| //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expression parsing implementation for C++. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Parse/ParseDiagnostic.h" |
| #include "clang/Parse/Parser.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Template.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| using namespace clang; |
| |
| /// \brief Parse global scope or nested-name-specifier if present. |
| /// |
| /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which |
| /// may be preceded by '::'). Note that this routine will not parse ::new or |
| /// ::delete; it will just leave them in the token stream. |
| /// |
| /// '::'[opt] nested-name-specifier |
| /// '::' |
| /// |
| /// nested-name-specifier: |
| /// type-name '::' |
| /// namespace-name '::' |
| /// nested-name-specifier identifier '::' |
| /// nested-name-specifier 'template'[opt] simple-template-id '::' |
| /// |
| /// |
| /// \param SS the scope specifier that will be set to the parsed |
| /// nested-name-specifier (or empty) |
| /// |
| /// \param ObjectType if this nested-name-specifier is being parsed following |
| /// the "." or "->" of a member access expression, this parameter provides the |
| /// type of the object whose members are being accessed. |
| /// |
| /// \param EnteringContext whether we will be entering into the context of |
| /// the nested-name-specifier after parsing it. |
| /// |
| /// \param MayBePseudoDestructor When non-NULL, points to a flag that |
| /// indicates whether this nested-name-specifier may be part of a |
| /// pseudo-destructor name. In this case, the flag will be set false |
| /// if we don't actually end up parsing a destructor name. Moreorover, |
| /// if we do end up determining that we are parsing a destructor name, |
| /// the last component of the nested-name-specifier is not parsed as |
| /// part of the scope specifier. |
| |
| /// member access expression, e.g., the \p T:: in \p p->T::m. |
| /// |
| /// \returns true if there was an error parsing a scope specifier |
| bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, |
| Action::TypeTy *ObjectType, |
| bool EnteringContext, |
| bool *MayBePseudoDestructor) { |
| assert(getLang().CPlusPlus && |
| "Call sites of this function should be guarded by checking for C++"); |
| |
| if (Tok.is(tok::annot_cxxscope)) { |
| SS.setScopeRep(Tok.getAnnotationValue()); |
| SS.setRange(Tok.getAnnotationRange()); |
| ConsumeToken(); |
| return false; |
| } |
| |
| bool HasScopeSpecifier = false; |
| |
| if (Tok.is(tok::coloncolon)) { |
| // ::new and ::delete aren't nested-name-specifiers. |
| tok::TokenKind NextKind = NextToken().getKind(); |
| if (NextKind == tok::kw_new || NextKind == tok::kw_delete) |
| return false; |
| |
| // '::' - Global scope qualifier. |
| SourceLocation CCLoc = ConsumeToken(); |
| SS.setBeginLoc(CCLoc); |
| SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(CurScope, CCLoc)); |
| SS.setEndLoc(CCLoc); |
| HasScopeSpecifier = true; |
| } |
| |
| bool CheckForDestructor = false; |
| if (MayBePseudoDestructor && *MayBePseudoDestructor) { |
| CheckForDestructor = true; |
| *MayBePseudoDestructor = false; |
| } |
| |
| while (true) { |
| if (HasScopeSpecifier) { |
| // C++ [basic.lookup.classref]p5: |
| // If the qualified-id has the form |
| // |
| // ::class-name-or-namespace-name::... |
| // |
| // the class-name-or-namespace-name is looked up in global scope as a |
| // class-name or namespace-name. |
| // |
| // To implement this, we clear out the object type as soon as we've |
| // seen a leading '::' or part of a nested-name-specifier. |
| ObjectType = 0; |
| |
| if (Tok.is(tok::code_completion)) { |
| // Code completion for a nested-name-specifier, where the code |
| // code completion token follows the '::'. |
| Actions.CodeCompleteQualifiedId(CurScope, SS, EnteringContext); |
| ConsumeToken(); |
| } |
| } |
| |
| // nested-name-specifier: |
| // nested-name-specifier 'template'[opt] simple-template-id '::' |
| |
| // Parse the optional 'template' keyword, then make sure we have |
| // 'identifier <' after it. |
| if (Tok.is(tok::kw_template)) { |
| // If we don't have a scope specifier or an object type, this isn't a |
| // nested-name-specifier, since they aren't allowed to start with |
| // 'template'. |
| if (!HasScopeSpecifier && !ObjectType) |
| break; |
| |
| TentativeParsingAction TPA(*this); |
| SourceLocation TemplateKWLoc = ConsumeToken(); |
| |
| UnqualifiedId TemplateName; |
| if (Tok.is(tok::identifier)) { |
| // Consume the identifier. |
| TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); |
| ConsumeToken(); |
| } else if (Tok.is(tok::kw_operator)) { |
| if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, |
| TemplateName)) { |
| TPA.Commit(); |
| break; |
| } |
| |
| if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId && |
| TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) { |
| Diag(TemplateName.getSourceRange().getBegin(), |
| diag::err_id_after_template_in_nested_name_spec) |
| << TemplateName.getSourceRange(); |
| TPA.Commit(); |
| break; |
| } |
| } else { |
| TPA.Revert(); |
| break; |
| } |
| |
| // If the next token is not '<', we have a qualified-id that refers |
| // to a template name, such as T::template apply, but is not a |
| // template-id. |
| if (Tok.isNot(tok::less)) { |
| TPA.Revert(); |
| break; |
| } |
| |
| // Commit to parsing the template-id. |
| TPA.Commit(); |
| TemplateTy Template |
| = Actions.ActOnDependentTemplateName(TemplateKWLoc, SS, TemplateName, |
| ObjectType, EnteringContext); |
| if (!Template) |
| return true; |
| if (AnnotateTemplateIdToken(Template, TNK_Dependent_template_name, |
| &SS, TemplateName, TemplateKWLoc, false)) |
| return true; |
| |
| continue; |
| } |
| |
| if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { |
| // We have |
| // |
| // simple-template-id '::' |
| // |
| // So we need to check whether the simple-template-id is of the |
| // right kind (it should name a type or be dependent), and then |
| // convert it into a type within the nested-name-specifier. |
| TemplateIdAnnotation *TemplateId |
| = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue()); |
| if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { |
| *MayBePseudoDestructor = true; |
| return false; |
| } |
| |
| if (TemplateId->Kind == TNK_Type_template || |
| TemplateId->Kind == TNK_Dependent_template_name) { |
| AnnotateTemplateIdTokenAsType(&SS); |
| |
| assert(Tok.is(tok::annot_typename) && |
| "AnnotateTemplateIdTokenAsType isn't working"); |
| Token TypeToken = Tok; |
| ConsumeToken(); |
| assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); |
| SourceLocation CCLoc = ConsumeToken(); |
| |
| if (!HasScopeSpecifier) { |
| SS.setBeginLoc(TypeToken.getLocation()); |
| HasScopeSpecifier = true; |
| } |
| |
| if (TypeToken.getAnnotationValue()) |
| SS.setScopeRep( |
| Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, |
| TypeToken.getAnnotationValue(), |
| TypeToken.getAnnotationRange(), |
| CCLoc)); |
| else |
| SS.setScopeRep(0); |
| SS.setEndLoc(CCLoc); |
| continue; |
| } |
| |
| assert(false && "FIXME: Only type template names supported here"); |
| } |
| |
| |
| // The rest of the nested-name-specifier possibilities start with |
| // tok::identifier. |
| if (Tok.isNot(tok::identifier)) |
| break; |
| |
| IdentifierInfo &II = *Tok.getIdentifierInfo(); |
| |
| // nested-name-specifier: |
| // type-name '::' |
| // namespace-name '::' |
| // nested-name-specifier identifier '::' |
| Token Next = NextToken(); |
| |
| // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover |
| // and emit a fixit hint for it. |
| if (Next.is(tok::colon) && !ColonIsSacred) { |
| if (Actions.IsInvalidUnlessNestedName(CurScope, SS, II, ObjectType, |
| EnteringContext) && |
| // If the token after the colon isn't an identifier, it's still an |
| // error, but they probably meant something else strange so don't |
| // recover like this. |
| PP.LookAhead(1).is(tok::identifier)) { |
| Diag(Next, diag::err_unexected_colon_in_nested_name_spec) |
| << CodeModificationHint::CreateReplacement(Next.getLocation(), "::"); |
| |
| // Recover as if the user wrote '::'. |
| Next.setKind(tok::coloncolon); |
| } |
| } |
| |
| if (Next.is(tok::coloncolon)) { |
| if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) && |
| !Actions.isNonTypeNestedNameSpecifier(CurScope, SS, Tok.getLocation(), |
| II, ObjectType)) { |
| *MayBePseudoDestructor = true; |
| return false; |
| } |
| |
| // We have an identifier followed by a '::'. Lookup this name |
| // as the name in a nested-name-specifier. |
| SourceLocation IdLoc = ConsumeToken(); |
| assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) && |
| "NextToken() not working properly!"); |
| SourceLocation CCLoc = ConsumeToken(); |
| |
| if (!HasScopeSpecifier) { |
| SS.setBeginLoc(IdLoc); |
| HasScopeSpecifier = true; |
| } |
| |
| if (SS.isInvalid()) |
| continue; |
| |
| SS.setScopeRep( |
| Actions.ActOnCXXNestedNameSpecifier(CurScope, SS, IdLoc, CCLoc, II, |
| ObjectType, EnteringContext)); |
| SS.setEndLoc(CCLoc); |
| continue; |
| } |
| |
| // nested-name-specifier: |
| // type-name '<' |
| if (Next.is(tok::less)) { |
| TemplateTy Template; |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(&II, Tok.getLocation()); |
| if (TemplateNameKind TNK = Actions.isTemplateName(CurScope, SS, |
| TemplateName, |
| ObjectType, |
| EnteringContext, |
| Template)) { |
| // We have found a template name, so annotate this this token |
| // with a template-id annotation. We do not permit the |
| // template-id to be translated into a type annotation, |
| // because some clients (e.g., the parsing of class template |
| // specializations) still want to see the original template-id |
| // token. |
| ConsumeToken(); |
| if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName, |
| SourceLocation(), false)) |
| return true; |
| continue; |
| } |
| } |
| |
| // We don't have any tokens that form the beginning of a |
| // nested-name-specifier, so we're done. |
| break; |
| } |
| |
| // Even if we didn't see any pieces of a nested-name-specifier, we |
| // still check whether there is a tilde in this position, which |
| // indicates a potential pseudo-destructor. |
| if (CheckForDestructor && Tok.is(tok::tilde)) |
| *MayBePseudoDestructor = true; |
| |
| return false; |
| } |
| |
| /// ParseCXXIdExpression - Handle id-expression. |
| /// |
| /// id-expression: |
| /// unqualified-id |
| /// qualified-id |
| /// |
| /// qualified-id: |
| /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id |
| /// '::' identifier |
| /// '::' operator-function-id |
| /// '::' template-id |
| /// |
| /// NOTE: The standard specifies that, for qualified-id, the parser does not |
| /// expect: |
| /// |
| /// '::' conversion-function-id |
| /// '::' '~' class-name |
| /// |
| /// This may cause a slight inconsistency on diagnostics: |
| /// |
| /// class C {}; |
| /// namespace A {} |
| /// void f() { |
| /// :: A :: ~ C(); // Some Sema error about using destructor with a |
| /// // namespace. |
| /// :: ~ C(); // Some Parser error like 'unexpected ~'. |
| /// } |
| /// |
| /// We simplify the parser a bit and make it work like: |
| /// |
| /// qualified-id: |
| /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id |
| /// '::' unqualified-id |
| /// |
| /// That way Sema can handle and report similar errors for namespaces and the |
| /// global scope. |
| /// |
| /// The isAddressOfOperand parameter indicates that this id-expression is a |
| /// direct operand of the address-of operator. This is, besides member contexts, |
| /// the only place where a qualified-id naming a non-static class member may |
| /// appear. |
| /// |
| Parser::OwningExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { |
| // qualified-id: |
| // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id |
| // '::' unqualified-id |
| // |
| CXXScopeSpec SS; |
| ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/0, false); |
| |
| UnqualifiedId Name; |
| if (ParseUnqualifiedId(SS, |
| /*EnteringContext=*/false, |
| /*AllowDestructorName=*/false, |
| /*AllowConstructorName=*/false, |
| /*ObjectType=*/0, |
| Name)) |
| return ExprError(); |
| |
| // This is only the direct operand of an & operator if it is not |
| // followed by a postfix-expression suffix. |
| if (isAddressOfOperand) { |
| switch (Tok.getKind()) { |
| case tok::l_square: |
| case tok::l_paren: |
| case tok::arrow: |
| case tok::period: |
| case tok::plusplus: |
| case tok::minusminus: |
| isAddressOfOperand = false; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| return Actions.ActOnIdExpression(CurScope, SS, Name, Tok.is(tok::l_paren), |
| isAddressOfOperand); |
| |
| } |
| |
| /// ParseCXXCasts - This handles the various ways to cast expressions to another |
| /// type. |
| /// |
| /// postfix-expression: [C++ 5.2p1] |
| /// 'dynamic_cast' '<' type-name '>' '(' expression ')' |
| /// 'static_cast' '<' type-name '>' '(' expression ')' |
| /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' |
| /// 'const_cast' '<' type-name '>' '(' expression ')' |
| /// |
| Parser::OwningExprResult Parser::ParseCXXCasts() { |
| tok::TokenKind Kind = Tok.getKind(); |
| const char *CastName = 0; // For error messages |
| |
| switch (Kind) { |
| default: assert(0 && "Unknown C++ cast!"); abort(); |
| case tok::kw_const_cast: CastName = "const_cast"; break; |
| case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; |
| case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; |
| case tok::kw_static_cast: CastName = "static_cast"; break; |
| } |
| |
| SourceLocation OpLoc = ConsumeToken(); |
| SourceLocation LAngleBracketLoc = Tok.getLocation(); |
| |
| if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) |
| return ExprError(); |
| |
| TypeResult CastTy = ParseTypeName(); |
| SourceLocation RAngleBracketLoc = Tok.getLocation(); |
| |
| if (ExpectAndConsume(tok::greater, diag::err_expected_greater)) |
| return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<"); |
| |
| SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; |
| |
| if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName)) |
| return ExprError(); |
| |
| OwningExprResult Result = ParseExpression(); |
| |
| // Match the ')'. |
| RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| |
| if (!Result.isInvalid() && !CastTy.isInvalid()) |
| Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, |
| LAngleBracketLoc, CastTy.get(), |
| RAngleBracketLoc, |
| LParenLoc, move(Result), RParenLoc); |
| |
| return move(Result); |
| } |
| |
| /// ParseCXXTypeid - This handles the C++ typeid expression. |
| /// |
| /// postfix-expression: [C++ 5.2p1] |
| /// 'typeid' '(' expression ')' |
| /// 'typeid' '(' type-id ')' |
| /// |
| Parser::OwningExprResult Parser::ParseCXXTypeid() { |
| assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); |
| |
| SourceLocation OpLoc = ConsumeToken(); |
| SourceLocation LParenLoc = Tok.getLocation(); |
| SourceLocation RParenLoc; |
| |
| // typeid expressions are always parenthesized. |
| if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, |
| "typeid")) |
| return ExprError(); |
| |
| OwningExprResult Result(Actions); |
| |
| if (isTypeIdInParens()) { |
| TypeResult Ty = ParseTypeName(); |
| |
| // Match the ')'. |
| MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| |
| if (Ty.isInvalid()) |
| return ExprError(); |
| |
| Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, |
| Ty.get(), RParenLoc); |
| } else { |
| // C++0x [expr.typeid]p3: |
| // When typeid is applied to an expression other than an lvalue of a |
| // polymorphic class type [...] The expression is an unevaluated |
| // operand (Clause 5). |
| // |
| // Note that we can't tell whether the expression is an lvalue of a |
| // polymorphic class type until after we've parsed the expression, so |
| // we the expression is potentially potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(Actions, |
| Action::PotentiallyPotentiallyEvaluated); |
| Result = ParseExpression(); |
| |
| // Match the ')'. |
| if (Result.isInvalid()) |
| SkipUntil(tok::r_paren); |
| else { |
| MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| |
| Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, |
| Result.release(), RParenLoc); |
| } |
| } |
| |
| return move(Result); |
| } |
| |
| /// \brief Parse a C++ pseudo-destructor expression after the base, |
| /// . or -> operator, and nested-name-specifier have already been |
| /// parsed. |
| /// |
| /// postfix-expression: [C++ 5.2] |
| /// postfix-expression . pseudo-destructor-name |
| /// postfix-expression -> pseudo-destructor-name |
| /// |
| /// pseudo-destructor-name: |
| /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name |
| /// ::[opt] nested-name-specifier template simple-template-id :: |
| /// ~type-name |
| /// ::[opt] nested-name-specifier[opt] ~type-name |
| /// |
| Parser::OwningExprResult |
| Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, |
| CXXScopeSpec &SS, |
| Action::TypeTy *ObjectType) { |
| // We're parsing either a pseudo-destructor-name or a dependent |
| // member access that has the same form as a |
| // pseudo-destructor-name. We parse both in the same way and let |
| // the action model sort them out. |
| // |
| // Note that the ::[opt] nested-name-specifier[opt] has already |
| // been parsed, and if there was a simple-template-id, it has |
| // been coalesced into a template-id annotation token. |
| UnqualifiedId FirstTypeName; |
| SourceLocation CCLoc; |
| if (Tok.is(tok::identifier)) { |
| FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); |
| ConsumeToken(); |
| assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); |
| CCLoc = ConsumeToken(); |
| } else if (Tok.is(tok::annot_template_id)) { |
| FirstTypeName.setTemplateId( |
| (TemplateIdAnnotation *)Tok.getAnnotationValue()); |
| ConsumeToken(); |
| assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); |
| CCLoc = ConsumeToken(); |
| } else { |
| FirstTypeName.setIdentifier(0, SourceLocation()); |
| } |
| |
| // Parse the tilde. |
| assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); |
| SourceLocation TildeLoc = ConsumeToken(); |
| if (!Tok.is(tok::identifier)) { |
| Diag(Tok, diag::err_destructor_tilde_identifier); |
| return ExprError(); |
| } |
| |
| // Parse the second type. |
| UnqualifiedId SecondTypeName; |
| IdentifierInfo *Name = Tok.getIdentifierInfo(); |
| SourceLocation NameLoc = ConsumeToken(); |
| SecondTypeName.setIdentifier(Name, NameLoc); |
| |
| // If there is a '<', the second type name is a template-id. Parse |
| // it as such. |
| if (Tok.is(tok::less) && |
| ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType, |
| SecondTypeName, /*AssumeTemplateName=*/true)) |
| return ExprError(); |
| |
| return Actions.ActOnPseudoDestructorExpr(CurScope, move(Base), OpLoc, OpKind, |
| SS, FirstTypeName, CCLoc, |
| TildeLoc, SecondTypeName, |
| Tok.is(tok::l_paren)); |
| } |
| |
| /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. |
| /// |
| /// boolean-literal: [C++ 2.13.5] |
| /// 'true' |
| /// 'false' |
| Parser::OwningExprResult Parser::ParseCXXBoolLiteral() { |
| tok::TokenKind Kind = Tok.getKind(); |
| return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); |
| } |
| |
| /// ParseThrowExpression - This handles the C++ throw expression. |
| /// |
| /// throw-expression: [C++ 15] |
| /// 'throw' assignment-expression[opt] |
| Parser::OwningExprResult Parser::ParseThrowExpression() { |
| assert(Tok.is(tok::kw_throw) && "Not throw!"); |
| SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. |
| |
| // If the current token isn't the start of an assignment-expression, |
| // then the expression is not present. This handles things like: |
| // "C ? throw : (void)42", which is crazy but legal. |
| switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. |
| case tok::semi: |
| case tok::r_paren: |
| case tok::r_square: |
| case tok::r_brace: |
| case tok::colon: |
| case tok::comma: |
| return Actions.ActOnCXXThrow(ThrowLoc, ExprArg(Actions)); |
| |
| default: |
| OwningExprResult Expr(ParseAssignmentExpression()); |
| if (Expr.isInvalid()) return move(Expr); |
| return Actions.ActOnCXXThrow(ThrowLoc, move(Expr)); |
| } |
| } |
| |
| /// ParseCXXThis - This handles the C++ 'this' pointer. |
| /// |
| /// C++ 9.3.2: In the body of a non-static member function, the keyword this is |
| /// a non-lvalue expression whose value is the address of the object for which |
| /// the function is called. |
| Parser::OwningExprResult Parser::ParseCXXThis() { |
| assert(Tok.is(tok::kw_this) && "Not 'this'!"); |
| SourceLocation ThisLoc = ConsumeToken(); |
| return Actions.ActOnCXXThis(ThisLoc); |
| } |
| |
| /// ParseCXXTypeConstructExpression - Parse construction of a specified type. |
| /// Can be interpreted either as function-style casting ("int(x)") |
| /// or class type construction ("ClassType(x,y,z)") |
| /// or creation of a value-initialized type ("int()"). |
| /// |
| /// postfix-expression: [C++ 5.2p1] |
| /// simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] |
| /// typename-specifier '(' expression-list[opt] ')' [TODO] |
| /// |
| Parser::OwningExprResult |
| Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { |
| Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); |
| TypeTy *TypeRep = Actions.ActOnTypeName(CurScope, DeclaratorInfo).get(); |
| |
| assert(Tok.is(tok::l_paren) && "Expected '('!"); |
| SourceLocation LParenLoc = ConsumeParen(); |
| |
| ExprVector Exprs(Actions); |
| CommaLocsTy CommaLocs; |
| |
| if (Tok.isNot(tok::r_paren)) { |
| if (ParseExpressionList(Exprs, CommaLocs)) { |
| SkipUntil(tok::r_paren); |
| return ExprError(); |
| } |
| } |
| |
| // Match the ')'. |
| SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| |
| // TypeRep could be null, if it references an invalid typedef. |
| if (!TypeRep) |
| return ExprError(); |
| |
| assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& |
| "Unexpected number of commas!"); |
| return Actions.ActOnCXXTypeConstructExpr(DS.getSourceRange(), TypeRep, |
| LParenLoc, move_arg(Exprs), |
| CommaLocs.data(), RParenLoc); |
| } |
| |
| /// ParseCXXCondition - if/switch/while condition expression. |
| /// |
| /// condition: |
| /// expression |
| /// type-specifier-seq declarator '=' assignment-expression |
| /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] |
| /// '=' assignment-expression |
| /// |
| /// \param ExprResult if the condition was parsed as an expression, the |
| /// parsed expression. |
| /// |
| /// \param DeclResult if the condition was parsed as a declaration, the |
| /// parsed declaration. |
| /// |
| /// \returns true if there was a parsing, false otherwise. |
| bool Parser::ParseCXXCondition(OwningExprResult &ExprResult, |
| DeclPtrTy &DeclResult) { |
| if (Tok.is(tok::code_completion)) { |
| Actions.CodeCompleteOrdinaryName(CurScope, Action::CCC_Condition); |
| ConsumeToken(); |
| } |
| |
| if (!isCXXConditionDeclaration()) { |
| ExprResult = ParseExpression(); // expression |
| DeclResult = DeclPtrTy(); |
| return ExprResult.isInvalid(); |
| } |
| |
| // type-specifier-seq |
| DeclSpec DS; |
| ParseSpecifierQualifierList(DS); |
| |
| // declarator |
| Declarator DeclaratorInfo(DS, Declarator::ConditionContext); |
| ParseDeclarator(DeclaratorInfo); |
| |
| // simple-asm-expr[opt] |
| if (Tok.is(tok::kw_asm)) { |
| SourceLocation Loc; |
| OwningExprResult AsmLabel(ParseSimpleAsm(&Loc)); |
| if (AsmLabel.isInvalid()) { |
| SkipUntil(tok::semi); |
| return true; |
| } |
| DeclaratorInfo.setAsmLabel(AsmLabel.release()); |
| DeclaratorInfo.SetRangeEnd(Loc); |
| } |
| |
| // If attributes are present, parse them. |
| if (Tok.is(tok::kw___attribute)) { |
| SourceLocation Loc; |
| AttributeList *AttrList = ParseGNUAttributes(&Loc); |
| DeclaratorInfo.AddAttributes(AttrList, Loc); |
| } |
| |
| // Type-check the declaration itself. |
| Action::DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(CurScope, |
| DeclaratorInfo); |
| DeclResult = Dcl.get(); |
| ExprResult = ExprError(); |
| |
| // '=' assignment-expression |
| if (Tok.is(tok::equal)) { |
| SourceLocation EqualLoc = ConsumeToken(); |
| OwningExprResult AssignExpr(ParseAssignmentExpression()); |
| if (!AssignExpr.isInvalid()) |
| Actions.AddInitializerToDecl(DeclResult, move(AssignExpr)); |
| } else { |
| // FIXME: C++0x allows a braced-init-list |
| Diag(Tok, diag::err_expected_equal_after_declarator); |
| } |
| |
| return false; |
| } |
| |
| /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. |
| /// This should only be called when the current token is known to be part of |
| /// simple-type-specifier. |
| /// |
| /// simple-type-specifier: |
| /// '::'[opt] nested-name-specifier[opt] type-name |
| /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] |
| /// char |
| /// wchar_t |
| /// bool |
| /// short |
| /// int |
| /// long |
| /// signed |
| /// unsigned |
| /// float |
| /// double |
| /// void |
| /// [GNU] typeof-specifier |
| /// [C++0x] auto [TODO] |
| /// |
| /// type-name: |
| /// class-name |
| /// enum-name |
| /// typedef-name |
| /// |
| void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { |
| DS.SetRangeStart(Tok.getLocation()); |
| const char *PrevSpec; |
| unsigned DiagID; |
| SourceLocation Loc = Tok.getLocation(); |
| |
| switch (Tok.getKind()) { |
| case tok::identifier: // foo::bar |
| case tok::coloncolon: // ::foo::bar |
| assert(0 && "Annotation token should already be formed!"); |
| default: |
| assert(0 && "Not a simple-type-specifier token!"); |
| abort(); |
| |
| // type-name |
| case tok::annot_typename: { |
| DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, |
| Tok.getAnnotationValue()); |
| break; |
| } |
| |
| // builtin types |
| case tok::kw_short: |
| DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_long: |
| DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_signed: |
| DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_unsigned: |
| DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_void: |
| DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_char: |
| DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_int: |
| DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_float: |
| DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_double: |
| DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_wchar_t: |
| DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_char16_t: |
| DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_char32_t: |
| DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID); |
| break; |
| case tok::kw_bool: |
| DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID); |
| break; |
| |
| // GNU typeof support. |
| case tok::kw_typeof: |
| ParseTypeofSpecifier(DS); |
| DS.Finish(Diags, PP); |
| return; |
| } |
| if (Tok.is(tok::annot_typename)) |
| DS.SetRangeEnd(Tok.getAnnotationEndLoc()); |
| else |
| DS.SetRangeEnd(Tok.getLocation()); |
| ConsumeToken(); |
| DS.Finish(Diags, PP); |
| } |
| |
| /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ |
| /// [dcl.name]), which is a non-empty sequence of type-specifiers, |
| /// e.g., "const short int". Note that the DeclSpec is *not* finished |
| /// by parsing the type-specifier-seq, because these sequences are |
| /// typically followed by some form of declarator. Returns true and |
| /// emits diagnostics if this is not a type-specifier-seq, false |
| /// otherwise. |
| /// |
| /// type-specifier-seq: [C++ 8.1] |
| /// type-specifier type-specifier-seq[opt] |
| /// |
| bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { |
| DS.SetRangeStart(Tok.getLocation()); |
| const char *PrevSpec = 0; |
| unsigned DiagID; |
| bool isInvalid = 0; |
| |
| // Parse one or more of the type specifiers. |
| if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID, |
| ParsedTemplateInfo(), /*SuppressDeclarations*/true)) { |
| Diag(Tok, diag::err_operator_missing_type_specifier); |
| return true; |
| } |
| |
| while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID, |
| ParsedTemplateInfo(), /*SuppressDeclarations*/true)) |
| {} |
| |
| DS.Finish(Diags, PP); |
| return false; |
| } |
| |
| /// \brief Finish parsing a C++ unqualified-id that is a template-id of |
| /// some form. |
| /// |
| /// This routine is invoked when a '<' is encountered after an identifier or |
| /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine |
| /// whether the unqualified-id is actually a template-id. This routine will |
| /// then parse the template arguments and form the appropriate template-id to |
| /// return to the caller. |
| /// |
| /// \param SS the nested-name-specifier that precedes this template-id, if |
| /// we're actually parsing a qualified-id. |
| /// |
| /// \param Name for constructor and destructor names, this is the actual |
| /// identifier that may be a template-name. |
| /// |
| /// \param NameLoc the location of the class-name in a constructor or |
| /// destructor. |
| /// |
| /// \param EnteringContext whether we're entering the scope of the |
| /// nested-name-specifier. |
| /// |
| /// \param ObjectType if this unqualified-id occurs within a member access |
| /// expression, the type of the base object whose member is being accessed. |
| /// |
| /// \param Id as input, describes the template-name or operator-function-id |
| /// that precedes the '<'. If template arguments were parsed successfully, |
| /// will be updated with the template-id. |
| /// |
| /// \param AssumeTemplateId When true, this routine will assume that the name |
| /// refers to a template without performing name lookup to verify. |
| /// |
| /// \returns true if a parse error occurred, false otherwise. |
| bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| bool EnteringContext, |
| TypeTy *ObjectType, |
| UnqualifiedId &Id, |
| bool AssumeTemplateId) { |
| assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id"); |
| |
| TemplateTy Template; |
| TemplateNameKind TNK = TNK_Non_template; |
| switch (Id.getKind()) { |
| case UnqualifiedId::IK_Identifier: |
| case UnqualifiedId::IK_OperatorFunctionId: |
| case UnqualifiedId::IK_LiteralOperatorId: |
| if (AssumeTemplateId) { |
| Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS, |
| Id, ObjectType, |
| EnteringContext); |
| TNK = TNK_Dependent_template_name; |
| if (!Template.get()) |
| return true; |
| } else |
| TNK = Actions.isTemplateName(CurScope, SS, Id, ObjectType, |
| EnteringContext, Template); |
| break; |
| |
| case UnqualifiedId::IK_ConstructorName: { |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(Name, NameLoc); |
| TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType, |
| EnteringContext, Template); |
| break; |
| } |
| |
| case UnqualifiedId::IK_DestructorName: { |
| UnqualifiedId TemplateName; |
| TemplateName.setIdentifier(Name, NameLoc); |
| if (ObjectType) { |
| Template = Actions.ActOnDependentTemplateName(SourceLocation(), SS, |
| TemplateName, ObjectType, |
| EnteringContext); |
| TNK = TNK_Dependent_template_name; |
| if (!Template.get()) |
| return true; |
| } else { |
| TNK = Actions.isTemplateName(CurScope, SS, TemplateName, ObjectType, |
| EnteringContext, Template); |
| |
| if (TNK == TNK_Non_template && Id.DestructorName == 0) { |
| Diag(NameLoc, diag::err_destructor_template_id) |
| << Name << SS.getRange(); |
| return true; |
| } |
| } |
| break; |
| } |
| |
| default: |
| return false; |
| } |
| |
| if (TNK == TNK_Non_template) |
| return false; |
| |
| // Parse the enclosed template argument list. |
| SourceLocation LAngleLoc, RAngleLoc; |
| TemplateArgList TemplateArgs; |
| if (ParseTemplateIdAfterTemplateName(Template, Id.StartLocation, |
| &SS, true, LAngleLoc, |
| TemplateArgs, |
| RAngleLoc)) |
| return true; |
| |
| if (Id.getKind() == UnqualifiedId::IK_Identifier || |
| Id.getKind() == UnqualifiedId::IK_OperatorFunctionId || |
| Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) { |
| // Form a parsed representation of the template-id to be stored in the |
| // UnqualifiedId. |
| TemplateIdAnnotation *TemplateId |
| = TemplateIdAnnotation::Allocate(TemplateArgs.size()); |
| |
| if (Id.getKind() == UnqualifiedId::IK_Identifier) { |
| TemplateId->Name = Id.Identifier; |
| TemplateId->Operator = OO_None; |
| TemplateId->TemplateNameLoc = Id.StartLocation; |
| } else { |
| TemplateId->Name = 0; |
| TemplateId->Operator = Id.OperatorFunctionId.Operator; |
| TemplateId->TemplateNameLoc = Id.StartLocation; |
| } |
| |
| TemplateId->Template = Template.getAs<void*>(); |
| TemplateId->Kind = TNK; |
| TemplateId->LAngleLoc = LAngleLoc; |
| TemplateId->RAngleLoc = RAngleLoc; |
| ParsedTemplateArgument *Args = TemplateId->getTemplateArgs(); |
| for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); |
| Arg != ArgEnd; ++Arg) |
| Args[Arg] = TemplateArgs[Arg]; |
| |
| Id.setTemplateId(TemplateId); |
| return false; |
| } |
| |
| // Bundle the template arguments together. |
| ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(), |
| TemplateArgs.size()); |
| |
| // Constructor and destructor names. |
| Action::TypeResult Type |
| = Actions.ActOnTemplateIdType(Template, NameLoc, |
| LAngleLoc, TemplateArgsPtr, |
| RAngleLoc); |
| if (Type.isInvalid()) |
| return true; |
| |
| if (Id.getKind() == UnqualifiedId::IK_ConstructorName) |
| Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); |
| else |
| Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); |
| |
| return false; |
| } |
| |
| /// \brief Parse an operator-function-id or conversion-function-id as part |
| /// of a C++ unqualified-id. |
| /// |
| /// This routine is responsible only for parsing the operator-function-id or |
| /// conversion-function-id; it does not handle template arguments in any way. |
| /// |
| /// \code |
| /// operator-function-id: [C++ 13.5] |
| /// 'operator' operator |
| /// |
| /// operator: one of |
| /// new delete new[] delete[] |
| /// + - * / % ^ & | ~ |
| /// ! = < > += -= *= /= %= |
| /// ^= &= |= << >> >>= <<= == != |
| /// <= >= && || ++ -- , ->* -> |
| /// () [] |
| /// |
| /// conversion-function-id: [C++ 12.3.2] |
| /// operator conversion-type-id |
| /// |
| /// conversion-type-id: |
| /// type-specifier-seq conversion-declarator[opt] |
| /// |
| /// conversion-declarator: |
| /// ptr-operator conversion-declarator[opt] |
| /// \endcode |
| /// |
| /// \param The nested-name-specifier that preceded this unqualified-id. If |
| /// non-empty, then we are parsing the unqualified-id of a qualified-id. |
| /// |
| /// \param EnteringContext whether we are entering the scope of the |
| /// nested-name-specifier. |
| /// |
| /// \param ObjectType if this unqualified-id occurs within a member access |
| /// expression, the type of the base object whose member is being accessed. |
| /// |
| /// \param Result on a successful parse, contains the parsed unqualified-id. |
| /// |
| /// \returns true if parsing fails, false otherwise. |
| bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, |
| TypeTy *ObjectType, |
| UnqualifiedId &Result) { |
| assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); |
| |
| // Consume the 'operator' keyword. |
| SourceLocation KeywordLoc = ConsumeToken(); |
| |
| // Determine what kind of operator name we have. |
| unsigned SymbolIdx = 0; |
| SourceLocation SymbolLocations[3]; |
| OverloadedOperatorKind Op = OO_None; |
| switch (Tok.getKind()) { |
| case tok::kw_new: |
| case tok::kw_delete: { |
| bool isNew = Tok.getKind() == tok::kw_new; |
| // Consume the 'new' or 'delete'. |
| SymbolLocations[SymbolIdx++] = ConsumeToken(); |
| if (Tok.is(tok::l_square)) { |
| // Consume the '['. |
| SourceLocation LBracketLoc = ConsumeBracket(); |
| // Consume the ']'. |
| SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square, |
| LBracketLoc); |
| if (RBracketLoc.isInvalid()) |
| return true; |
| |
| SymbolLocations[SymbolIdx++] = LBracketLoc; |
| SymbolLocations[SymbolIdx++] = RBracketLoc; |
| Op = isNew? OO_Array_New : OO_Array_Delete; |
| } else { |
| Op = isNew? OO_New : OO_Delete; |
| } |
| break; |
| } |
| |
| #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| case tok::Token: \ |
| SymbolLocations[SymbolIdx++] = ConsumeToken(); \ |
| Op = OO_##Name; \ |
| break; |
| #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) |
| #include "clang/Basic/OperatorKinds.def" |
| |
| case tok::l_paren: { |
| // Consume the '('. |
| SourceLocation LParenLoc = ConsumeParen(); |
| // Consume the ')'. |
| SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, |
| LParenLoc); |
| if (RParenLoc.isInvalid()) |
| return true; |
| |
| SymbolLocations[SymbolIdx++] = LParenLoc; |
| SymbolLocations[SymbolIdx++] = RParenLoc; |
| Op = OO_Call; |
| break; |
| } |
| |
| case tok::l_square: { |
| // Consume the '['. |
| SourceLocation LBracketLoc = ConsumeBracket(); |
| // Consume the ']'. |
| SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square, |
| LBracketLoc); |
| if (RBracketLoc.isInvalid()) |
| return true; |
| |
| SymbolLocations[SymbolIdx++] = LBracketLoc; |
| SymbolLocations[SymbolIdx++] = RBracketLoc; |
| Op = OO_Subscript; |
| break; |
| } |
| |
| case tok::code_completion: { |
| // Code completion for the operator name. |
| Actions.CodeCompleteOperatorName(CurScope); |
| |
| // Consume the operator token. |
| ConsumeToken(); |
| |
| // Don't try to parse any further. |
| return true; |
| } |
| |
| default: |
| break; |
| } |
| |
| if (Op != OO_None) { |
| // We have parsed an operator-function-id. |
| Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); |
| return false; |
| } |
| |
| // Parse a literal-operator-id. |
| // |
| // literal-operator-id: [C++0x 13.5.8] |
| // operator "" identifier |
| |
| if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) { |
| if (Tok.getLength() != 2) |
| Diag(Tok.getLocation(), diag::err_operator_string_not_empty); |
| ConsumeStringToken(); |
| |
| if (Tok.isNot(tok::identifier)) { |
| Diag(Tok.getLocation(), diag::err_expected_ident); |
| return true; |
| } |
| |
| IdentifierInfo *II = Tok.getIdentifierInfo(); |
| Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken()); |
| return false; |
| } |
| |
| // Parse a conversion-function-id. |
| // |
| // conversion-function-id: [C++ 12.3.2] |
| // operator conversion-type-id |
| // |
| // conversion-type-id: |
| // type-specifier-seq conversion-declarator[opt] |
| // |
| // conversion-declarator: |
| // ptr-operator conversion-declarator[opt] |
| |
| // Parse the type-specifier-seq. |
| DeclSpec DS; |
| if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? |
| return true; |
| |
| // Parse the conversion-declarator, which is merely a sequence of |
| // ptr-operators. |
| Declarator D(DS, Declarator::TypeNameContext); |
| ParseDeclaratorInternal(D, /*DirectDeclParser=*/0); |
| |
| // Finish up the type. |
| Action::TypeResult Ty = Actions.ActOnTypeName(CurScope, D); |
| if (Ty.isInvalid()) |
| return true; |
| |
| // Note that this is a conversion-function-id. |
| Result.setConversionFunctionId(KeywordLoc, Ty.get(), |
| D.getSourceRange().getEnd()); |
| return false; |
| } |
| |
| /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the |
| /// name of an entity. |
| /// |
| /// \code |
| /// unqualified-id: [C++ expr.prim.general] |
| /// identifier |
| /// operator-function-id |
| /// conversion-function-id |
| /// [C++0x] literal-operator-id [TODO] |
| /// ~ class-name |
| /// template-id |
| /// |
| /// \endcode |
| /// |
| /// \param The nested-name-specifier that preceded this unqualified-id. If |
| /// non-empty, then we are parsing the unqualified-id of a qualified-id. |
| /// |
| /// \param EnteringContext whether we are entering the scope of the |
| /// nested-name-specifier. |
| /// |
| /// \param AllowDestructorName whether we allow parsing of a destructor name. |
| /// |
| /// \param AllowConstructorName whether we allow parsing a constructor name. |
| /// |
| /// \param ObjectType if this unqualified-id occurs within a member access |
| /// expression, the type of the base object whose member is being accessed. |
| /// |
| /// \param Result on a successful parse, contains the parsed unqualified-id. |
| /// |
| /// \returns true if parsing fails, false otherwise. |
| bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, |
| bool AllowDestructorName, |
| bool AllowConstructorName, |
| TypeTy *ObjectType, |
| UnqualifiedId &Result) { |
| // unqualified-id: |
| // identifier |
| // template-id (when it hasn't already been annotated) |
| if (Tok.is(tok::identifier)) { |
| // Consume the identifier. |
| IdentifierInfo *Id = Tok.getIdentifierInfo(); |
| SourceLocation IdLoc = ConsumeToken(); |
| |
| if (!getLang().CPlusPlus) { |
| // If we're not in C++, only identifiers matter. Record the |
| // identifier and return. |
| Result.setIdentifier(Id, IdLoc); |
| return false; |
| } |
| |
| if (AllowConstructorName && |
| Actions.isCurrentClassName(*Id, CurScope, &SS)) { |
| // We have parsed a constructor name. |
| Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, CurScope, |
| &SS, false), |
| IdLoc, IdLoc); |
| } else { |
| // We have parsed an identifier. |
| Result.setIdentifier(Id, IdLoc); |
| } |
| |
| // If the next token is a '<', we may have a template. |
| if (Tok.is(tok::less)) |
| return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext, |
| ObjectType, Result); |
| |
| return false; |
| } |
| |
| // unqualified-id: |
| // template-id (already parsed and annotated) |
| if (Tok.is(tok::annot_template_id)) { |
| TemplateIdAnnotation *TemplateId |
| = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue()); |
| |
| // If the template-name names the current class, then this is a constructor |
| if (AllowConstructorName && TemplateId->Name && |
| Actions.isCurrentClassName(*TemplateId->Name, CurScope, &SS)) { |
| if (SS.isSet()) { |
| // C++ [class.qual]p2 specifies that a qualified template-name |
| // is taken as the constructor name where a constructor can be |
| // declared. Thus, the template arguments are extraneous, so |
| // complain about them and remove them entirely. |
| Diag(TemplateId->TemplateNameLoc, |
| diag::err_out_of_line_constructor_template_id) |
| << TemplateId->Name |
| << CodeModificationHint::CreateRemoval( |
| SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); |
| Result.setConstructorName(Actions.getTypeName(*TemplateId->Name, |
| TemplateId->TemplateNameLoc, |
| CurScope, |
| &SS, false), |
| TemplateId->TemplateNameLoc, |
| TemplateId->RAngleLoc); |
| TemplateId->Destroy(); |
| ConsumeToken(); |
| return false; |
| } |
| |
| Result.setConstructorTemplateId(TemplateId); |
| ConsumeToken(); |
| return false; |
| } |
| |
| // We have already parsed a template-id; consume the annotation token as |
| // our unqualified-id. |
| Result.setTemplateId(TemplateId); |
| ConsumeToken(); |
| return false; |
| } |
| |
| // unqualified-id: |
| // operator-function-id |
| // conversion-function-id |
| if (Tok.is(tok::kw_operator)) { |
| if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) |
| return true; |
| |
| // If we have an operator-function-id or a literal-operator-id and the next |
| // token is a '<', we may have a |
| // |
| // template-id: |
| // operator-function-id < template-argument-list[opt] > |
| if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId || |
| Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) && |
| Tok.is(tok::less)) |
| return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(), |
| EnteringContext, ObjectType, |
| Result); |
| |
| return false; |
| } |
| |
| if (getLang().CPlusPlus && |
| (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { |
| // C++ [expr.unary.op]p10: |
| // There is an ambiguity in the unary-expression ~X(), where X is a |
| // class-name. The ambiguity is resolved in favor of treating ~ as a |
| // unary complement rather than treating ~X as referring to a destructor. |
| |
| // Parse the '~'. |
| SourceLocation TildeLoc = ConsumeToken(); |
| |
| // Parse the class-name. |
| if (Tok.isNot(tok::identifier)) { |
| Diag(Tok, diag::err_destructor_tilde_identifier); |
| return true; |
| } |
| |
| // Parse the class-name (or template-name in a simple-template-id). |
| IdentifierInfo *ClassName = Tok.getIdentifierInfo(); |
| SourceLocation ClassNameLoc = ConsumeToken(); |
| |
| if (Tok.is(tok::less)) { |
| Result.setDestructorName(TildeLoc, 0, ClassNameLoc); |
| return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc, |
| EnteringContext, ObjectType, Result); |
| } |
| |
| // Note that this is a destructor name. |
| Action::TypeTy *Ty = Actions.getDestructorName(TildeLoc, *ClassName, |
| ClassNameLoc, CurScope, |
| SS, ObjectType, |
| EnteringContext); |
| if (!Ty) |
| return true; |
| |
| Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); |
| return false; |
| } |
| |
| Diag(Tok, diag::err_expected_unqualified_id) |
| << getLang().CPlusPlus; |
| return true; |
| } |
| |
| /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate |
| /// memory in a typesafe manner and call constructors. |
| /// |
| /// This method is called to parse the new expression after the optional :: has |
| /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" |
| /// is its location. Otherwise, "Start" is the location of the 'new' token. |
| /// |
| /// new-expression: |
| /// '::'[opt] 'new' new-placement[opt] new-type-id |
| /// new-initializer[opt] |
| /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' |
| /// new-initializer[opt] |
| /// |
| /// new-placement: |
| /// '(' expression-list ')' |
| /// |
| /// new-type-id: |
| /// type-specifier-seq new-declarator[opt] |
| /// |
| /// new-declarator: |
| /// ptr-operator new-declarator[opt] |
| /// direct-new-declarator |
| /// |
| /// new-initializer: |
| /// '(' expression-list[opt] ')' |
| /// [C++0x] braced-init-list [TODO] |
| /// |
| Parser::OwningExprResult |
| Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { |
| assert(Tok.is(tok::kw_new) && "expected 'new' token"); |
| ConsumeToken(); // Consume 'new' |
| |
| // A '(' now can be a new-placement or the '(' wrapping the type-id in the |
| // second form of new-expression. It can't be a new-type-id. |
| |
| ExprVector PlacementArgs(Actions); |
| SourceLocation PlacementLParen, PlacementRParen; |
| |
| bool ParenTypeId; |
| DeclSpec DS; |
| Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); |
| if (Tok.is(tok::l_paren)) { |
| // If it turns out to be a placement, we change the type location. |
| PlacementLParen = ConsumeParen(); |
| if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { |
| SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); |
| return ExprError(); |
| } |
| |
| PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen); |
| if (PlacementRParen.isInvalid()) { |
| SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); |
| return ExprError(); |
| } |
| |
| if (PlacementArgs.empty()) { |
| // Reset the placement locations. There was no placement. |
| PlacementLParen = PlacementRParen = SourceLocation(); |
| ParenTypeId = true; |
| } else { |
| // We still need the type. |
| if (Tok.is(tok::l_paren)) { |
| SourceLocation LParen = ConsumeParen(); |
| ParseSpecifierQualifierList(DS); |
| DeclaratorInfo.SetSourceRange(DS.getSourceRange()); |
| ParseDeclarator(DeclaratorInfo); |
| MatchRHSPunctuation(tok::r_paren, LParen); |
| ParenTypeId = true; |
| } else { |
| if (ParseCXXTypeSpecifierSeq(DS)) |
| DeclaratorInfo.setInvalidType(true); |
| else { |
| DeclaratorInfo.SetSourceRange(DS.getSourceRange()); |
| ParseDeclaratorInternal(DeclaratorInfo, |
| &Parser::ParseDirectNewDeclarator); |
| } |
| ParenTypeId = false; |
| } |
| } |
| } else { |
| // A new-type-id is a simplified type-id, where essentially the |
| // direct-declarator is replaced by a direct-new-declarator. |
| if (ParseCXXTypeSpecifierSeq(DS)) |
| DeclaratorInfo.setInvalidType(true); |
| else { |
| DeclaratorInfo.SetSourceRange(DS.getSourceRange()); |
| ParseDeclaratorInternal(DeclaratorInfo, |
| &Parser::ParseDirectNewDeclarator); |
| } |
| ParenTypeId = false; |
| } |
| if (DeclaratorInfo.isInvalidType()) { |
| SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); |
| return ExprError(); |
| } |
| |
| ExprVector ConstructorArgs(Actions); |
| SourceLocation ConstructorLParen, ConstructorRParen; |
| |
| if (Tok.is(tok::l_paren)) { |
| ConstructorLParen = ConsumeParen(); |
| if (Tok.isNot(tok::r_paren)) { |
| CommaLocsTy CommaLocs; |
| if (ParseExpressionList(ConstructorArgs, CommaLocs)) { |
| SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); |
| return ExprError(); |
| } |
| } |
| ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen); |
| if (ConstructorRParen.isInvalid()) { |
| SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true); |
| return ExprError(); |
| } |
| } |
| |
| return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, |
| move_arg(PlacementArgs), PlacementRParen, |
| ParenTypeId, DeclaratorInfo, ConstructorLParen, |
| move_arg(ConstructorArgs), ConstructorRParen); |
| } |
| |
| /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be |
| /// passed to ParseDeclaratorInternal. |
| /// |
| /// direct-new-declarator: |
| /// '[' expression ']' |
| /// direct-new-declarator '[' constant-expression ']' |
| /// |
| void Parser::ParseDirectNewDeclarator(Declarator &D) { |
| // Parse the array dimensions. |
| bool first = true; |
| while (Tok.is(tok::l_square)) { |
| SourceLocation LLoc = ConsumeBracket(); |
| OwningExprResult Size(first ? ParseExpression() |
| : ParseConstantExpression()); |
| if (Size.isInvalid()) { |
| // Recover |
| SkipUntil(tok::r_square); |
| return; |
| } |
| first = false; |
| |
| SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc); |
| D.AddTypeInfo(DeclaratorChunk::getArray(0, /*static=*/false, /*star=*/false, |
| Size.release(), LLoc, RLoc), |
| RLoc); |
| |
| if (RLoc.isInvalid()) |
| return; |
| } |
| } |
| |
| /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. |
| /// This ambiguity appears in the syntax of the C++ new operator. |
| /// |
| /// new-expression: |
| /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' |
| /// new-initializer[opt] |
| /// |
| /// new-placement: |
| /// '(' expression-list ')' |
| /// |
| bool Parser::ParseExpressionListOrTypeId(ExprListTy &PlacementArgs, |
| Declarator &D) { |
| // The '(' was already consumed. |
| if (isTypeIdInParens()) { |
| ParseSpecifierQualifierList(D.getMutableDeclSpec()); |
| D.SetSourceRange(D.getDeclSpec().getSourceRange()); |
| ParseDeclarator(D); |
| return D.isInvalidType(); |
| } |
| |
| // It's not a type, it has to be an expression list. |
| // Discard the comma locations - ActOnCXXNew has enough parameters. |
| CommaLocsTy CommaLocs; |
| return ParseExpressionList(PlacementArgs, CommaLocs); |
| } |
| |
| /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used |
| /// to free memory allocated by new. |
| /// |
| /// This method is called to parse the 'delete' expression after the optional |
| /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true |
| /// and "Start" is its location. Otherwise, "Start" is the location of the |
| /// 'delete' token. |
| /// |
| /// delete-expression: |
| /// '::'[opt] 'delete' cast-expression |
| /// '::'[opt] 'delete' '[' ']' cast-expression |
| Parser::OwningExprResult |
| Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { |
| assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); |
| ConsumeToken(); // Consume 'delete' |
| |
| // Array delete? |
| bool ArrayDelete = false; |
| if (Tok.is(tok::l_square)) { |
| ArrayDelete = true; |
| SourceLocation LHS = ConsumeBracket(); |
| SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS); |
| if (RHS.isInvalid()) |
| return ExprError(); |
| } |
| |
| OwningExprResult Operand(ParseCastExpression(false)); |
| if (Operand.isInvalid()) |
| return move(Operand); |
| |
| return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, move(Operand)); |
| } |
| |
| static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) { |
| switch(kind) { |
| default: assert(false && "Not a known unary type trait."); |
| case tok::kw___has_nothrow_assign: return UTT_HasNothrowAssign; |
| case tok::kw___has_nothrow_copy: return UTT_HasNothrowCopy; |
| case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor; |
| case tok::kw___has_trivial_assign: return UTT_HasTrivialAssign; |
| case tok::kw___has_trivial_copy: return UTT_HasTrivialCopy; |
| case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor; |
| case tok::kw___has_trivial_destructor: return UTT_HasTrivialDestructor; |
| case tok::kw___has_virtual_destructor: return UTT_HasVirtualDestructor; |
| case tok::kw___is_abstract: return UTT_IsAbstract; |
| case tok::kw___is_class: return UTT_IsClass; |
| case tok::kw___is_empty: return UTT_IsEmpty; |
| case tok::kw___is_enum: return UTT_IsEnum; |
| case tok::kw___is_pod: return UTT_IsPOD; |
| case tok::kw___is_polymorphic: return UTT_IsPolymorphic; |
| case tok::kw___is_union: return UTT_IsUnion; |
| case tok::kw___is_literal: return UTT_IsLiteral; |
| } |
| } |
| |
| /// ParseUnaryTypeTrait - Parse the built-in unary type-trait |
| /// pseudo-functions that allow implementation of the TR1/C++0x type traits |
| /// templates. |
| /// |
| /// primary-expression: |
| /// [GNU] unary-type-trait '(' type-id ')' |
| /// |
| Parser::OwningExprResult Parser::ParseUnaryTypeTrait() { |
| UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind()); |
| SourceLocation Loc = ConsumeToken(); |
| |
| SourceLocation LParen = Tok.getLocation(); |
| if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen)) |
| return ExprError(); |
| |
| // FIXME: Error reporting absolutely sucks! If the this fails to parse a type |
| // there will be cryptic errors about mismatched parentheses and missing |
| // specifiers. |
| TypeResult Ty = ParseTypeName(); |
| |
| SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen); |
| |
| if (Ty.isInvalid()) |
| return ExprError(); |
| |
| return Actions.ActOnUnaryTypeTrait(UTT, Loc, LParen, Ty.get(), RParen); |
| } |
| |
| /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a |
| /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate |
| /// based on the context past the parens. |
| Parser::OwningExprResult |
| Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, |
| TypeTy *&CastTy, |
| SourceLocation LParenLoc, |
| SourceLocation &RParenLoc) { |
| assert(getLang().CPlusPlus && "Should only be called for C++!"); |
| assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); |
| assert(isTypeIdInParens() && "Not a type-id!"); |
| |
| OwningExprResult Result(Actions, true); |
| CastTy = 0; |
| |
| // We need to disambiguate a very ugly part of the C++ syntax: |
| // |
| // (T())x; - type-id |
| // (T())*x; - type-id |
| // (T())/x; - expression |
| // (T()); - expression |
| // |
| // The bad news is that we cannot use the specialized tentative parser, since |
| // it can only verify that the thing inside the parens can be parsed as |
| // type-id, it is not useful for determining the context past the parens. |
| // |
| // The good news is that the parser can disambiguate this part without |
| // making any unnecessary Action calls. |
| // |
| // It uses a scheme similar to parsing inline methods. The parenthesized |
| // tokens are cached, the context that follows is determined (possibly by |
| // parsing a cast-expression), and then we re-introduce the cached tokens |
| // into the token stream and parse them appropriately. |
| |
| ParenParseOption ParseAs; |
| CachedTokens Toks; |
| |
| // Store the tokens of the parentheses. We will parse them after we determine |
| // the context that follows them. |
| if (!ConsumeAndStoreUntil(tok::r_paren, tok::unknown, Toks, tok::semi)) { |
| // We didn't find the ')' we expected. |
| MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| return ExprError(); |
| } |
| |
| if (Tok.is(tok::l_brace)) { |
| ParseAs = CompoundLiteral; |
| } else { |
| bool NotCastExpr; |
| // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression |
| if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { |
| NotCastExpr = true; |
| } else { |
| // Try parsing the cast-expression that may follow. |
| // If it is not a cast-expression, NotCastExpr will be true and no token |
| // will be consumed. |
| Result = ParseCastExpression(false/*isUnaryExpression*/, |
| false/*isAddressofOperand*/, |
| NotCastExpr, false); |
| } |
| |
| // If we parsed a cast-expression, it's really a type-id, otherwise it's |
| // an expression. |
| ParseAs = NotCastExpr ? SimpleExpr : CastExpr; |
| } |
| |
| // The current token should go after the cached tokens. |
| Toks.push_back(Tok); |
| // Re-enter the stored parenthesized tokens into the token stream, so we may |
| // parse them now. |
| PP.EnterTokenStream(Toks.data(), Toks.size(), |
| true/*DisableMacroExpansion*/, false/*OwnsTokens*/); |
| // Drop the current token and bring the first cached one. It's the same token |
| // as when we entered this function. |
| ConsumeAnyToken(); |
| |
| if (ParseAs >= CompoundLiteral) { |
| TypeResult Ty = ParseTypeName(); |
| |
| // Match the ')'. |
| if (Tok.is(tok::r_paren)) |
| RParenLoc = ConsumeParen(); |
| else |
| MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| |
| if (ParseAs == CompoundLiteral) { |
| ExprType = CompoundLiteral; |
| return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc); |
| } |
| |
| // We parsed '(' type-id ')' and the thing after it wasn't a '{'. |
| assert(ParseAs == CastExpr); |
| |
| if (Ty.isInvalid()) |
| return ExprError(); |
| |
| CastTy = Ty.get(); |
| |
| // Result is what ParseCastExpression returned earlier. |
| if (!Result.isInvalid()) |
| Result = Actions.ActOnCastExpr(CurScope, LParenLoc, CastTy, RParenLoc, |
| move(Result)); |
| return move(Result); |
| } |
| |
| // Not a compound literal, and not followed by a cast-expression. |
| assert(ParseAs == SimpleExpr); |
| |
| ExprType = SimpleExpr; |
| Result = ParseExpression(); |
| if (!Result.isInvalid() && Tok.is(tok::r_paren)) |
| Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), move(Result)); |
| |
| // Match the ')'. |
| if (Result.isInvalid()) { |
| SkipUntil(tok::r_paren); |
| return ExprError(); |
| } |
| |
| if (Tok.is(tok::r_paren)) |
| RParenLoc = ConsumeParen(); |
| else |
| MatchRHSPunctuation(tok::r_paren, LParenLoc); |
| |
| return move(Result); |
| } |