| //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Objective-C code as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGDebugInfo.h" |
| #include "CGObjCRuntime.h" |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "TargetInfo.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/InlineAsm.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; |
| static TryEmitResult |
| tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); |
| |
| /// Given the address of a variable of pointer type, find the correct |
| /// null to store into it. |
| static llvm::Constant *getNullForVariable(llvm::Value *addr) { |
| llvm::Type *type = |
| cast<llvm::PointerType>(addr->getType())->getElementType(); |
| return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); |
| } |
| |
| /// Emits an instance of NSConstantString representing the object. |
| llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) |
| { |
| llvm::Constant *C = |
| CGM.getObjCRuntime().GenerateConstantString(E->getString()); |
| // FIXME: This bitcast should just be made an invariant on the Runtime. |
| return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); |
| } |
| |
| /// Emit a selector. |
| llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { |
| // Untyped selector. |
| // Note that this implementation allows for non-constant strings to be passed |
| // as arguments to @selector(). Currently, the only thing preventing this |
| // behaviour is the type checking in the front end. |
| return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector()); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { |
| // FIXME: This should pass the Decl not the name. |
| return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol()); |
| } |
| |
| /// \brief Adjust the type of the result of an Objective-C message send |
| /// expression when the method has a related result type. |
| static RValue AdjustRelatedResultType(CodeGenFunction &CGF, |
| const Expr *E, |
| const ObjCMethodDecl *Method, |
| RValue Result) { |
| if (!Method) |
| return Result; |
| |
| if (!Method->hasRelatedResultType() || |
| CGF.getContext().hasSameType(E->getType(), Method->getResultType()) || |
| !Result.isScalar()) |
| return Result; |
| |
| // We have applied a related result type. Cast the rvalue appropriately. |
| return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), |
| CGF.ConvertType(E->getType()))); |
| } |
| |
| /// Decide whether to extend the lifetime of the receiver of a |
| /// returns-inner-pointer message. |
| static bool |
| shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { |
| switch (message->getReceiverKind()) { |
| |
| // For a normal instance message, we should extend unless the |
| // receiver is loaded from a variable with precise lifetime. |
| case ObjCMessageExpr::Instance: { |
| const Expr *receiver = message->getInstanceReceiver(); |
| const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); |
| if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; |
| receiver = ice->getSubExpr()->IgnoreParens(); |
| |
| // Only __strong variables. |
| if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) |
| return true; |
| |
| // All ivars and fields have precise lifetime. |
| if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) |
| return false; |
| |
| // Otherwise, check for variables. |
| const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); |
| if (!declRef) return true; |
| const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); |
| if (!var) return true; |
| |
| // All variables have precise lifetime except local variables with |
| // automatic storage duration that aren't specially marked. |
| return (var->hasLocalStorage() && |
| !var->hasAttr<ObjCPreciseLifetimeAttr>()); |
| } |
| |
| case ObjCMessageExpr::Class: |
| case ObjCMessageExpr::SuperClass: |
| // It's never necessary for class objects. |
| return false; |
| |
| case ObjCMessageExpr::SuperInstance: |
| // We generally assume that 'self' lives throughout a method call. |
| return false; |
| } |
| |
| llvm_unreachable("invalid receiver kind"); |
| } |
| |
| RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, |
| ReturnValueSlot Return) { |
| // Only the lookup mechanism and first two arguments of the method |
| // implementation vary between runtimes. We can get the receiver and |
| // arguments in generic code. |
| |
| bool isDelegateInit = E->isDelegateInitCall(); |
| |
| const ObjCMethodDecl *method = E->getMethodDecl(); |
| |
| // We don't retain the receiver in delegate init calls, and this is |
| // safe because the receiver value is always loaded from 'self', |
| // which we zero out. We don't want to Block_copy block receivers, |
| // though. |
| bool retainSelf = |
| (!isDelegateInit && |
| CGM.getLangOptions().ObjCAutoRefCount && |
| method && |
| method->hasAttr<NSConsumesSelfAttr>()); |
| |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| bool isSuperMessage = false; |
| bool isClassMessage = false; |
| ObjCInterfaceDecl *OID = 0; |
| // Find the receiver |
| QualType ReceiverType; |
| llvm::Value *Receiver = 0; |
| switch (E->getReceiverKind()) { |
| case ObjCMessageExpr::Instance: |
| ReceiverType = E->getInstanceReceiver()->getType(); |
| if (retainSelf) { |
| TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, |
| E->getInstanceReceiver()); |
| Receiver = ter.getPointer(); |
| if (ter.getInt()) retainSelf = false; |
| } else |
| Receiver = EmitScalarExpr(E->getInstanceReceiver()); |
| break; |
| |
| case ObjCMessageExpr::Class: { |
| ReceiverType = E->getClassReceiver(); |
| const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); |
| assert(ObjTy && "Invalid Objective-C class message send"); |
| OID = ObjTy->getInterface(); |
| assert(OID && "Invalid Objective-C class message send"); |
| Receiver = Runtime.GetClass(Builder, OID); |
| isClassMessage = true; |
| break; |
| } |
| |
| case ObjCMessageExpr::SuperInstance: |
| ReceiverType = E->getSuperType(); |
| Receiver = LoadObjCSelf(); |
| isSuperMessage = true; |
| break; |
| |
| case ObjCMessageExpr::SuperClass: |
| ReceiverType = E->getSuperType(); |
| Receiver = LoadObjCSelf(); |
| isSuperMessage = true; |
| isClassMessage = true; |
| break; |
| } |
| |
| if (retainSelf) |
| Receiver = EmitARCRetainNonBlock(Receiver); |
| |
| // In ARC, we sometimes want to "extend the lifetime" |
| // (i.e. retain+autorelease) of receivers of returns-inner-pointer |
| // messages. |
| if (getLangOptions().ObjCAutoRefCount && method && |
| method->hasAttr<ObjCReturnsInnerPointerAttr>() && |
| shouldExtendReceiverForInnerPointerMessage(E)) |
| Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); |
| |
| QualType ResultType = |
| method ? method->getResultType() : E->getType(); |
| |
| CallArgList Args; |
| EmitCallArgs(Args, method, E->arg_begin(), E->arg_end()); |
| |
| // For delegate init calls in ARC, do an unsafe store of null into |
| // self. This represents the call taking direct ownership of that |
| // value. We have to do this after emitting the other call |
| // arguments because they might also reference self, but we don't |
| // have to worry about any of them modifying self because that would |
| // be an undefined read and write of an object in unordered |
| // expressions. |
| if (isDelegateInit) { |
| assert(getLangOptions().ObjCAutoRefCount && |
| "delegate init calls should only be marked in ARC"); |
| |
| // Do an unsafe store of null into self. |
| llvm::Value *selfAddr = |
| LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; |
| assert(selfAddr && "no self entry for a delegate init call?"); |
| |
| Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); |
| } |
| |
| RValue result; |
| if (isSuperMessage) { |
| // super is only valid in an Objective-C method |
| const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); |
| bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); |
| result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, |
| E->getSelector(), |
| OMD->getClassInterface(), |
| isCategoryImpl, |
| Receiver, |
| isClassMessage, |
| Args, |
| method); |
| } else { |
| result = Runtime.GenerateMessageSend(*this, Return, ResultType, |
| E->getSelector(), |
| Receiver, Args, OID, |
| method); |
| } |
| |
| // For delegate init calls in ARC, implicitly store the result of |
| // the call back into self. This takes ownership of the value. |
| if (isDelegateInit) { |
| llvm::Value *selfAddr = |
| LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()]; |
| llvm::Value *newSelf = result.getScalarVal(); |
| |
| // The delegate return type isn't necessarily a matching type; in |
| // fact, it's quite likely to be 'id'. |
| llvm::Type *selfTy = |
| cast<llvm::PointerType>(selfAddr->getType())->getElementType(); |
| newSelf = Builder.CreateBitCast(newSelf, selfTy); |
| |
| Builder.CreateStore(newSelf, selfAddr); |
| } |
| |
| return AdjustRelatedResultType(*this, E, method, result); |
| } |
| |
| namespace { |
| struct FinishARCDealloc : EHScopeStack::Cleanup { |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); |
| |
| const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); |
| const ObjCInterfaceDecl *iface = impl->getClassInterface(); |
| if (!iface->getSuperClass()) return; |
| |
| bool isCategory = isa<ObjCCategoryImplDecl>(impl); |
| |
| // Call [super dealloc] if we have a superclass. |
| llvm::Value *self = CGF.LoadObjCSelf(); |
| |
| CallArgList args; |
| CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), |
| CGF.getContext().VoidTy, |
| method->getSelector(), |
| iface, |
| isCategory, |
| self, |
| /*is class msg*/ false, |
| args, |
| method); |
| } |
| }; |
| } |
| |
| /// StartObjCMethod - Begin emission of an ObjCMethod. This generates |
| /// the LLVM function and sets the other context used by |
| /// CodeGenFunction. |
| void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, |
| const ObjCContainerDecl *CD, |
| SourceLocation StartLoc) { |
| FunctionArgList args; |
| // Check if we should generate debug info for this method. |
| if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>()) |
| DebugInfo = CGM.getModuleDebugInfo(); |
| |
| llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); |
| |
| const CGFunctionInfo &FI = CGM.getTypes().getFunctionInfo(OMD); |
| CGM.SetInternalFunctionAttributes(OMD, Fn, FI); |
| |
| args.push_back(OMD->getSelfDecl()); |
| args.push_back(OMD->getCmdDecl()); |
| |
| for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(), |
| E = OMD->param_end(); PI != E; ++PI) |
| args.push_back(*PI); |
| |
| CurGD = OMD; |
| |
| StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc); |
| |
| // In ARC, certain methods get an extra cleanup. |
| if (CGM.getLangOptions().ObjCAutoRefCount && |
| OMD->isInstanceMethod() && |
| OMD->getSelector().isUnarySelector()) { |
| const IdentifierInfo *ident = |
| OMD->getSelector().getIdentifierInfoForSlot(0); |
| if (ident->isStr("dealloc")) |
| EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); |
| } |
| } |
| |
| static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| LValue lvalue, QualType type); |
| |
| /// Generate an Objective-C method. An Objective-C method is a C function with |
| /// its pointer, name, and types registered in the class struture. |
| void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { |
| StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart()); |
| EmitStmt(OMD->getBody()); |
| FinishFunction(OMD->getBodyRBrace()); |
| } |
| |
| /// emitStructGetterCall - Call the runtime function to load a property |
| /// into the return value slot. |
| static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, |
| bool isAtomic, bool hasStrong) { |
| ASTContext &Context = CGF.getContext(); |
| |
| llvm::Value *src = |
| CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), |
| ivar, 0).getAddress(); |
| |
| // objc_copyStruct (ReturnValue, &structIvar, |
| // sizeof (Type of Ivar), isAtomic, false); |
| CallArgList args; |
| |
| llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); |
| args.add(RValue::get(dest), Context.VoidPtrTy); |
| |
| src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); |
| args.add(RValue::get(src), Context.VoidPtrTy); |
| |
| CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); |
| args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); |
| args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); |
| args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); |
| |
| llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); |
| CGF.EmitCall(CGF.getTypes().getFunctionInfo(Context.VoidTy, args, |
| FunctionType::ExtInfo()), |
| fn, ReturnValueSlot(), args); |
| } |
| |
| /// Determine whether the given architecture supports unaligned atomic |
| /// accesses. They don't have to be fast, just faster than a function |
| /// call and a mutex. |
| static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { |
| // FIXME: Allow unaligned atomic load/store on x86. (It is not |
| // currently supported by the backend.) |
| return 0; |
| } |
| |
| /// Return the maximum size that permits atomic accesses for the given |
| /// architecture. |
| static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, |
| llvm::Triple::ArchType arch) { |
| // ARM has 8-byte atomic accesses, but it's not clear whether we |
| // want to rely on them here. |
| |
| // In the default case, just assume that any size up to a pointer is |
| // fine given adequate alignment. |
| return CharUnits::fromQuantity(CGM.PointerSizeInBytes); |
| } |
| |
| namespace { |
| class PropertyImplStrategy { |
| public: |
| enum StrategyKind { |
| /// The 'native' strategy is to use the architecture's provided |
| /// reads and writes. |
| Native, |
| |
| /// Use objc_setProperty and objc_getProperty. |
| GetSetProperty, |
| |
| /// Use objc_setProperty for the setter, but use expression |
| /// evaluation for the getter. |
| SetPropertyAndExpressionGet, |
| |
| /// Use objc_copyStruct. |
| CopyStruct, |
| |
| /// The 'expression' strategy is to emit normal assignment or |
| /// lvalue-to-rvalue expressions. |
| Expression |
| }; |
| |
| StrategyKind getKind() const { return StrategyKind(Kind); } |
| |
| bool hasStrongMember() const { return HasStrong; } |
| bool isAtomic() const { return IsAtomic; } |
| bool isCopy() const { return IsCopy; } |
| |
| CharUnits getIvarSize() const { return IvarSize; } |
| CharUnits getIvarAlignment() const { return IvarAlignment; } |
| |
| PropertyImplStrategy(CodeGenModule &CGM, |
| const ObjCPropertyImplDecl *propImpl); |
| |
| private: |
| unsigned Kind : 8; |
| unsigned IsAtomic : 1; |
| unsigned IsCopy : 1; |
| unsigned HasStrong : 1; |
| |
| CharUnits IvarSize; |
| CharUnits IvarAlignment; |
| }; |
| } |
| |
| /// Pick an implementation strategy for the the given property synthesis. |
| PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, |
| const ObjCPropertyImplDecl *propImpl) { |
| const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); |
| |
| IsCopy = (setterKind == ObjCPropertyDecl::Copy); |
| IsAtomic = prop->isAtomic(); |
| HasStrong = false; // doesn't matter here. |
| |
| // Evaluate the ivar's size and alignment. |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| QualType ivarType = ivar->getType(); |
| llvm::tie(IvarSize, IvarAlignment) |
| = CGM.getContext().getTypeInfoInChars(ivarType); |
| |
| // If we have a copy property, we always have to use getProperty/setProperty. |
| // TODO: we could actually use setProperty and an expression for non-atomics. |
| if (IsCopy) { |
| Kind = GetSetProperty; |
| return; |
| } |
| |
| // Handle retain. |
| if (setterKind == ObjCPropertyDecl::Retain) { |
| // In GC-only, there's nothing special that needs to be done. |
| if (CGM.getLangOptions().getGC() == LangOptions::GCOnly) { |
| // fallthrough |
| |
| // In ARC, if the property is non-atomic, use expression emission, |
| // which translates to objc_storeStrong. This isn't required, but |
| // it's slightly nicer. |
| } else if (CGM.getLangOptions().ObjCAutoRefCount && !IsAtomic) { |
| Kind = Expression; |
| return; |
| |
| // Otherwise, we need to at least use setProperty. However, if |
| // the property isn't atomic, we can use normal expression |
| // emission for the getter. |
| } else if (!IsAtomic) { |
| Kind = SetPropertyAndExpressionGet; |
| return; |
| |
| // Otherwise, we have to use both setProperty and getProperty. |
| } else { |
| Kind = GetSetProperty; |
| return; |
| } |
| } |
| |
| // If we're not atomic, just use expression accesses. |
| if (!IsAtomic) { |
| Kind = Expression; |
| return; |
| } |
| |
| // Properties on bitfield ivars need to be emitted using expression |
| // accesses even if they're nominally atomic. |
| if (ivar->isBitField()) { |
| Kind = Expression; |
| return; |
| } |
| |
| // GC-qualified or ARC-qualified ivars need to be emitted as |
| // expressions. This actually works out to being atomic anyway, |
| // except for ARC __strong, but that should trigger the above code. |
| if (ivarType.hasNonTrivialObjCLifetime() || |
| (CGM.getLangOptions().getGC() && |
| CGM.getContext().getObjCGCAttrKind(ivarType))) { |
| Kind = Expression; |
| return; |
| } |
| |
| // Compute whether the ivar has strong members. |
| if (CGM.getLangOptions().getGC()) |
| if (const RecordType *recordType = ivarType->getAs<RecordType>()) |
| HasStrong = recordType->getDecl()->hasObjectMember(); |
| |
| // We can never access structs with object members with a native |
| // access, because we need to use write barriers. This is what |
| // objc_copyStruct is for. |
| if (HasStrong) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| // Otherwise, this is target-dependent and based on the size and |
| // alignment of the ivar. |
| |
| // If the size of the ivar is not a power of two, give up. We don't |
| // want to get into the business of doing compare-and-swaps. |
| if (!IvarSize.isPowerOfTwo()) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| llvm::Triple::ArchType arch = |
| CGM.getContext().getTargetInfo().getTriple().getArch(); |
| |
| // Most architectures require memory to fit within a single cache |
| // line, so the alignment has to be at least the size of the access. |
| // Otherwise we have to grab a lock. |
| if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| // If the ivar's size exceeds the architecture's maximum atomic |
| // access size, we have to use CopyStruct. |
| if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { |
| Kind = CopyStruct; |
| return; |
| } |
| |
| // Otherwise, we can use native loads and stores. |
| Kind = Native; |
| } |
| |
| /// GenerateObjCGetter - Generate an Objective-C property getter |
| /// function. The given Decl must be an ObjCImplementationDecl. @synthesize |
| /// is illegal within a category. |
| void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID) { |
| const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); |
| assert(OMD && "Invalid call to generate getter (empty method)"); |
| StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); |
| |
| generateObjCGetterBody(IMP, PID); |
| |
| FinishFunction(); |
| } |
| |
| static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { |
| const Expr *getter = propImpl->getGetterCXXConstructor(); |
| if (!getter) return true; |
| |
| // Sema only makes only of these when the ivar has a C++ class type, |
| // so the form is pretty constrained. |
| |
| // If the property has a reference type, we might just be binding a |
| // reference, in which case the result will be a gl-value. We should |
| // treat this as a non-trivial operation. |
| if (getter->isGLValue()) |
| return false; |
| |
| // If we selected a trivial copy-constructor, we're okay. |
| if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) |
| return (construct->getConstructor()->isTrivial()); |
| |
| // The constructor might require cleanups (in which case it's never |
| // trivial). |
| assert(isa<ExprWithCleanups>(getter)); |
| return false; |
| } |
| |
| void |
| CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl) { |
| // If there's a non-trivial 'get' expression, we just have to emit that. |
| if (!hasTrivialGetExpr(propImpl)) { |
| ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), |
| /*nrvo*/ 0); |
| EmitReturnStmt(ret); |
| return; |
| } |
| |
| const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| QualType propType = prop->getType(); |
| ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); |
| |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| |
| // Pick an implementation strategy. |
| PropertyImplStrategy strategy(CGM, propImpl); |
| switch (strategy.getKind()) { |
| case PropertyImplStrategy::Native: { |
| LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); |
| |
| // Currently, all atomic accesses have to be through integer |
| // types, so there's no point in trying to pick a prettier type. |
| llvm::Type *bitcastType = |
| llvm::Type::getIntNTy(getLLVMContext(), |
| getContext().toBits(strategy.getIvarSize())); |
| bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay |
| |
| // Perform an atomic load. This does not impose ordering constraints. |
| llvm::Value *ivarAddr = LV.getAddress(); |
| ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); |
| llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); |
| load->setAlignment(strategy.getIvarAlignment().getQuantity()); |
| load->setAtomic(llvm::Unordered); |
| |
| // Store that value into the return address. Doing this with a |
| // bitcast is likely to produce some pretty ugly IR, but it's not |
| // the *most* terrible thing in the world. |
| Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType)); |
| |
| // Make sure we don't do an autorelease. |
| AutoreleaseResult = false; |
| return; |
| } |
| |
| case PropertyImplStrategy::GetSetProperty: { |
| llvm::Value *getPropertyFn = |
| CGM.getObjCRuntime().GetPropertyGetFunction(); |
| if (!getPropertyFn) { |
| CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); |
| return; |
| } |
| |
| // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). |
| // FIXME: Can't this be simpler? This might even be worse than the |
| // corresponding gcc code. |
| llvm::Value *cmd = |
| Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd"); |
| llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); |
| llvm::Value *ivarOffset = |
| EmitIvarOffset(classImpl->getClassInterface(), ivar); |
| |
| CallArgList args; |
| args.add(RValue::get(self), getContext().getObjCIdType()); |
| args.add(RValue::get(cmd), getContext().getObjCSelType()); |
| args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); |
| args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), |
| getContext().BoolTy); |
| |
| // FIXME: We shouldn't need to get the function info here, the |
| // runtime already should have computed it to build the function. |
| RValue RV = EmitCall(getTypes().getFunctionInfo(propType, args, |
| FunctionType::ExtInfo()), |
| getPropertyFn, ReturnValueSlot(), args); |
| |
| // We need to fix the type here. Ivars with copy & retain are |
| // always objects so we don't need to worry about complex or |
| // aggregates. |
| RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(), |
| getTypes().ConvertType(propType))); |
| |
| EmitReturnOfRValue(RV, propType); |
| |
| // objc_getProperty does an autorelease, so we should suppress ours. |
| AutoreleaseResult = false; |
| |
| return; |
| } |
| |
| case PropertyImplStrategy::CopyStruct: |
| emitStructGetterCall(*this, ivar, strategy.isAtomic(), |
| strategy.hasStrongMember()); |
| return; |
| |
| case PropertyImplStrategy::Expression: |
| case PropertyImplStrategy::SetPropertyAndExpressionGet: { |
| LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); |
| |
| QualType ivarType = ivar->getType(); |
| if (ivarType->isAnyComplexType()) { |
| ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(), |
| LV.isVolatileQualified()); |
| StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified()); |
| } else if (hasAggregateLLVMType(ivarType)) { |
| // The return value slot is guaranteed to not be aliased, but |
| // that's not necessarily the same as "on the stack", so |
| // we still potentially need objc_memmove_collectable. |
| EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); |
| } else { |
| llvm::Value *value; |
| if (propType->isReferenceType()) { |
| value = LV.getAddress(); |
| } else { |
| // We want to load and autoreleaseReturnValue ARC __weak ivars. |
| if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| value = emitARCRetainLoadOfScalar(*this, LV, ivarType); |
| |
| // Otherwise we want to do a simple load, suppressing the |
| // final autorelease. |
| } else { |
| value = EmitLoadOfLValue(LV).getScalarVal(); |
| AutoreleaseResult = false; |
| } |
| |
| value = Builder.CreateBitCast(value, ConvertType(propType)); |
| } |
| |
| EmitReturnOfRValue(RValue::get(value), propType); |
| } |
| return; |
| } |
| |
| } |
| llvm_unreachable("bad @property implementation strategy!"); |
| } |
| |
| /// emitStructSetterCall - Call the runtime function to store the value |
| /// from the first formal parameter into the given ivar. |
| static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, |
| ObjCIvarDecl *ivar) { |
| // objc_copyStruct (&structIvar, &Arg, |
| // sizeof (struct something), true, false); |
| CallArgList args; |
| |
| // The first argument is the address of the ivar. |
| llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), |
| CGF.LoadObjCSelf(), ivar, 0) |
| .getAddress(); |
| ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); |
| |
| // The second argument is the address of the parameter variable. |
| ParmVarDecl *argVar = *OMD->param_begin(); |
| DeclRefExpr argRef(argVar, argVar->getType(), VK_LValue, SourceLocation()); |
| llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress(); |
| argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); |
| args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); |
| |
| // The third argument is the sizeof the type. |
| llvm::Value *size = |
| CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); |
| args.add(RValue::get(size), CGF.getContext().getSizeType()); |
| |
| // The fourth argument is the 'isAtomic' flag. |
| args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); |
| |
| // The fifth argument is the 'hasStrong' flag. |
| // FIXME: should this really always be false? |
| args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); |
| |
| llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); |
| CGF.EmitCall(CGF.getTypes().getFunctionInfo(CGF.getContext().VoidTy, args, |
| FunctionType::ExtInfo()), |
| copyStructFn, ReturnValueSlot(), args); |
| } |
| |
| static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { |
| Expr *setter = PID->getSetterCXXAssignment(); |
| if (!setter) return true; |
| |
| // Sema only makes only of these when the ivar has a C++ class type, |
| // so the form is pretty constrained. |
| |
| // An operator call is trivial if the function it calls is trivial. |
| // This also implies that there's nothing non-trivial going on with |
| // the arguments, because operator= can only be trivial if it's a |
| // synthesized assignment operator and therefore both parameters are |
| // references. |
| if (CallExpr *call = dyn_cast<CallExpr>(setter)) { |
| if (const FunctionDecl *callee |
| = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) |
| if (callee->isTrivial()) |
| return true; |
| return false; |
| } |
| |
| assert(isa<ExprWithCleanups>(setter)); |
| return false; |
| } |
| |
| void |
| CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
| const ObjCPropertyImplDecl *propImpl) { |
| // Just use the setter expression if Sema gave us one and it's |
| // non-trivial. There's no way to do this atomically. |
| if (!hasTrivialSetExpr(propImpl)) { |
| EmitStmt(propImpl->getSetterCXXAssignment()); |
| return; |
| } |
| |
| const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); |
| ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); |
| ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); |
| |
| PropertyImplStrategy strategy(CGM, propImpl); |
| switch (strategy.getKind()) { |
| case PropertyImplStrategy::Native: { |
| llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()]; |
| |
| LValue ivarLValue = |
| EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); |
| llvm::Value *ivarAddr = ivarLValue.getAddress(); |
| |
| // Currently, all atomic accesses have to be through integer |
| // types, so there's no point in trying to pick a prettier type. |
| llvm::Type *bitcastType = |
| llvm::Type::getIntNTy(getLLVMContext(), |
| getContext().toBits(strategy.getIvarSize())); |
| bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay |
| |
| // Cast both arguments to the chosen operation type. |
| argAddr = Builder.CreateBitCast(argAddr, bitcastType); |
| ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); |
| |
| // This bitcast load is likely to cause some nasty IR. |
| llvm::Value *load = Builder.CreateLoad(argAddr); |
| |
| // Perform an atomic store. There are no memory ordering requirements. |
| llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); |
| store->setAlignment(strategy.getIvarAlignment().getQuantity()); |
| store->setAtomic(llvm::Unordered); |
| return; |
| } |
| |
| case PropertyImplStrategy::GetSetProperty: |
| case PropertyImplStrategy::SetPropertyAndExpressionGet: { |
| llvm::Value *setPropertyFn = |
| CGM.getObjCRuntime().GetPropertySetFunction(); |
| if (!setPropertyFn) { |
| CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); |
| return; |
| } |
| |
| // Emit objc_setProperty((id) self, _cmd, offset, arg, |
| // <is-atomic>, <is-copy>). |
| llvm::Value *cmd = |
| Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]); |
| llvm::Value *self = |
| Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); |
| llvm::Value *ivarOffset = |
| EmitIvarOffset(classImpl->getClassInterface(), ivar); |
| llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()]; |
| arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy); |
| |
| CallArgList args; |
| args.add(RValue::get(self), getContext().getObjCIdType()); |
| args.add(RValue::get(cmd), getContext().getObjCSelType()); |
| args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); |
| args.add(RValue::get(arg), getContext().getObjCIdType()); |
| args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), |
| getContext().BoolTy); |
| args.add(RValue::get(Builder.getInt1(strategy.isCopy())), |
| getContext().BoolTy); |
| // FIXME: We shouldn't need to get the function info here, the runtime |
| // already should have computed it to build the function. |
| EmitCall(getTypes().getFunctionInfo(getContext().VoidTy, args, |
| FunctionType::ExtInfo()), |
| setPropertyFn, ReturnValueSlot(), args); |
| return; |
| } |
| |
| case PropertyImplStrategy::CopyStruct: |
| emitStructSetterCall(*this, setterMethod, ivar); |
| return; |
| |
| case PropertyImplStrategy::Expression: |
| break; |
| } |
| |
| // Otherwise, fake up some ASTs and emit a normal assignment. |
| ValueDecl *selfDecl = setterMethod->getSelfDecl(); |
| DeclRefExpr self(selfDecl, selfDecl->getType(), VK_LValue, SourceLocation()); |
| ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, |
| selfDecl->getType(), CK_LValueToRValue, &self, |
| VK_RValue); |
| ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), |
| SourceLocation(), &selfLoad, true, true); |
| |
| ParmVarDecl *argDecl = *setterMethod->param_begin(); |
| QualType argType = argDecl->getType().getNonReferenceType(); |
| DeclRefExpr arg(argDecl, argType, VK_LValue, SourceLocation()); |
| ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, |
| argType.getUnqualifiedType(), CK_LValueToRValue, |
| &arg, VK_RValue); |
| |
| // The property type can differ from the ivar type in some situations with |
| // Objective-C pointer types, we can always bit cast the RHS in these cases. |
| // The following absurdity is just to ensure well-formed IR. |
| CastKind argCK = CK_NoOp; |
| if (ivarRef.getType()->isObjCObjectPointerType()) { |
| if (argLoad.getType()->isObjCObjectPointerType()) |
| argCK = CK_BitCast; |
| else if (argLoad.getType()->isBlockPointerType()) |
| argCK = CK_BlockPointerToObjCPointerCast; |
| else |
| argCK = CK_CPointerToObjCPointerCast; |
| } else if (ivarRef.getType()->isBlockPointerType()) { |
| if (argLoad.getType()->isBlockPointerType()) |
| argCK = CK_BitCast; |
| else |
| argCK = CK_AnyPointerToBlockPointerCast; |
| } else if (ivarRef.getType()->isPointerType()) { |
| argCK = CK_BitCast; |
| } |
| ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, |
| ivarRef.getType(), argCK, &argLoad, |
| VK_RValue); |
| Expr *finalArg = &argLoad; |
| if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), |
| argLoad.getType())) |
| finalArg = &argCast; |
| |
| |
| BinaryOperator assign(&ivarRef, finalArg, BO_Assign, |
| ivarRef.getType(), VK_RValue, OK_Ordinary, |
| SourceLocation()); |
| EmitStmt(&assign); |
| } |
| |
| /// GenerateObjCSetter - Generate an Objective-C property setter |
| /// function. The given Decl must be an ObjCImplementationDecl. @synthesize |
| /// is illegal within a category. |
| void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, |
| const ObjCPropertyImplDecl *PID) { |
| const ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); |
| assert(OMD && "Invalid call to generate setter (empty method)"); |
| StartObjCMethod(OMD, IMP->getClassInterface(), PID->getLocStart()); |
| |
| generateObjCSetterBody(IMP, PID); |
| |
| FinishFunction(); |
| } |
| |
| namespace { |
| struct DestroyIvar : EHScopeStack::Cleanup { |
| private: |
| llvm::Value *addr; |
| const ObjCIvarDecl *ivar; |
| CodeGenFunction::Destroyer &destroyer; |
| bool useEHCleanupForArray; |
| public: |
| DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, |
| CodeGenFunction::Destroyer *destroyer, |
| bool useEHCleanupForArray) |
| : addr(addr), ivar(ivar), destroyer(*destroyer), |
| useEHCleanupForArray(useEHCleanupForArray) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| LValue lvalue |
| = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); |
| CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, |
| flags.isForNormalCleanup() && useEHCleanupForArray); |
| } |
| }; |
| } |
| |
| /// Like CodeGenFunction::destroyARCStrong, but do it with a call. |
| static void destroyARCStrongWithStore(CodeGenFunction &CGF, |
| llvm::Value *addr, |
| QualType type) { |
| llvm::Value *null = getNullForVariable(addr); |
| CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); |
| } |
| |
| static void emitCXXDestructMethod(CodeGenFunction &CGF, |
| ObjCImplementationDecl *impl) { |
| CodeGenFunction::RunCleanupsScope scope(CGF); |
| |
| llvm::Value *self = CGF.LoadObjCSelf(); |
| |
| const ObjCInterfaceDecl *iface = impl->getClassInterface(); |
| for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); |
| ivar; ivar = ivar->getNextIvar()) { |
| QualType type = ivar->getType(); |
| |
| // Check whether the ivar is a destructible type. |
| QualType::DestructionKind dtorKind = type.isDestructedType(); |
| if (!dtorKind) continue; |
| |
| CodeGenFunction::Destroyer *destroyer = 0; |
| |
| // Use a call to objc_storeStrong to destroy strong ivars, for the |
| // general benefit of the tools. |
| if (dtorKind == QualType::DK_objc_strong_lifetime) { |
| destroyer = &destroyARCStrongWithStore; |
| |
| // Otherwise use the default for the destruction kind. |
| } else { |
| destroyer = &CGF.getDestroyer(dtorKind); |
| } |
| |
| CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); |
| |
| CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, |
| cleanupKind & EHCleanup); |
| } |
| |
| assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); |
| } |
| |
| void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
| ObjCMethodDecl *MD, |
| bool ctor) { |
| MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); |
| StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart()); |
| |
| // Emit .cxx_construct. |
| if (ctor) { |
| // Suppress the final autorelease in ARC. |
| AutoreleaseResult = false; |
| |
| SmallVector<CXXCtorInitializer *, 8> IvarInitializers; |
| for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(), |
| E = IMP->init_end(); B != E; ++B) { |
| CXXCtorInitializer *IvarInit = (*B); |
| FieldDecl *Field = IvarInit->getAnyMember(); |
| ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); |
| LValue LV = EmitLValueForIvar(TypeOfSelfObject(), |
| LoadObjCSelf(), Ivar, 0); |
| EmitAggExpr(IvarInit->getInit(), |
| AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, |
| AggValueSlot::DoesNotNeedGCBarriers, |
| AggValueSlot::IsNotAliased)); |
| } |
| // constructor returns 'self'. |
| CodeGenTypes &Types = CGM.getTypes(); |
| QualType IdTy(CGM.getContext().getObjCIdType()); |
| llvm::Value *SelfAsId = |
| Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); |
| EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); |
| |
| // Emit .cxx_destruct. |
| } else { |
| emitCXXDestructMethod(*this, IMP); |
| } |
| FinishFunction(); |
| } |
| |
| bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) { |
| CGFunctionInfo::const_arg_iterator it = FI.arg_begin(); |
| it++; it++; |
| const ABIArgInfo &AI = it->info; |
| // FIXME. Is this sufficient check? |
| return (AI.getKind() == ABIArgInfo::Indirect); |
| } |
| |
| bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) { |
| if (CGM.getLangOptions().getGC() == LangOptions::NonGC) |
| return false; |
| if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>()) |
| return FDTTy->getDecl()->hasObjectMember(); |
| return false; |
| } |
| |
| llvm::Value *CodeGenFunction::LoadObjCSelf() { |
| const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); |
| return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self"); |
| } |
| |
| QualType CodeGenFunction::TypeOfSelfObject() { |
| const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); |
| ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); |
| const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( |
| getContext().getCanonicalType(selfDecl->getType())); |
| return PTy->getPointeeType(); |
| } |
| |
| void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ |
| llvm::Constant *EnumerationMutationFn = |
| CGM.getObjCRuntime().EnumerationMutationFunction(); |
| |
| if (!EnumerationMutationFn) { |
| CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); |
| return; |
| } |
| |
| CGDebugInfo *DI = getDebugInfo(); |
| if (DI) |
| DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); |
| |
| // The local variable comes into scope immediately. |
| AutoVarEmission variable = AutoVarEmission::invalid(); |
| if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) |
| variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); |
| |
| JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); |
| |
| // Fast enumeration state. |
| QualType StateTy = CGM.getObjCFastEnumerationStateType(); |
| llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr"); |
| EmitNullInitialization(StatePtr, StateTy); |
| |
| // Number of elements in the items array. |
| static const unsigned NumItems = 16; |
| |
| // Fetch the countByEnumeratingWithState:objects:count: selector. |
| IdentifierInfo *II[] = { |
| &CGM.getContext().Idents.get("countByEnumeratingWithState"), |
| &CGM.getContext().Idents.get("objects"), |
| &CGM.getContext().Idents.get("count") |
| }; |
| Selector FastEnumSel = |
| CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); |
| |
| QualType ItemsTy = |
| getContext().getConstantArrayType(getContext().getObjCIdType(), |
| llvm::APInt(32, NumItems), |
| ArrayType::Normal, 0); |
| llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); |
| |
| // Emit the collection pointer. In ARC, we do a retain. |
| llvm::Value *Collection; |
| if (getLangOptions().ObjCAutoRefCount) { |
| Collection = EmitARCRetainScalarExpr(S.getCollection()); |
| |
| // Enter a cleanup to do the release. |
| EmitObjCConsumeObject(S.getCollection()->getType(), Collection); |
| } else { |
| Collection = EmitScalarExpr(S.getCollection()); |
| } |
| |
| // The 'continue' label needs to appear within the cleanup for the |
| // collection object. |
| JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); |
| |
| // Send it our message: |
| CallArgList Args; |
| |
| // The first argument is a temporary of the enumeration-state type. |
| Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy)); |
| |
| // The second argument is a temporary array with space for NumItems |
| // pointers. We'll actually be loading elements from the array |
| // pointer written into the control state; this buffer is so that |
| // collections that *aren't* backed by arrays can still queue up |
| // batches of elements. |
| Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy)); |
| |
| // The third argument is the capacity of that temporary array. |
| llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); |
| llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); |
| Args.add(RValue::get(Count), getContext().UnsignedLongTy); |
| |
| // Start the enumeration. |
| RValue CountRV = |
| CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().UnsignedLongTy, |
| FastEnumSel, |
| Collection, Args); |
| |
| // The initial number of objects that were returned in the buffer. |
| llvm::Value *initialBufferLimit = CountRV.getScalarVal(); |
| |
| llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); |
| llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); |
| |
| llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); |
| |
| // If the limit pointer was zero to begin with, the collection is |
| // empty; skip all this. |
| Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), |
| EmptyBB, LoopInitBB); |
| |
| // Otherwise, initialize the loop. |
| EmitBlock(LoopInitBB); |
| |
| // Save the initial mutations value. This is the value at an |
| // address that was written into the state object by |
| // countByEnumeratingWithState:objects:count:. |
| llvm::Value *StateMutationsPtrPtr = |
| Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); |
| llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, |
| "mutationsptr"); |
| |
| llvm::Value *initialMutations = |
| Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations"); |
| |
| // Start looping. This is the point we return to whenever we have a |
| // fresh, non-empty batch of objects. |
| llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); |
| EmitBlock(LoopBodyBB); |
| |
| // The current index into the buffer. |
| llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); |
| index->addIncoming(zero, LoopInitBB); |
| |
| // The current buffer size. |
| llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); |
| count->addIncoming(initialBufferLimit, LoopInitBB); |
| |
| // Check whether the mutations value has changed from where it was |
| // at start. StateMutationsPtr should actually be invariant between |
| // refreshes. |
| StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); |
| llvm::Value *currentMutations |
| = Builder.CreateLoad(StateMutationsPtr, "statemutations"); |
| |
| llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); |
| llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); |
| |
| Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), |
| WasNotMutatedBB, WasMutatedBB); |
| |
| // If so, call the enumeration-mutation function. |
| EmitBlock(WasMutatedBB); |
| llvm::Value *V = |
| Builder.CreateBitCast(Collection, |
| ConvertType(getContext().getObjCIdType())); |
| CallArgList Args2; |
| Args2.add(RValue::get(V), getContext().getObjCIdType()); |
| // FIXME: We shouldn't need to get the function info here, the runtime already |
| // should have computed it to build the function. |
| EmitCall(CGM.getTypes().getFunctionInfo(getContext().VoidTy, Args2, |
| FunctionType::ExtInfo()), |
| EnumerationMutationFn, ReturnValueSlot(), Args2); |
| |
| // Otherwise, or if the mutation function returns, just continue. |
| EmitBlock(WasNotMutatedBB); |
| |
| // Initialize the element variable. |
| RunCleanupsScope elementVariableScope(*this); |
| bool elementIsVariable; |
| LValue elementLValue; |
| QualType elementType; |
| if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { |
| // Initialize the variable, in case it's a __block variable or something. |
| EmitAutoVarInit(variable); |
| |
| const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); |
| DeclRefExpr tempDRE(const_cast<VarDecl*>(D), D->getType(), |
| VK_LValue, SourceLocation()); |
| elementLValue = EmitLValue(&tempDRE); |
| elementType = D->getType(); |
| elementIsVariable = true; |
| |
| if (D->isARCPseudoStrong()) |
| elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); |
| } else { |
| elementLValue = LValue(); // suppress warning |
| elementType = cast<Expr>(S.getElement())->getType(); |
| elementIsVariable = false; |
| } |
| llvm::Type *convertedElementType = ConvertType(elementType); |
| |
| // Fetch the buffer out of the enumeration state. |
| // TODO: this pointer should actually be invariant between |
| // refreshes, which would help us do certain loop optimizations. |
| llvm::Value *StateItemsPtr = |
| Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); |
| llvm::Value *EnumStateItems = |
| Builder.CreateLoad(StateItemsPtr, "stateitems"); |
| |
| // Fetch the value at the current index from the buffer. |
| llvm::Value *CurrentItemPtr = |
| Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); |
| llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr); |
| |
| // Cast that value to the right type. |
| CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, |
| "currentitem"); |
| |
| // Make sure we have an l-value. Yes, this gets evaluated every |
| // time through the loop. |
| if (!elementIsVariable) { |
| elementLValue = EmitLValue(cast<Expr>(S.getElement())); |
| EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); |
| } else { |
| EmitScalarInit(CurrentItem, elementLValue); |
| } |
| |
| // If we do have an element variable, this assignment is the end of |
| // its initialization. |
| if (elementIsVariable) |
| EmitAutoVarCleanups(variable); |
| |
| // Perform the loop body, setting up break and continue labels. |
| BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); |
| { |
| RunCleanupsScope Scope(*this); |
| EmitStmt(S.getBody()); |
| } |
| BreakContinueStack.pop_back(); |
| |
| // Destroy the element variable now. |
| elementVariableScope.ForceCleanup(); |
| |
| // Check whether there are more elements. |
| EmitBlock(AfterBody.getBlock()); |
| |
| llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); |
| |
| // First we check in the local buffer. |
| llvm::Value *indexPlusOne |
| = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); |
| |
| // If we haven't overrun the buffer yet, we can continue. |
| Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count), |
| LoopBodyBB, FetchMoreBB); |
| |
| index->addIncoming(indexPlusOne, AfterBody.getBlock()); |
| count->addIncoming(count, AfterBody.getBlock()); |
| |
| // Otherwise, we have to fetch more elements. |
| EmitBlock(FetchMoreBB); |
| |
| CountRV = |
| CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().UnsignedLongTy, |
| FastEnumSel, |
| Collection, Args); |
| |
| // If we got a zero count, we're done. |
| llvm::Value *refetchCount = CountRV.getScalarVal(); |
| |
| // (note that the message send might split FetchMoreBB) |
| index->addIncoming(zero, Builder.GetInsertBlock()); |
| count->addIncoming(refetchCount, Builder.GetInsertBlock()); |
| |
| Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), |
| EmptyBB, LoopBodyBB); |
| |
| // No more elements. |
| EmitBlock(EmptyBB); |
| |
| if (!elementIsVariable) { |
| // If the element was not a declaration, set it to be null. |
| |
| llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); |
| elementLValue = EmitLValue(cast<Expr>(S.getElement())); |
| EmitStoreThroughLValue(RValue::get(null), elementLValue); |
| } |
| |
| if (DI) |
| DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); |
| |
| // Leave the cleanup we entered in ARC. |
| if (getLangOptions().ObjCAutoRefCount) |
| PopCleanupBlock(); |
| |
| EmitBlock(LoopEnd.getBlock()); |
| } |
| |
| void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { |
| CGM.getObjCRuntime().EmitTryStmt(*this, S); |
| } |
| |
| void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { |
| CGM.getObjCRuntime().EmitThrowStmt(*this, S); |
| } |
| |
| void CodeGenFunction::EmitObjCAtSynchronizedStmt( |
| const ObjCAtSynchronizedStmt &S) { |
| CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); |
| } |
| |
| /// Produce the code for a CK_ARCProduceObject. Just does a |
| /// primitive retain. |
| llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type, |
| llvm::Value *value) { |
| return EmitARCRetain(type, value); |
| } |
| |
| namespace { |
| struct CallObjCRelease : EHScopeStack::Cleanup { |
| CallObjCRelease(llvm::Value *object) : object(object) {} |
| llvm::Value *object; |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| CGF.EmitARCRelease(object, /*precise*/ true); |
| } |
| }; |
| } |
| |
| /// Produce the code for a CK_ARCConsumeObject. Does a primitive |
| /// release at the end of the full-expression. |
| llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, |
| llvm::Value *object) { |
| // If we're in a conditional branch, we need to make the cleanup |
| // conditional. |
| pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); |
| return object; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, |
| llvm::Value *value) { |
| return EmitARCRetainAutorelease(type, value); |
| } |
| |
| |
| static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, |
| llvm::FunctionType *type, |
| StringRef fnName) { |
| llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName); |
| |
| // In -fobjc-no-arc-runtime, emit weak references to the runtime |
| // support library. |
| if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC) |
| if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) |
| f->setLinkage(llvm::Function::ExternalWeakLinkage); |
| |
| return fn; |
| } |
| |
| /// Perform an operation having the signature |
| /// i8* (i8*) |
| /// where a null input causes a no-op and returns null. |
| static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, |
| llvm::Value *value, |
| llvm::Constant *&fn, |
| StringRef fnName) { |
| if (isa<llvm::ConstantPointerNull>(value)) return value; |
| |
| if (!fn) { |
| std::vector<llvm::Type*> args(1, CGF.Int8PtrTy); |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(CGF.Int8PtrTy, args, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| // Cast the argument to 'id'. |
| llvm::Type *origType = value->getType(); |
| value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); |
| |
| // Call the function. |
| llvm::CallInst *call = CGF.Builder.CreateCall(fn, value); |
| call->setDoesNotThrow(); |
| |
| // Cast the result back to the original type. |
| return CGF.Builder.CreateBitCast(call, origType); |
| } |
| |
| /// Perform an operation having the following signature: |
| /// i8* (i8**) |
| static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, |
| llvm::Value *addr, |
| llvm::Constant *&fn, |
| StringRef fnName) { |
| if (!fn) { |
| std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy); |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(CGF.Int8PtrTy, args, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| // Cast the argument to 'id*'. |
| llvm::Type *origType = addr->getType(); |
| addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); |
| |
| // Call the function. |
| llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr); |
| call->setDoesNotThrow(); |
| |
| // Cast the result back to a dereference of the original type. |
| llvm::Value *result = call; |
| if (origType != CGF.Int8PtrPtrTy) |
| result = CGF.Builder.CreateBitCast(result, |
| cast<llvm::PointerType>(origType)->getElementType()); |
| |
| return result; |
| } |
| |
| /// Perform an operation having the following signature: |
| /// i8* (i8**, i8*) |
| static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, |
| llvm::Value *addr, |
| llvm::Value *value, |
| llvm::Constant *&fn, |
| StringRef fnName, |
| bool ignored) { |
| assert(cast<llvm::PointerType>(addr->getType())->getElementType() |
| == value->getType()); |
| |
| if (!fn) { |
| llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; |
| |
| llvm::FunctionType *fnType |
| = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| llvm::Type *origType = value->getType(); |
| |
| addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); |
| value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); |
| |
| llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value); |
| result->setDoesNotThrow(); |
| |
| if (ignored) return 0; |
| |
| return CGF.Builder.CreateBitCast(result, origType); |
| } |
| |
| /// Perform an operation having the following signature: |
| /// void (i8**, i8**) |
| static void emitARCCopyOperation(CodeGenFunction &CGF, |
| llvm::Value *dst, |
| llvm::Value *src, |
| llvm::Constant *&fn, |
| StringRef fnName) { |
| assert(dst->getType() == src->getType()); |
| |
| if (!fn) { |
| std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy); |
| llvm::FunctionType *fnType |
| = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); |
| fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); |
| } |
| |
| dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy); |
| src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy); |
| |
| llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src); |
| result->setDoesNotThrow(); |
| } |
| |
| /// Produce the code to do a retain. Based on the type, calls one of: |
| /// call i8* @objc_retain(i8* %value) |
| /// call i8* @objc_retainBlock(i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { |
| if (type->isBlockPointerType()) |
| return EmitARCRetainBlock(value, /*mandatory*/ false); |
| else |
| return EmitARCRetainNonBlock(value); |
| } |
| |
| /// Retain the given object, with normal retain semantics. |
| /// call i8* @objc_retain(i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_retain, |
| "objc_retain"); |
| } |
| |
| /// Retain the given block, with _Block_copy semantics. |
| /// call i8* @objc_retainBlock(i8* %value) |
| /// |
| /// \param mandatory - If false, emit the call with metadata |
| /// indicating that it's okay for the optimizer to eliminate this call |
| /// if it can prove that the block never escapes except down the stack. |
| llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, |
| bool mandatory) { |
| llvm::Value *result |
| = emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_retainBlock, |
| "objc_retainBlock"); |
| |
| // If the copy isn't mandatory, add !clang.arc.copy_on_escape to |
| // tell the optimizer that it doesn't need to do this copy if the |
| // block doesn't escape, where being passed as an argument doesn't |
| // count as escaping. |
| if (!mandatory && isa<llvm::Instruction>(result)) { |
| llvm::CallInst *call |
| = cast<llvm::CallInst>(result->stripPointerCasts()); |
| assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock); |
| |
| SmallVector<llvm::Value*,1> args; |
| call->setMetadata("clang.arc.copy_on_escape", |
| llvm::MDNode::get(Builder.getContext(), args)); |
| } |
| |
| return result; |
| } |
| |
| /// Retain the given object which is the result of a function call. |
| /// call i8* @objc_retainAutoreleasedReturnValue(i8* %value) |
| /// |
| /// Yes, this function name is one character away from a different |
| /// call with completely different semantics. |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { |
| // Fetch the void(void) inline asm which marks that we're going to |
| // retain the autoreleased return value. |
| llvm::InlineAsm *&marker |
| = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker; |
| if (!marker) { |
| StringRef assembly |
| = CGM.getTargetCodeGenInfo() |
| .getARCRetainAutoreleasedReturnValueMarker(); |
| |
| // If we have an empty assembly string, there's nothing to do. |
| if (assembly.empty()) { |
| |
| // Otherwise, at -O0, build an inline asm that we're going to call |
| // in a moment. |
| } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| llvm::FunctionType *type = |
| llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), |
| /*variadic*/ false); |
| |
| marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); |
| |
| // If we're at -O1 and above, we don't want to litter the code |
| // with this marker yet, so leave a breadcrumb for the ARC |
| // optimizer to pick up. |
| } else { |
| llvm::NamedMDNode *metadata = |
| CGM.getModule().getOrInsertNamedMetadata( |
| "clang.arc.retainAutoreleasedReturnValueMarker"); |
| assert(metadata->getNumOperands() <= 1); |
| if (metadata->getNumOperands() == 0) { |
| llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly); |
| metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string)); |
| } |
| } |
| } |
| |
| // Call the marker asm if we made one, which we do only at -O0. |
| if (marker) Builder.CreateCall(marker); |
| |
| return emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue, |
| "objc_retainAutoreleasedReturnValue"); |
| } |
| |
| /// Release the given object. |
| /// call void @objc_release(i8* %value) |
| void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) { |
| if (isa<llvm::ConstantPointerNull>(value)) return; |
| |
| llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release; |
| if (!fn) { |
| std::vector<llvm::Type*> args(1, Int8PtrTy); |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Builder.getVoidTy(), args, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); |
| } |
| |
| // Cast the argument to 'id'. |
| value = Builder.CreateBitCast(value, Int8PtrTy); |
| |
| // Call objc_release. |
| llvm::CallInst *call = Builder.CreateCall(fn, value); |
| call->setDoesNotThrow(); |
| |
| if (!precise) { |
| SmallVector<llvm::Value*,1> args; |
| call->setMetadata("clang.imprecise_release", |
| llvm::MDNode::get(Builder.getContext(), args)); |
| } |
| } |
| |
| /// Store into a strong object. Always calls this: |
| /// call void @objc_storeStrong(i8** %addr, i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr, |
| llvm::Value *value, |
| bool ignored) { |
| assert(cast<llvm::PointerType>(addr->getType())->getElementType() |
| == value->getType()); |
| |
| llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong; |
| if (!fn) { |
| llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; |
| llvm::FunctionType *fnType |
| = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); |
| } |
| |
| addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); |
| llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy); |
| |
| Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow(); |
| |
| if (ignored) return 0; |
| return value; |
| } |
| |
| /// Store into a strong object. Sometimes calls this: |
| /// call void @objc_storeStrong(i8** %addr, i8* %value) |
| /// Other times, breaks it down into components. |
| llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, |
| llvm::Value *newValue, |
| bool ignored) { |
| QualType type = dst.getType(); |
| bool isBlock = type->isBlockPointerType(); |
| |
| // Use a store barrier at -O0 unless this is a block type or the |
| // lvalue is inadequately aligned. |
| if (shouldUseFusedARCCalls() && |
| !isBlock && |
| (dst.getAlignment().isZero() || |
| dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { |
| return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); |
| } |
| |
| // Otherwise, split it out. |
| |
| // Retain the new value. |
| newValue = EmitARCRetain(type, newValue); |
| |
| // Read the old value. |
| llvm::Value *oldValue = EmitLoadOfScalar(dst); |
| |
| // Store. We do this before the release so that any deallocs won't |
| // see the old value. |
| EmitStoreOfScalar(newValue, dst); |
| |
| // Finally, release the old value. |
| EmitARCRelease(oldValue, /*precise*/ false); |
| |
| return newValue; |
| } |
| |
| /// Autorelease the given object. |
| /// call i8* @objc_autorelease(i8* %value) |
| llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_autorelease, |
| "objc_autorelease"); |
| } |
| |
| /// Autorelease the given object. |
| /// call i8* @objc_autoreleaseReturnValue(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_autoreleaseReturnValue, |
| "objc_autoreleaseReturnValue"); |
| } |
| |
| /// Do a fused retain/autorelease of the given object. |
| /// call i8* @objc_retainAutoreleaseReturnValue(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue, |
| "objc_retainAutoreleaseReturnValue"); |
| } |
| |
| /// Do a fused retain/autorelease of the given object. |
| /// call i8* @objc_retainAutorelease(i8* %value) |
| /// or |
| /// %retain = call i8* @objc_retainBlock(i8* %value) |
| /// call i8* @objc_autorelease(i8* %retain) |
| llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, |
| llvm::Value *value) { |
| if (!type->isBlockPointerType()) |
| return EmitARCRetainAutoreleaseNonBlock(value); |
| |
| if (isa<llvm::ConstantPointerNull>(value)) return value; |
| |
| llvm::Type *origType = value->getType(); |
| value = Builder.CreateBitCast(value, Int8PtrTy); |
| value = EmitARCRetainBlock(value, /*mandatory*/ true); |
| value = EmitARCAutorelease(value); |
| return Builder.CreateBitCast(value, origType); |
| } |
| |
| /// Do a fused retain/autorelease of the given object. |
| /// call i8* @objc_retainAutorelease(i8* %value) |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { |
| return emitARCValueOperation(*this, value, |
| CGM.getARCEntrypoints().objc_retainAutorelease, |
| "objc_retainAutorelease"); |
| } |
| |
| /// i8* @objc_loadWeak(i8** %addr) |
| /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). |
| llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) { |
| return emitARCLoadOperation(*this, addr, |
| CGM.getARCEntrypoints().objc_loadWeak, |
| "objc_loadWeak"); |
| } |
| |
| /// i8* @objc_loadWeakRetained(i8** %addr) |
| llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) { |
| return emitARCLoadOperation(*this, addr, |
| CGM.getARCEntrypoints().objc_loadWeakRetained, |
| "objc_loadWeakRetained"); |
| } |
| |
| /// i8* @objc_storeWeak(i8** %addr, i8* %value) |
| /// Returns %value. |
| llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr, |
| llvm::Value *value, |
| bool ignored) { |
| return emitARCStoreOperation(*this, addr, value, |
| CGM.getARCEntrypoints().objc_storeWeak, |
| "objc_storeWeak", ignored); |
| } |
| |
| /// i8* @objc_initWeak(i8** %addr, i8* %value) |
| /// Returns %value. %addr is known to not have a current weak entry. |
| /// Essentially equivalent to: |
| /// *addr = nil; objc_storeWeak(addr, value); |
| void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) { |
| // If we're initializing to null, just write null to memory; no need |
| // to get the runtime involved. But don't do this if optimization |
| // is enabled, because accounting for this would make the optimizer |
| // much more complicated. |
| if (isa<llvm::ConstantPointerNull>(value) && |
| CGM.getCodeGenOpts().OptimizationLevel == 0) { |
| Builder.CreateStore(value, addr); |
| return; |
| } |
| |
| emitARCStoreOperation(*this, addr, value, |
| CGM.getARCEntrypoints().objc_initWeak, |
| "objc_initWeak", /*ignored*/ true); |
| } |
| |
| /// void @objc_destroyWeak(i8** %addr) |
| /// Essentially objc_storeWeak(addr, nil). |
| void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) { |
| llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak; |
| if (!fn) { |
| std::vector<llvm::Type*> args(1, Int8PtrPtrTy); |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Builder.getVoidTy(), args, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); |
| } |
| |
| // Cast the argument to 'id*'. |
| addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); |
| |
| llvm::CallInst *call = Builder.CreateCall(fn, addr); |
| call->setDoesNotThrow(); |
| } |
| |
| /// void @objc_moveWeak(i8** %dest, i8** %src) |
| /// Disregards the current value in %dest. Leaves %src pointing to nothing. |
| /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). |
| void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) { |
| emitARCCopyOperation(*this, dst, src, |
| CGM.getARCEntrypoints().objc_moveWeak, |
| "objc_moveWeak"); |
| } |
| |
| /// void @objc_copyWeak(i8** %dest, i8** %src) |
| /// Disregards the current value in %dest. Essentially |
| /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) |
| void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) { |
| emitARCCopyOperation(*this, dst, src, |
| CGM.getARCEntrypoints().objc_copyWeak, |
| "objc_copyWeak"); |
| } |
| |
| /// Produce the code to do a objc_autoreleasepool_push. |
| /// call i8* @objc_autoreleasePoolPush(void) |
| llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { |
| llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush; |
| if (!fn) { |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Int8PtrTy, false); |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); |
| } |
| |
| llvm::CallInst *call = Builder.CreateCall(fn); |
| call->setDoesNotThrow(); |
| |
| return call; |
| } |
| |
| /// Produce the code to do a primitive release. |
| /// call void @objc_autoreleasePoolPop(i8* %ptr) |
| void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { |
| assert(value->getType() == Int8PtrTy); |
| |
| llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop; |
| if (!fn) { |
| std::vector<llvm::Type*> args(1, Int8PtrTy); |
| llvm::FunctionType *fnType = |
| llvm::FunctionType::get(Builder.getVoidTy(), args, false); |
| |
| // We don't want to use a weak import here; instead we should not |
| // fall into this path. |
| fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); |
| } |
| |
| llvm::CallInst *call = Builder.CreateCall(fn, value); |
| call->setDoesNotThrow(); |
| } |
| |
| /// Produce the code to do an MRR version objc_autoreleasepool_push. |
| /// Which is: [[NSAutoreleasePool alloc] init]; |
| /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. |
| /// init is declared as: - (id) init; in its NSObject super class. |
| /// |
| llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { |
| CGObjCRuntime &Runtime = CGM.getObjCRuntime(); |
| llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder); |
| // [NSAutoreleasePool alloc] |
| IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); |
| Selector AllocSel = getContext().Selectors.getSelector(0, &II); |
| CallArgList Args; |
| RValue AllocRV = |
| Runtime.GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().getObjCIdType(), |
| AllocSel, Receiver, Args); |
| |
| // [Receiver init] |
| Receiver = AllocRV.getScalarVal(); |
| II = &CGM.getContext().Idents.get("init"); |
| Selector InitSel = getContext().Selectors.getSelector(0, &II); |
| RValue InitRV = |
| Runtime.GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().getObjCIdType(), |
| InitSel, Receiver, Args); |
| return InitRV.getScalarVal(); |
| } |
| |
| /// Produce the code to do a primitive release. |
| /// [tmp drain]; |
| void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { |
| IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); |
| Selector DrainSel = getContext().Selectors.getSelector(0, &II); |
| CallArgList Args; |
| CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), |
| getContext().VoidTy, DrainSel, Arg, Args); |
| } |
| |
| void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, |
| llvm::Value *addr, |
| QualType type) { |
| llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); |
| CGF.EmitARCRelease(ptr, /*precise*/ true); |
| } |
| |
| void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, |
| llvm::Value *addr, |
| QualType type) { |
| llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy"); |
| CGF.EmitARCRelease(ptr, /*precise*/ false); |
| } |
| |
| void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, |
| llvm::Value *addr, |
| QualType type) { |
| CGF.EmitARCDestroyWeak(addr); |
| } |
| |
| namespace { |
| struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup { |
| llvm::Value *Token; |
| |
| CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| CGF.EmitObjCAutoreleasePoolPop(Token); |
| } |
| }; |
| struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup { |
| llvm::Value *Token; |
| |
| CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} |
| |
| void Emit(CodeGenFunction &CGF, Flags flags) { |
| CGF.EmitObjCMRRAutoreleasePoolPop(Token); |
| } |
| }; |
| } |
| |
| void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { |
| if (CGM.getLangOptions().ObjCAutoRefCount) |
| EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); |
| else |
| EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); |
| } |
| |
| static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| LValue lvalue, |
| QualType type) { |
| switch (type.getObjCLifetime()) { |
| case Qualifiers::OCL_None: |
| case Qualifiers::OCL_ExplicitNone: |
| case Qualifiers::OCL_Strong: |
| case Qualifiers::OCL_Autoreleasing: |
| return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(), |
| false); |
| |
| case Qualifiers::OCL_Weak: |
| return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), |
| true); |
| } |
| |
| llvm_unreachable("impossible lifetime!"); |
| return TryEmitResult(); |
| } |
| |
| static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| const Expr *e) { |
| e = e->IgnoreParens(); |
| QualType type = e->getType(); |
| |
| // If we're loading retained from a __strong xvalue, we can avoid |
| // an extra retain/release pair by zeroing out the source of this |
| // "move" operation. |
| if (e->isXValue() && |
| !type.isConstQualified() && |
| type.getObjCLifetime() == Qualifiers::OCL_Strong) { |
| // Emit the lvalue. |
| LValue lv = CGF.EmitLValue(e); |
| |
| // Load the object pointer. |
| llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal(); |
| |
| // Set the source pointer to NULL. |
| CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); |
| |
| return TryEmitResult(result, true); |
| } |
| |
| // As a very special optimization, in ARC++, if the l-value is the |
| // result of a non-volatile assignment, do a simple retain of the |
| // result of the call to objc_storeWeak instead of reloading. |
| if (CGF.getLangOptions().CPlusPlus && |
| !type.isVolatileQualified() && |
| type.getObjCLifetime() == Qualifiers::OCL_Weak && |
| isa<BinaryOperator>(e) && |
| cast<BinaryOperator>(e)->getOpcode() == BO_Assign) |
| return TryEmitResult(CGF.EmitScalarExpr(e), false); |
| |
| return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); |
| } |
| |
| static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, |
| llvm::Value *value); |
| |
| /// Given that the given expression is some sort of call (which does |
| /// not return retained), emit a retain following it. |
| static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) { |
| llvm::Value *value = CGF.EmitScalarExpr(e); |
| return emitARCRetainAfterCall(CGF, value); |
| } |
| |
| static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF, |
| llvm::Value *value) { |
| if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { |
| CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); |
| |
| // Place the retain immediately following the call. |
| CGF.Builder.SetInsertPoint(call->getParent(), |
| ++llvm::BasicBlock::iterator(call)); |
| value = CGF.EmitARCRetainAutoreleasedReturnValue(value); |
| |
| CGF.Builder.restoreIP(ip); |
| return value; |
| } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { |
| CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); |
| |
| // Place the retain at the beginning of the normal destination block. |
| llvm::BasicBlock *BB = invoke->getNormalDest(); |
| CGF.Builder.SetInsertPoint(BB, BB->begin()); |
| value = CGF.EmitARCRetainAutoreleasedReturnValue(value); |
| |
| CGF.Builder.restoreIP(ip); |
| return value; |
| |
| // Bitcasts can arise because of related-result returns. Rewrite |
| // the operand. |
| } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { |
| llvm::Value *operand = bitcast->getOperand(0); |
| operand = emitARCRetainAfterCall(CGF, operand); |
| bitcast->setOperand(0, operand); |
| return bitcast; |
| |
| // Generic fall-back case. |
| } else { |
| // Retain using the non-block variant: we never need to do a copy |
| // of a block that's been returned to us. |
| return CGF.EmitARCRetainNonBlock(value); |
| } |
| } |
| |
| /// Determine whether it might be important to emit a separate |
| /// objc_retain_block on the result of the given expression, or |
| /// whether it's okay to just emit it in a +1 context. |
| static bool shouldEmitSeparateBlockRetain(const Expr *e) { |
| assert(e->getType()->isBlockPointerType()); |
| e = e->IgnoreParens(); |
| |
| // For future goodness, emit block expressions directly in +1 |
| // contexts if we can. |
| if (isa<BlockExpr>(e)) |
| return false; |
| |
| if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { |
| switch (cast->getCastKind()) { |
| // Emitting these operations in +1 contexts is goodness. |
| case CK_LValueToRValue: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCProduceObject: |
| return false; |
| |
| // These operations preserve a block type. |
| case CK_NoOp: |
| case CK_BitCast: |
| return shouldEmitSeparateBlockRetain(cast->getSubExpr()); |
| |
| // These operations are known to be bad (or haven't been considered). |
| case CK_AnyPointerToBlockPointerCast: |
| default: |
| return true; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// Try to emit a PseudoObjectExpr at +1. |
| /// |
| /// This massively duplicates emitPseudoObjectRValue. |
| static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF, |
| const PseudoObjectExpr *E) { |
| llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; |
| |
| // Find the result expression. |
| const Expr *resultExpr = E->getResultExpr(); |
| assert(resultExpr); |
| TryEmitResult result; |
| |
| for (PseudoObjectExpr::const_semantics_iterator |
| i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { |
| const Expr *semantic = *i; |
| |
| // If this semantic expression is an opaque value, bind it |
| // to the result of its source expression. |
| if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { |
| typedef CodeGenFunction::OpaqueValueMappingData OVMA; |
| OVMA opaqueData; |
| |
| // If this semantic is the result of the pseudo-object |
| // expression, try to evaluate the source as +1. |
| if (ov == resultExpr) { |
| assert(!OVMA::shouldBindAsLValue(ov)); |
| result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr()); |
| opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer())); |
| |
| // Otherwise, just bind it. |
| } else { |
| opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); |
| } |
| opaques.push_back(opaqueData); |
| |
| // Otherwise, if the expression is the result, evaluate it |
| // and remember the result. |
| } else if (semantic == resultExpr) { |
| result = tryEmitARCRetainScalarExpr(CGF, semantic); |
| |
| // Otherwise, evaluate the expression in an ignored context. |
| } else { |
| CGF.EmitIgnoredExpr(semantic); |
| } |
| } |
| |
| // Unbind all the opaques now. |
| for (unsigned i = 0, e = opaques.size(); i != e; ++i) |
| opaques[i].unbind(CGF); |
| |
| return result; |
| } |
| |
| static TryEmitResult |
| tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { |
| // Look through cleanups. |
| if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { |
| CGF.enterFullExpression(cleanups); |
| CodeGenFunction::RunCleanupsScope scope(CGF); |
| return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr()); |
| } |
| |
| // The desired result type, if it differs from the type of the |
| // ultimate opaque expression. |
| llvm::Type *resultType = 0; |
| |
| while (true) { |
| e = e->IgnoreParens(); |
| |
| // There's a break at the end of this if-chain; anything |
| // that wants to keep looping has to explicitly continue. |
| if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { |
| switch (ce->getCastKind()) { |
| // No-op casts don't change the type, so we just ignore them. |
| case CK_NoOp: |
| e = ce->getSubExpr(); |
| continue; |
| |
| case CK_LValueToRValue: { |
| TryEmitResult loadResult |
| = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr()); |
| if (resultType) { |
| llvm::Value *value = loadResult.getPointer(); |
| value = CGF.Builder.CreateBitCast(value, resultType); |
| loadResult.setPointer(value); |
| } |
| return loadResult; |
| } |
| |
| // These casts can change the type, so remember that and |
| // soldier on. We only need to remember the outermost such |
| // cast, though. |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_BitCast: |
| if (!resultType) |
| resultType = CGF.ConvertType(ce->getType()); |
| e = ce->getSubExpr(); |
| assert(e->getType()->hasPointerRepresentation()); |
| continue; |
| |
| // For consumptions, just emit the subexpression and thus elide |
| // the retain/release pair. |
| case CK_ARCConsumeObject: { |
| llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr()); |
| if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); |
| return TryEmitResult(result, true); |
| } |
| |
| // Block extends are net +0. Naively, we could just recurse on |
| // the subexpression, but actually we need to ensure that the |
| // value is copied as a block, so there's a little filter here. |
| case CK_ARCExtendBlockObject: { |
| llvm::Value *result; // will be a +0 value |
| |
| // If we can't safely assume the sub-expression will produce a |
| // block-copied value, emit the sub-expression at +0. |
| if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) { |
| result = CGF.EmitScalarExpr(ce->getSubExpr()); |
| |
| // Otherwise, try to emit the sub-expression at +1 recursively. |
| } else { |
| TryEmitResult subresult |
| = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr()); |
| result = subresult.getPointer(); |
| |
| // If that produced a retained value, just use that, |
| // possibly casting down. |
| if (subresult.getInt()) { |
| if (resultType) |
| result = CGF.Builder.CreateBitCast(result, resultType); |
| return TryEmitResult(result, true); |
| } |
| |
| // Otherwise it's +0. |
| } |
| |
| // Retain the object as a block, then cast down. |
| result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); |
| if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); |
| return TryEmitResult(result, true); |
| } |
| |
| // For reclaims, emit the subexpression as a retained call and |
| // skip the consumption. |
| case CK_ARCReclaimReturnedObject: { |
| llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr()); |
| if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); |
| return TryEmitResult(result, true); |
| } |
| |
| default: |
| break; |
| } |
| |
| // Skip __extension__. |
| } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { |
| if (op->getOpcode() == UO_Extension) { |
| e = op->getSubExpr(); |
| continue; |
| } |
| |
| // For calls and message sends, use the retained-call logic. |
| // Delegate inits are a special case in that they're the only |
| // returns-retained expression that *isn't* surrounded by |
| // a consume. |
| } else if (isa<CallExpr>(e) || |
| (isa<ObjCMessageExpr>(e) && |
| !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { |
| llvm::Value *result = emitARCRetainCall(CGF, e); |
| if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); |
| return TryEmitResult(result, true); |
| |
| // Look through pseudo-object expressions. |
| } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { |
| TryEmitResult result |
| = tryEmitARCRetainPseudoObject(CGF, pseudo); |
| if (resultType) { |
| llvm::Value *value = result.getPointer(); |
| value = CGF.Builder.CreateBitCast(value, resultType); |
| result.setPointer(value); |
| } |
| return result; |
| } |
| |
| // Conservatively halt the search at any other expression kind. |
| break; |
| } |
| |
| // We didn't find an obvious production, so emit what we've got and |
| // tell the caller that we didn't manage to retain. |
| llvm::Value *result = CGF.EmitScalarExpr(e); |
| if (resultType) result = CGF.Builder.CreateBitCast(result, resultType); |
| return TryEmitResult(result, false); |
| } |
| |
| static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, |
| LValue lvalue, |
| QualType type) { |
| TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); |
| llvm::Value *value = result.getPointer(); |
| if (!result.getInt()) |
| value = CGF.EmitARCRetain(type, value); |
| return value; |
| } |
| |
| /// EmitARCRetainScalarExpr - Semantically equivalent to |
| /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a |
| /// best-effort attempt to peephole expressions that naturally produce |
| /// retained objects. |
| llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { |
| TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); |
| llvm::Value *value = result.getPointer(); |
| if (!result.getInt()) |
| value = EmitARCRetain(e->getType(), value); |
| return value; |
| } |
| |
| llvm::Value * |
| CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { |
| TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); |
| llvm::Value *value = result.getPointer(); |
| if (result.getInt()) |
| value = EmitARCAutorelease(value); |
| else |
| value = EmitARCRetainAutorelease(e->getType(), value); |
| return value; |
| } |
| |
| llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { |
| llvm::Value *result; |
| bool doRetain; |
| |
| if (shouldEmitSeparateBlockRetain(e)) { |
| result = EmitScalarExpr(e); |
| doRetain = true; |
| } else { |
| TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); |
| result = subresult.getPointer(); |
| doRetain = !subresult.getInt(); |
| } |
| |
| if (doRetain) |
| result = EmitARCRetainBlock(result, /*mandatory*/ true); |
| return EmitObjCConsumeObject(e->getType(), result); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { |
| // In ARC, retain and autorelease the expression. |
| if (getLangOptions().ObjCAutoRefCount) { |
| // Do so before running any cleanups for the full-expression. |
| // tryEmitARCRetainScalarExpr does make an effort to do things |
| // inside cleanups, but there are crazy cases like |
| // @throw A().foo; |
| // where a full retain+autorelease is required and would |
| // otherwise happen after the destructor for the temporary. |
| if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) { |
| enterFullExpression(ewc); |
| expr = ewc->getSubExpr(); |
| } |
| |
| CodeGenFunction::RunCleanupsScope cleanups(*this); |
| return EmitARCRetainAutoreleaseScalarExpr(expr); |
| } |
| |
| // Otherwise, use the normal scalar-expression emission. The |
| // exception machinery doesn't do anything special with the |
| // exception like retaining it, so there's no safety associated with |
| // only running cleanups after the throw has started, and when it |
| // matters it tends to be substantially inferior code. |
| return EmitScalarExpr(expr); |
| } |
| |
| std::pair<LValue,llvm::Value*> |
| CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, |
| bool ignored) { |
| // Evaluate the RHS first. |
| TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); |
| llvm::Value *value = result.getPointer(); |
| |
| bool hasImmediateRetain = result.getInt(); |
| |
| // If we didn't emit a retained object, and the l-value is of block |
| // type, then we need to emit the block-retain immediately in case |
| // it invalidates the l-value. |
| if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { |
| value = EmitARCRetainBlock(value, /*mandatory*/ false); |
| hasImmediateRetain = true; |
| } |
| |
| LValue lvalue = EmitLValue(e->getLHS()); |
| |
| // If the RHS was emitted retained, expand this. |
| if (hasImmediateRetain) { |
| llvm::Value *oldValue = |
| EmitLoadOfScalar(lvalue); |
| EmitStoreOfScalar(value, lvalue); |
| EmitARCRelease(oldValue, /*precise*/ false); |
| } else { |
| value = EmitARCStoreStrong(lvalue, value, ignored); |
| } |
| |
| return std::pair<LValue,llvm::Value*>(lvalue, value); |
| } |
| |
| std::pair<LValue,llvm::Value*> |
| CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { |
| llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); |
| LValue lvalue = EmitLValue(e->getLHS()); |
| |
| EmitStoreOfScalar(value, lvalue); |
| |
| return std::pair<LValue,llvm::Value*>(lvalue, value); |
| } |
| |
| void CodeGenFunction::EmitObjCAutoreleasePoolStmt( |
| const ObjCAutoreleasePoolStmt &ARPS) { |
| const Stmt *subStmt = ARPS.getSubStmt(); |
| const CompoundStmt &S = cast<CompoundStmt>(*subStmt); |
| |
| CGDebugInfo *DI = getDebugInfo(); |
| if (DI) |
| DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); |
| |
| // Keep track of the current cleanup stack depth. |
| RunCleanupsScope Scope(*this); |
| if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) { |
| llvm::Value *token = EmitObjCAutoreleasePoolPush(); |
| EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); |
| } else { |
| llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); |
| EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); |
| } |
| |
| for (CompoundStmt::const_body_iterator I = S.body_begin(), |
| E = S.body_end(); I != E; ++I) |
| EmitStmt(*I); |
| |
| if (DI) |
| DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); |
| } |
| |
| /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
| /// make sure it survives garbage collection until this point. |
| void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { |
| // We just use an inline assembly. |
| llvm::FunctionType *extenderType |
| = llvm::FunctionType::get(VoidTy, VoidPtrTy, /*variadic*/ false); |
| llvm::Value *extender |
| = llvm::InlineAsm::get(extenderType, |
| /* assembly */ "", |
| /* constraints */ "r", |
| /* side effects */ true); |
| |
| object = Builder.CreateBitCast(object, VoidPtrTy); |
| Builder.CreateCall(extender, object)->setDoesNotThrow(); |
| } |
| |
| CGObjCRuntime::~CGObjCRuntime() {} |