| return false; |
| /* All protocols in lhs must have a presense in rhs. */ |
| for (unsigned i =0; i < lhsQI->getNumProtocols(); i++) { |
| bool match = false; |
| ObjCProtocolDecl *lhsProto = lhsQI->getProtocols(i); |
| for (unsigned j = 0; j < rhsQI->getNumProtocols(); j++) { |
| ObjCProtocolDecl *rhsProto = rhsQI->getProtocols(j); |
| if (lhsProto == rhsProto) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| return true; |
| } |
| |
| /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
| /// inheritance hierarchy of 'rProto'. |
| static bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
| ObjCProtocolDecl *rProto) { |
| if (lProto == rProto) |
| return true; |
| ObjCProtocolDecl** RefPDecl = rProto->getReferencedProtocols(); |
| for (unsigned i = 0; i < rProto->getNumReferencedProtocols(); i++) |
| if (ProtocolCompatibleWithProtocol(lProto, RefPDecl[i])) |
| return true; |
| return false; |
| } |
| |
| /// ClassImplementsProtocol - Checks that 'lProto' protocol |
| /// has been implemented in IDecl class, its super class or categories (if |
| /// lookupCategory is true). |
| static bool ClassImplementsProtocol(ObjCProtocolDecl *lProto, |
| ObjCInterfaceDecl *IDecl, |
| bool lookupCategory) { |
| |
| // 1st, look up the class. |
| ObjCProtocolDecl **protoList = IDecl->getReferencedProtocols(); |
| for (unsigned i = 0; i < IDecl->getNumIntfRefProtocols(); i++) { |
| if (ProtocolCompatibleWithProtocol(lProto, protoList[i])) |
| return true; |
| } |
| |
| // 2nd, look up the category. |
| if (lookupCategory) |
| for (ObjCCategoryDecl *CDecl = IDecl->getCategoryList(); CDecl; |
| CDecl = CDecl->getNextClassCategory()) { |
| protoList = CDecl->getReferencedProtocols(); |
| for (unsigned i = 0; i < CDecl->getNumReferencedProtocols(); i++) { |
| if (ProtocolCompatibleWithProtocol(lProto, protoList[i])) |
| return true; |
| } |
| } |
| |
| // 3rd, look up the super class(s) |
| if (IDecl->getSuperClass()) |
| return |
| ClassImplementsProtocol(lProto, IDecl->getSuperClass(), lookupCategory); |
| |
| return false; |
| } |
| |
| /// ObjCQualifiedIdTypesAreCompatible - Compares two types, at least |
| /// one of which is a protocol qualified 'id' type. When 'compare' |
| /// is true it is for comparison; when false, for assignment/initialization. |
| bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, |
| QualType rhs, |
| bool compare) { |
| // match id<P..> with an 'id' type in all cases. |
| if (const PointerType *PT = lhs->getAsPointerType()) { |
| QualType PointeeTy = PT->getPointeeType(); |
| if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType()) |
| return true; |
| |
| } |
| else if (const PointerType *PT = rhs->getAsPointerType()) { |
| QualType PointeeTy = PT->getPointeeType(); |
| if (isObjCIdType(PointeeTy) || PointeeTy->isVoidType()) |
| return true; |
| |
| } |
| |
| ObjCQualifiedInterfaceType *lhsQI = 0; |
| ObjCQualifiedInterfaceType *rhsQI = 0; |
| ObjCInterfaceDecl *lhsID = 0; |
| ObjCInterfaceDecl *rhsID = 0; |
| ObjCQualifiedIdType *lhsQID = dyn_cast<ObjCQualifiedIdType>(lhs); |
| ObjCQualifiedIdType *rhsQID = dyn_cast<ObjCQualifiedIdType>(rhs); |
| |
| if (lhsQID) { |
| if (!rhsQID && rhs->getTypeClass() == Type::Pointer) { |
| QualType rtype = |
| cast<PointerType>(rhs.getCanonicalType())->getPointeeType(); |
| rhsQI = |
| dyn_cast<ObjCQualifiedInterfaceType>( |
| rtype.getCanonicalType().getTypePtr()); |
| if (!rhsQI) { |
| ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>( |
| rtype.getCanonicalType().getTypePtr()); |
| if (IT) |
| rhsID = IT->getDecl(); |
| } |
| } |
| if (!rhsQI && !rhsQID && !rhsID) |
| return false; |
| |
| unsigned numRhsProtocols = 0; |
| ObjCProtocolDecl **rhsProtoList = 0; |
| if (rhsQI) { |
| numRhsProtocols = rhsQI->getNumProtocols(); |
| rhsProtoList = rhsQI->getReferencedProtocols(); |
| } |
| else if (rhsQID) { |
| numRhsProtocols = rhsQID->getNumProtocols(); |
| rhsProtoList = rhsQID->getReferencedProtocols(); |
| } |
| |
| for (unsigned i =0; i < lhsQID->getNumProtocols(); i++) { |
| ObjCProtocolDecl *lhsProto = lhsQID->getProtocols(i); |
| bool match = false; |
| |
| // when comparing an id<P> on lhs with a static type on rhs, |
| // see if static class implements all of id's protocols, directly or |
| // through its super class and categories. |
| if (rhsID) { |
| if (ClassImplementsProtocol(lhsProto, rhsID, true)) |
| match = true; |
| } |
| else for (unsigned j = 0; j < numRhsProtocols; j++) { |
| ObjCProtocolDecl *rhsProto = rhsProtoList[j]; |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) { |
| match = true; |
| break; |
| } |
| } |
| if (!match) |
| return false; |
| } |
| } |
| else if (rhsQID) { |
| if (!lhsQID && lhs->getTypeClass() == Type::Pointer) { |
| QualType ltype = |
| cast<PointerType>(lhs.getCanonicalType())->getPointeeType(); |
| lhsQI = |
| dyn_cast<ObjCQualifiedInterfaceType>( |
| ltype.getCanonicalType().getTypePtr()); |
| if (!lhsQI) { |
| ObjCInterfaceType *IT = dyn_cast<ObjCInterfaceType>( |
| ltype.getCanonicalType().getTypePtr()); |
| if (IT) |
| lhsID = IT->getDecl(); |
| } |
| } |
| if (!lhsQI && !lhsQID && !lhsID) |
| return false; |
| |
| unsigned numLhsProtocols = 0; |
| ObjCProtocolDecl **lhsProtoList = 0; |
| if (lhsQI) { |
| numLhsProtocols = lhsQI->getNumProtocols(); |
| lhsProtoList = lhsQI->getReferencedProtocols(); |
| } |
| else if (lhsQID) { |
| numLhsProtocols = lhsQID->getNumProtocols(); |
| lhsProtoList = lhsQID->getReferencedProtocols(); |
| } |
| bool match = false; |
| // for static type vs. qualified 'id' type, check that class implements |
| // one of 'id's protocols. |
| if (lhsID) { |
| for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) { |
| ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j); |
| if (ClassImplementsProtocol(rhsProto, lhsID, compare)) { |
| match = true; |
| break; |
| } |
| } |
| } |
| else for (unsigned i =0; i < numLhsProtocols; i++) { |
| match = false; |
| ObjCProtocolDecl *lhsProto = lhsProtoList[i]; |
| for (unsigned j = 0; j < rhsQID->getNumProtocols(); j++) { |
| ObjCProtocolDecl *rhsProto = rhsQID->getProtocols(j); |
| if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto)) { |
| match = true; |
| break; |
| } |
| } |
| } |
| if (!match) |
| return false; |
| } |
| return true; |
| } |
| |
| bool ASTContext::vectorTypesAreCompatible(QualType lhs, QualType rhs) { |
| const VectorType *lVector = lhs->getAsVectorType(); |
| const VectorType *rVector = rhs->getAsVectorType(); |
| |
| if ((lVector->getElementType().getCanonicalType() == |
| rVector->getElementType().getCanonicalType()) && |
| (lVector->getNumElements() == rVector->getNumElements())) |
| return true; |
| return false; |
| } |
| |
| // C99 6.2.7p1: If both are complete types, then the following additional |
| // requirements apply...FIXME (handle compatibility across source files). |
| bool ASTContext::tagTypesAreCompatible(QualType lhs, QualType rhs) { |
| // "Class" and "id" are compatible built-in structure types. |
| if (isObjCIdType(lhs) && isObjCClassType(rhs) || |
| isObjCClassType(lhs) && isObjCIdType(rhs)) |
| return true; |
| |
| // Within a translation unit a tag type is |
| // only compatible with itself. |
| return lhs.getCanonicalType() == rhs.getCanonicalType(); |
| } |
| |
| bool ASTContext::pointerTypesAreCompatible(QualType lhs, QualType rhs) { |
| // C99 6.7.5.1p2: For two pointer types to be compatible, both shall be |
| // identically qualified and both shall be pointers to compatible types. |
| if (lhs.getQualifiers() != rhs.getQualifiers()) |
| return false; |
| |
| QualType ltype = cast<PointerType>(lhs.getCanonicalType())->getPointeeType(); |
| QualType rtype = cast<PointerType>(rhs.getCanonicalType())->getPointeeType(); |
| |
| return typesAreCompatible(ltype, rtype); |
| } |
| |
| // C++ 5.17p6: When the left operand of an assignment operator denotes a |
| // reference to T, the operation assigns to the object of type T denoted by the |
| // reference. |
| bool ASTContext::referenceTypesAreCompatible(QualType lhs, QualType rhs) { |
| QualType ltype = lhs; |
| |
| if (lhs->isReferenceType()) |
| ltype = cast<ReferenceType>(lhs.getCanonicalType())->getReferenceeType(); |
| |
| QualType rtype = rhs; |
| |
| if (rhs->isReferenceType()) |
| rtype = cast<ReferenceType>(rhs.getCanonicalType())->getReferenceeType(); |
| |
| return typesAreCompatible(ltype, rtype); |
| } |
| |
| bool ASTContext::functionTypesAreCompatible(QualType lhs, QualType rhs) { |
| const FunctionType *lbase = cast<FunctionType>(lhs.getCanonicalType()); |
| const FunctionType *rbase = cast<FunctionType>(rhs.getCanonicalType()); |
| const FunctionTypeProto *lproto = dyn_cast<FunctionTypeProto>(lbase); |
| const FunctionTypeProto *rproto = dyn_cast<FunctionTypeProto>(rbase); |
| |
| // first check the return types (common between C99 and K&R). |
| if (!typesAreCompatible(lbase->getResultType(), rbase->getResultType())) |
| return false; |
| |
| if (lproto && rproto) { // two C99 style function prototypes |
| unsigned lproto_nargs = lproto->getNumArgs(); |
| unsigned rproto_nargs = rproto->getNumArgs(); |
| |
| if (lproto_nargs != rproto_nargs) |
| return false; |
| |
| // both prototypes have the same number of arguments. |
| if ((lproto->isVariadic() && !rproto->isVariadic()) || |
| (rproto->isVariadic() && !lproto->isVariadic())) |
| return false; |
| |
| // The use of ellipsis agree...now check the argument types. |
| for (unsigned i = 0; i < lproto_nargs; i++) |
| // C99 6.7.5.3p15: ...and each parameter declared with qualified type |
| // is taken as having the unqualified version of it's declared type. |
| if (!typesAreCompatible(lproto->getArgType(i).getUnqualifiedType(), |
| rproto->getArgType(i).getUnqualifiedType())) |
| return false; |
| return true; |
| } |
| if (!lproto && !rproto) // two K&R style function decls, nothing to do. |
| return true; |
| |
| // we have a mixture of K&R style with C99 prototypes |
| const FunctionTypeProto *proto = lproto ? lproto : rproto; |
| |
| if (proto->isVariadic()) |
| return false; |
| |
| // FIXME: Each parameter type T in the prototype must be compatible with the |
| // type resulting from applying the usual argument conversions to T. |
| return true; |
| } |
| |
| bool ASTContext::arrayTypesAreCompatible(QualType lhs, QualType rhs) { |
| // Compatible arrays must have compatible element types |
| QualType ltype = lhs->getAsArrayType()->getElementType(); |
| QualType rtype = rhs->getAsArrayType()->getElementType(); |
| |
| if (!typesAreCompatible(ltype, rtype)) |
| return false; |
| |
| // Compatible arrays must be the same size |
| if (const ConstantArrayType* LCAT = lhs->getAsConstantArrayType()) |
| if (const ConstantArrayType* RCAT = rhs->getAsConstantArrayType()) |
| return RCAT->getSize() == LCAT->getSize(); |
| |
| return true; |
| } |
| |
| /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| /// both shall have the identically qualified version of a compatible type. |
| /// C99 6.2.7p1: Two types have compatible types if their types are the |
| /// same. See 6.7.[2,3,5] for additional rules. |
| bool ASTContext::typesAreCompatible(QualType lhs, QualType rhs) { |
| if (lhs.getQualifiers() != rhs.getQualifiers()) |
| return false; |
| |
| QualType lcanon = lhs.getCanonicalType(); |
| QualType rcanon = rhs.getCanonicalType(); |
| |
| // If two types are identical, they are are compatible |
| if (lcanon == rcanon) |
| return true; |
| |
| // C++ [expr]: If an expression initially has the type "reference to T", the |
| // type is adjusted to "T" prior to any further analysis, the expression |
| // designates the object or function denoted by the reference, and the |
| // expression is an lvalue. |
| if (ReferenceType *RT = dyn_cast<ReferenceType>(lcanon)) |
| lcanon = RT->getReferenceeType(); |
| if (ReferenceType *RT = dyn_cast<ReferenceType>(rcanon)) |
| rcanon = RT->getReferenceeType(); |
| |
| Type::TypeClass LHSClass = lcanon->getTypeClass(); |
| Type::TypeClass RHSClass = rcanon->getTypeClass(); |
| |
| // We want to consider the two function types to be the same for these |
| // comparisons, just force one to the other. |
| if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| |
| // Same as above for arrays |
| if (LHSClass == Type::VariableArray) LHSClass = Type::ConstantArray; |
| if (RHSClass == Type::VariableArray) RHSClass = Type::ConstantArray; |
| |
| // If the canonical type classes don't match... |
| if (LHSClass != RHSClass) { |
| // For Objective-C, it is possible for two types to be compatible |
| // when their classes don't match (when dealing with "id"). If either type |
| // is an interface, we defer to objcTypesAreCompatible(). |
| if (lcanon->isObjCInterfaceType() || rcanon->isObjCInterfaceType()) |
| return objcTypesAreCompatible(lcanon, rcanon); |
| |
| // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| // a signed integer type, or an unsigned integer type. |
| if (lcanon->isEnumeralType() && rcanon->isIntegralType()) { |
| EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(lcanon)->getDecl()); |
| return EDecl->getIntegerType() == rcanon; |
| } |
| if (rcanon->isEnumeralType() && lcanon->isIntegralType()) { |
| EnumDecl* EDecl = cast<EnumDecl>(cast<TagType>(rcanon)->getDecl()); |
| return EDecl->getIntegerType() == lcanon; |
| } |
| |
| return false; |
| } |
| // The canonical type classes match. |
| switch (LHSClass) { |
| case Type::FunctionProto: assert(0 && "Canonicalized away above"); |
| case Type::Pointer: |
| return pointerTypesAreCompatible(lcanon, rcanon); |
| case Type::ConstantArray: |
| case Type::VariableArray: |
| return arrayTypesAreCompatible(lcanon, rcanon); |
| case Type::FunctionNoProto: |
| return functionTypesAreCompatible(lcanon, rcanon); |
| case Type::Tagged: // handle structures, unions |
| return tagTypesAreCompatible(lcanon, rcanon); |
| case Type::Builtin: |
| return builtinTypesAreCompatible(lcanon, rcanon); |
| case Type::ObjCInterface: |
| return interfaceTypesAreCompatible(lcanon, rcanon); |
| case Type::Vector: |
| case Type::OCUVector: |
| return vectorTypesAreCompatible(lcanon, rcanon); |
| case Type::ObjCQualifiedInterface: |
| return QualifiedInterfaceTypesAreCompatible(lcanon, rcanon); |
| default: |
| assert(0 && "unexpected type"); |
| } |
| return true; // should never get here... |
| } |
| |
| /// Emit - Serialize an ASTContext object to Bitcode. |
| void ASTContext::Emit(llvm::Serializer& S) const { |
| S.EmitRef(SourceMgr); |
| S.EmitRef(Target); |
| S.EmitRef(Idents); |
| S.EmitRef(Selectors); |
| |
| // Emit the size of the type vector so that we can reserve that size |
| // when we reconstitute the ASTContext object. |
| S.EmitInt(Types.size()); |
| |
| for (std::vector<Type*>::const_iterator I=Types.begin(), E=Types.end(); |
| I!=E;++I) |
| (*I)->Emit(S); |
| |
| // FIXME: S.EmitOwnedPtr(CFConstantStringTypeDecl); |
| } |
| |
| ASTContext* ASTContext::Create(llvm::Deserializer& D) { |
| SourceManager &SM = D.ReadRef<SourceManager>(); |
| TargetInfo &t = D.ReadRef<TargetInfo>(); |
| IdentifierTable &idents = D.ReadRef<IdentifierTable>(); |
| SelectorTable &sels = D.ReadRef<SelectorTable>(); |
| |
| unsigned size_reserve = D.ReadInt(); |
| |
| ASTContext* A = new ASTContext(SM,t,idents,sels,size_reserve); |
| |
| for (unsigned i = 0; i < size_reserve; ++i) |
| Type::Create(*A,i,D); |
| |
| // FIXME: A->CFConstantStringTypeDecl = D.ReadOwnedPtr<RecordDecl>(); |
| |
| return A; |
| } |