| //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a basic region store model. In this model, we do have field |
| // sensitivity. But we assume nothing about the heap shape. So recursive data |
| // structures are largely ignored. Basically we do 1-limiting analysis. |
| // Parameter pointers are assumed with no aliasing. Pointee objects of |
| // parameters are created lazily. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/Analysis/PathSensitive/MemRegion.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| #include "clang/Analysis/PathSensitive/GRStateTrait.h" |
| #include "clang/Analysis/Analyses/LiveVariables.h" |
| |
| #include "llvm/ADT/ImmutableMap.h" |
| #include "llvm/ADT/ImmutableList.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Compiler.h" |
| |
| using namespace clang; |
| |
| // Actual Store type. |
| typedef llvm::ImmutableMap<const MemRegion*, SVal> RegionBindingsTy; |
| |
| //===----------------------------------------------------------------------===// |
| // Region "Views" |
| //===----------------------------------------------------------------------===// |
| // |
| // MemRegions can be layered on top of each other. This GDM entry tracks |
| // what are the MemRegions that layer a given MemRegion. |
| // |
| typedef llvm::ImmutableSet<const MemRegion*> RegionViews; |
| namespace { class VISIBILITY_HIDDEN RegionViewMap {}; } |
| static int RegionViewMapIndex = 0; |
| namespace clang { |
| template<> struct GRStateTrait<RegionViewMap> |
| : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, |
| RegionViews> > { |
| |
| static void* GDMIndex() { return &RegionViewMapIndex; } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Region "Extents" |
| //===----------------------------------------------------------------------===// |
| // |
| // MemRegions represent chunks of memory with a size (their "extent"). This |
| // GDM entry tracks the extents for regions. Extents are in bytes. |
| // |
| namespace { class VISIBILITY_HIDDEN RegionExtents {}; } |
| static int RegionExtentsIndex = 0; |
| namespace clang { |
| template<> struct GRStateTrait<RegionExtents> |
| : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > { |
| static void* GDMIndex() { return &RegionExtentsIndex; } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Region "killsets". |
| //===----------------------------------------------------------------------===// |
| // |
| // RegionStore lazily adds value bindings to regions when the analyzer handles |
| // assignment statements. Killsets track which default values have been |
| // killed, thus distinguishing between "unknown" values and default |
| // values. Regions are added to killset only when they are assigned "unknown" |
| // directly, otherwise we should have their value in the region bindings. |
| // |
| namespace { class VISIBILITY_HIDDEN RegionKills {}; } |
| static int RegionKillsIndex = 0; |
| namespace clang { |
| template<> struct GRStateTrait<RegionKills> |
| : public GRStatePartialTrait< llvm::ImmutableSet<const MemRegion*> > { |
| static void* GDMIndex() { return &RegionKillsIndex; } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Regions with default values. |
| //===----------------------------------------------------------------------===// |
| // |
| // This GDM entry tracks what regions have a default value if they have no bound |
| // value and have not been killed. |
| // |
| namespace { class VISIBILITY_HIDDEN RegionDefaultValue {}; } |
| static int RegionDefaultValueIndex = 0; |
| namespace clang { |
| template<> struct GRStateTrait<RegionDefaultValue> |
| : public GRStatePartialTrait<llvm::ImmutableMap<const MemRegion*, SVal> > { |
| static void* GDMIndex() { return &RegionDefaultValueIndex; } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main RegionStore logic. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class VISIBILITY_HIDDEN RegionStoreSubRegionMap : public SubRegionMap { |
| typedef llvm::DenseMap<const MemRegion*, |
| llvm::ImmutableSet<const MemRegion*> > Map; |
| |
| llvm::ImmutableSet<const MemRegion*>::Factory F; |
| Map M; |
| |
| public: |
| void add(const MemRegion* Parent, const MemRegion* SubRegion) { |
| Map::iterator I = M.find(Parent); |
| M.insert(std::make_pair(Parent, |
| F.Add(I == M.end() ? F.GetEmptySet() : I->second, SubRegion))); |
| } |
| |
| ~RegionStoreSubRegionMap() {} |
| |
| bool iterSubRegions(const MemRegion* Parent, Visitor& V) const { |
| Map::iterator I = M.find(Parent); |
| |
| if (I == M.end()) |
| return true; |
| |
| llvm::ImmutableSet<const MemRegion*> S = I->second; |
| for (llvm::ImmutableSet<const MemRegion*>::iterator SI=S.begin(),SE=S.end(); |
| SI != SE; ++SI) { |
| if (!V.Visit(Parent, *SI)) |
| return false; |
| } |
| |
| return true; |
| } |
| }; |
| |
| class VISIBILITY_HIDDEN RegionStoreManager : public StoreManager { |
| RegionBindingsTy::Factory RBFactory; |
| RegionViews::Factory RVFactory; |
| |
| GRStateManager& StateMgr; |
| const MemRegion* SelfRegion; |
| const ImplicitParamDecl *SelfDecl; |
| |
| public: |
| RegionStoreManager(GRStateManager& mgr) |
| : StoreManager(mgr.getAllocator()), |
| RBFactory(mgr.getAllocator()), |
| RVFactory(mgr.getAllocator()), |
| StateMgr(mgr), SelfRegion(0), SelfDecl(0) { |
| if (const ObjCMethodDecl* MD = |
| dyn_cast<ObjCMethodDecl>(&StateMgr.getCodeDecl())) |
| SelfDecl = MD->getSelfDecl(); |
| } |
| |
| virtual ~RegionStoreManager() {} |
| |
| MemRegionManager& getRegionManager() { return MRMgr; } |
| |
| SubRegionMap* getSubRegionMap(const GRState *state); |
| |
| const GRState* BindCompoundLiteral(const GRState* St, |
| const CompoundLiteralExpr* CL, SVal V); |
| |
| /// getLValueString - Returns an SVal representing the lvalue of a |
| /// StringLiteral. Within RegionStore a StringLiteral has an |
| /// associated StringRegion, and the lvalue of a StringLiteral is |
| /// the lvalue of that region. |
| SVal getLValueString(const GRState* St, const StringLiteral* S); |
| |
| /// getLValueCompoundLiteral - Returns an SVal representing the |
| /// lvalue of a compound literal. Within RegionStore a compound |
| /// literal has an associated region, and the lvalue of the |
| /// compound literal is the lvalue of that region. |
| SVal getLValueCompoundLiteral(const GRState* St, const CompoundLiteralExpr*); |
| |
| /// getLValueVar - Returns an SVal that represents the lvalue of a |
| /// variable. Within RegionStore a variable has an associated |
| /// VarRegion, and the lvalue of the variable is the lvalue of that region. |
| SVal getLValueVar(const GRState* St, const VarDecl* VD); |
| |
| SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base); |
| |
| SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D); |
| |
| SVal getLValueFieldOrIvar(const GRState* St, SVal Base, const Decl* D); |
| |
| SVal getLValueElement(const GRState* St, SVal Base, SVal Offset); |
| |
| SVal getSizeInElements(const GRState* St, const MemRegion* R); |
| |
| /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
| /// type. 'Array' represents the lvalue of the array being decayed |
| /// to a pointer, and the returned SVal represents the decayed |
| /// version of that lvalue (i.e., a pointer to the first element of |
| /// the array). This is called by GRExprEngine when evaluating |
| /// casts from arrays to pointers. |
| SVal ArrayToPointer(SVal Array); |
| |
| /// CastRegion - Used by GRExprEngine::VisitCast to handle casts from |
| /// a MemRegion* to a specific location type. 'R' is the region being |
| /// casted and 'CastToTy' the result type of the cast. |
| CastResult CastRegion(const GRState* state, const MemRegion* R, |
| QualType CastToTy); |
| |
| SVal EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R); |
| |
| /// The high level logic for this method is this: |
| /// Retrieve (L) |
| /// if L has binding |
| /// return L's binding |
| /// else if L is in killset |
| /// return unknown |
| /// else |
| /// if L is on stack or heap |
| /// return undefined |
| /// else |
| /// return symbolic |
| SVal Retrieve(const GRState* state, Loc L, QualType T = QualType()); |
| |
| const GRState* Bind(const GRState* St, Loc LV, SVal V); |
| |
| Store Remove(Store store, Loc LV); |
| |
| Store getInitialStore() { return RBFactory.GetEmptyMap().getRoot(); } |
| |
| /// getSelfRegion - Returns the region for the 'self' (Objective-C) or |
| /// 'this' object (C++). When used when analyzing a normal function this |
| /// method returns NULL. |
| const MemRegion* getSelfRegion(Store) { |
| if (!SelfDecl) |
| return 0; |
| |
| if (!SelfRegion) { |
| const ObjCMethodDecl *MD = cast<ObjCMethodDecl>(&StateMgr.getCodeDecl()); |
| SelfRegion = MRMgr.getObjCObjectRegion(MD->getClassInterface(), |
| MRMgr.getHeapRegion()); |
| } |
| |
| return SelfRegion; |
| } |
| |
| /// RemoveDeadBindings - Scans the RegionStore of 'state' for dead values. |
| /// It returns a new Store with these values removed, and populates LSymbols |
| // and DSymbols with the known set of live and dead symbols respectively. |
| Store RemoveDeadBindings(const GRState* state, Stmt* Loc, |
| SymbolReaper& SymReaper, |
| llvm::SmallVectorImpl<const MemRegion*>& RegionRoots); |
| |
| const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal); |
| |
| const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) { |
| return St; |
| } |
| |
| const GRState* setExtent(const GRState* St, const MemRegion* R, SVal Extent); |
| |
| static inline RegionBindingsTy GetRegionBindings(Store store) { |
| return RegionBindingsTy(static_cast<const RegionBindingsTy::TreeTy*>(store)); |
| } |
| |
| void print(Store store, std::ostream& Out, const char* nl, const char *sep); |
| |
| void iterBindings(Store store, BindingsHandler& f) { |
| // FIXME: Implement. |
| } |
| |
| private: |
| Loc getVarLoc(const VarDecl* VD) { |
| return loc::MemRegionVal(MRMgr.getVarRegion(VD)); |
| } |
| |
| const GRState* BindArray(const GRState* St, const TypedRegion* R, SVal V); |
| |
| /// Retrieve the values in a struct and return a CompoundVal, used when doing |
| /// struct copy: |
| /// struct s x, y; |
| /// x = y; |
| /// y's value is retrieved by this method. |
| SVal RetrieveStruct(const GRState* St, const TypedRegion* R); |
| |
| const GRState* BindStruct(const GRState* St, const TypedRegion* R, SVal V); |
| |
| /// KillStruct - Set the entire struct to unknown. |
| const GRState* KillStruct(const GRState* St, const TypedRegion* R); |
| |
| // Utility methods. |
| BasicValueFactory& getBasicVals() { return StateMgr.getBasicVals(); } |
| ASTContext& getContext() { return StateMgr.getContext(); } |
| SymbolManager& getSymbolManager() { return StateMgr.getSymbolManager(); } |
| |
| const GRState* AddRegionView(const GRState* St, |
| const MemRegion* View, const MemRegion* Base); |
| const GRState* RemoveRegionView(const GRState* St, |
| const MemRegion* View, const MemRegion* Base); |
| }; |
| |
| } // end anonymous namespace |
| |
| StoreManager* clang::CreateRegionStoreManager(GRStateManager& StMgr) { |
| return new RegionStoreManager(StMgr); |
| } |
| |
| SubRegionMap* RegionStoreManager::getSubRegionMap(const GRState *state) { |
| RegionBindingsTy B = GetRegionBindings(state->getStore()); |
| RegionStoreSubRegionMap *M = new RegionStoreSubRegionMap(); |
| |
| for (RegionBindingsTy::iterator I=B.begin(), E=B.end(); I!=E; ++I) { |
| if (const SubRegion* R = dyn_cast<SubRegion>(I.getKey())) |
| M->add(R->getSuperRegion(), R); |
| } |
| |
| return M; |
| } |
| |
| /// getLValueString - Returns an SVal representing the lvalue of a |
| /// StringLiteral. Within RegionStore a StringLiteral has an |
| /// associated StringRegion, and the lvalue of a StringLiteral is the |
| /// lvalue of that region. |
| SVal RegionStoreManager::getLValueString(const GRState* St, |
| const StringLiteral* S) { |
| return loc::MemRegionVal(MRMgr.getStringRegion(S)); |
| } |
| |
| /// getLValueVar - Returns an SVal that represents the lvalue of a |
| /// variable. Within RegionStore a variable has an associated |
| /// VarRegion, and the lvalue of the variable is the lvalue of that region. |
| SVal RegionStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) { |
| return loc::MemRegionVal(MRMgr.getVarRegion(VD)); |
| } |
| |
| /// getLValueCompoundLiteral - Returns an SVal representing the lvalue |
| /// of a compound literal. Within RegionStore a compound literal |
| /// has an associated region, and the lvalue of the compound literal |
| /// is the lvalue of that region. |
| SVal |
| RegionStoreManager::getLValueCompoundLiteral(const GRState* St, |
| const CompoundLiteralExpr* CL) { |
| return loc::MemRegionVal(MRMgr.getCompoundLiteralRegion(CL)); |
| } |
| |
| SVal RegionStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D, |
| SVal Base) { |
| return getLValueFieldOrIvar(St, Base, D); |
| } |
| |
| SVal RegionStoreManager::getLValueField(const GRState* St, SVal Base, |
| const FieldDecl* D) { |
| return getLValueFieldOrIvar(St, Base, D); |
| } |
| |
| SVal RegionStoreManager::getLValueFieldOrIvar(const GRState* St, SVal Base, |
| const Decl* D) { |
| if (Base.isUnknownOrUndef()) |
| return Base; |
| |
| Loc BaseL = cast<Loc>(Base); |
| const MemRegion* BaseR = 0; |
| |
| switch (BaseL.getSubKind()) { |
| case loc::MemRegionKind: |
| BaseR = cast<loc::MemRegionVal>(BaseL).getRegion(); |
| break; |
| |
| case loc::SymbolValKind: |
| BaseR = MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(&BaseL)->getSymbol(), |
| StateMgr.getSymbolManager()); |
| break; |
| |
| case loc::GotoLabelKind: |
| case loc::FuncValKind: |
| // These are anormal cases. Flag an undefined value. |
| return UndefinedVal(); |
| |
| case loc::ConcreteIntKind: |
| // While these seem funny, this can happen through casts. |
| // FIXME: What we should return is the field offset. For example, |
| // add the field offset to the integer value. That way funny things |
| // like this work properly: &(((struct foo *) 0xa)->f) |
| return Base; |
| |
| default: |
| assert(0 && "Unhandled Base."); |
| return Base; |
| } |
| |
| // NOTE: We must have this check first because ObjCIvarDecl is a subclass |
| // of FieldDecl. |
| if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D)) |
| return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR)); |
| |
| return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR)); |
| } |
| |
| SVal RegionStoreManager::getLValueElement(const GRState* St, |
| SVal Base, SVal Offset) { |
| |
| // If the base is an unknown or undefined value, just return it back. |
| // FIXME: For absolute pointer addresses, we just return that value back as |
| // well, although in reality we should return the offset added to that |
| // value. |
| if (Base.isUnknownOrUndef() || isa<loc::ConcreteInt>(Base)) |
| return Base; |
| |
| // Only handle integer offsets... for now. |
| if (!isa<nonloc::ConcreteInt>(Offset)) |
| return UnknownVal(); |
| |
| const TypedRegion* BaseRegion = 0; |
| |
| if (isa<loc::SymbolVal>(Base)) |
| BaseRegion = MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(Base).getSymbol(), |
| StateMgr.getSymbolManager()); |
| else |
| BaseRegion = cast<TypedRegion>(cast<loc::MemRegionVal>(Base).getRegion()); |
| |
| // Pointer of any type can be cast and used as array base. |
| const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion); |
| |
| if (!ElemR) { |
| // |
| // If the base region is not an ElementRegion, create one. |
| // This can happen in the following example: |
| // |
| // char *p = __builtin_alloc(10); |
| // p[1] = 8; |
| // |
| // Observe that 'p' binds to an TypedViewRegion<AllocaRegion>. |
| // |
| |
| // Offset might be unsigned. We have to convert it to signed ConcreteInt. |
| if (nonloc::ConcreteInt* CI = dyn_cast<nonloc::ConcreteInt>(&Offset)) { |
| const llvm::APSInt& OffI = CI->getValue(); |
| if (OffI.isUnsigned()) { |
| llvm::APSInt Tmp = OffI; |
| Tmp.setIsSigned(true); |
| Offset = NonLoc::MakeVal(getBasicVals(), Tmp); |
| } |
| } |
| return loc::MemRegionVal(MRMgr.getElementRegion(Offset, BaseRegion)); |
| } |
| |
| SVal BaseIdx = ElemR->getIndex(); |
| |
| if (!isa<nonloc::ConcreteInt>(BaseIdx)) |
| return UnknownVal(); |
| |
| const llvm::APSInt& BaseIdxI = cast<nonloc::ConcreteInt>(BaseIdx).getValue(); |
| const llvm::APSInt& OffI = cast<nonloc::ConcreteInt>(Offset).getValue(); |
| assert(BaseIdxI.isSigned()); |
| |
| // FIXME: This appears to be the assumption of this code. We should review |
| // whether or not BaseIdxI.getBitWidth() < OffI.getBitWidth(). If it |
| // can't we need to put a comment here. If it can, we should handle it. |
| assert(BaseIdxI.getBitWidth() >= OffI.getBitWidth()); |
| |
| const TypedRegion *ArrayR = ElemR->getArrayRegion(); |
| SVal NewIdx; |
| |
| if (OffI.isUnsigned() || OffI.getBitWidth() < BaseIdxI.getBitWidth()) { |
| // 'Offset' might be unsigned. We have to convert it to signed and |
| // possibly extend it. |
| llvm::APSInt Tmp = OffI; |
| |
| if (OffI.getBitWidth() < BaseIdxI.getBitWidth()) |
| Tmp.extend(BaseIdxI.getBitWidth()); |
| |
| Tmp.setIsSigned(true); |
| Tmp += BaseIdxI; // Compute the new offset. |
| NewIdx = NonLoc::MakeVal(getBasicVals(), Tmp); |
| } |
| else |
| NewIdx = nonloc::ConcreteInt(getBasicVals().getValue(BaseIdxI + OffI)); |
| |
| return loc::MemRegionVal(MRMgr.getElementRegion(NewIdx, ArrayR)); |
| } |
| |
| SVal RegionStoreManager::getSizeInElements(const GRState* St, |
| const MemRegion* R) { |
| if (const VarRegion* VR = dyn_cast<VarRegion>(R)) { |
| // Get the type of the variable. |
| QualType T = VR->getDesugaredRValueType(getContext()); |
| |
| // FIXME: Handle variable-length arrays. |
| if (isa<VariableArrayType>(T)) |
| return UnknownVal(); |
| |
| if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(T)) { |
| // return the size as signed integer. |
| return NonLoc::MakeVal(getBasicVals(), CAT->getSize(), false); |
| } |
| |
| // Clients can use ordinary variables as if they were arrays. These |
| // essentially are arrays of size 1. |
| return NonLoc::MakeIntVal(getBasicVals(), 1, false); |
| } |
| |
| if (const StringRegion* SR = dyn_cast<StringRegion>(R)) { |
| const StringLiteral* Str = SR->getStringLiteral(); |
| // We intentionally made the size value signed because it participates in |
| // operations with signed indices. |
| return NonLoc::MakeIntVal(getBasicVals(), Str->getByteLength()+1, false); |
| } |
| |
| if (const TypedViewRegion* ATR = dyn_cast<TypedViewRegion>(R)) { |
| #if 0 |
| // FIXME: This logic doesn't really work, as we can have all sorts of |
| // weird cases. For example, this crashes on test case 'rdar-6442306-1.m'. |
| // The weird cases come in when arbitrary casting comes into play, violating |
| // any type-safe programming. |
| |
| GRStateRef state(St, StateMgr); |
| |
| // Get the size of the super region in bytes. |
| const SVal* Extent = state.get<RegionExtents>(ATR->getSuperRegion()); |
| assert(Extent && "region extent not exist"); |
| |
| // Assume it's ConcreteInt for now. |
| llvm::APSInt SSize = cast<nonloc::ConcreteInt>(*Extent).getValue(); |
| |
| // Get the size of the element in bits. |
| QualType LvT = ATR->getLValueType(getContext()); |
| QualType ElemTy = cast<PointerType>(LvT.getTypePtr())->getPointeeType(); |
| |
| uint64_t X = getContext().getTypeSize(ElemTy); |
| |
| const llvm::APSInt& ESize = getBasicVals().getValue(X, SSize.getBitWidth(), |
| false); |
| |
| // Calculate the number of elements. |
| |
| // FIXME: What do we do with signed-ness problem? Shall we make all APSInts |
| // signed? |
| if (SSize.isUnsigned()) |
| SSize.setIsSigned(true); |
| |
| // FIXME: move this operation into BasicVals. |
| const llvm::APSInt S = |
| (SSize * getBasicVals().getValue(8, SSize.getBitWidth(), false)) / ESize; |
| |
| return NonLoc::MakeVal(getBasicVals(), S); |
| #else |
| ATR = ATR; |
| return UnknownVal(); |
| #endif |
| } |
| |
| if (const FieldRegion* FR = dyn_cast<FieldRegion>(R)) { |
| // FIXME: Unsupported yet. |
| FR = 0; |
| return UnknownVal(); |
| } |
| |
| if (isa<SymbolicRegion>(R)) { |
| return UnknownVal(); |
| } |
| |
| assert(0 && "Other regions are not supported yet."); |
| return UnknownVal(); |
| } |
| |
| /// ArrayToPointer - Emulates the "decay" of an array to a pointer |
| /// type. 'Array' represents the lvalue of the array being decayed |
| /// to a pointer, and the returned SVal represents the decayed |
| /// version of that lvalue (i.e., a pointer to the first element of |
| /// the array). This is called by GRExprEngine when evaluating casts |
| /// from arrays to pointers. |
| SVal RegionStoreManager::ArrayToPointer(SVal Array) { |
| // FIXME: This should be factored into GRExprEngine. This allows |
| // us to pass a "loc" instead of an "SVal" for "Array". |
| if (Array.isUnknownOrUndef()) |
| return Array; |
| |
| if (!isa<loc::MemRegionVal>(Array)) |
| return UnknownVal(); |
| |
| const MemRegion* R = cast<loc::MemRegionVal>(&Array)->getRegion(); |
| const TypedRegion* ArrayR = dyn_cast<TypedRegion>(R); |
| |
| if (!ArrayR) |
| return UnknownVal(); |
| |
| nonloc::ConcreteInt Idx(getBasicVals().getZeroWithPtrWidth(false)); |
| ElementRegion* ER = MRMgr.getElementRegion(Idx, ArrayR); |
| |
| return loc::MemRegionVal(ER); |
| } |
| |
| StoreManager::CastResult |
| RegionStoreManager::CastRegion(const GRState* state, const MemRegion* R, |
| QualType CastToTy) { |
| |
| // Return the same region if the region types are compatible. |
| if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) { |
| ASTContext& Ctx = StateMgr.getContext(); |
| QualType Ta = Ctx.getCanonicalType(TR->getLValueType(Ctx)); |
| QualType Tb = Ctx.getCanonicalType(CastToTy); |
| |
| if (Ta == Tb) |
| return CastResult(state, R); |
| } |
| |
| // FIXME: We should handle the case when we are casting *back* to a |
| // previous type. For example: |
| // |
| // void* x = ...; |
| // char* y = (char*) x; |
| // void* z = (void*) y; // <-- we should get the same region that is |
| // bound to 'x' |
| const MemRegion* ViewR = MRMgr.getTypedViewRegion(CastToTy, R); |
| return CastResult(AddRegionView(state, ViewR, R), ViewR); |
| } |
| |
| SVal RegionStoreManager::EvalBinOp(BinaryOperator::Opcode Op, Loc L, NonLoc R) { |
| // Assume the base location is MemRegionVal(ElementRegion). |
| if (!isa<loc::MemRegionVal>(L)) |
| return UnknownVal(); |
| |
| const MemRegion* MR = cast<loc::MemRegionVal>(L).getRegion(); |
| |
| const ElementRegion* ER = cast<ElementRegion>(MR); |
| SVal Idx = ER->getIndex(); |
| |
| nonloc::ConcreteInt* Base = dyn_cast<nonloc::ConcreteInt>(&Idx); |
| nonloc::ConcreteInt* Offset = dyn_cast<nonloc::ConcreteInt>(&R); |
| |
| // Only support concrete integer indexes for now. |
| if (Base && Offset) { |
| SVal NewIdx = Base->EvalBinOp(getBasicVals(), Op, *Offset); |
| |
| const MemRegion* NewER = MRMgr.getElementRegion(NewIdx, |
| ER->getArrayRegion()); |
| return Loc::MakeVal(NewER); |
| |
| } |
| |
| return UnknownVal(); |
| } |
| |
| SVal RegionStoreManager::Retrieve(const GRState* St, Loc L, QualType T) { |
| assert(!isa<UnknownVal>(L) && "location unknown"); |
| assert(!isa<UndefinedVal>(L) && "location undefined"); |
| |
| // FIXME: What does loc::SymbolVal represent? It represents the value |
| // of a location but that value is not known. In the future we should |
| // handle potential aliasing relationships; e.g. a loc::SymbolVal could |
| // be an alias for a particular region. |
| // Example: |
| // void foo(char* buf) { |
| // char c = *buf; |
| // } |
| if (isa<loc::SymbolVal>(L)) { |
| return UnknownVal(); |
| } |
| |
| // FIXME: Is this even possible? Shouldn't this be treated as a null |
| // dereference at a higher level? |
| if (isa<loc::ConcreteInt>(L)) |
| return UndefinedVal(); |
| |
| // FIXME: Should this be refactored into GRExprEngine or GRStateManager? |
| // It seems that all StoreManagers would do the same thing here. |
| if (isa<loc::FuncVal>(L)) |
| return L; |
| |
| // FIXME: Perhaps this method should just take a 'const MemRegion*' argument |
| // instead of 'Loc', and have the other Loc cases handled at a higher level. |
| const TypedRegion* R |
| = cast<TypedRegion>(cast<loc::MemRegionVal>(L).getRegion()); |
| assert(R && "bad region"); |
| |
| // FIXME: We should eventually handle funny addressing. e.g.: |
| // |
| // int x = ...; |
| // int *p = &x; |
| // char *q = (char*) p; |
| // char c = *q; // returns the first byte of 'x'. |
| // |
| // Such funny addressing will occur due to layering of regions. |
| |
| QualType RTy = R->getRValueType(getContext()); |
| if (RTy->isStructureType()) |
| return RetrieveStruct(St, R); |
| // FIXME: handle Vector types. |
| if (RTy->isVectorType()) |
| return UnknownVal(); |
| |
| RegionBindingsTy B = GetRegionBindings(St->getStore()); |
| RegionBindingsTy::data_type* V = B.lookup(R); |
| |
| // Check if the region has a binding. |
| if (V) |
| return *V; |
| |
| GRStateRef state(St, StateMgr); |
| |
| // Check if the region is in killset. |
| if (state.contains<RegionKills>(R)) |
| return UnknownVal(); |
| |
| // If the region is an element or field, it may have a default value. |
| if (isa<ElementRegion>(R) || isa<FieldRegion>(R)) { |
| const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion(); |
| GRStateTrait<RegionDefaultValue>::lookup_type D = |
| state.get<RegionDefaultValue>(SuperR); |
| if (D) |
| return *D; |
| } |
| |
| if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) { |
| const MemRegion *SR = IVR->getSuperRegion(); |
| |
| // If the super region is 'self' then return the symbol representing |
| // the value of the ivar upon entry to the method. |
| if (SR == SelfRegion) { |
| // FIXME: Do we need to handle the case where the super region |
| // has a view? We want to canonicalize the bindings. |
| return SVal::GetRValueSymbolVal(getSymbolManager(), R); |
| } |
| |
| // Otherwise, we need a new symbol. For now return Unknown. |
| return UnknownVal(); |
| } |
| |
| // The location does not have a bound value. This means that it has |
| // the value it had upon its creation and/or entry to the analyzed |
| // function/method. These are either symbolic values or 'undefined'. |
| |
| // We treat function parameters as symbolic values. |
| if (const VarRegion* VR = dyn_cast<VarRegion>(R)) { |
| const VarDecl *VD = VR->getDecl(); |
| |
| if (VD == SelfDecl) |
| return loc::MemRegionVal(getSelfRegion(0)); |
| |
| if (isa<ParmVarDecl>(VD) || isa<ImplicitParamDecl>(VD) || |
| VD->hasGlobalStorage()) { |
| QualType VTy = VD->getType(); |
| if (Loc::IsLocType(VTy) || VTy->isIntegerType()) |
| return SVal::GetRValueSymbolVal(getSymbolManager(), VR); |
| else |
| return UnknownVal(); |
| } |
| } |
| |
| if (MRMgr.onStack(R) || MRMgr.onHeap(R)) { |
| // All stack variables are considered to have undefined values |
| // upon creation. All heap allocated blocks are considered to |
| // have undefined values as well unless they are explicitly bound |
| // to specific values. |
| return UndefinedVal(); |
| } |
| |
| // All other integer values are symbolic. |
| if (Loc::IsLocType(RTy) || RTy->isIntegerType()) |
| return SVal::GetRValueSymbolVal(getSymbolManager(), R); |
| else |
| return UnknownVal(); |
| } |
| |
| SVal RegionStoreManager::RetrieveStruct(const GRState* St,const TypedRegion* R){ |
| |
| Store store = St->getStore(); |
| GRStateRef state(St, StateMgr); |
| |
| // FIXME: Verify we want getRValueType instead of getLValueType. |
| QualType T = R->getRValueType(getContext()); |
| assert(T->isStructureType()); |
| |
| const RecordType* RT = cast<RecordType>(T.getTypePtr()); |
| RecordDecl* RD = RT->getDecl(); |
| assert(RD->isDefinition()); |
| |
| llvm::ImmutableList<SVal> StructVal = getBasicVals().getEmptySValList(); |
| |
| std::vector<FieldDecl *> Fields(RD->field_begin(), RD->field_end()); |
| |
| for (std::vector<FieldDecl *>::reverse_iterator Field = Fields.rbegin(), |
| FieldEnd = Fields.rend(); |
| Field != FieldEnd; ++Field) { |
| FieldRegion* FR = MRMgr.getFieldRegion(*Field, R); |
| RegionBindingsTy B = GetRegionBindings(store); |
| RegionBindingsTy::data_type* data = B.lookup(FR); |
| |
| SVal FieldValue; |
| if (data) |
| FieldValue = *data; |
| else if (state.contains<RegionKills>(FR)) |
| FieldValue = UnknownVal(); |
| else { |
| if (MRMgr.onStack(FR) || MRMgr.onHeap(FR)) |
| FieldValue = UndefinedVal(); |
| else |
| FieldValue = SVal::GetRValueSymbolVal(getSymbolManager(), FR); |
| } |
| |
| StructVal = getBasicVals().consVals(FieldValue, StructVal); |
| } |
| |
| return NonLoc::MakeCompoundVal(T, StructVal, getBasicVals()); |
| } |
| |
| const GRState* RegionStoreManager::Bind(const GRState* St, Loc L, SVal V) { |
| // Currently we don't bind value to symbolic location. But if the logic is |
| // made clear, we might change this decision. |
| if (isa<loc::SymbolVal>(L)) |
| return St; |
| |
| // If we get here, the location should be a region. |
| const MemRegion* R = cast<loc::MemRegionVal>(L).getRegion(); |
| assert(R); |
| |
| // Check if the region is a struct region. |
| if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) |
| // FIXME: Verify we want getRValueType(). |
| if (TR->getRValueType(getContext())->isStructureType()) |
| return BindStruct(St, TR, V); |
| |
| Store store = St->getStore(); |
| RegionBindingsTy B = GetRegionBindings(store); |
| |
| if (V.isUnknown()) { |
| // Remove the binding. |
| store = RBFactory.Remove(B, R).getRoot(); |
| |
| // Add the region to the killset. |
| GRStateRef state(St, StateMgr); |
| St = state.add<RegionKills>(R); |
| } |
| else |
| store = RBFactory.Add(B, R, V).getRoot(); |
| |
| return StateMgr.MakeStateWithStore(St, store); |
| } |
| |
| Store RegionStoreManager::Remove(Store store, Loc L) { |
| const MemRegion* R = 0; |
| |
| if (isa<loc::MemRegionVal>(L)) |
| R = cast<loc::MemRegionVal>(L).getRegion(); |
| else if (isa<loc::SymbolVal>(L)) |
| R = MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(L).getSymbol(), |
| StateMgr.getSymbolManager()); |
| |
| if (R) { |
| RegionBindingsTy B = GetRegionBindings(store); |
| return RBFactory.Remove(B, R).getRoot(); |
| } |
| |
| return store; |
| } |
| |
| const GRState* RegionStoreManager::BindDecl(const GRState* St, |
| const VarDecl* VD, SVal InitVal) { |
| |
| QualType T = VD->getType(); |
| VarRegion* VR = MRMgr.getVarRegion(VD); |
| |
| if (T->isArrayType()) |
| return BindArray(St, VR, InitVal); |
| if (T->isStructureType()) |
| return BindStruct(St, VR, InitVal); |
| |
| return Bind(St, Loc::MakeVal(VR), InitVal); |
| } |
| |
| // FIXME: this method should be merged into Bind(). |
| const GRState* |
| RegionStoreManager::BindCompoundLiteral(const GRState* St, |
| const CompoundLiteralExpr* CL, SVal V) { |
| CompoundLiteralRegion* R = MRMgr.getCompoundLiteralRegion(CL); |
| return Bind(St, loc::MemRegionVal(R), V); |
| } |
| |
| const GRState* RegionStoreManager::setExtent(const GRState* St, |
| const MemRegion* R, SVal Extent) { |
| GRStateRef state(St, StateMgr); |
| return state.set<RegionExtents>(R, Extent); |
| } |
| |
| |
| static void UpdateLiveSymbols(SVal X, SymbolReaper& SymReaper) { |
| if (loc::MemRegionVal *XR = dyn_cast<loc::MemRegionVal>(&X)) { |
| const MemRegion *R = XR->getRegion(); |
| |
| while (R) { |
| if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) { |
| SymReaper.markLive(SR->getSymbol()); |
| return; |
| } |
| |
| if (const SubRegion *SR = dyn_cast<SubRegion>(R)) { |
| R = SR->getSuperRegion(); |
| continue; |
| } |
| |
| break; |
| } |
| |
| return; |
| } |
| |
| for (SVal::symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end();SI!=SE;++SI) |
| SymReaper.markLive(*SI); |
| } |
| |
| Store RegionStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc, |
| SymbolReaper& SymReaper, |
| llvm::SmallVectorImpl<const MemRegion*>& RegionRoots) |
| { |
| |
| Store store = state->getStore(); |
| RegionBindingsTy B = GetRegionBindings(store); |
| |
| // Lazily constructed backmap from MemRegions to SubRegions. |
| typedef llvm::ImmutableSet<const MemRegion*> SubRegionsTy; |
| typedef llvm::ImmutableMap<const MemRegion*, SubRegionsTy> SubRegionsMapTy; |
| |
| // FIXME: As a future optimization we can modifiy BumpPtrAllocator to have |
| // the ability to reuse memory. This way we can keep TmpAlloc around as |
| // an instance variable of RegionStoreManager (avoiding repeated malloc |
| // overhead). |
| llvm::BumpPtrAllocator TmpAlloc; |
| |
| // Factory objects. |
| SubRegionsMapTy::Factory SubRegMapF(TmpAlloc); |
| SubRegionsTy::Factory SubRegF(TmpAlloc); |
| |
| // The backmap from regions to subregions. |
| SubRegionsMapTy SubRegMap = SubRegMapF.GetEmptyMap(); |
| |
| // Do a pass over the regions in the store. For VarRegions we check if |
| // the variable is still live and if so add it to the list of live roots. |
| // For other regions we populate our region backmap. |
| for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| const MemRegion* R = I.getKey(); |
| if (const VarRegion* VR = dyn_cast<VarRegion>(R)) { |
| if (SymReaper.isLive(Loc, VR->getDecl())) |
| RegionRoots.push_back(VR); // This is a live "root". |
| } |
| else { |
| // Get the super region for R. |
| const MemRegion* SuperR = cast<SubRegion>(R)->getSuperRegion(); |
| // Get the current set of subregions for SuperR. |
| const SubRegionsTy* SRptr = SubRegMap.lookup(SuperR); |
| SubRegionsTy SR = SRptr ? *SRptr : SubRegF.GetEmptySet(); |
| // Add R to the subregions of SuperR. |
| SubRegMap = SubRegMapF.Add(SubRegMap, SuperR, SubRegF.Add(SR, R)); |
| |
| // Finally, check if SuperR is a VarRegion. We need to do this |
| // to also mark SuperR as a root (as it may not have a value directly |
| // bound to it in the store). |
| if (const VarRegion* VR = dyn_cast<VarRegion>(SuperR)) { |
| if (SymReaper.isLive(Loc, VR->getDecl())) |
| RegionRoots.push_back(VR); // This is a live "root". |
| } |
| } |
| } |
| |
| // Process the worklist of RegionRoots. This performs a "mark-and-sweep" |
| // of the store. We want to find all live symbols and dead regions. |
| llvm::SmallPtrSet<const MemRegion*, 10> Marked; |
| |
| while (!RegionRoots.empty()) { |
| // Dequeue the next region on the worklist. |
| const MemRegion* R = RegionRoots.back(); |
| RegionRoots.pop_back(); |
| |
| // Check if we have already processed this region. |
| if (Marked.count(R)) continue; |
| |
| // Mark this region as processed. This is needed for termination in case |
| // a region is referenced more than once. |
| Marked.insert(R); |
| |
| // Mark the symbol for any live SymbolicRegion as "live". This means we |
| // should continue to track that symbol. |
| if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R)) |
| SymReaper.markLive(SymR->getSymbol()); |
| |
| // Get the data binding for R (if any). |
| RegionBindingsTy::data_type* Xptr = B.lookup(R); |
| if (Xptr) { |
| SVal X = *Xptr; |
| UpdateLiveSymbols(X, SymReaper); // Update the set of live symbols. |
| |
| // If X is a region, then add it the RegionRoots. |
| if (loc::MemRegionVal* RegionX = dyn_cast<loc::MemRegionVal>(&X)) |
| RegionRoots.push_back(RegionX->getRegion()); |
| } |
| |
| // Get the subregions of R. These are RegionRoots as well since they |
| // represent values that are also bound to R. |
| const SubRegionsTy* SRptr = SubRegMap.lookup(R); |
| if (!SRptr) continue; |
| SubRegionsTy SR = *SRptr; |
| |
| for (SubRegionsTy::iterator I=SR.begin(), E=SR.end(); I!=E; ++I) |
| RegionRoots.push_back(*I); |
| } |
| |
| // We have now scanned the store, marking reachable regions and symbols |
| // as live. We now remove all the regions that are dead from the store |
| // as well as update DSymbols with the set symbols that are now dead. |
| for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| const MemRegion* R = I.getKey(); |
| |
| // If this region live? Is so, none of its symbols are dead. |
| if (Marked.count(R)) |
| continue; |
| |
| // Remove this dead region from the store. |
| store = Remove(store, Loc::MakeVal(R)); |
| |
| // Mark all non-live symbols that this region references as dead. |
| if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(R)) |
| SymReaper.maybeDead(SymR->getSymbol()); |
| |
| SVal X = I.getData(); |
| SVal::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end(); |
| for (; SI != SE; ++SI) SymReaper.maybeDead(*SI); |
| } |
| |
| return store; |
| } |
| |
| void RegionStoreManager::print(Store store, std::ostream& Out, |
| const char* nl, const char *sep) { |
| llvm::raw_os_ostream OS(Out); |
| RegionBindingsTy B = GetRegionBindings(store); |
| OS << "Store:" << nl; |
| |
| for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| OS << ' '; I.getKey()->print(OS); OS << " : "; |
| I.getData().print(OS); OS << nl; |
| } |
| } |
| |
| const GRState* RegionStoreManager::BindArray(const GRState* St, |
| const TypedRegion* R, SVal Init) { |
| |
| // FIXME: Verify we should use getLValueType or getRValueType. |
| QualType T = R->getRValueType(getContext()); |
| assert(T->isArrayType()); |
| |
| // When we are binding the whole array, it always has default value 0. |
| GRStateRef state(St, StateMgr); |
| St = state.set<RegionDefaultValue>(R, NonLoc::MakeIntVal(getBasicVals(), 0, |
| false)); |
| |
| ConstantArrayType* CAT = cast<ConstantArrayType>(T.getTypePtr()); |
| |
| llvm::APSInt Size(CAT->getSize(), false); |
| llvm::APSInt i = getBasicVals().getValue(0, Size.getBitWidth(), |
| Size.isUnsigned()); |
| |
| // Check if the init expr is a StringLiteral. |
| if (isa<loc::MemRegionVal>(Init)) { |
| const MemRegion* InitR = cast<loc::MemRegionVal>(Init).getRegion(); |
| const StringLiteral* S = cast<StringRegion>(InitR)->getStringLiteral(); |
| const char* str = S->getStrData(); |
| unsigned len = S->getByteLength(); |
| unsigned j = 0; |
| |
| // Copy bytes from the string literal into the target array. Trailing bytes |
| // in the array that are not covered by the string literal are initialized |
| // to zero. |
| for (; i < Size; ++i, ++j) { |
| if (j >= len) |
| break; |
| |
| SVal Idx = NonLoc::MakeVal(getBasicVals(), i); |
| ElementRegion* ER = MRMgr.getElementRegion(Idx, R); |
| |
| SVal V = NonLoc::MakeVal(getBasicVals(), str[j], sizeof(char)*8, true); |
| St = Bind(St, loc::MemRegionVal(ER), V); |
| } |
| |
| return St; |
| } |
| |
| |
| nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(Init); |
| |
| nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| |
| for (; i < Size; ++i, ++VI) { |
| // The init list might be shorter than the array decl. |
| if (VI == VE) |
| break; |
| |
| SVal Idx = NonLoc::MakeVal(getBasicVals(), i); |
| ElementRegion* ER = MRMgr.getElementRegion(Idx, R); |
| |
| if (CAT->getElementType()->isStructureType()) |
| St = BindStruct(St, ER, *VI); |
| else |
| St = Bind(St, Loc::MakeVal(ER), *VI); |
| } |
| |
| return St; |
| } |
| |
| const GRState* |
| RegionStoreManager::BindStruct(const GRState* St, const TypedRegion* R, SVal V){ |
| // FIXME: Verify that we should use getRValueType or getLValueType. |
| QualType T = R->getRValueType(getContext()); |
| assert(T->isStructureType()); |
| |
| RecordType* RT = cast<RecordType>(T.getTypePtr()); |
| RecordDecl* RD = RT->getDecl(); |
| assert(RD->isDefinition()); |
| |
| if (V.isUnknown()) |
| return KillStruct(St, R); |
| |
| nonloc::CompoundVal& CV = cast<nonloc::CompoundVal>(V); |
| nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end(); |
| RecordDecl::field_iterator FI = RD->field_begin(), FE = RD->field_end(); |
| |
| for (; FI != FE; ++FI, ++VI) { |
| |
| // There may be fewer values than fields only when we are initializing a |
| // struct decl. In this case, mark the region as having default value. |
| if (VI == VE) { |
| GRStateRef state(St, StateMgr); |
| const NonLoc& Idx = NonLoc::MakeIntVal(getBasicVals(), 0, false); |
| St = state.set<RegionDefaultValue>(R, Idx); |
| break; |
| } |
| |
| QualType FTy = (*FI)->getType(); |
| FieldRegion* FR = MRMgr.getFieldRegion(*FI, R); |
| |
| if (Loc::IsLocType(FTy) || FTy->isIntegerType()) |
| St = Bind(St, Loc::MakeVal(FR), *VI); |
| |
| else if (FTy->isArrayType()) |
| St = BindArray(St, FR, *VI); |
| |
| else if (FTy->isStructureType()) |
| St = BindStruct(St, FR, *VI); |
| } |
| |
| return St; |
| } |
| |
| const GRState* RegionStoreManager::KillStruct(const GRState* St, |
| const TypedRegion* R){ |
| GRStateRef state(St, StateMgr); |
| |
| // Kill the struct region because it is assigned "unknown". |
| St = state.add<RegionKills>(R); |
| |
| // Set the default value of the struct region to "unknown". |
| St = state.set<RegionDefaultValue>(R, UnknownVal()); |
| |
| Store store = St->getStore(); |
| RegionBindingsTy B = GetRegionBindings(store); |
| |
| // Remove all bindings for the subregions of the struct. |
| for (RegionBindingsTy::iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| const MemRegion* r = I.getKey(); |
| if (const SubRegion* sr = dyn_cast<SubRegion>(r)) |
| if (sr->isSubRegionOf(R)) |
| store = Remove(store, Loc::MakeVal(sr)); |
| // FIXME: Maybe we should also remove the bindings for the "views" of the |
| // subregions. |
| } |
| |
| return StateMgr.MakeStateWithStore(St, store); |
| } |
| |
| const GRState* RegionStoreManager::AddRegionView(const GRState* St, |
| const MemRegion* View, |
| const MemRegion* Base) { |
| GRStateRef state(St, StateMgr); |
| |
| // First, retrieve the region view of the base region. |
| const RegionViews* d = state.get<RegionViewMap>(Base); |
| RegionViews L = d ? *d : RVFactory.GetEmptySet(); |
| |
| // Now add View to the region view. |
| L = RVFactory.Add(L, View); |
| |
| // Create a new state with the new region view. |
| return state.set<RegionViewMap>(Base, L); |
| } |
| |
| const GRState* RegionStoreManager::RemoveRegionView(const GRState* St, |
| const MemRegion* View, |
| const MemRegion* Base) { |
| GRStateRef state(St, StateMgr); |
| |
| // Retrieve the region view of the base region. |
| const RegionViews* d = state.get<RegionViewMap>(Base); |
| |
| // If the base region has no view, return. |
| if (!d) |
| return St; |
| |
| // Remove the view. |
| RegionViews V = *d; |
| V = RVFactory.Remove(V, View); |
| |
| return state.set<RegionViewMap>(Base, V); |
| } |