| //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements semantic analysis for C++ templates. |
| //===----------------------------------------------------------------------===/ |
| |
| #include "Sema.h" |
| #include "Lookup.h" |
| #include "TreeTransform.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Template.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "llvm/ADT/StringExtras.h" |
| using namespace clang; |
| |
| /// \brief Determine whether the declaration found is acceptable as the name |
| /// of a template and, if so, return that template declaration. Otherwise, |
| /// returns NULL. |
| static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) { |
| if (!D) |
| return 0; |
| |
| if (isa<TemplateDecl>(D)) |
| return D; |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { |
| // C++ [temp.local]p1: |
| // Like normal (non-template) classes, class templates have an |
| // injected-class-name (Clause 9). The injected-class-name |
| // can be used with or without a template-argument-list. When |
| // it is used without a template-argument-list, it is |
| // equivalent to the injected-class-name followed by the |
| // template-parameters of the class template enclosed in |
| // <>. When it is used with a template-argument-list, it |
| // refers to the specified class template specialization, |
| // which could be the current specialization or another |
| // specialization. |
| if (Record->isInjectedClassName()) { |
| Record = cast<CXXRecordDecl>(Record->getDeclContext()); |
| if (Record->getDescribedClassTemplate()) |
| return Record->getDescribedClassTemplate(); |
| |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(Record)) |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| return 0; |
| } |
| |
| return 0; |
| } |
| |
| static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) { |
| LookupResult::Filter filter = R.makeFilter(); |
| while (filter.hasNext()) { |
| NamedDecl *Orig = filter.next(); |
| NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl()); |
| if (!Repl) |
| filter.erase(); |
| else if (Repl != Orig) |
| filter.replace(Repl); |
| } |
| filter.done(); |
| } |
| |
| TemplateNameKind Sema::isTemplateName(Scope *S, |
| const CXXScopeSpec &SS, |
| UnqualifiedId &Name, |
| TypeTy *ObjectTypePtr, |
| bool EnteringContext, |
| TemplateTy &TemplateResult) { |
| assert(getLangOptions().CPlusPlus && "No template names in C!"); |
| |
| DeclarationName TName; |
| |
| switch (Name.getKind()) { |
| case UnqualifiedId::IK_Identifier: |
| TName = DeclarationName(Name.Identifier); |
| break; |
| |
| case UnqualifiedId::IK_OperatorFunctionId: |
| TName = Context.DeclarationNames.getCXXOperatorName( |
| Name.OperatorFunctionId.Operator); |
| break; |
| |
| case UnqualifiedId::IK_LiteralOperatorId: |
| TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); |
| break; |
| |
| default: |
| return TNK_Non_template; |
| } |
| |
| QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr); |
| |
| LookupResult R(*this, TName, Name.getSourceRange().getBegin(), |
| LookupOrdinaryName); |
| R.suppressDiagnostics(); |
| LookupTemplateName(R, S, SS, ObjectType, EnteringContext); |
| if (R.empty()) |
| return TNK_Non_template; |
| |
| TemplateName Template; |
| TemplateNameKind TemplateKind; |
| |
| unsigned ResultCount = R.end() - R.begin(); |
| if (ResultCount > 1) { |
| // We assume that we'll preserve the qualifier from a function |
| // template name in other ways. |
| Template = Context.getOverloadedTemplateName(R.begin(), R.end()); |
| TemplateKind = TNK_Function_template; |
| } else { |
| TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); |
| |
| if (SS.isSet() && !SS.isInvalid()) { |
| NestedNameSpecifier *Qualifier |
| = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| Template = Context.getQualifiedTemplateName(Qualifier, false, TD); |
| } else { |
| Template = TemplateName(TD); |
| } |
| |
| if (isa<FunctionTemplateDecl>(TD)) |
| TemplateKind = TNK_Function_template; |
| else { |
| assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD)); |
| TemplateKind = TNK_Type_template; |
| } |
| } |
| |
| TemplateResult = TemplateTy::make(Template); |
| return TemplateKind; |
| } |
| |
| bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, |
| SourceLocation IILoc, |
| Scope *S, |
| const CXXScopeSpec *SS, |
| TemplateTy &SuggestedTemplate, |
| TemplateNameKind &SuggestedKind) { |
| // We can't recover unless there's a dependent scope specifier preceding the |
| // template name. |
| if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || |
| computeDeclContext(*SS)) |
| return false; |
| |
| // The code is missing a 'template' keyword prior to the dependent template |
| // name. |
| NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); |
| Diag(IILoc, diag::err_template_kw_missing) |
| << Qualifier << II.getName() |
| << CodeModificationHint::CreateInsertion(IILoc, "template "); |
| SuggestedTemplate |
| = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); |
| SuggestedKind = TNK_Dependent_template_name; |
| return true; |
| } |
| |
| void Sema::LookupTemplateName(LookupResult &Found, |
| Scope *S, const CXXScopeSpec &SS, |
| QualType ObjectType, |
| bool EnteringContext) { |
| // Determine where to perform name lookup |
| DeclContext *LookupCtx = 0; |
| bool isDependent = false; |
| if (!ObjectType.isNull()) { |
| // This nested-name-specifier occurs in a member access expression, e.g., |
| // x->B::f, and we are looking into the type of the object. |
| assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); |
| LookupCtx = computeDeclContext(ObjectType); |
| isDependent = ObjectType->isDependentType(); |
| assert((isDependent || !ObjectType->isIncompleteType()) && |
| "Caller should have completed object type"); |
| } else if (SS.isSet()) { |
| // This nested-name-specifier occurs after another nested-name-specifier, |
| // so long into the context associated with the prior nested-name-specifier. |
| LookupCtx = computeDeclContext(SS, EnteringContext); |
| isDependent = isDependentScopeSpecifier(SS); |
| |
| // The declaration context must be complete. |
| if (LookupCtx && RequireCompleteDeclContext(SS)) |
| return; |
| } |
| |
| bool ObjectTypeSearchedInScope = false; |
| if (LookupCtx) { |
| // Perform "qualified" name lookup into the declaration context we |
| // computed, which is either the type of the base of a member access |
| // expression or the declaration context associated with a prior |
| // nested-name-specifier. |
| LookupQualifiedName(Found, LookupCtx); |
| |
| if (!ObjectType.isNull() && Found.empty()) { |
| // C++ [basic.lookup.classref]p1: |
| // In a class member access expression (5.2.5), if the . or -> token is |
| // immediately followed by an identifier followed by a <, the |
| // identifier must be looked up to determine whether the < is the |
| // beginning of a template argument list (14.2) or a less-than operator. |
| // The identifier is first looked up in the class of the object |
| // expression. If the identifier is not found, it is then looked up in |
| // the context of the entire postfix-expression and shall name a class |
| // or function template. |
| // |
| // FIXME: When we're instantiating a template, do we actually have to |
| // look in the scope of the template? Seems fishy... |
| if (S) LookupName(Found, S); |
| ObjectTypeSearchedInScope = true; |
| } |
| } else if (isDependent) { |
| // We cannot look into a dependent object type or nested nme |
| // specifier. |
| return; |
| } else { |
| // Perform unqualified name lookup in the current scope. |
| LookupName(Found, S); |
| } |
| |
| // FIXME: Cope with ambiguous name-lookup results. |
| assert(!Found.isAmbiguous() && |
| "Cannot handle template name-lookup ambiguities"); |
| |
| if (Found.empty() && !isDependent) { |
| // If we did not find any names, attempt to correct any typos. |
| DeclarationName Name = Found.getLookupName(); |
| if (CorrectTypo(Found, S, &SS, LookupCtx)) { |
| FilterAcceptableTemplateNames(Context, Found); |
| if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) { |
| if (LookupCtx) |
| Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) |
| << Name << LookupCtx << Found.getLookupName() << SS.getRange() |
| << CodeModificationHint::CreateReplacement(Found.getNameLoc(), |
| Found.getLookupName().getAsString()); |
| else |
| Diag(Found.getNameLoc(), diag::err_no_template_suggest) |
| << Name << Found.getLookupName() |
| << CodeModificationHint::CreateReplacement(Found.getNameLoc(), |
| Found.getLookupName().getAsString()); |
| if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) |
| Diag(Template->getLocation(), diag::note_previous_decl) |
| << Template->getDeclName(); |
| } else |
| Found.clear(); |
| } else { |
| Found.clear(); |
| } |
| } |
| |
| FilterAcceptableTemplateNames(Context, Found); |
| if (Found.empty()) |
| return; |
| |
| if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) { |
| // C++ [basic.lookup.classref]p1: |
| // [...] If the lookup in the class of the object expression finds a |
| // template, the name is also looked up in the context of the entire |
| // postfix-expression and [...] |
| // |
| LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), |
| LookupOrdinaryName); |
| LookupName(FoundOuter, S); |
| FilterAcceptableTemplateNames(Context, FoundOuter); |
| // FIXME: Handle ambiguities in this lookup better |
| |
| if (FoundOuter.empty()) { |
| // - if the name is not found, the name found in the class of the |
| // object expression is used, otherwise |
| } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) { |
| // - if the name is found in the context of the entire |
| // postfix-expression and does not name a class template, the name |
| // found in the class of the object expression is used, otherwise |
| } else { |
| // - if the name found is a class template, it must refer to the same |
| // entity as the one found in the class of the object expression, |
| // otherwise the program is ill-formed. |
| if (!Found.isSingleResult() || |
| Found.getFoundDecl()->getCanonicalDecl() |
| != FoundOuter.getFoundDecl()->getCanonicalDecl()) { |
| Diag(Found.getNameLoc(), |
| diag::err_nested_name_member_ref_lookup_ambiguous) |
| << Found.getLookupName(); |
| Diag(Found.getRepresentativeDecl()->getLocation(), |
| diag::note_ambig_member_ref_object_type) |
| << ObjectType; |
| Diag(FoundOuter.getFoundDecl()->getLocation(), |
| diag::note_ambig_member_ref_scope); |
| |
| // Recover by taking the template that we found in the object |
| // expression's type. |
| } |
| } |
| } |
| } |
| |
| /// ActOnDependentIdExpression - Handle a dependent id-expression that |
| /// was just parsed. This is only possible with an explicit scope |
| /// specifier naming a dependent type. |
| Sema::OwningExprResult |
| Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, |
| DeclarationName Name, |
| SourceLocation NameLoc, |
| bool isAddressOfOperand, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| NestedNameSpecifier *Qualifier |
| = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| |
| if (!isAddressOfOperand && |
| isa<CXXMethodDecl>(CurContext) && |
| cast<CXXMethodDecl>(CurContext)->isInstance()) { |
| QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context); |
| |
| // Since the 'this' expression is synthesized, we don't need to |
| // perform the double-lookup check. |
| NamedDecl *FirstQualifierInScope = 0; |
| |
| return Owned(CXXDependentScopeMemberExpr::Create(Context, |
| /*This*/ 0, ThisType, |
| /*IsArrow*/ true, |
| /*Op*/ SourceLocation(), |
| Qualifier, SS.getRange(), |
| FirstQualifierInScope, |
| Name, NameLoc, |
| TemplateArgs)); |
| } |
| |
| return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs); |
| } |
| |
| Sema::OwningExprResult |
| Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, |
| DeclarationName Name, |
| SourceLocation NameLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| return Owned(DependentScopeDeclRefExpr::Create(Context, |
| static_cast<NestedNameSpecifier*>(SS.getScopeRep()), |
| SS.getRange(), |
| Name, NameLoc, |
| TemplateArgs)); |
| } |
| |
| /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining |
| /// that the template parameter 'PrevDecl' is being shadowed by a new |
| /// declaration at location Loc. Returns true to indicate that this is |
| /// an error, and false otherwise. |
| bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { |
| assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); |
| |
| // Microsoft Visual C++ permits template parameters to be shadowed. |
| if (getLangOptions().Microsoft) |
| return false; |
| |
| // C++ [temp.local]p4: |
| // A template-parameter shall not be redeclared within its |
| // scope (including nested scopes). |
| Diag(Loc, diag::err_template_param_shadow) |
| << cast<NamedDecl>(PrevDecl)->getDeclName(); |
| Diag(PrevDecl->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset |
| /// the parameter D to reference the templated declaration and return a pointer |
| /// to the template declaration. Otherwise, do nothing to D and return null. |
| TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) { |
| if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) { |
| D = DeclPtrTy::make(Temp->getTemplatedDecl()); |
| return Temp; |
| } |
| return 0; |
| } |
| |
| static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, |
| const ParsedTemplateArgument &Arg) { |
| |
| switch (Arg.getKind()) { |
| case ParsedTemplateArgument::Type: { |
| TypeSourceInfo *DI; |
| QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); |
| if (!DI) |
| DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); |
| return TemplateArgumentLoc(TemplateArgument(T), DI); |
| } |
| |
| case ParsedTemplateArgument::NonType: { |
| Expr *E = static_cast<Expr *>(Arg.getAsExpr()); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case ParsedTemplateArgument::Template: { |
| TemplateName Template |
| = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get()); |
| return TemplateArgumentLoc(TemplateArgument(Template), |
| Arg.getScopeSpec().getRange(), |
| Arg.getLocation()); |
| } |
| } |
| |
| llvm_unreachable("Unhandled parsed template argument"); |
| return TemplateArgumentLoc(); |
| } |
| |
| /// \brief Translates template arguments as provided by the parser |
| /// into template arguments used by semantic analysis. |
| void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, |
| TemplateArgumentListInfo &TemplateArgs) { |
| for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) |
| TemplateArgs.addArgument(translateTemplateArgument(*this, |
| TemplateArgsIn[I])); |
| } |
| |
| /// ActOnTypeParameter - Called when a C++ template type parameter |
| /// (e.g., "typename T") has been parsed. Typename specifies whether |
| /// the keyword "typename" was used to declare the type parameter |
| /// (otherwise, "class" was used), and KeyLoc is the location of the |
| /// "class" or "typename" keyword. ParamName is the name of the |
| /// parameter (NULL indicates an unnamed template parameter) and |
| /// ParamName is the location of the parameter name (if any). |
| /// If the type parameter has a default argument, it will be added |
| /// later via ActOnTypeParameterDefault. |
| Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, |
| SourceLocation EllipsisLoc, |
| SourceLocation KeyLoc, |
| IdentifierInfo *ParamName, |
| SourceLocation ParamNameLoc, |
| unsigned Depth, unsigned Position) { |
| assert(S->isTemplateParamScope() && |
| "Template type parameter not in template parameter scope!"); |
| bool Invalid = false; |
| |
| if (ParamName) { |
| NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) |
| Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc, |
| PrevDecl); |
| } |
| |
| SourceLocation Loc = ParamNameLoc; |
| if (!ParamName) |
| Loc = KeyLoc; |
| |
| TemplateTypeParmDecl *Param |
| = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
| Loc, Depth, Position, ParamName, Typename, |
| Ellipsis); |
| if (Invalid) |
| Param->setInvalidDecl(); |
| |
| if (ParamName) { |
| // Add the template parameter into the current scope. |
| S->AddDecl(DeclPtrTy::make(Param)); |
| IdResolver.AddDecl(Param); |
| } |
| |
| return DeclPtrTy::make(Param); |
| } |
| |
| /// ActOnTypeParameterDefault - Adds a default argument (the type |
| /// Default) to the given template type parameter (TypeParam). |
| void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam, |
| SourceLocation EqualLoc, |
| SourceLocation DefaultLoc, |
| TypeTy *DefaultT) { |
| TemplateTypeParmDecl *Parm |
| = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>()); |
| |
| TypeSourceInfo *DefaultTInfo; |
| GetTypeFromParser(DefaultT, &DefaultTInfo); |
| |
| assert(DefaultTInfo && "expected source information for type"); |
| |
| // C++0x [temp.param]p9: |
| // A default template-argument may be specified for any kind of |
| // template-parameter that is not a template parameter pack. |
| if (Parm->isParameterPack()) { |
| Diag(DefaultLoc, diag::err_template_param_pack_default_arg); |
| return; |
| } |
| |
| // C++ [temp.param]p14: |
| // A template-parameter shall not be used in its own default argument. |
| // FIXME: Implement this check! Needs a recursive walk over the types. |
| |
| // Check the template argument itself. |
| if (CheckTemplateArgument(Parm, DefaultTInfo)) { |
| Parm->setInvalidDecl(); |
| return; |
| } |
| |
| Parm->setDefaultArgument(DefaultTInfo, false); |
| } |
| |
| /// \brief Check that the type of a non-type template parameter is |
| /// well-formed. |
| /// |
| /// \returns the (possibly-promoted) parameter type if valid; |
| /// otherwise, produces a diagnostic and returns a NULL type. |
| QualType |
| Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { |
| // C++ [temp.param]p4: |
| // |
| // A non-type template-parameter shall have one of the following |
| // (optionally cv-qualified) types: |
| // |
| // -- integral or enumeration type, |
| if (T->isIntegralType() || T->isEnumeralType() || |
| // -- pointer to object or pointer to function, |
| (T->isPointerType() && |
| (T->getAs<PointerType>()->getPointeeType()->isObjectType() || |
| T->getAs<PointerType>()->getPointeeType()->isFunctionType())) || |
| // -- reference to object or reference to function, |
| T->isReferenceType() || |
| // -- pointer to member. |
| T->isMemberPointerType() || |
| // If T is a dependent type, we can't do the check now, so we |
| // assume that it is well-formed. |
| T->isDependentType()) |
| return T; |
| // C++ [temp.param]p8: |
| // |
| // A non-type template-parameter of type "array of T" or |
| // "function returning T" is adjusted to be of type "pointer to |
| // T" or "pointer to function returning T", respectively. |
| else if (T->isArrayType()) |
| // FIXME: Keep the type prior to promotion? |
| return Context.getArrayDecayedType(T); |
| else if (T->isFunctionType()) |
| // FIXME: Keep the type prior to promotion? |
| return Context.getPointerType(T); |
| |
| Diag(Loc, diag::err_template_nontype_parm_bad_type) |
| << T; |
| |
| return QualType(); |
| } |
| |
| /// ActOnNonTypeTemplateParameter - Called when a C++ non-type |
| /// template parameter (e.g., "int Size" in "template<int Size> |
| /// class Array") has been parsed. S is the current scope and D is |
| /// the parsed declarator. |
| Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, |
| unsigned Depth, |
| unsigned Position) { |
| TypeSourceInfo *TInfo = 0; |
| QualType T = GetTypeForDeclarator(D, S, &TInfo); |
| |
| assert(S->isTemplateParamScope() && |
| "Non-type template parameter not in template parameter scope!"); |
| bool Invalid = false; |
| |
| IdentifierInfo *ParamName = D.getIdentifier(); |
| if (ParamName) { |
| NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName); |
| if (PrevDecl && PrevDecl->isTemplateParameter()) |
| Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), |
| PrevDecl); |
| } |
| |
| T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); |
| if (T.isNull()) { |
| T = Context.IntTy; // Recover with an 'int' type. |
| Invalid = true; |
| } |
| |
| NonTypeTemplateParmDecl *Param |
| = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
| D.getIdentifierLoc(), |
| Depth, Position, ParamName, T, TInfo); |
| if (Invalid) |
| Param->setInvalidDecl(); |
| |
| if (D.getIdentifier()) { |
| // Add the template parameter into the current scope. |
| S->AddDecl(DeclPtrTy::make(Param)); |
| IdResolver.AddDecl(Param); |
| } |
| return DeclPtrTy::make(Param); |
| } |
| |
| /// \brief Adds a default argument to the given non-type template |
| /// parameter. |
| void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD, |
| SourceLocation EqualLoc, |
| ExprArg DefaultE) { |
| NonTypeTemplateParmDecl *TemplateParm |
| = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>()); |
| Expr *Default = static_cast<Expr *>(DefaultE.get()); |
| |
| // C++ [temp.param]p14: |
| // A template-parameter shall not be used in its own default argument. |
| // FIXME: Implement this check! Needs a recursive walk over the types. |
| |
| // Check the well-formedness of the default template argument. |
| TemplateArgument Converted; |
| if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default, |
| Converted)) { |
| TemplateParm->setInvalidDecl(); |
| return; |
| } |
| |
| TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>()); |
| } |
| |
| |
| /// ActOnTemplateTemplateParameter - Called when a C++ template template |
| /// parameter (e.g. T in template <template <typename> class T> class array) |
| /// has been parsed. S is the current scope. |
| Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S, |
| SourceLocation TmpLoc, |
| TemplateParamsTy *Params, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| unsigned Depth, |
| unsigned Position) { |
| assert(S->isTemplateParamScope() && |
| "Template template parameter not in template parameter scope!"); |
| |
| // Construct the parameter object. |
| TemplateTemplateParmDecl *Param = |
| TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
| TmpLoc, Depth, Position, Name, |
| (TemplateParameterList*)Params); |
| |
| // Make sure the parameter is valid. |
| // FIXME: Decl object is not currently invalidated anywhere so this doesn't |
| // do anything yet. However, if the template parameter list or (eventual) |
| // default value is ever invalidated, that will propagate here. |
| bool Invalid = false; |
| if (Invalid) { |
| Param->setInvalidDecl(); |
| } |
| |
| // If the tt-param has a name, then link the identifier into the scope |
| // and lookup mechanisms. |
| if (Name) { |
| S->AddDecl(DeclPtrTy::make(Param)); |
| IdResolver.AddDecl(Param); |
| } |
| |
| return DeclPtrTy::make(Param); |
| } |
| |
| /// \brief Adds a default argument to the given template template |
| /// parameter. |
| void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD, |
| SourceLocation EqualLoc, |
| const ParsedTemplateArgument &Default) { |
| TemplateTemplateParmDecl *TemplateParm |
| = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>()); |
| |
| // C++ [temp.param]p14: |
| // A template-parameter shall not be used in its own default argument. |
| // FIXME: Implement this check! Needs a recursive walk over the types. |
| |
| // Check only that we have a template template argument. We don't want to |
| // try to check well-formedness now, because our template template parameter |
| // might have dependent types in its template parameters, which we wouldn't |
| // be able to match now. |
| // |
| // If none of the template template parameter's template arguments mention |
| // other template parameters, we could actually perform more checking here. |
| // However, it isn't worth doing. |
| TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); |
| if (DefaultArg.getArgument().getAsTemplate().isNull()) { |
| Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) |
| << DefaultArg.getSourceRange(); |
| return; |
| } |
| |
| TemplateParm->setDefaultArgument(DefaultArg); |
| } |
| |
| /// ActOnTemplateParameterList - Builds a TemplateParameterList that |
| /// contains the template parameters in Params/NumParams. |
| Sema::TemplateParamsTy * |
| Sema::ActOnTemplateParameterList(unsigned Depth, |
| SourceLocation ExportLoc, |
| SourceLocation TemplateLoc, |
| SourceLocation LAngleLoc, |
| DeclPtrTy *Params, unsigned NumParams, |
| SourceLocation RAngleLoc) { |
| if (ExportLoc.isValid()) |
| Diag(ExportLoc, diag::warn_template_export_unsupported); |
| |
| return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, |
| (NamedDecl**)Params, NumParams, |
| RAngleLoc); |
| } |
| |
| Sema::DeclResult |
| Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, |
| SourceLocation KWLoc, const CXXScopeSpec &SS, |
| IdentifierInfo *Name, SourceLocation NameLoc, |
| AttributeList *Attr, |
| TemplateParameterList *TemplateParams, |
| AccessSpecifier AS) { |
| assert(TemplateParams && TemplateParams->size() > 0 && |
| "No template parameters"); |
| assert(TUK != TUK_Reference && "Can only declare or define class templates"); |
| bool Invalid = false; |
| |
| // Check that we can declare a template here. |
| if (CheckTemplateDeclScope(S, TemplateParams)) |
| return true; |
| |
| TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec); |
| assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type"); |
| |
| // There is no such thing as an unnamed class template. |
| if (!Name) { |
| Diag(KWLoc, diag::err_template_unnamed_class); |
| return true; |
| } |
| |
| // Find any previous declaration with this name. |
| DeclContext *SemanticContext; |
| LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, |
| ForRedeclaration); |
| if (SS.isNotEmpty() && !SS.isInvalid()) { |
| if (RequireCompleteDeclContext(SS)) |
| return true; |
| |
| SemanticContext = computeDeclContext(SS, true); |
| if (!SemanticContext) { |
| // FIXME: Produce a reasonable diagnostic here |
| return true; |
| } |
| |
| LookupQualifiedName(Previous, SemanticContext); |
| } else { |
| SemanticContext = CurContext; |
| LookupName(Previous, S); |
| } |
| |
| assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?"); |
| NamedDecl *PrevDecl = 0; |
| if (Previous.begin() != Previous.end()) |
| PrevDecl = *Previous.begin(); |
| |
| // If there is a previous declaration with the same name, check |
| // whether this is a valid redeclaration. |
| ClassTemplateDecl *PrevClassTemplate |
| = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); |
| |
| // We may have found the injected-class-name of a class template, |
| // class template partial specialization, or class template specialization. |
| // In these cases, grab the template that is being defined or specialized. |
| if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && |
| cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { |
| PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); |
| PrevClassTemplate |
| = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); |
| if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { |
| PrevClassTemplate |
| = cast<ClassTemplateSpecializationDecl>(PrevDecl) |
| ->getSpecializedTemplate(); |
| } |
| } |
| |
| if (TUK == TUK_Friend) { |
| // C++ [namespace.memdef]p3: |
| // [...] When looking for a prior declaration of a class or a function |
| // declared as a friend, and when the name of the friend class or |
| // function is neither a qualified name nor a template-id, scopes outside |
| // the innermost enclosing namespace scope are not considered. |
| DeclContext *OutermostContext = CurContext; |
| while (!OutermostContext->isFileContext()) |
| OutermostContext = OutermostContext->getLookupParent(); |
| |
| if (PrevDecl && |
| (OutermostContext->Equals(PrevDecl->getDeclContext()) || |
| OutermostContext->Encloses(PrevDecl->getDeclContext()))) { |
| SemanticContext = PrevDecl->getDeclContext(); |
| } else { |
| // Declarations in outer scopes don't matter. However, the outermost |
| // context we computed is the semantic context for our new |
| // declaration. |
| PrevDecl = PrevClassTemplate = 0; |
| SemanticContext = OutermostContext; |
| } |
| |
| if (CurContext->isDependentContext()) { |
| // If this is a dependent context, we don't want to link the friend |
| // class template to the template in scope, because that would perform |
| // checking of the template parameter lists that can't be performed |
| // until the outer context is instantiated. |
| PrevDecl = PrevClassTemplate = 0; |
| } |
| } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) |
| PrevDecl = PrevClassTemplate = 0; |
| |
| if (PrevClassTemplate) { |
| // Ensure that the template parameter lists are compatible. |
| if (!TemplateParameterListsAreEqual(TemplateParams, |
| PrevClassTemplate->getTemplateParameters(), |
| /*Complain=*/true, |
| TPL_TemplateMatch)) |
| return true; |
| |
| // C++ [temp.class]p4: |
| // In a redeclaration, partial specialization, explicit |
| // specialization or explicit instantiation of a class template, |
| // the class-key shall agree in kind with the original class |
| // template declaration (7.1.5.3). |
| RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); |
| if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << Name |
| << CodeModificationHint::CreateReplacement(KWLoc, |
| PrevRecordDecl->getKindName()); |
| Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); |
| Kind = PrevRecordDecl->getTagKind(); |
| } |
| |
| // Check for redefinition of this class template. |
| if (TUK == TUK_Definition) { |
| if (TagDecl *Def = PrevRecordDecl->getDefinition()) { |
| Diag(NameLoc, diag::err_redefinition) << Name; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| // FIXME: Would it make sense to try to "forget" the previous |
| // definition, as part of error recovery? |
| return true; |
| } |
| } |
| } else if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| // Maybe we will complain about the shadowed template parameter. |
| DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); |
| // Just pretend that we didn't see the previous declaration. |
| PrevDecl = 0; |
| } else if (PrevDecl) { |
| // C++ [temp]p5: |
| // A class template shall not have the same name as any other |
| // template, class, function, object, enumeration, enumerator, |
| // namespace, or type in the same scope (3.3), except as specified |
| // in (14.5.4). |
| Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
| Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| return true; |
| } |
| |
| // Check the template parameter list of this declaration, possibly |
| // merging in the template parameter list from the previous class |
| // template declaration. |
| if (CheckTemplateParameterList(TemplateParams, |
| PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, |
| TPC_ClassTemplate)) |
| Invalid = true; |
| |
| // FIXME: If we had a scope specifier, we better have a previous template |
| // declaration! |
| |
| CXXRecordDecl *NewClass = |
| CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc, |
| PrevClassTemplate? |
| PrevClassTemplate->getTemplatedDecl() : 0, |
| /*DelayTypeCreation=*/true); |
| |
| ClassTemplateDecl *NewTemplate |
| = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, |
| DeclarationName(Name), TemplateParams, |
| NewClass, PrevClassTemplate); |
| NewClass->setDescribedClassTemplate(NewTemplate); |
| |
| // Build the type for the class template declaration now. |
| QualType T = |
| Context.getTypeDeclType(NewClass, |
| PrevClassTemplate? |
| PrevClassTemplate->getTemplatedDecl() : 0); |
| assert(T->isDependentType() && "Class template type is not dependent?"); |
| (void)T; |
| |
| // If we are providing an explicit specialization of a member that is a |
| // class template, make a note of that. |
| if (PrevClassTemplate && |
| PrevClassTemplate->getInstantiatedFromMemberTemplate()) |
| PrevClassTemplate->setMemberSpecialization(); |
| |
| // Set the access specifier. |
| if (!Invalid && TUK != TUK_Friend) |
| SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); |
| |
| // Set the lexical context of these templates |
| NewClass->setLexicalDeclContext(CurContext); |
| NewTemplate->setLexicalDeclContext(CurContext); |
| |
| if (TUK == TUK_Definition) |
| NewClass->startDefinition(); |
| |
| if (Attr) |
| ProcessDeclAttributeList(S, NewClass, Attr); |
| |
| if (TUK != TUK_Friend) |
| PushOnScopeChains(NewTemplate, S); |
| else { |
| if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { |
| NewTemplate->setAccess(PrevClassTemplate->getAccess()); |
| NewClass->setAccess(PrevClassTemplate->getAccess()); |
| } |
| |
| NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ |
| PrevClassTemplate != NULL); |
| |
| // Friend templates are visible in fairly strange ways. |
| if (!CurContext->isDependentContext()) { |
| DeclContext *DC = SemanticContext->getLookupContext(); |
| DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false); |
| if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| PushOnScopeChains(NewTemplate, EnclosingScope, |
| /* AddToContext = */ false); |
| } |
| |
| FriendDecl *Friend = FriendDecl::Create(Context, CurContext, |
| NewClass->getLocation(), |
| NewTemplate, |
| /*FIXME:*/NewClass->getLocation()); |
| Friend->setAccess(AS_public); |
| CurContext->addDecl(Friend); |
| } |
| |
| if (Invalid) { |
| NewTemplate->setInvalidDecl(); |
| NewClass->setInvalidDecl(); |
| } |
| return DeclPtrTy::make(NewTemplate); |
| } |
| |
| /// \brief Diagnose the presence of a default template argument on a |
| /// template parameter, which is ill-formed in certain contexts. |
| /// |
| /// \returns true if the default template argument should be dropped. |
| static bool DiagnoseDefaultTemplateArgument(Sema &S, |
| Sema::TemplateParamListContext TPC, |
| SourceLocation ParamLoc, |
| SourceRange DefArgRange) { |
| switch (TPC) { |
| case Sema::TPC_ClassTemplate: |
| return false; |
| |
| case Sema::TPC_FunctionTemplate: |
| // C++ [temp.param]p9: |
| // A default template-argument shall not be specified in a |
| // function template declaration or a function template |
| // definition [...] |
| // (This sentence is not in C++0x, per DR226). |
| if (!S.getLangOptions().CPlusPlus0x) |
| S.Diag(ParamLoc, |
| diag::err_template_parameter_default_in_function_template) |
| << DefArgRange; |
| return false; |
| |
| case Sema::TPC_ClassTemplateMember: |
| // C++0x [temp.param]p9: |
| // A default template-argument shall not be specified in the |
| // template-parameter-lists of the definition of a member of a |
| // class template that appears outside of the member's class. |
| S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) |
| << DefArgRange; |
| return true; |
| |
| case Sema::TPC_FriendFunctionTemplate: |
| // C++ [temp.param]p9: |
| // A default template-argument shall not be specified in a |
| // friend template declaration. |
| S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) |
| << DefArgRange; |
| return true; |
| |
| // FIXME: C++0x [temp.param]p9 allows default template-arguments |
| // for friend function templates if there is only a single |
| // declaration (and it is a definition). Strange! |
| } |
| |
| return false; |
| } |
| |
| /// \brief Checks the validity of a template parameter list, possibly |
| /// considering the template parameter list from a previous |
| /// declaration. |
| /// |
| /// If an "old" template parameter list is provided, it must be |
| /// equivalent (per TemplateParameterListsAreEqual) to the "new" |
| /// template parameter list. |
| /// |
| /// \param NewParams Template parameter list for a new template |
| /// declaration. This template parameter list will be updated with any |
| /// default arguments that are carried through from the previous |
| /// template parameter list. |
| /// |
| /// \param OldParams If provided, template parameter list from a |
| /// previous declaration of the same template. Default template |
| /// arguments will be merged from the old template parameter list to |
| /// the new template parameter list. |
| /// |
| /// \param TPC Describes the context in which we are checking the given |
| /// template parameter list. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, |
| TemplateParameterList *OldParams, |
| TemplateParamListContext TPC) { |
| bool Invalid = false; |
| |
| // C++ [temp.param]p10: |
| // The set of default template-arguments available for use with a |
| // template declaration or definition is obtained by merging the |
| // default arguments from the definition (if in scope) and all |
| // declarations in scope in the same way default function |
| // arguments are (8.3.6). |
| bool SawDefaultArgument = false; |
| SourceLocation PreviousDefaultArgLoc; |
| |
| bool SawParameterPack = false; |
| SourceLocation ParameterPackLoc; |
| |
| // Dummy initialization to avoid warnings. |
| TemplateParameterList::iterator OldParam = NewParams->end(); |
| if (OldParams) |
| OldParam = OldParams->begin(); |
| |
| for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
| NewParamEnd = NewParams->end(); |
| NewParam != NewParamEnd; ++NewParam) { |
| // Variables used to diagnose redundant default arguments |
| bool RedundantDefaultArg = false; |
| SourceLocation OldDefaultLoc; |
| SourceLocation NewDefaultLoc; |
| |
| // Variables used to diagnose missing default arguments |
| bool MissingDefaultArg = false; |
| |
| // C++0x [temp.param]p11: |
| // If a template parameter of a class template is a template parameter pack, |
| // it must be the last template parameter. |
| if (SawParameterPack) { |
| Diag(ParameterPackLoc, |
| diag::err_template_param_pack_must_be_last_template_parameter); |
| Invalid = true; |
| } |
| |
| if (TemplateTypeParmDecl *NewTypeParm |
| = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { |
| // Check the presence of a default argument here. |
| if (NewTypeParm->hasDefaultArgument() && |
| DiagnoseDefaultTemplateArgument(*this, TPC, |
| NewTypeParm->getLocation(), |
| NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() |
| .getFullSourceRange())) |
| NewTypeParm->removeDefaultArgument(); |
| |
| // Merge default arguments for template type parameters. |
| TemplateTypeParmDecl *OldTypeParm |
| = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; |
| |
| if (NewTypeParm->isParameterPack()) { |
| assert(!NewTypeParm->hasDefaultArgument() && |
| "Parameter packs can't have a default argument!"); |
| SawParameterPack = true; |
| ParameterPackLoc = NewTypeParm->getLocation(); |
| } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && |
| NewTypeParm->hasDefaultArgument()) { |
| OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); |
| NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); |
| SawDefaultArgument = true; |
| RedundantDefaultArg = true; |
| PreviousDefaultArgLoc = NewDefaultLoc; |
| } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { |
| // Merge the default argument from the old declaration to the |
| // new declaration. |
| SawDefaultArgument = true; |
| NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), |
| true); |
| PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); |
| } else if (NewTypeParm->hasDefaultArgument()) { |
| SawDefaultArgument = true; |
| PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); |
| } else if (SawDefaultArgument) |
| MissingDefaultArg = true; |
| } else if (NonTypeTemplateParmDecl *NewNonTypeParm |
| = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { |
| // Check the presence of a default argument here. |
| if (NewNonTypeParm->hasDefaultArgument() && |
| DiagnoseDefaultTemplateArgument(*this, TPC, |
| NewNonTypeParm->getLocation(), |
| NewNonTypeParm->getDefaultArgument()->getSourceRange())) { |
| NewNonTypeParm->getDefaultArgument()->Destroy(Context); |
| NewNonTypeParm->setDefaultArgument(0); |
| } |
| |
| // Merge default arguments for non-type template parameters |
| NonTypeTemplateParmDecl *OldNonTypeParm |
| = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; |
| if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && |
| NewNonTypeParm->hasDefaultArgument()) { |
| OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
| NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
| SawDefaultArgument = true; |
| RedundantDefaultArg = true; |
| PreviousDefaultArgLoc = NewDefaultLoc; |
| } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { |
| // Merge the default argument from the old declaration to the |
| // new declaration. |
| SawDefaultArgument = true; |
| // FIXME: We need to create a new kind of "default argument" |
| // expression that points to a previous template template |
| // parameter. |
| NewNonTypeParm->setDefaultArgument( |
| OldNonTypeParm->getDefaultArgument()); |
| PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
| } else if (NewNonTypeParm->hasDefaultArgument()) { |
| SawDefaultArgument = true; |
| PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
| } else if (SawDefaultArgument) |
| MissingDefaultArg = true; |
| } else { |
| // Check the presence of a default argument here. |
| TemplateTemplateParmDecl *NewTemplateParm |
| = cast<TemplateTemplateParmDecl>(*NewParam); |
| if (NewTemplateParm->hasDefaultArgument() && |
| DiagnoseDefaultTemplateArgument(*this, TPC, |
| NewTemplateParm->getLocation(), |
| NewTemplateParm->getDefaultArgument().getSourceRange())) |
| NewTemplateParm->setDefaultArgument(TemplateArgumentLoc()); |
| |
| // Merge default arguments for template template parameters |
| TemplateTemplateParmDecl *OldTemplateParm |
| = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; |
| if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && |
| NewTemplateParm->hasDefaultArgument()) { |
| OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); |
| NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); |
| SawDefaultArgument = true; |
| RedundantDefaultArg = true; |
| PreviousDefaultArgLoc = NewDefaultLoc; |
| } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { |
| // Merge the default argument from the old declaration to the |
| // new declaration. |
| SawDefaultArgument = true; |
| // FIXME: We need to create a new kind of "default argument" expression |
| // that points to a previous template template parameter. |
| NewTemplateParm->setDefaultArgument( |
| OldTemplateParm->getDefaultArgument()); |
| PreviousDefaultArgLoc |
| = OldTemplateParm->getDefaultArgument().getLocation(); |
| } else if (NewTemplateParm->hasDefaultArgument()) { |
| SawDefaultArgument = true; |
| PreviousDefaultArgLoc |
| = NewTemplateParm->getDefaultArgument().getLocation(); |
| } else if (SawDefaultArgument) |
| MissingDefaultArg = true; |
| } |
| |
| if (RedundantDefaultArg) { |
| // C++ [temp.param]p12: |
| // A template-parameter shall not be given default arguments |
| // by two different declarations in the same scope. |
| Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); |
| Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); |
| Invalid = true; |
| } else if (MissingDefaultArg) { |
| // C++ [temp.param]p11: |
| // If a template-parameter has a default template-argument, |
| // all subsequent template-parameters shall have a default |
| // template-argument supplied. |
| Diag((*NewParam)->getLocation(), |
| diag::err_template_param_default_arg_missing); |
| Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); |
| Invalid = true; |
| } |
| |
| // If we have an old template parameter list that we're merging |
| // in, move on to the next parameter. |
| if (OldParams) |
| ++OldParam; |
| } |
| |
| return Invalid; |
| } |
| |
| /// \brief Match the given template parameter lists to the given scope |
| /// specifier, returning the template parameter list that applies to the |
| /// name. |
| /// |
| /// \param DeclStartLoc the start of the declaration that has a scope |
| /// specifier or a template parameter list. |
| /// |
| /// \param SS the scope specifier that will be matched to the given template |
| /// parameter lists. This scope specifier precedes a qualified name that is |
| /// being declared. |
| /// |
| /// \param ParamLists the template parameter lists, from the outermost to the |
| /// innermost template parameter lists. |
| /// |
| /// \param NumParamLists the number of template parameter lists in ParamLists. |
| /// |
| /// \param IsExplicitSpecialization will be set true if the entity being |
| /// declared is an explicit specialization, false otherwise. |
| /// |
| /// \returns the template parameter list, if any, that corresponds to the |
| /// name that is preceded by the scope specifier @p SS. This template |
| /// parameter list may be have template parameters (if we're declaring a |
| /// template) or may have no template parameters (if we're declaring a |
| /// template specialization), or may be NULL (if we were's declaring isn't |
| /// itself a template). |
| TemplateParameterList * |
| Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, |
| const CXXScopeSpec &SS, |
| TemplateParameterList **ParamLists, |
| unsigned NumParamLists, |
| bool &IsExplicitSpecialization) { |
| IsExplicitSpecialization = false; |
| |
| // Find the template-ids that occur within the nested-name-specifier. These |
| // template-ids will match up with the template parameter lists. |
| llvm::SmallVector<const TemplateSpecializationType *, 4> |
| TemplateIdsInSpecifier; |
| llvm::SmallVector<ClassTemplateSpecializationDecl *, 4> |
| ExplicitSpecializationsInSpecifier; |
| for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); |
| NNS; NNS = NNS->getPrefix()) { |
| const Type *T = NNS->getAsType(); |
| if (!T) break; |
| |
| // C++0x [temp.expl.spec]p17: |
| // A member or a member template may be nested within many |
| // enclosing class templates. In an explicit specialization for |
| // such a member, the member declaration shall be preceded by a |
| // template<> for each enclosing class template that is |
| // explicitly specialized. |
| // We interpret this as forbidding typedefs of template |
| // specializations in the scope specifiers of out-of-line decls. |
| if (const TypedefType *TT = dyn_cast<TypedefType>(T)) { |
| const Type *UnderlyingT = TT->LookThroughTypedefs().getTypePtr(); |
| if (isa<TemplateSpecializationType>(UnderlyingT)) |
| // FIXME: better source location information. |
| Diag(DeclStartLoc, diag::err_typedef_in_def_scope) << QualType(T,0); |
| T = UnderlyingT; |
| } |
| |
| if (const TemplateSpecializationType *SpecType |
| = dyn_cast<TemplateSpecializationType>(T)) { |
| TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl(); |
| if (!Template) |
| continue; // FIXME: should this be an error? probably... |
| |
| if (const RecordType *Record = SpecType->getAs<RecordType>()) { |
| ClassTemplateSpecializationDecl *SpecDecl |
| = cast<ClassTemplateSpecializationDecl>(Record->getDecl()); |
| // If the nested name specifier refers to an explicit specialization, |
| // we don't need a template<> header. |
| if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) { |
| ExplicitSpecializationsInSpecifier.push_back(SpecDecl); |
| continue; |
| } |
| } |
| |
| TemplateIdsInSpecifier.push_back(SpecType); |
| } |
| } |
| |
| // Reverse the list of template-ids in the scope specifier, so that we can |
| // more easily match up the template-ids and the template parameter lists. |
| std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end()); |
| |
| SourceLocation FirstTemplateLoc = DeclStartLoc; |
| if (NumParamLists) |
| FirstTemplateLoc = ParamLists[0]->getTemplateLoc(); |
| |
| // Match the template-ids found in the specifier to the template parameter |
| // lists. |
| unsigned Idx = 0; |
| for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size(); |
| Idx != NumTemplateIds; ++Idx) { |
| QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0); |
| bool DependentTemplateId = TemplateId->isDependentType(); |
| if (Idx >= NumParamLists) { |
| // We have a template-id without a corresponding template parameter |
| // list. |
| if (DependentTemplateId) { |
| // FIXME: the location information here isn't great. |
| Diag(SS.getRange().getBegin(), |
| diag::err_template_spec_needs_template_parameters) |
| << TemplateId |
| << SS.getRange(); |
| } else { |
| Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header) |
| << SS.getRange() |
| << CodeModificationHint::CreateInsertion(FirstTemplateLoc, |
| "template<> "); |
| IsExplicitSpecialization = true; |
| } |
| return 0; |
| } |
| |
| // Check the template parameter list against its corresponding template-id. |
| if (DependentTemplateId) { |
| TemplateDecl *Template |
| = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl(); |
| |
| if (ClassTemplateDecl *ClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Template)) { |
| TemplateParameterList *ExpectedTemplateParams = 0; |
| // Is this template-id naming the primary template? |
| if (Context.hasSameType(TemplateId, |
| ClassTemplate->getInjectedClassNameType(Context))) |
| ExpectedTemplateParams = ClassTemplate->getTemplateParameters(); |
| // ... or a partial specialization? |
| else if (ClassTemplatePartialSpecializationDecl *PartialSpec |
| = ClassTemplate->findPartialSpecialization(TemplateId)) |
| ExpectedTemplateParams = PartialSpec->getTemplateParameters(); |
| |
| if (ExpectedTemplateParams) |
| TemplateParameterListsAreEqual(ParamLists[Idx], |
| ExpectedTemplateParams, |
| true, TPL_TemplateMatch); |
| } |
| |
| CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember); |
| } else if (ParamLists[Idx]->size() > 0) |
| Diag(ParamLists[Idx]->getTemplateLoc(), |
| diag::err_template_param_list_matches_nontemplate) |
| << TemplateId |
| << ParamLists[Idx]->getSourceRange(); |
| else |
| IsExplicitSpecialization = true; |
| } |
| |
| // If there were at least as many template-ids as there were template |
| // parameter lists, then there are no template parameter lists remaining for |
| // the declaration itself. |
| if (Idx >= NumParamLists) |
| return 0; |
| |
| // If there were too many template parameter lists, complain about that now. |
| if (Idx != NumParamLists - 1) { |
| while (Idx < NumParamLists - 1) { |
| bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0; |
| Diag(ParamLists[Idx]->getTemplateLoc(), |
| isExplicitSpecHeader? diag::warn_template_spec_extra_headers |
| : diag::err_template_spec_extra_headers) |
| << SourceRange(ParamLists[Idx]->getTemplateLoc(), |
| ParamLists[Idx]->getRAngleLoc()); |
| |
| if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) { |
| Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(), |
| diag::note_explicit_template_spec_does_not_need_header) |
| << ExplicitSpecializationsInSpecifier.back(); |
| ExplicitSpecializationsInSpecifier.pop_back(); |
| } |
| |
| ++Idx; |
| } |
| } |
| |
| // Return the last template parameter list, which corresponds to the |
| // entity being declared. |
| return ParamLists[NumParamLists - 1]; |
| } |
| |
| QualType Sema::CheckTemplateIdType(TemplateName Name, |
| SourceLocation TemplateLoc, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| TemplateDecl *Template = Name.getAsTemplateDecl(); |
| if (!Template) { |
| // The template name does not resolve to a template, so we just |
| // build a dependent template-id type. |
| return Context.getTemplateSpecializationType(Name, TemplateArgs); |
| } |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| TemplateArgumentListBuilder Converted(Template->getTemplateParameters(), |
| TemplateArgs.size()); |
| if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, |
| false, Converted)) |
| return QualType(); |
| |
| assert((Converted.structuredSize() == |
| Template->getTemplateParameters()->size()) && |
| "Converted template argument list is too short!"); |
| |
| QualType CanonType; |
| |
| if (Name.isDependent() || |
| TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs)) { |
| // This class template specialization is a dependent |
| // type. Therefore, its canonical type is another class template |
| // specialization type that contains all of the converted |
| // arguments in canonical form. This ensures that, e.g., A<T> and |
| // A<T, T> have identical types when A is declared as: |
| // |
| // template<typename T, typename U = T> struct A; |
| TemplateName CanonName = Context.getCanonicalTemplateName(Name); |
| CanonType = Context.getTemplateSpecializationType(CanonName, |
| Converted.getFlatArguments(), |
| Converted.flatSize()); |
| |
| // FIXME: CanonType is not actually the canonical type, and unfortunately |
| // it is a TemplateSpecializationType that we will never use again. |
| // In the future, we need to teach getTemplateSpecializationType to only |
| // build the canonical type and return that to us. |
| CanonType = Context.getCanonicalType(CanonType); |
| } else if (ClassTemplateDecl *ClassTemplate |
| = dyn_cast<ClassTemplateDecl>(Template)) { |
| // Find the class template specialization declaration that |
| // corresponds to these arguments. |
| llvm::FoldingSetNodeID ID; |
| ClassTemplateSpecializationDecl::Profile(ID, |
| Converted.getFlatArguments(), |
| Converted.flatSize(), |
| Context); |
| void *InsertPos = 0; |
| ClassTemplateSpecializationDecl *Decl |
| = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); |
| if (!Decl) { |
| // This is the first time we have referenced this class template |
| // specialization. Create the canonical declaration and add it to |
| // the set of specializations. |
| Decl = ClassTemplateSpecializationDecl::Create(Context, |
| ClassTemplate->getDeclContext(), |
| ClassTemplate->getLocation(), |
| ClassTemplate, |
| Converted, 0); |
| ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos); |
| Decl->setLexicalDeclContext(CurContext); |
| } |
| |
| CanonType = Context.getTypeDeclType(Decl); |
| } |
| |
| // Build the fully-sugared type for this class template |
| // specialization, which refers back to the class template |
| // specialization we created or found. |
| return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); |
| } |
| |
| Action::TypeResult |
| Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc, |
| SourceLocation LAngleLoc, |
| ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc) { |
| TemplateName Template = TemplateD.getAsVal<TemplateName>(); |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); |
| TemplateArgsIn.release(); |
| |
| if (Result.isNull()) |
| return true; |
| |
| TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result); |
| TemplateSpecializationTypeLoc TL |
| = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc()); |
| TL.setTemplateNameLoc(TemplateLoc); |
| TL.setLAngleLoc(LAngleLoc); |
| TL.setRAngleLoc(RAngleLoc); |
| for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
| TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); |
| |
| return CreateLocInfoType(Result, DI).getAsOpaquePtr(); |
| } |
| |
| Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult, |
| TagUseKind TUK, |
| DeclSpec::TST TagSpec, |
| SourceLocation TagLoc) { |
| if (TypeResult.isInvalid()) |
| return Sema::TypeResult(); |
| |
| // FIXME: preserve source info, ideally without copying the DI. |
| TypeSourceInfo *DI; |
| QualType Type = GetTypeFromParser(TypeResult.get(), &DI); |
| |
| // Verify the tag specifier. |
| TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); |
| |
| if (const RecordType *RT = Type->getAs<RecordType>()) { |
| RecordDecl *D = RT->getDecl(); |
| |
| IdentifierInfo *Id = D->getIdentifier(); |
| assert(Id && "templated class must have an identifier"); |
| |
| if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) { |
| Diag(TagLoc, diag::err_use_with_wrong_tag) |
| << Type |
| << CodeModificationHint::CreateReplacement(SourceRange(TagLoc), |
| D->getKindName()); |
| Diag(D->getLocation(), diag::note_previous_use); |
| } |
| } |
| |
| QualType ElabType = Context.getElaboratedType(Type, TagKind); |
| |
| return ElabType.getAsOpaquePtr(); |
| } |
| |
| Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, |
| LookupResult &R, |
| bool RequiresADL, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| // FIXME: Can we do any checking at this point? I guess we could check the |
| // template arguments that we have against the template name, if the template |
| // name refers to a single template. That's not a terribly common case, |
| // though. |
| |
| // These should be filtered out by our callers. |
| assert(!R.empty() && "empty lookup results when building templateid"); |
| assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); |
| |
| NestedNameSpecifier *Qualifier = 0; |
| SourceRange QualifierRange; |
| if (SS.isSet()) { |
| Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep()); |
| QualifierRange = SS.getRange(); |
| } |
| |
| // We don't want lookup warnings at this point. |
| R.suppressDiagnostics(); |
| |
| bool Dependent |
| = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(), |
| &TemplateArgs); |
| UnresolvedLookupExpr *ULE |
| = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(), |
| Qualifier, QualifierRange, |
| R.getLookupName(), R.getNameLoc(), |
| RequiresADL, TemplateArgs); |
| ULE->addDecls(R.begin(), R.end()); |
| |
| return Owned(ULE); |
| } |
| |
| // We actually only call this from template instantiation. |
| Sema::OwningExprResult |
| Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS, |
| DeclarationName Name, |
| SourceLocation NameLoc, |
| const TemplateArgumentListInfo &TemplateArgs) { |
| DeclContext *DC; |
| if (!(DC = computeDeclContext(SS, false)) || |
| DC->isDependentContext() || |
| RequireCompleteDeclContext(SS)) |
| return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs); |
| |
| LookupResult R(*this, Name, NameLoc, LookupOrdinaryName); |
| LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.empty()) { |
| Diag(NameLoc, diag::err_template_kw_refers_to_non_template) |
| << Name << SS.getRange(); |
| return ExprError(); |
| } |
| |
| if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { |
| Diag(NameLoc, diag::err_template_kw_refers_to_class_template) |
| << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange(); |
| Diag(Temp->getLocation(), diag::note_referenced_class_template); |
| return ExprError(); |
| } |
| |
| return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs); |
| } |
| |
| /// \brief Form a dependent template name. |
| /// |
| /// This action forms a dependent template name given the template |
| /// name and its (presumably dependent) scope specifier. For |
| /// example, given "MetaFun::template apply", the scope specifier \p |
| /// SS will be "MetaFun::", \p TemplateKWLoc contains the location |
| /// of the "template" keyword, and "apply" is the \p Name. |
| Sema::TemplateTy |
| Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc, |
| const CXXScopeSpec &SS, |
| UnqualifiedId &Name, |
| TypeTy *ObjectType, |
| bool EnteringContext) { |
| DeclContext *LookupCtx = 0; |
| if (SS.isSet()) |
| LookupCtx = computeDeclContext(SS, EnteringContext); |
| if (!LookupCtx && ObjectType) |
| LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType)); |
| if (LookupCtx) { |
| // C++0x [temp.names]p5: |
| // If a name prefixed by the keyword template is not the name of |
| // a template, the program is ill-formed. [Note: the keyword |
| // template may not be applied to non-template members of class |
| // templates. -end note ] [ Note: as is the case with the |
| // typename prefix, the template prefix is allowed in cases |
| // where it is not strictly necessary; i.e., when the |
| // nested-name-specifier or the expression on the left of the -> |
| // or . is not dependent on a template-parameter, or the use |
| // does not appear in the scope of a template. -end note] |
| // |
| // Note: C++03 was more strict here, because it banned the use of |
| // the "template" keyword prior to a template-name that was not a |
| // dependent name. C++ DR468 relaxed this requirement (the |
| // "template" keyword is now permitted). We follow the C++0x |
| // rules, even in C++03 mode, retroactively applying the DR. |
| TemplateTy Template; |
| TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType, |
| EnteringContext, Template); |
| if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && |
| isa<CXXRecordDecl>(LookupCtx) && |
| cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) { |
| // This is a dependent template. |
| } else if (TNK == TNK_Non_template) { |
| Diag(Name.getSourceRange().getBegin(), |
| diag::err_template_kw_refers_to_non_template) |
| << GetNameFromUnqualifiedId(Name) |
| << Name.getSourceRange(); |
| return TemplateTy(); |
| } else { |
| // We found something; return it. |
| return Template; |
| } |
| } |
| |
| NestedNameSpecifier *Qualifier |
| = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| |
| switch (Name.getKind()) { |
| case UnqualifiedId::IK_Identifier: |
| return TemplateTy::make(Context.getDependentTemplateName(Qualifier, |
| Name.Identifier)); |
| |
| case UnqualifiedId::IK_OperatorFunctionId: |
| return TemplateTy::make(Context.getDependentTemplateName(Qualifier, |
| Name.OperatorFunctionId.Operator)); |
| |
| case UnqualifiedId::IK_LiteralOperatorId: |
| assert(false && "We don't support these; Parse shouldn't have allowed propagation"); |
| |
| default: |
| break; |
| } |
| |
| Diag(Name.getSourceRange().getBegin(), |
| diag::err_template_kw_refers_to_non_template) |
| << GetNameFromUnqualifiedId(Name) |
| << Name.getSourceRange(); |
| return TemplateTy(); |
| } |
| |
| bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, |
| const TemplateArgumentLoc &AL, |
| TemplateArgumentListBuilder &Converted) { |
| const TemplateArgument &Arg = AL.getArgument(); |
| |
| // Check template type parameter. |
| if (Arg.getKind() != TemplateArgument::Type) { |
| // C++ [temp.arg.type]p1: |
| // A template-argument for a template-parameter which is a |
| // type shall be a type-id. |
| |
| // We have a template type parameter but the template argument |
| // is not a type. |
| SourceRange SR = AL.getSourceRange(); |
| Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| |
| return true; |
| } |
| |
| if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) |
| return true; |
| |
| // Add the converted template type argument. |
| Converted.Append( |
| TemplateArgument(Context.getCanonicalType(Arg.getAsType()))); |
| return false; |
| } |
| |
| /// \brief Substitute template arguments into the default template argument for |
| /// the given template type parameter. |
| /// |
| /// \param SemaRef the semantic analysis object for which we are performing |
| /// the substitution. |
| /// |
| /// \param Template the template that we are synthesizing template arguments |
| /// for. |
| /// |
| /// \param TemplateLoc the location of the template name that started the |
| /// template-id we are checking. |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>') that |
| /// terminates the template-id. |
| /// |
| /// \param Param the template template parameter whose default we are |
| /// substituting into. |
| /// |
| /// \param Converted the list of template arguments provided for template |
| /// parameters that precede \p Param in the template parameter list. |
| /// |
| /// \returns the substituted template argument, or NULL if an error occurred. |
| static TypeSourceInfo * |
| SubstDefaultTemplateArgument(Sema &SemaRef, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| TemplateTypeParmDecl *Param, |
| TemplateArgumentListBuilder &Converted) { |
| TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); |
| |
| // If the argument type is dependent, instantiate it now based |
| // on the previously-computed template arguments. |
| if (ArgType->getType()->isDependentType()) { |
| TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, |
| /*TakeArgs=*/false); |
| |
| MultiLevelTemplateArgumentList AllTemplateArgs |
| = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); |
| |
| Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, |
| Template, Converted.getFlatArguments(), |
| Converted.flatSize(), |
| SourceRange(TemplateLoc, RAngleLoc)); |
| |
| ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, |
| Param->getDefaultArgumentLoc(), |
| Param->getDeclName()); |
| } |
| |
| return ArgType; |
| } |
| |
| /// \brief Substitute template arguments into the default template argument for |
| /// the given non-type template parameter. |
| /// |
| /// \param SemaRef the semantic analysis object for which we are performing |
| /// the substitution. |
| /// |
| /// \param Template the template that we are synthesizing template arguments |
| /// for. |
| /// |
| /// \param TemplateLoc the location of the template name that started the |
| /// template-id we are checking. |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>') that |
| /// terminates the template-id. |
| /// |
| /// \param Param the non-type template parameter whose default we are |
| /// substituting into. |
| /// |
| /// \param Converted the list of template arguments provided for template |
| /// parameters that precede \p Param in the template parameter list. |
| /// |
| /// \returns the substituted template argument, or NULL if an error occurred. |
| static Sema::OwningExprResult |
| SubstDefaultTemplateArgument(Sema &SemaRef, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| NonTypeTemplateParmDecl *Param, |
| TemplateArgumentListBuilder &Converted) { |
| TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, |
| /*TakeArgs=*/false); |
| |
| MultiLevelTemplateArgumentList AllTemplateArgs |
| = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); |
| |
| Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, |
| Template, Converted.getFlatArguments(), |
| Converted.flatSize(), |
| SourceRange(TemplateLoc, RAngleLoc)); |
| |
| return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); |
| } |
| |
| /// \brief Substitute template arguments into the default template argument for |
| /// the given template template parameter. |
| /// |
| /// \param SemaRef the semantic analysis object for which we are performing |
| /// the substitution. |
| /// |
| /// \param Template the template that we are synthesizing template arguments |
| /// for. |
| /// |
| /// \param TemplateLoc the location of the template name that started the |
| /// template-id we are checking. |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>') that |
| /// terminates the template-id. |
| /// |
| /// \param Param the template template parameter whose default we are |
| /// substituting into. |
| /// |
| /// \param Converted the list of template arguments provided for template |
| /// parameters that precede \p Param in the template parameter list. |
| /// |
| /// \returns the substituted template argument, or NULL if an error occurred. |
| static TemplateName |
| SubstDefaultTemplateArgument(Sema &SemaRef, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| TemplateTemplateParmDecl *Param, |
| TemplateArgumentListBuilder &Converted) { |
| TemplateArgumentList TemplateArgs(SemaRef.Context, Converted, |
| /*TakeArgs=*/false); |
| |
| MultiLevelTemplateArgumentList AllTemplateArgs |
| = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); |
| |
| Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, |
| Template, Converted.getFlatArguments(), |
| Converted.flatSize(), |
| SourceRange(TemplateLoc, RAngleLoc)); |
| |
| return SemaRef.SubstTemplateName( |
| Param->getDefaultArgument().getArgument().getAsTemplate(), |
| Param->getDefaultArgument().getTemplateNameLoc(), |
| AllTemplateArgs); |
| } |
| |
| /// \brief If the given template parameter has a default template |
| /// argument, substitute into that default template argument and |
| /// return the corresponding template argument. |
| TemplateArgumentLoc |
| Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| Decl *Param, |
| TemplateArgumentListBuilder &Converted) { |
| if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { |
| if (!TypeParm->hasDefaultArgument()) |
| return TemplateArgumentLoc(); |
| |
| TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| TypeParm, |
| Converted); |
| if (DI) |
| return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
| |
| return TemplateArgumentLoc(); |
| } |
| |
| if (NonTypeTemplateParmDecl *NonTypeParm |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| if (!NonTypeParm->hasDefaultArgument()) |
| return TemplateArgumentLoc(); |
| |
| OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| NonTypeParm, |
| Converted); |
| if (Arg.isInvalid()) |
| return TemplateArgumentLoc(); |
| |
| Expr *ArgE = Arg.takeAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); |
| } |
| |
| TemplateTemplateParmDecl *TempTempParm |
| = cast<TemplateTemplateParmDecl>(Param); |
| if (!TempTempParm->hasDefaultArgument()) |
| return TemplateArgumentLoc(); |
| |
| TemplateName TName = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| TempTempParm, |
| Converted); |
| if (TName.isNull()) |
| return TemplateArgumentLoc(); |
| |
| return TemplateArgumentLoc(TemplateArgument(TName), |
| TempTempParm->getDefaultArgument().getTemplateQualifierRange(), |
| TempTempParm->getDefaultArgument().getTemplateNameLoc()); |
| } |
| |
| /// \brief Check that the given template argument corresponds to the given |
| /// template parameter. |
| bool Sema::CheckTemplateArgument(NamedDecl *Param, |
| const TemplateArgumentLoc &Arg, |
| TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| SourceLocation RAngleLoc, |
| TemplateArgumentListBuilder &Converted) { |
| // Check template type parameters. |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) |
| return CheckTemplateTypeArgument(TTP, Arg, Converted); |
| |
| // Check non-type template parameters. |
| if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| // Do substitution on the type of the non-type template parameter |
| // with the template arguments we've seen thus far. |
| QualType NTTPType = NTTP->getType(); |
| if (NTTPType->isDependentType()) { |
| // Do substitution on the type of the non-type template parameter. |
| InstantiatingTemplate Inst(*this, TemplateLoc, Template, |
| NTTP, Converted.getFlatArguments(), |
| Converted.flatSize(), |
| SourceRange(TemplateLoc, RAngleLoc)); |
| |
| TemplateArgumentList TemplateArgs(Context, Converted, |
| /*TakeArgs=*/false); |
| NTTPType = SubstType(NTTPType, |
| MultiLevelTemplateArgumentList(TemplateArgs), |
| NTTP->getLocation(), |
| NTTP->getDeclName()); |
| // If that worked, check the non-type template parameter type |
| // for validity. |
| if (!NTTPType.isNull()) |
| NTTPType = CheckNonTypeTemplateParameterType(NTTPType, |
| NTTP->getLocation()); |
| if (NTTPType.isNull()) |
| return true; |
| } |
| |
| switch (Arg.getArgument().getKind()) { |
| case TemplateArgument::Null: |
| assert(false && "Should never see a NULL template argument here"); |
| return true; |
| |
| case TemplateArgument::Expression: { |
| Expr *E = Arg.getArgument().getAsExpr(); |
| TemplateArgument Result; |
| if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) |
| return true; |
| |
| Converted.Append(Result); |
| break; |
| } |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| // We've already checked this template argument, so just copy |
| // it to the list of converted arguments. |
| Converted.Append(Arg.getArgument()); |
| break; |
| |
| case TemplateArgument::Template: |
| // We were given a template template argument. It may not be ill-formed; |
| // see below. |
| if (DependentTemplateName *DTN |
| = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) { |
| // We have a template argument such as \c T::template X, which we |
| // parsed as a template template argument. However, since we now |
| // know that we need a non-type template argument, convert this |
| // template name into an expression. |
| Expr *E = DependentScopeDeclRefExpr::Create(Context, |
| DTN->getQualifier(), |
| Arg.getTemplateQualifierRange(), |
| DTN->getIdentifier(), |
| Arg.getTemplateNameLoc()); |
| |
| TemplateArgument Result; |
| if (CheckTemplateArgument(NTTP, NTTPType, E, Result)) |
| return true; |
| |
| Converted.Append(Result); |
| break; |
| } |
| |
| // We have a template argument that actually does refer to a class |
| // template, template alias, or template template parameter, and |
| // therefore cannot be a non-type template argument. |
| Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) |
| << Arg.getSourceRange(); |
| |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| |
| case TemplateArgument::Type: { |
| // We have a non-type template parameter but the template |
| // argument is a type. |
| |
| // C++ [temp.arg]p2: |
| // In a template-argument, an ambiguity between a type-id and |
| // an expression is resolved to a type-id, regardless of the |
| // form of the corresponding template-parameter. |
| // |
| // We warn specifically about this case, since it can be rather |
| // confusing for users. |
| QualType T = Arg.getArgument().getAsType(); |
| SourceRange SR = Arg.getSourceRange(); |
| if (T->isFunctionType()) |
| Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; |
| else |
| Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| case TemplateArgument::Pack: |
| llvm_unreachable("Caller must expand template argument packs"); |
| break; |
| } |
| |
| return false; |
| } |
| |
| |
| // Check template template parameters. |
| TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); |
| |
| // Substitute into the template parameter list of the template |
| // template parameter, since previously-supplied template arguments |
| // may appear within the template template parameter. |
| { |
| // Set up a template instantiation context. |
| LocalInstantiationScope Scope(*this); |
| InstantiatingTemplate Inst(*this, TemplateLoc, Template, |
| TempParm, Converted.getFlatArguments(), |
| Converted.flatSize(), |
| SourceRange(TemplateLoc, RAngleLoc)); |
| |
| TemplateArgumentList TemplateArgs(Context, Converted, |
| /*TakeArgs=*/false); |
| TempParm = cast_or_null<TemplateTemplateParmDecl>( |
| SubstDecl(TempParm, CurContext, |
| MultiLevelTemplateArgumentList(TemplateArgs))); |
| if (!TempParm) |
| return true; |
| |
| // FIXME: TempParam is leaked. |
| } |
| |
| switch (Arg.getArgument().getKind()) { |
| case TemplateArgument::Null: |
| assert(false && "Should never see a NULL template argument here"); |
| return true; |
| |
| case TemplateArgument::Template: |
| if (CheckTemplateArgument(TempParm, Arg)) |
| return true; |
| |
| Converted.Append(Arg.getArgument()); |
| break; |
| |
| case TemplateArgument::Expression: |
| case TemplateArgument::Type: |
| // We have a template template parameter but the template |
| // argument does not refer to a template. |
| Diag(Arg.getLocation(), diag::err_template_arg_must_be_template); |
| return true; |
| |
| case TemplateArgument::Declaration: |
| llvm_unreachable( |
| "Declaration argument with template template parameter"); |
| break; |
| case TemplateArgument::Integral: |
| llvm_unreachable( |
| "Integral argument with template template parameter"); |
| break; |
| |
| case TemplateArgument::Pack: |
| llvm_unreachable("Caller must expand template argument packs"); |
| break; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Check that the given template argument list is well-formed |
| /// for specializing the given template. |
| bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, |
| SourceLocation TemplateLoc, |
| const TemplateArgumentListInfo &TemplateArgs, |
| bool PartialTemplateArgs, |
| TemplateArgumentListBuilder &Converted) { |
| TemplateParameterList *Params = Template->getTemplateParameters(); |
| unsigned NumParams = Params->size(); |
| unsigned NumArgs = TemplateArgs.size(); |
| bool Invalid = false; |
| |
| SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); |
| |
| bool HasParameterPack = |
| NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack(); |
| |
| if ((NumArgs > NumParams && !HasParameterPack) || |
| (NumArgs < Params->getMinRequiredArguments() && |
| !PartialTemplateArgs)) { |
| // FIXME: point at either the first arg beyond what we can handle, |
| // or the '>', depending on whether we have too many or too few |
| // arguments. |
| SourceRange Range; |
| if (NumArgs > NumParams) |
| Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc); |
| Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
| << (NumArgs > NumParams) |
| << (isa<ClassTemplateDecl>(Template)? 0 : |
| isa<FunctionTemplateDecl>(Template)? 1 : |
| isa<TemplateTemplateParmDecl>(Template)? 2 : 3) |
| << Template << Range; |
| Diag(Template->getLocation(), diag::note_template_decl_here) |
| << Params->getSourceRange(); |
| Invalid = true; |
| } |
| |
| // C++ [temp.arg]p1: |
| // [...] The type and form of each template-argument specified in |
| // a template-id shall match the type and form specified for the |
| // corresponding parameter declared by the template in its |
| // template-parameter-list. |
| unsigned ArgIdx = 0; |
| for (TemplateParameterList::iterator Param = Params->begin(), |
| ParamEnd = Params->end(); |
| Param != ParamEnd; ++Param, ++ArgIdx) { |
| if (ArgIdx > NumArgs && PartialTemplateArgs) |
| break; |
| |
| // If we have a template parameter pack, check every remaining template |
| // argument against that template parameter pack. |
| if ((*Param)->isTemplateParameterPack()) { |
| Converted.BeginPack(); |
| for (; ArgIdx < NumArgs; ++ArgIdx) { |
| if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, |
| TemplateLoc, RAngleLoc, Converted)) { |
| Invalid = true; |
| break; |
| } |
| } |
| Converted.EndPack(); |
| continue; |
| } |
| |
| if (ArgIdx < NumArgs) { |
| // Check the template argument we were given. |
| if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, |
| TemplateLoc, RAngleLoc, Converted)) |
| return true; |
| |
| continue; |
| } |
| |
| // We have a default template argument that we will use. |
| TemplateArgumentLoc Arg; |
| |
| // Retrieve the default template argument from the template |
| // parameter. For each kind of template parameter, we substitute the |
| // template arguments provided thus far and any "outer" template arguments |
| // (when the template parameter was part of a nested template) into |
| // the default argument. |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { |
| if (!TTP->hasDefaultArgument()) { |
| assert((Invalid || PartialTemplateArgs) && "Missing default argument"); |
| break; |
| } |
| |
| TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, |
| Template, |
| TemplateLoc, |
| RAngleLoc, |
| TTP, |
| Converted); |
| if (!ArgType) |
| return true; |
| |
| Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), |
| ArgType); |
| } else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { |
| if (!NTTP->hasDefaultArgument()) { |
| assert((Invalid || PartialTemplateArgs) && "Missing default argument"); |
| break; |
| } |
| |
| Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| NTTP, |
| Converted); |
| if (E.isInvalid()) |
| return true; |
| |
| Expr *Ex = E.takeAs<Expr>(); |
| Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); |
| } else { |
| TemplateTemplateParmDecl *TempParm |
| = cast<TemplateTemplateParmDecl>(*Param); |
| |
| if (!TempParm->hasDefaultArgument()) { |
| assert((Invalid || PartialTemplateArgs) && "Missing default argument"); |
| break; |
| } |
| |
| TemplateName Name = SubstDefaultTemplateArgument(*this, Template, |
| TemplateLoc, |
| RAngleLoc, |
| TempParm, |
| Converted); |
| if (Name.isNull()) |
| return true; |
| |
| Arg = TemplateArgumentLoc(TemplateArgument(Name), |
| TempParm->getDefaultArgument().getTemplateQualifierRange(), |
| TempParm->getDefaultArgument().getTemplateNameLoc()); |
| } |
| |
| // Introduce an instantiation record that describes where we are using |
| // the default template argument. |
| InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param, |
| Converted.getFlatArguments(), |
| Converted.flatSize(), |
| SourceRange(TemplateLoc, RAngleLoc)); |
| |
| // Check the default template argument. |
| if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, |
| RAngleLoc, Converted)) |
| return true; |
| } |
| |
| return Invalid; |
| } |
| |
| /// \brief Check a template argument against its corresponding |
| /// template type parameter. |
| /// |
| /// This routine implements the semantics of C++ [temp.arg.type]. It |
| /// returns true if an error occurred, and false otherwise. |
| bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, |
| TypeSourceInfo *ArgInfo) { |
| assert(ArgInfo && "invalid TypeSourceInfo"); |
| QualType Arg = ArgInfo->getType(); |
| |
| // C++ [temp.arg.type]p2: |
| // A local type, a type with no linkage, an unnamed type or a type |
| // compounded from any of these types shall not be used as a |
| // template-argument for a template type-parameter. |
| // |
| // FIXME: Perform the recursive and no-linkage type checks. |
| const TagType *Tag = 0; |
| if (const EnumType *EnumT = Arg->getAs<EnumType>()) |
| Tag = EnumT; |
| else if (const RecordType *RecordT = Arg->getAs<RecordType>()) |
| Tag = RecordT; |
| if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) { |
| SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); |
| return Diag(SR.getBegin(), diag::err_template_arg_local_type) |
| << QualType(Tag, 0) << SR; |
| } else if (Tag && !Tag->getDecl()->getDeclName() && |
| !Tag->getDecl()->getTypedefForAnonDecl()) { |
| SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); |
| Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR; |
| Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here); |
| return true; |
| } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { |
| SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange(); |
| return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Checks whether the given template argument is the address |
| /// of an object or function according to C++ [temp.arg.nontype]p1. |
| bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg, |
| NamedDecl *&Entity) { |
| bool Invalid = false; |
| |
| // See through any implicit casts we added to fix the type. |
| while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) |
| Arg = Cast->getSubExpr(); |
| |
| // C++0x allows nullptr, and there's no further checking to be done for that. |
| if (Arg->getType()->isNullPtrType()) |
| return false; |
| |
| // C++ [temp.arg.nontype]p1: |
| // |
| // A template-argument for a non-type, non-template |
| // template-parameter shall be one of: [...] |
| // |
| // -- the address of an object or function with external |
| // linkage, including function templates and function |
| // template-ids but excluding non-static class members, |
| // expressed as & id-expression where the & is optional if |
| // the name refers to a function or array, or if the |
| // corresponding template-parameter is a reference; or |
| DeclRefExpr *DRE = 0; |
| |
| // Ignore (and complain about) any excess parentheses. |
| while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { |
| if (!Invalid) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_extra_parens) |
| << Arg->getSourceRange(); |
| Invalid = true; |
| } |
| |
| Arg = Parens->getSubExpr(); |
| } |
| |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { |
| if (UnOp->getOpcode() == UnaryOperator::AddrOf) |
| DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); |
| } else |
| DRE = dyn_cast<DeclRefExpr>(Arg); |
| |
| if (!DRE) |
| return Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_decl_ref) |
| << Arg->getSourceRange(); |
| |
| // Stop checking the precise nature of the argument if it is value dependent, |
| // it should be checked when instantiated. |
| if (Arg->isValueDependent()) |
| return false; |
| |
| if (!isa<ValueDecl>(DRE->getDecl())) |
| return Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_object_or_func_form) |
| << Arg->getSourceRange(); |
| |
| // Cannot refer to non-static data members |
| if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) |
| return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field) |
| << Field << Arg->getSourceRange(); |
| |
| // Cannot refer to non-static member functions |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl())) |
| if (!Method->isStatic()) |
| return Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_method) |
| << Method << Arg->getSourceRange(); |
| |
| // Functions must have external linkage. |
| if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) { |
| if (!isExternalLinkage(Func->getLinkage())) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_function_not_extern) |
| << Func << Arg->getSourceRange(); |
| Diag(Func->getLocation(), diag::note_template_arg_internal_object) |
| << true; |
| return true; |
| } |
| |
| // Okay: we've named a function with external linkage. |
| Entity = Func; |
| return Invalid; |
| } |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { |
| if (!isExternalLinkage(Var->getLinkage())) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_object_not_extern) |
| << Var << Arg->getSourceRange(); |
| Diag(Var->getLocation(), diag::note_template_arg_internal_object) |
| << true; |
| return true; |
| } |
| |
| // Okay: we've named an object with external linkage |
| Entity = Var; |
| return Invalid; |
| } |
| |
| // We found something else, but we don't know specifically what it is. |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_object_or_func) |
| << Arg->getSourceRange(); |
| Diag(DRE->getDecl()->getLocation(), |
| diag::note_template_arg_refers_here); |
| return true; |
| } |
| |
| /// \brief Checks whether the given template argument is a pointer to |
| /// member constant according to C++ [temp.arg.nontype]p1. |
| bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, |
| TemplateArgument &Converted) { |
| bool Invalid = false; |
| |
| // See through any implicit casts we added to fix the type. |
| while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) |
| Arg = Cast->getSubExpr(); |
| |
| // C++0x allows nullptr, and there's no further checking to be done for that. |
| if (Arg->getType()->isNullPtrType()) |
| return false; |
| |
| // C++ [temp.arg.nontype]p1: |
| // |
| // A template-argument for a non-type, non-template |
| // template-parameter shall be one of: [...] |
| // |
| // -- a pointer to member expressed as described in 5.3.1. |
| DeclRefExpr *DRE = 0; |
| |
| // Ignore (and complain about) any excess parentheses. |
| while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { |
| if (!Invalid) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_extra_parens) |
| << Arg->getSourceRange(); |
| Invalid = true; |
| } |
| |
| Arg = Parens->getSubExpr(); |
| } |
| |
| // A pointer-to-member constant written &Class::member. |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { |
| if (UnOp->getOpcode() == UnaryOperator::AddrOf) { |
| DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); |
| if (DRE && !DRE->getQualifier()) |
| DRE = 0; |
| } |
| } |
| // A constant of pointer-to-member type. |
| else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { |
| if (VD->getType()->isMemberPointerType()) { |
| if (isa<NonTypeTemplateParmDecl>(VD) || |
| (isa<VarDecl>(VD) && |
| Context.getCanonicalType(VD->getType()).isConstQualified())) { |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| Converted = TemplateArgument(Arg->Retain()); |
| else |
| Converted = TemplateArgument(VD->getCanonicalDecl()); |
| return Invalid; |
| } |
| } |
| } |
| |
| DRE = 0; |
| } |
| |
| if (!DRE) |
| return Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_pointer_to_member_form) |
| << Arg->getSourceRange(); |
| |
| if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { |
| assert((isa<FieldDecl>(DRE->getDecl()) || |
| !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && |
| "Only non-static member pointers can make it here"); |
| |
| // Okay: this is the address of a non-static member, and therefore |
| // a member pointer constant. |
| if (Arg->isTypeDependent() || Arg->isValueDependent()) |
| Converted = TemplateArgument(Arg->Retain()); |
| else |
| Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl()); |
| return Invalid; |
| } |
| |
| // We found something else, but we don't know specifically what it is. |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_pointer_to_member_form) |
| << Arg->getSourceRange(); |
| Diag(DRE->getDecl()->getLocation(), |
| diag::note_template_arg_refers_here); |
| return true; |
| } |
| |
| /// \brief Check a template argument against its corresponding |
| /// non-type template parameter. |
| /// |
| /// This routine implements the semantics of C++ [temp.arg.nontype]. |
| /// It returns true if an error occurred, and false otherwise. \p |
| /// InstantiatedParamType is the type of the non-type template |
| /// parameter after it has been instantiated. |
| /// |
| /// If no error was detected, Converted receives the converted template argument. |
| bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, |
| QualType InstantiatedParamType, Expr *&Arg, |
| TemplateArgument &Converted) { |
| SourceLocation StartLoc = Arg->getSourceRange().getBegin(); |
| |
| // If either the parameter has a dependent type or the argument is |
| // type-dependent, there's nothing we can check now. |
| // FIXME: Add template argument to Converted! |
| if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { |
| // FIXME: Produce a cloned, canonical expression? |
| Converted = TemplateArgument(Arg); |
| return false; |
| } |
| |
| // C++ [temp.arg.nontype]p5: |
| // The following conversions are performed on each expression used |
| // as a non-type template-argument. If a non-type |
| // template-argument cannot be converted to the type of the |
| // corresponding template-parameter then the program is |
| // ill-formed. |
| // |
| // -- for a non-type template-parameter of integral or |
| // enumeration type, integral promotions (4.5) and integral |
| // conversions (4.7) are applied. |
| QualType ParamType = InstantiatedParamType; |
| QualType ArgType = Arg->getType(); |
| if (ParamType->isIntegralType() || ParamType->isEnumeralType()) { |
| // C++ [temp.arg.nontype]p1: |
| // A template-argument for a non-type, non-template |
| // template-parameter shall be one of: |
| // |
| // -- an integral constant-expression of integral or enumeration |
| // type; or |
| // -- the name of a non-type template-parameter; or |
| SourceLocation NonConstantLoc; |
| llvm::APSInt Value; |
| if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_integral_or_enumeral) |
| << ArgType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } else if (!Arg->isValueDependent() && |
| !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) { |
| Diag(NonConstantLoc, diag::err_template_arg_not_ice) |
| << ArgType << Arg->getSourceRange(); |
| return true; |
| } |
| |
| // FIXME: We need some way to more easily get the unqualified form |
| // of the types without going all the way to the |
| // canonical type. |
| if (Context.getCanonicalType(ParamType).getCVRQualifiers()) |
| ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType(); |
| if (Context.getCanonicalType(ArgType).getCVRQualifiers()) |
| ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType(); |
| |
| // Try to convert the argument to the parameter's type. |
| if (Context.hasSameType(ParamType, ArgType)) { |
| // Okay: no conversion necessary |
| } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || |
| !ParamType->isEnumeralType()) { |
| // This is an integral promotion or conversion. |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast); |
| } else { |
| // We can't perform this conversion. |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_convertible) |
| << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| QualType IntegerType = Context.getCanonicalType(ParamType); |
| if (const EnumType *Enum = IntegerType->getAs<EnumType>()) |
| IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); |
| |
| if (!Arg->isValueDependent()) { |
| // Check that an unsigned parameter does not receive a negative |
| // value. |
| if (IntegerType->isUnsignedIntegerType() |
| && (Value.isSigned() && Value.isNegative())) { |
| Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative) |
| << Value.toString(10) << Param->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| // Check that we don't overflow the template parameter type. |
| unsigned AllowedBits = Context.getTypeSize(IntegerType); |
| unsigned RequiredBits; |
| if (IntegerType->isUnsignedIntegerType()) |
| RequiredBits = Value.getActiveBits(); |
| else if (Value.isUnsigned()) |
| RequiredBits = Value.getActiveBits() + 1; |
| else |
| RequiredBits = Value.getMinSignedBits(); |
| if (RequiredBits > AllowedBits) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_too_large) |
| << Value.toString(10) << Param->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| if (Value.getBitWidth() != AllowedBits) |
| Value.extOrTrunc(AllowedBits); |
| Value.setIsSigned(IntegerType->isSignedIntegerType()); |
| } |
| |
| // Add the value of this argument to the list of converted |
| // arguments. We use the bitwidth and signedness of the template |
| // parameter. |
| if (Arg->isValueDependent()) { |
| // The argument is value-dependent. Create a new |
| // TemplateArgument with the converted expression. |
| Converted = TemplateArgument(Arg); |
| return false; |
| } |
| |
| Converted = TemplateArgument(Value, |
| ParamType->isEnumeralType() ? ParamType |
| : IntegerType); |
| return false; |
| } |
| |
| // Handle pointer-to-function, reference-to-function, and |
| // pointer-to-member-function all in (roughly) the same way. |
| if (// -- For a non-type template-parameter of type pointer to |
| // function, only the function-to-pointer conversion (4.3) is |
| // applied. If the template-argument represents a set of |
| // overloaded functions (or a pointer to such), the matching |
| // function is selected from the set (13.4). |
| // In C++0x, any std::nullptr_t value can be converted. |
| (ParamType->isPointerType() && |
| ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || |
| // -- For a non-type template-parameter of type reference to |
| // function, no conversions apply. If the template-argument |
| // represents a set of overloaded functions, the matching |
| // function is selected from the set (13.4). |
| (ParamType->isReferenceType() && |
| ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || |
| // -- For a non-type template-parameter of type pointer to |
| // member function, no conversions apply. If the |
| // template-argument represents a set of overloaded member |
| // functions, the matching member function is selected from |
| // the set (13.4). |
| // Again, C++0x allows a std::nullptr_t value. |
| (ParamType->isMemberPointerType() && |
| ParamType->getAs<MemberPointerType>()->getPointeeType() |
| ->isFunctionType())) { |
| if (Context.hasSameUnqualifiedType(ArgType, |
| ParamType.getNonReferenceType())) { |
| // We don't have to do anything: the types already match. |
| } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() || |
| ParamType->isMemberPointerType())) { |
| ArgType = ParamType; |
| if (ParamType->isMemberPointerType()) |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); |
| else |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); |
| } else if (ArgType->isFunctionType() && ParamType->isPointerType()) { |
| ArgType = Context.getPointerType(ArgType); |
| ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); |
| } else if (FunctionDecl *Fn |
| = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) { |
| if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin())) |
| return true; |
| |
| Arg = FixOverloadedFunctionReference(Arg, Fn); |
| ArgType = Arg->getType(); |
| if (ArgType->isFunctionType() && ParamType->isPointerType()) { |
| ArgType = Context.getPointerType(Arg->getType()); |
| ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay); |
| } |
| } |
| |
| if (!Context.hasSameUnqualifiedType(ArgType, |
| ParamType.getNonReferenceType())) { |
| // We can't perform this conversion. |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_convertible) |
| << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| if (ParamType->isMemberPointerType()) |
| return CheckTemplateArgumentPointerToMember(Arg, Converted); |
| |
| NamedDecl *Entity = 0; |
| if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) |
| return true; |
| |
| if (Arg->isValueDependent()) { |
| Converted = TemplateArgument(Arg); |
| } else { |
| if (Entity) |
| Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); |
| Converted = TemplateArgument(Entity); |
| } |
| return false; |
| } |
| |
| if (ParamType->isPointerType()) { |
| // -- for a non-type template-parameter of type pointer to |
| // object, qualification conversions (4.4) and the |
| // array-to-pointer conversion (4.2) are applied. |
| // C++0x also allows a value of std::nullptr_t. |
| assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() && |
| "Only object pointers allowed here"); |
| |
| if (ArgType->isNullPtrType()) { |
| ArgType = ParamType; |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast); |
| } else if (ArgType->isArrayType()) { |
| ArgType = Context.getArrayDecayedType(ArgType); |
| ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay); |
| } |
| |
| if (IsQualificationConversion(ArgType, ParamType)) { |
| ArgType = ParamType; |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); |
| } |
| |
| if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) { |
| // We can't perform this conversion. |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_convertible) |
| << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| NamedDecl *Entity = 0; |
| if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) |
| return true; |
| |
| if (Arg->isValueDependent()) { |
| Converted = TemplateArgument(Arg); |
| } else { |
| if (Entity) |
| Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); |
| Converted = TemplateArgument(Entity); |
| } |
| return false; |
| } |
| |
| if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { |
| // -- For a non-type template-parameter of type reference to |
| // object, no conversions apply. The type referred to by the |
| // reference may be more cv-qualified than the (otherwise |
| // identical) type of the template-argument. The |
| // template-parameter is bound directly to the |
| // template-argument, which must be an lvalue. |
| assert(ParamRefType->getPointeeType()->isObjectType() && |
| "Only object references allowed here"); |
| |
| QualType ReferredType = ParamRefType->getPointeeType(); |
| if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_no_ref_bind) |
| << InstantiatedParamType << Arg->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| unsigned ParamQuals |
| = Context.getCanonicalType(ReferredType).getCVRQualifiers(); |
| unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers(); |
| |
| if ((ParamQuals | ArgQuals) != ParamQuals) { |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_ref_bind_ignores_quals) |
| << InstantiatedParamType << Arg->getType() |
| << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| NamedDecl *Entity = 0; |
| if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity)) |
| return true; |
| |
| if (Arg->isValueDependent()) { |
| Converted = TemplateArgument(Arg); |
| } else { |
| Entity = cast<NamedDecl>(Entity->getCanonicalDecl()); |
| Converted = TemplateArgument(Entity); |
| } |
| return false; |
| } |
| |
| // -- For a non-type template-parameter of type pointer to data |
| // member, qualification conversions (4.4) are applied. |
| // C++0x allows std::nullptr_t values. |
| assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); |
| |
| if (Context.hasSameUnqualifiedType(ParamType, ArgType)) { |
| // Types match exactly: nothing more to do here. |
| } else if (ArgType->isNullPtrType()) { |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer); |
| } else if (IsQualificationConversion(ArgType, ParamType)) { |
| ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp); |
| } else { |
| // We can't perform this conversion. |
| Diag(Arg->getSourceRange().getBegin(), |
| diag::err_template_arg_not_convertible) |
| << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| return CheckTemplateArgumentPointerToMember(Arg, Converted); |
| } |
| |
| /// \brief Check a template argument against its corresponding |
| /// template template parameter. |
| /// |
| /// This routine implements the semantics of C++ [temp.arg.template]. |
| /// It returns true if an error occurred, and false otherwise. |
| bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, |
| const TemplateArgumentLoc &Arg) { |
| TemplateName Name = Arg.getArgument().getAsTemplate(); |
| TemplateDecl *Template = Name.getAsTemplateDecl(); |
| if (!Template) { |
| // Any dependent template name is fine. |
| assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); |
| return false; |
| } |
| |
| // C++ [temp.arg.template]p1: |
| // A template-argument for a template template-parameter shall be |
| // the name of a class template, expressed as id-expression. Only |
| // primary class templates are considered when matching the |
| // template template argument with the corresponding parameter; |
| // partial specializations are not considered even if their |
| // parameter lists match that of the template template parameter. |
| // |
| // Note that we also allow template template parameters here, which |
| // will happen when we are dealing with, e.g., class template |
| // partial specializations. |
| if (!isa<ClassTemplateDecl>(Template) && |
| !isa<TemplateTemplateParmDecl>(Template)) { |
| assert(isa<FunctionTemplateDecl>(Template) && |
| "Only function templates are possible here"); |
| Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); |
| Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) |
| << Template; |
| } |
| |
| return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), |
| Param->getTemplateParameters(), |
| true, |
| TPL_TemplateTemplateArgumentMatch, |
| Arg.getLocation()); |
| } |
| |
| /// \brief Determine whether the given template parameter lists are |
| /// equivalent. |
| /// |
| /// \param New The new template parameter list, typically written in the |
| /// source code as part of a new template declaration. |
| /// |
| /// \param Old The old template parameter list, typically found via |
| /// name lookup of the template declared with this template parameter |
| /// list. |
| /// |
| /// \param Complain If true, this routine will produce a diagnostic if |
| /// the template parameter lists are not equivalent. |
| /// |
| /// \param Kind describes how we are to match the template parameter lists. |
| /// |
| /// \param TemplateArgLoc If this source location is valid, then we |
| /// are actually checking the template parameter list of a template |
| /// argument (New) against the template parameter list of its |
| /// corresponding template template parameter (Old). We produce |
| /// slightly different diagnostics in this scenario. |
| /// |
| /// \returns True if the template parameter lists are equal, false |
| /// otherwise. |
| bool |
| Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, |
| TemplateParameterList *Old, |
| bool Complain, |
| TemplateParameterListEqualKind Kind, |
| SourceLocation TemplateArgLoc) { |
| if (Old->size() != New->size()) { |
| if (Complain) { |
| unsigned NextDiag = diag::err_template_param_list_different_arity; |
| if (TemplateArgLoc.isValid()) { |
| Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_param_list_different_arity; |
| } |
| Diag(New->getTemplateLoc(), NextDiag) |
| << (New->size() > Old->size()) |
| << (Kind != TPL_TemplateMatch) |
| << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); |
| Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) |
| << (Kind != TPL_TemplateMatch) |
| << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); |
| } |
| |
| return false; |
| } |
| |
| for (TemplateParameterList::iterator OldParm = Old->begin(), |
| OldParmEnd = Old->end(), NewParm = New->begin(); |
| OldParm != OldParmEnd; ++OldParm, ++NewParm) { |
| if ((*OldParm)->getKind() != (*NewParm)->getKind()) { |
| if (Complain) { |
| unsigned NextDiag = diag::err_template_param_different_kind; |
| if (TemplateArgLoc.isValid()) { |
| Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_param_different_kind; |
| } |
| Diag((*NewParm)->getLocation(), NextDiag) |
| << (Kind != TPL_TemplateMatch); |
| Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration) |
| << (Kind != TPL_TemplateMatch); |
| } |
| return false; |
| } |
| |
| if (isa<TemplateTypeParmDecl>(*OldParm)) { |
| // Okay; all template type parameters are equivalent (since we |
| // know we're at the same index). |
| } else if (NonTypeTemplateParmDecl *OldNTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) { |
| // The types of non-type template parameters must agree. |
| NonTypeTemplateParmDecl *NewNTTP |
| = cast<NonTypeTemplateParmDecl>(*NewParm); |
| |
| // If we are matching a template template argument to a template |
| // template parameter and one of the non-type template parameter types |
| // is dependent, then we must wait until template instantiation time |
| // to actually compare the arguments. |
| if (Kind == TPL_TemplateTemplateArgumentMatch && |
| (OldNTTP->getType()->isDependentType() || |
| NewNTTP->getType()->isDependentType())) |
| continue; |
| |
| if (Context.getCanonicalType(OldNTTP->getType()) != |
| Context.getCanonicalType(NewNTTP->getType())) { |
| if (Complain) { |
| unsigned NextDiag = diag::err_template_nontype_parm_different_type; |
| if (TemplateArgLoc.isValid()) { |
| Diag(TemplateArgLoc, |
| diag::err_template_arg_template_params_mismatch); |
| NextDiag = diag::note_template_nontype_parm_different_type; |
| } |
| Diag(NewNTTP->getLocation(), NextDiag) |
| << NewNTTP->getType() |
| << (Kind != TPL_TemplateMatch); |
| Diag(OldNTTP->getLocation(), |
| diag::note_template_nontype_parm_prev_declaration) |
| << OldNTTP->getType(); |
| } |
| return false; |
| } |
| } else { |
| // The template parameter lists of template template |
| // parameters must agree. |
| assert(isa<TemplateTemplateParmDecl>(*OldParm) && |
| "Only template template parameters handled here"); |
| TemplateTemplateParmDecl *OldTTP |
| = cast<TemplateTemplateParmDecl>(*OldParm); |
| TemplateTemplateParmDecl *NewTTP |
| = cast<TemplateTemplateParmDecl>(*NewParm); |
| if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), |
| OldTTP->getTemplateParameters(), |
| Complain, |
| (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind), |
| TemplateArgLoc)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// \brief Check whether a template can be declared within this scope. |
| /// |
| /// If the template declaration is valid in this scope, returns |
| /// false. Otherwise, issues a diagnostic and returns true. |
| bool |
| Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { |
| // Find the nearest enclosing declaration scope. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| // C++ [temp]p2: |
| // A template-declaration can appear only as a namespace scope or |
| // class scope declaration. |
| DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); |
| if (Ctx && isa<LinkageSpecDecl>(Ctx) && |
| cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) |
| return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) |
| << TemplateParams->getSourceRange(); |
| |
| while (Ctx && isa<LinkageSpecDecl>(Ctx)) |
| Ctx = Ctx->getParent(); |
| |
| if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) |
| return false; |
| |
| return Diag(TemplateParams->getTemplateLoc(), |
| diag::err_template_outside_namespace_or_class_scope) |
| << TemplateParams->getSourceRange(); |
| } |
| |
| /// \brief Determine what kind of template specialization the given declaration |
| /// is. |
| static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) { |
| if (!D) |
| return TSK_Undeclared; |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) |
| return Record->getTemplateSpecializationKind(); |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) |
| return Function->getTemplateSpecializationKind(); |
| if (VarDecl *Var = dyn_cast<VarDecl>(D)) |
| return Var->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| /// \brief Check whether a specialization is well-formed in the current |
| /// context. |
| /// |
| /// This routine determines whether a template specialization can be declared |
| /// in the current context (C++ [temp.expl.spec]p2). |
| /// |
| /// \param S the semantic analysis object for which this check is being |
| /// performed. |
| /// |
| /// \param Specialized the entity being specialized or instantiated, which |
| /// may be a kind of template (class template, function template, etc.) or |
| /// a member of a class template (member function, static data member, |
| /// member class). |
| /// |
| /// \param PrevDecl the previous declaration of this entity, if any. |
| /// |
| /// \param Loc the location of the explicit specialization or instantiation of |
| /// this entity. |
| /// |
| /// \param IsPartialSpecialization whether this is a partial specialization of |
| /// a class template. |
| /// |
| /// \returns true if there was an error that we cannot recover from, false |
| /// otherwise. |
| static bool CheckTemplateSpecializationScope(Sema &S, |
| NamedDecl *Specialized, |
| NamedDecl *PrevDecl, |
| SourceLocation Loc, |
| bool IsPartialSpecialization) { |
| // Keep these "kind" numbers in sync with the %select statements in the |
| // various diagnostics emitted by this routine. |
| int EntityKind = 0; |
| bool isTemplateSpecialization = false; |
| if (isa<ClassTemplateDecl>(Specialized)) { |
| EntityKind = IsPartialSpecialization? 1 : 0; |
| isTemplateSpecialization = true; |
| } else if (isa<FunctionTemplateDecl>(Specialized)) { |
| EntityKind = 2; |
| isTemplateSpecialization = true; |
| } else if (isa<CXXMethodDecl>(Specialized)) |
| EntityKind = 3; |
| else if (isa<VarDecl>(Specialized)) |
| EntityKind = 4; |
| else if (isa<RecordDecl>(Specialized)) |
| EntityKind = 5; |
| else { |
| S.Diag(Loc, diag::err_template_spec_unknown_kind); |
| S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
| return true; |
| } |
| |
| // C++ [temp.expl.spec]p2: |
| // An explicit specialization shall be declared in the namespace |
| // of which the template is a member, or, for member templates, in |
| // the namespace of which the enclosing class or enclosing class |
| // template is a member. An explicit specialization of a member |
| // function, member class or static data member of a class |
| // template shall be declared in the namespace of which the class |
| // template is a member. Such a declaration may also be a |
| // definition. If the declaration is not a definition, the |
| // specialization may be defined later in the name- space in which |
| // the explicit specialization was declared, or in a namespace |
| // that encloses the one in which the explicit specialization was |
| // declared. |
| if (S.CurContext->getLookupContext()->isFunctionOrMethod()) { |
| S.Diag(Loc, diag::err_template_spec_decl_function_scope) |
| << Specialized; |
| return true; |
| } |
| |
| if (S.CurContext->isRecord() && !IsPartialSpecialization) { |
| S.Diag(Loc, diag::err_template_spec_decl_class_scope) |
| << Specialized; |
| return true; |
| } |
| |
| // C++ [temp.class.spec]p6: |
| // A class template partial specialization may be declared or redeclared |
| // in any namespace scope in which its definition may be defined (14.5.1 |
| // and 14.5.2). |
| bool ComplainedAboutScope = false; |
| DeclContext *SpecializedContext |
| = Specialized->getDeclContext()->getEnclosingNamespaceContext(); |
| DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); |
| if ((!PrevDecl || |
| getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || |
| getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ |
| // There is no prior declaration of this entity, so this |
| // specialization must be in the same context as the template |
| // itself. |
| if (!DC->Equals(SpecializedContext)) { |
| if (isa<TranslationUnitDecl>(SpecializedContext)) |
| S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) |
| << EntityKind << Specialized; |
| else if (isa<NamespaceDecl>(SpecializedContext)) |
| S.Diag(Loc, diag::err_template_spec_decl_out_of_scope) |
| << EntityKind << Specialized |
| << cast<NamedDecl>(SpecializedContext); |
| |
| S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
| ComplainedAboutScope = true; |
| } |
| } |
| |
| // Make sure that this redeclaration (or definition) occurs in an enclosing |
| // namespace. |
| // Note that HandleDeclarator() performs this check for explicit |
| // specializations of function templates, static data members, and member |
| // functions, so we skip the check here for those kinds of entities. |
| // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. |
| // Should we refactor that check, so that it occurs later? |
| if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && |
| !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || |
| isa<FunctionDecl>(Specialized))) { |
| if (isa<TranslationUnitDecl>(SpecializedContext)) |
| S.Diag(Loc, diag::err_template_spec_redecl_global_scope) |
| << EntityKind << Specialized; |
| else if (isa<NamespaceDecl>(SpecializedContext)) |
| S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) |
| << EntityKind << Specialized |
| << cast<NamedDecl>(SpecializedContext); |
| |
| S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
| } |
| |
| // FIXME: check for specialization-after-instantiation errors and such. |
| |
| return false; |
| } |
| |
| /// \brief Check the non-type template arguments of a class template |
| /// partial specialization according to C++ [temp.class.spec]p9. |
| /// |
| /// \param TemplateParams the template parameters of the primary class |
| /// template. |
| /// |
| /// \param TemplateArg the template arguments of the class template |
| /// partial specialization. |
| /// |
| /// \param MirrorsPrimaryTemplate will be set true if the class |
| /// template partial specialization arguments are identical to the |
| /// implicit template arguments of the primary template. This is not |
| /// necessarily an error (C++0x), and it is left to the caller to diagnose |
| /// this condition when it is an error. |
| /// |
| /// \returns true if there was an error, false otherwise. |
| bool Sema::CheckClassTemplatePartialSpecializationArgs( |
| TemplateParameterList *TemplateParams, |
| const TemplateArgumentListBuilder &TemplateArgs, |
| bool &MirrorsPrimaryTemplate) { |
| // FIXME: the interface to this function will have to change to |
| // accommodate variadic templates. |
| MirrorsPrimaryTemplate = true; |
| |
| const TemplateArgument *ArgList = TemplateArgs.getFlatArguments(); |
| |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| // Determine whether the template argument list of the partial |
| // specialization is identical to the implicit argument list of |
| // the primary template. The caller may need to diagnostic this as |
| // an error per C++ [temp.class.spec]p9b3. |
| if (MirrorsPrimaryTemplate) { |
| if (TemplateTypeParmDecl *TTP |
| = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) { |
| if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) != |
| Context.getCanonicalType(ArgList[I].getAsType())) |
| MirrorsPrimaryTemplate = false; |
| } else if (TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>( |
| TemplateParams->getParam(I))) { |
| TemplateName Name = ArgList[I].getAsTemplate(); |
| TemplateTemplateParmDecl *ArgDecl |
| = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()); |
| if (!ArgDecl || |
| ArgDecl->getIndex() != TTP->getIndex() || |
| ArgDecl->getDepth() != TTP->getDepth()) |
| MirrorsPrimaryTemplate = false; |
| } |
| } |
| |
| NonTypeTemplateParmDecl *Param |
| = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); |
| if (!Param) { |
| continue; |
| } |
| |
| Expr *ArgExpr = ArgList[I].getAsExpr(); |
| if (!ArgExpr) { |
| MirrorsPrimaryTemplate = false; |
| continue; |
| } |
| |
| // C++ [temp.class.spec]p8: |
| // A non-type argument is non-specialized if it is the name of a |
| // non-type parameter. All other non-type arguments are |
| // specialized. |
| // |
| // Below, we check the two conditions that only apply to |
| // specialized non-type arguments, so skip any non-specialized |
| // arguments. |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) |
| if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) { |
| if (MirrorsPrimaryTemplate && |
| (Param->getIndex() != NTTP->getIndex() || |
| Param->getDepth() != NTTP->getDepth())) |
| MirrorsPrimaryTemplate = false; |
| |
| continue; |
| } |
| |
| // C++ [temp.class.spec]p9: |
| // Within the argument list of a class template partial |
| // specialization, the following restrictions apply: |
| // -- A partially specialized non-type argument expression |
| // shall not involve a template parameter of the partial |
| // specialization except when the argument expression is a |
| // simple identifier. |
| if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { |
| Diag(ArgExpr->getLocStart(), |
| diag::err_dependent_non_type_arg_in_partial_spec) |
| << ArgExpr->getSourceRange(); |
| return true; |
| } |
| |
| // -- The type of a template parameter corresponding to a |
| // specialized non-type argument shall not be dependent on a |
| // parameter of the specialization. |
| if (Param->getType()->isDependentType()) { |
| Diag(ArgExpr->getLocStart(), |
| diag::err_dependent_typed_non_type_arg_in_partial_spec) |
| << Param->getType() |
| << ArgExpr->getSourceRange(); |
| Diag(Param->getLocation(), diag::note_template_param_here); |
| return true; |
| } |
| |
| MirrorsPrimaryTemplate = false; |
| } |
| |
| return false; |
| } |
| |
| Sema::DeclResult |
| Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, |
| TagUseKind TUK, |
| SourceLocation KWLoc, |
| const CXXScopeSpec &SS, |
| TemplateTy TemplateD, |
| SourceLocation TemplateNameLoc, |
| SourceLocation LAngleLoc, |
| ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc, |
| AttributeList *Attr, |
| MultiTemplateParamsArg TemplateParameterLists) { |
| assert(TUK != TUK_Reference && "References are not specializations"); |
| |
| // Find the class template we're specializing |
| TemplateName Name = TemplateD.getAsVal<TemplateName>(); |
| ClassTemplateDecl *ClassTemplate |
| = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); |
| |
| if (!ClassTemplate) { |
| Diag(TemplateNameLoc, diag::err_not_class_template_specialization) |
| << (Name.getAsTemplateDecl() && |
| isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); |
| return true; |
| } |
| |
| bool isExplicitSpecialization = false; |
| bool isPartialSpecialization = false; |
| |
| // Check the validity of the template headers that introduce this |
| // template. |
| // FIXME: We probably shouldn't complain about these headers for |
| // friend declarations. |
| TemplateParameterList *TemplateParams |
| = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS, |
| (TemplateParameterList**)TemplateParameterLists.get(), |
| TemplateParameterLists.size(), |
| isExplicitSpecialization); |
| if (TemplateParams && TemplateParams->size() > 0) { |
| isPartialSpecialization = true; |
| |
| // C++ [temp.class.spec]p10: |
| // The template parameter list of a specialization shall not |
| // contain default template argument values. |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| Decl *Param = TemplateParams->getParam(I); |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { |
| if (TTP->hasDefaultArgument()) { |
| Diag(TTP->getDefaultArgumentLoc(), |
| diag::err_default_arg_in_partial_spec); |
| TTP->removeDefaultArgument(); |
| } |
| } else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| if (Expr *DefArg = NTTP->getDefaultArgument()) { |
| Diag(NTTP->getDefaultArgumentLoc(), |
| diag::err_default_arg_in_partial_spec) |
| << DefArg->getSourceRange(); |
| NTTP->setDefaultArgument(0); |
| DefArg->Destroy(Context); |
| } |
| } else { |
| TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); |
| if (TTP->hasDefaultArgument()) { |
| Diag(TTP->getDefaultArgument().getLocation(), |
| diag::err_default_arg_in_partial_spec) |
| << TTP->getDefaultArgument().getSourceRange(); |
| TTP->setDefaultArgument(TemplateArgumentLoc()); |
| } |
| } |
| } |
| } else if (TemplateParams) { |
| if (TUK == TUK_Friend) |
| Diag(KWLoc, diag::err_template_spec_friend) |
| << CodeModificationHint::CreateRemoval( |
| SourceRange(TemplateParams->getTemplateLoc(), |
| TemplateParams->getRAngleLoc())) |
| << SourceRange(LAngleLoc, RAngleLoc); |
| else |
| isExplicitSpecialization = true; |
| } else if (TUK != TUK_Friend) { |
| Diag(KWLoc, diag::err_template_spec_needs_header) |
| << CodeModificationHint::CreateInsertion(KWLoc, "template<> "); |
| isExplicitSpecialization = true; |
| } |
| |
| // Check that the specialization uses the same tag kind as the |
| // original template. |
| TagDecl::TagKind Kind; |
| switch (TagSpec) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; |
| case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; |
| case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; |
| } |
| if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), |
| Kind, KWLoc, |
| *ClassTemplate->getIdentifier())) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << ClassTemplate |
| << CodeModificationHint::CreateReplacement(KWLoc, |
| ClassTemplate->getTemplatedDecl()->getKindName()); |
| Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
| diag::note_previous_use); |
| Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
| } |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs; |
| TemplateArgs.setLAngleLoc(LAngleLoc); |
| TemplateArgs.setRAngleLoc(RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), |
| TemplateArgs.size()); |
| if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, |
| TemplateArgs, false, Converted)) |
| return true; |
| |
| assert((Converted.structuredSize() == |
| ClassTemplate->getTemplateParameters()->size()) && |
| "Converted template argument list is too short!"); |
| |
| // Find the class template (partial) specialization declaration that |
| // corresponds to these arguments. |
| llvm::FoldingSetNodeID ID; |
| if (isPartialSpecialization) { |
| bool MirrorsPrimaryTemplate; |
| if (CheckClassTemplatePartialSpecializationArgs( |
| ClassTemplate->getTemplateParameters(), |
| Converted, MirrorsPrimaryTemplate)) |
| return true; |
| |
| if (MirrorsPrimaryTemplate) { |
| // C++ [temp.class.spec]p9b3: |
| // |
| // -- The argument list of the specialization shall not be identical |
| // to the implicit argument list of the primary template. |
| Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
| << (TUK == TUK_Definition) |
| << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc, |
| RAngleLoc)); |
| return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, |
| ClassTemplate->getIdentifier(), |
| TemplateNameLoc, |
| Attr, |
| TemplateParams, |
| AS_none); |
| } |
| |
| // FIXME: Diagnose friend partial specializations |
| |
| if (!Name.isDependent() && |
| !TemplateSpecializationType::anyDependentTemplateArguments( |
| TemplateArgs.getArgumentArray(), |
| TemplateArgs.size())) { |
| Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
| << ClassTemplate->getDeclName(); |
| isPartialSpecialization = false; |
| } else { |
| // FIXME: Template parameter list matters, too |
| ClassTemplatePartialSpecializationDecl::Profile(ID, |
| Converted.getFlatArguments(), |
| Converted.flatSize(), |
| Context); |
| } |
| } |
| |
| if (!isPartialSpecialization) |
| ClassTemplateSpecializationDecl::Profile(ID, |
| Converted.getFlatArguments(), |
| Converted.flatSize(), |
| Context); |
| void *InsertPos = 0; |
| ClassTemplateSpecializationDecl *PrevDecl = 0; |
| |
| if (isPartialSpecialization) |
| PrevDecl |
| = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID, |
| InsertPos); |
| else |
| PrevDecl |
| = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); |
| |
| ClassTemplateSpecializationDecl *Specialization = 0; |
| |
| // Check whether we can declare a class template specialization in |
| // the current scope. |
| if (TUK != TUK_Friend && |
| CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, |
| TemplateNameLoc, |
| isPartialSpecialization)) |
| return true; |
| |
| // The canonical type |
| QualType CanonType; |
| if (PrevDecl && |
| (PrevDecl->getSpecializationKind() == TSK_Undeclared || |
| TUK == TUK_Friend)) { |
| // Since the only prior class template specialization with these |
| // arguments was referenced but not declared, or we're only |
| // referencing this specialization as a friend, reuse that |
| // declaration node as our own, updating its source location to |
| // reflect our new declaration. |
| Specialization = PrevDecl; |
| Specialization->setLocation(TemplateNameLoc); |
| PrevDecl = 0; |
| CanonType = Context.getTypeDeclType(Specialization); |
| } else if (isPartialSpecialization) { |
| // Build the canonical type that describes the converted template |
| // arguments of the class template partial specialization. |
| TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
| CanonType = Context.getTemplateSpecializationType(CanonTemplate, |
| Converted.getFlatArguments(), |
| Converted.flatSize()); |
| |
| // Create a new class template partial specialization declaration node. |
| ClassTemplatePartialSpecializationDecl *PrevPartial |
| = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); |
| ClassTemplatePartialSpecializationDecl *Partial |
| = ClassTemplatePartialSpecializationDecl::Create(Context, |
| ClassTemplate->getDeclContext(), |
| TemplateNameLoc, |
| TemplateParams, |
| ClassTemplate, |
| Converted, |
| TemplateArgs, |
| PrevPartial); |
| |
| if (PrevPartial) { |
| ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial); |
| ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial); |
| } else { |
| ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos); |
| } |
| Specialization = Partial; |
| |
| // If we are providing an explicit specialization of a member class |
| // template specialization, make a note of that. |
| if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
| PrevPartial->setMemberSpecialization(); |
| |
| // Check that all of the template parameters of the class template |
| // partial specialization are deducible from the template |
| // arguments. If not, this class template partial specialization |
| // will never be used. |
| llvm::SmallVector<bool, 8> DeducibleParams; |
| DeducibleParams.resize(TemplateParams->size()); |
| MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, |
| TemplateParams->getDepth(), |
| DeducibleParams); |
| unsigned NumNonDeducible = 0; |
| for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) |
| if (!DeducibleParams[I]) |
| ++NumNonDeducible; |
| |
| if (NumNonDeducible) { |
| Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) |
| << (NumNonDeducible > 1) |
| << SourceRange(TemplateNameLoc, RAngleLoc); |
| for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { |
| if (!DeducibleParams[I]) { |
| NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); |
| if (Param->getDeclName()) |
| Diag(Param->getLocation(), |
| diag::note_partial_spec_unused_parameter) |
| << Param->getDeclName(); |
| else |
| Diag(Param->getLocation(), |
| diag::note_partial_spec_unused_parameter) |
| << std::string("<anonymous>"); |
| } |
| } |
| } |
| } else { |
| // Create a new class template specialization declaration node for |
| // this explicit specialization or friend declaration. |
| Specialization |
| = ClassTemplateSpecializationDecl::Create(Context, |
| ClassTemplate->getDeclContext(), |
| TemplateNameLoc, |
| ClassTemplate, |
| Converted, |
| PrevDecl); |
| |
| if (PrevDecl) { |
| ClassTemplate->getSpecializations().RemoveNode(PrevDecl); |
| ClassTemplate->getSpecializations().GetOrInsertNode(Specialization); |
| } else { |
| ClassTemplate->getSpecializations().InsertNode(Specialization, |
| InsertPos); |
| } |
| |
| CanonType = Context.getTypeDeclType(Specialization); |
| } |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
| SourceRange Range(TemplateNameLoc, RAngleLoc); |
| Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
| << Context.getTypeDeclType(Specialization) << Range; |
| |
| Diag(PrevDecl->getPointOfInstantiation(), |
| diag::note_instantiation_required_here) |
| << (PrevDecl->getTemplateSpecializationKind() |
| != TSK_ImplicitInstantiation); |
| return true; |
| } |
| |
| // If this is not a friend, note that this is an explicit specialization. |
| if (TUK != TUK_Friend) |
| Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
| |
| // Check that this isn't a redefinition of this specialization. |
| if (TUK == TUK_Definition) { |
| if (RecordDecl *Def = Specialization->getDefinition()) { |
| SourceRange Range(TemplateNameLoc, RAngleLoc); |
| Diag(TemplateNameLoc, diag::err_redefinition) |
| << Context.getTypeDeclType(Specialization) << Range; |
| Diag(Def->getLocation(), diag::note_previous_definition); |
| Specialization->setInvalidDecl(); |
| return true; |
| } |
| } |
| |
| // Build the fully-sugared type for this class template |
| // specialization as the user wrote in the specialization |
| // itself. This means that we'll pretty-print the type retrieved |
| // from the specialization's declaration the way that the user |
| // actually wrote the specialization, rather than formatting the |
| // name based on the "canonical" representation used to store the |
| // template arguments in the specialization. |
| QualType WrittenTy |
| = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); |
| if (TUK != TUK_Friend) |
| Specialization->setTypeAsWritten(WrittenTy); |
| TemplateArgsIn.release(); |
| |
| // C++ [temp.expl.spec]p9: |
| // A template explicit specialization is in the scope of the |
| // namespace in which the template was defined. |
| // |
| // We actually implement this paragraph where we set the semantic |
| // context (in the creation of the ClassTemplateSpecializationDecl), |
| // but we also maintain the lexical context where the actual |
| // definition occurs. |
| Specialization->setLexicalDeclContext(CurContext); |
| |
| // We may be starting the definition of this specialization. |
| if (TUK == TUK_Definition) |
| Specialization->startDefinition(); |
| |
| if (TUK == TUK_Friend) { |
| FriendDecl *Friend = FriendDecl::Create(Context, CurContext, |
| TemplateNameLoc, |
| WrittenTy.getTypePtr(), |
| /*FIXME:*/KWLoc); |
| Friend->setAccess(AS_public); |
| CurContext->addDecl(Friend); |
| } else { |
| // Add the specialization into its lexical context, so that it can |
| // be seen when iterating through the list of declarations in that |
| // context. However, specializations are not found by name lookup. |
| CurContext->addDecl(Specialization); |
| } |
| return DeclPtrTy::make(Specialization); |
| } |
| |
| Sema::DeclPtrTy |
| Sema::ActOnTemplateDeclarator(Scope *S, |
| MultiTemplateParamsArg TemplateParameterLists, |
| Declarator &D) { |
| return HandleDeclarator(S, D, move(TemplateParameterLists), false); |
| } |
| |
| Sema::DeclPtrTy |
| Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, |
| MultiTemplateParamsArg TemplateParameterLists, |
| Declarator &D) { |
| assert(getCurFunctionDecl() == 0 && "Function parsing confused"); |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| if (FTI.hasPrototype) { |
| // FIXME: Diagnose arguments without names in C. |
| } |
| |
| Scope *ParentScope = FnBodyScope->getParent(); |
| |
| DeclPtrTy DP = HandleDeclarator(ParentScope, D, |
| move(TemplateParameterLists), |
| /*IsFunctionDefinition=*/true); |
| if (FunctionTemplateDecl *FunctionTemplate |
| = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>())) |
| return ActOnStartOfFunctionDef(FnBodyScope, |
| DeclPtrTy::make(FunctionTemplate->getTemplatedDecl())); |
| if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>())) |
| return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function)); |
| return DeclPtrTy(); |
| } |
| |
| /// \brief Strips various properties off an implicit instantiation |
| /// that has just been explicitly specialized. |
| static void StripImplicitInstantiation(NamedDecl *D) { |
| D->invalidateAttrs(); |
| |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| FD->setInlineSpecified(false); |
| } |
| } |
| |
| /// \brief Diagnose cases where we have an explicit template specialization |
| /// before/after an explicit template instantiation, producing diagnostics |
| /// for those cases where they are required and determining whether the |
| /// new specialization/instantiation will have any effect. |
| /// |
| /// \param NewLoc the location of the new explicit specialization or |
| /// instantiation. |
| /// |
| /// \param NewTSK the kind of the new explicit specialization or instantiation. |
| /// |
| /// \param PrevDecl the previous declaration of the entity. |
| /// |
| /// \param PrevTSK the kind of the old explicit specialization or instantiatin. |
| /// |
| /// \param PrevPointOfInstantiation if valid, indicates where the previus |
| /// declaration was instantiated (either implicitly or explicitly). |
| /// |
| /// \param SuppressNew will be set to true to indicate that the new |
| /// specialization or instantiation has no effect and should be ignored. |
| /// |
| /// \returns true if there was an error that should prevent the introduction of |
| /// the new declaration into the AST, false otherwise. |
| bool |
| Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, |
| TemplateSpecializationKind NewTSK, |
| NamedDecl *PrevDecl, |
| TemplateSpecializationKind PrevTSK, |
| SourceLocation PrevPointOfInstantiation, |
| bool &SuppressNew) { |
| SuppressNew = false; |
| |
| switch (NewTSK) { |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| assert(false && "Don't check implicit instantiations here"); |
| return false; |
| |
| case TSK_ExplicitSpecialization: |
| switch (PrevTSK) { |
| case TSK_Undeclared: |
| case TSK_ExplicitSpecialization: |
| // Okay, we're just specializing something that is either already |
| // explicitly specialized or has merely been mentioned without any |
| // instantiation. |
| return false; |
| |
| case TSK_ImplicitInstantiation: |
| if (PrevPointOfInstantiation.isInvalid()) { |
| // The declaration itself has not actually been instantiated, so it is |
| // still okay to specialize it. |
| StripImplicitInstantiation(PrevDecl); |
| return false; |
| } |
| // Fall through |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| case TSK_ExplicitInstantiationDefinition: |
| assert((PrevTSK == TSK_ImplicitInstantiation || |
| PrevPointOfInstantiation.isValid()) && |
| "Explicit instantiation without point of instantiation?"); |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template |
| // is explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an |
| // implicit instantiation to take place, in every translation unit in |
| // which such a use occurs; no diagnostic is required. |
| Diag(NewLoc, diag::err_specialization_after_instantiation) |
| << PrevDecl; |
| Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) |
| << (PrevTSK != TSK_ImplicitInstantiation); |
| |
| return true; |
| } |
| break; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| switch (PrevTSK) { |
| case TSK_ExplicitInstantiationDeclaration: |
| // This explicit instantiation declaration is redundant (that's okay). |
| SuppressNew = true; |
| return false; |
| |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| // We're explicitly instantiating something that may have already been |
| // implicitly instantiated; that's fine. |
| return false; |
| |
| case TSK_ExplicitSpecialization: |
| // C++0x [temp.explicit]p4: |
| // For a given set of template parameters, if an explicit instantiation |
| // of a template appears after a declaration of an explicit |
| // specialization for that template, the explicit instantiation has no |
| // effect. |
| return false; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| // C++0x [temp.explicit]p10: |
| // If an entity is the subject of both an explicit instantiation |
| // declaration and an explicit instantiation definition in the same |
| // translation unit, the definition shall follow the declaration. |
| Diag(NewLoc, |
| diag::err_explicit_instantiation_declaration_after_definition); |
| Diag(PrevPointOfInstantiation, |
| diag::note_explicit_instantiation_definition_here); |
| assert(PrevPointOfInstantiation.isValid() && |
| "Explicit instantiation without point of instantiation?"); |
| SuppressNew = true; |
| return false; |
| } |
| break; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| switch (PrevTSK) { |
| case TSK_Undeclared: |
| case TSK_ImplicitInstantiation: |
| // We're explicitly instantiating something that may have already been |
| // implicitly instantiated; that's fine. |
| return false; |
| |
| case TSK_ExplicitSpecialization: |
| // C++ DR 259, C++0x [temp.explicit]p4: |
| // For a given set of template parameters, if an explicit |
| // instantiation of a template appears after a declaration of |
| // an explicit specialization for that template, the explicit |
| // instantiation has no effect. |
| // |
| // In C++98/03 mode, we only give an extension warning here, because it |
| // is not not harmful to try to explicitly instantiate something that |
| // has been explicitly specialized. |
| if (!getLangOptions().CPlusPlus0x) { |
| Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization) |
| << PrevDecl; |
| Diag(PrevDecl->getLocation(), |
| diag::note_previous_template_specialization); |
| } |
| SuppressNew = true; |
| return false; |
| |
| case TSK_ExplicitInstantiationDeclaration: |
| // We're explicity instantiating a definition for something for which we |
| // were previously asked to suppress instantiations. That's fine. |
| return false; |
| |
| case TSK_ExplicitInstantiationDefinition: |
| // C++0x [temp.spec]p5: |
| // For a given template and a given set of template-arguments, |
| // - an explicit instantiation definition shall appear at most once |
| // in a program, |
| Diag(NewLoc, diag::err_explicit_instantiation_duplicate) |
| << PrevDecl; |
| Diag(PrevPointOfInstantiation, |
| diag::note_previous_explicit_instantiation); |
| SuppressNew = true; |
| return false; |
| } |
| break; |
| } |
| |
| assert(false && "Missing specialization/instantiation case?"); |
| |
| return false; |
| } |
| |
| /// \brief Perform semantic analysis for the given function template |
| /// specialization. |
| /// |
| /// This routine performs all of the semantic analysis required for an |
| /// explicit function template specialization. On successful completion, |
| /// the function declaration \p FD will become a function template |
| /// specialization. |
| /// |
| /// \param FD the function declaration, which will be updated to become a |
| /// function template specialization. |
| /// |
| /// \param HasExplicitTemplateArgs whether any template arguments were |
| /// explicitly provided. |
| /// |
| /// \param LAngleLoc the location of the left angle bracket ('<'), if |
| /// template arguments were explicitly provided. |
| /// |
| /// \param ExplicitTemplateArgs the explicitly-provided template arguments, |
| /// if any. |
| /// |
| /// \param NumExplicitTemplateArgs the number of explicitly-provided template |
| /// arguments. This number may be zero even when HasExplicitTemplateArgs is |
| /// true as in, e.g., \c void sort<>(char*, char*); |
| /// |
| /// \param RAngleLoc the location of the right angle bracket ('>'), if |
| /// template arguments were explicitly provided. |
| /// |
| /// \param PrevDecl the set of declarations that |
| bool |
| Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, |
| const TemplateArgumentListInfo *ExplicitTemplateArgs, |
| LookupResult &Previous) { |
| // The set of function template specializations that could match this |
| // explicit function template specialization. |
| UnresolvedSet<8> Candidates; |
| |
| DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext(); |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| NamedDecl *Ovl = (*I)->getUnderlyingDecl(); |
| if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { |
| // Only consider templates found within the same semantic lookup scope as |
| // FD. |
| if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext())) |
| continue; |
| |
| // C++ [temp.expl.spec]p11: |
| // A trailing template-argument can be left unspecified in the |
| // template-id naming an explicit function template specialization |
| // provided it can be deduced from the function argument type. |
| // Perform template argument deduction to determine whether we may be |
| // specializing this template. |
| // FIXME: It is somewhat wasteful to build |
| TemplateDeductionInfo Info(Context, FD->getLocation()); |
| FunctionDecl *Specialization = 0; |
| if (TemplateDeductionResult TDK |
| = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, |
| FD->getType(), |
| Specialization, |
| Info)) { |
| // FIXME: Template argument deduction failed; record why it failed, so |
| // that we can provide nifty diagnostics. |
| (void)TDK; |
| continue; |
| } |
| |
| // Record this candidate. |
| Candidates.addDecl(Specialization, I.getAccess()); |
| } |
| } |
| |
| // Find the most specialized function template. |
| UnresolvedSetIterator Result |
| = getMostSpecialized(Candidates.begin(), Candidates.end(), |
| TPOC_Other, FD->getLocation(), |
| PartialDiagnostic(diag::err_function_template_spec_no_match) |
| << FD->getDeclName(), |
| PartialDiagnostic(diag::err_function_template_spec_ambiguous) |
| << FD->getDeclName() << (ExplicitTemplateArgs != 0), |
| PartialDiagnostic(diag::note_function_template_spec_matched)); |
| if (Result == Candidates.end()) |
| return true; |
| |
| // Ignore access information; it doesn't figure into redeclaration checking. |
| FunctionDecl *Specialization = cast<FunctionDecl>(*Result); |
| |
| // FIXME: Check if the prior specialization has a point of instantiation. |
| // If so, we have run afoul of . |
| |
| // Check the scope of this explicit specialization. |
| if (CheckTemplateSpecializationScope(*this, |
| Specialization->getPrimaryTemplate(), |
| Specialization, FD->getLocation(), |
| false)) |
| return true; |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that specialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| FunctionTemplateSpecializationInfo *SpecInfo |
| = Specialization->getTemplateSpecializationInfo(); |
| assert(SpecInfo && "Function template specialization info missing?"); |
| |
| bool SuppressNew = false; |
| if (CheckSpecializationInstantiationRedecl(FD->getLocation(), |
| TSK_ExplicitSpecialization, |
| Specialization, |
| SpecInfo->getTemplateSpecializationKind(), |
| SpecInfo->getPointOfInstantiation(), |
| SuppressNew)) |
| return true; |
| |
| // Mark the prior declaration as an explicit specialization, so that later |
| // clients know that this is an explicit specialization. |
| SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
| |
| // Turn the given function declaration into a function template |
| // specialization, with the template arguments from the previous |
| // specialization. |
| FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), |
| new (Context) TemplateArgumentList( |
| *Specialization->getTemplateSpecializationArgs()), |
| /*InsertPos=*/0, |
| TSK_ExplicitSpecialization); |
| |
| // The "previous declaration" for this function template specialization is |
| // the prior function template specialization. |
| Previous.clear(); |
| Previous.addDecl(Specialization); |
| return false; |
| } |
| |
| /// \brief Perform semantic analysis for the given non-template member |
| /// specialization. |
| /// |
| /// This routine performs all of the semantic analysis required for an |
| /// explicit member function specialization. On successful completion, |
| /// the function declaration \p FD will become a member function |
| /// specialization. |
| /// |
| /// \param Member the member declaration, which will be updated to become a |
| /// specialization. |
| /// |
| /// \param Previous the set of declarations, one of which may be specialized |
| /// by this function specialization; the set will be modified to contain the |
| /// redeclared member. |
| bool |
| Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { |
| assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); |
| |
| // Try to find the member we are instantiating. |
| NamedDecl *Instantiation = 0; |
| NamedDecl *InstantiatedFrom = 0; |
| MemberSpecializationInfo *MSInfo = 0; |
| |
| if (Previous.empty()) { |
| // Nowhere to look anyway. |
| } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { |
| for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| I != E; ++I) { |
| NamedDecl *D = (*I)->getUnderlyingDecl(); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
| if (Context.hasSameType(Function->getType(), Method->getType())) { |
| Instantiation = Method; |
| InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); |
| MSInfo = Method->getMemberSpecializationInfo(); |
| break; |
| } |
| } |
| } |
| } else if (isa<VarDecl>(Member)) { |
| VarDecl *PrevVar; |
| if (Previous.isSingleResult() && |
| (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) |
| if (PrevVar->isStaticDataMember()) { |
| Instantiation = PrevVar; |
| InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); |
| MSInfo = PrevVar->getMemberSpecializationInfo(); |
| } |
| } else if (isa<RecordDecl>(Member)) { |
| CXXRecordDecl *PrevRecord; |
| if (Previous.isSingleResult() && |
| (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { |
| Instantiation = PrevRecord; |
| InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); |
| MSInfo = PrevRecord->getMemberSpecializationInfo(); |
| } |
| } |
| |
| if (!Instantiation) { |
| // There is no previous declaration that matches. Since member |
| // specializations are always out-of-line, the caller will complain about |
| // this mismatch later. |
| return false; |
| } |
| |
| // Make sure that this is a specialization of a member. |
| if (!InstantiatedFrom) { |
| Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) |
| << Member; |
| Diag(Instantiation->getLocation(), diag::note_specialized_decl); |
| return true; |
| } |
| |
| // C++ [temp.expl.spec]p6: |
| // If a template, a member template or the member of a class template is |
| // explicitly specialized then that spe- cialization shall be declared |
| // before the first use of that specialization that would cause an implicit |
| // instantiation to take place, in every translation unit in which such a |
| // use occurs; no diagnostic is required. |
| assert(MSInfo && "Member specialization info missing?"); |
| |
| bool SuppressNew = false; |
| if (CheckSpecializationInstantiationRedecl(Member->getLocation(), |
| TSK_ExplicitSpecialization, |
| Instantiation, |
| MSInfo->getTemplateSpecializationKind(), |
| MSInfo->getPointOfInstantiation(), |
| SuppressNew)) |
| return true; |
| |
| // Check the scope of this explicit specialization. |
| if (CheckTemplateSpecializationScope(*this, |
| InstantiatedFrom, |
| Instantiation, Member->getLocation(), |
| false)) |
| return true; |
| |
| // Note that this is an explicit instantiation of a member. |
| // the original declaration to note that it is an explicit specialization |
| // (if it was previously an implicit instantiation). This latter step |
| // makes bookkeeping easier. |
| if (isa<FunctionDecl>(Member)) { |
| FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); |
| if (InstantiationFunction->getTemplateSpecializationKind() == |
| TSK_ImplicitInstantiation) { |
| InstantiationFunction->setTemplateSpecializationKind( |
| TSK_ExplicitSpecialization); |
| InstantiationFunction->setLocation(Member->getLocation()); |
| } |
| |
| cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( |
| cast<CXXMethodDecl>(InstantiatedFrom), |
| TSK_ExplicitSpecialization); |
| } else if (isa<VarDecl>(Member)) { |
| VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); |
| if (InstantiationVar->getTemplateSpecializationKind() == |
| TSK_ImplicitInstantiation) { |
| InstantiationVar->setTemplateSpecializationKind( |
| TSK_ExplicitSpecialization); |
| InstantiationVar->setLocation(Member->getLocation()); |
| } |
| |
| Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), |
| cast<VarDecl>(InstantiatedFrom), |
| TSK_ExplicitSpecialization); |
| } else { |
| assert(isa<CXXRecordDecl>(Member) && "Only member classes remain"); |
| CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); |
| if (InstantiationClass->getTemplateSpecializationKind() == |
| TSK_ImplicitInstantiation) { |
| InstantiationClass->setTemplateSpecializationKind( |
| TSK_ExplicitSpecialization); |
| InstantiationClass->setLocation(Member->getLocation()); |
| } |
| |
| cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( |
| cast<CXXRecordDecl>(InstantiatedFrom), |
| TSK_ExplicitSpecialization); |
| } |
| |
| // Save the caller the trouble of having to figure out which declaration |
| // this specialization matches. |
| Previous.clear(); |
| Previous.addDecl(Instantiation); |
| return false; |
| } |
| |
| /// \brief Check the scope of an explicit instantiation. |
| static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, |
| SourceLocation InstLoc, |
| bool WasQualifiedName) { |
| DeclContext *ExpectedContext |
| = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext(); |
| DeclContext *CurContext = S.CurContext->getLookupContext(); |
| |
| // C++0x [temp.explicit]p2: |
| // An explicit instantiation shall appear in an enclosing namespace of its |
| // template. |
| // |
| // This is DR275, which we do not retroactively apply to C++98/03. |
| if (S.getLangOptions().CPlusPlus0x && |
| !CurContext->Encloses(ExpectedContext)) { |
| if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext)) |
| S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope) |
| << D << NS; |
| else |
| S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global) |
| << D; |
| S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); |
| return; |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // If the name declared in the explicit instantiation is an unqualified |
| // name, the explicit instantiation shall appear in the namespace where |
| // its template is declared or, if that namespace is inline (7.3.1), any |
| // namespace from its enclosing namespace set. |
| if (WasQualifiedName) |
| return; |
| |
| if (CurContext->Equals(ExpectedContext)) |
| return; |
| |
| S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace) |
| << D << ExpectedContext; |
| S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); |
| } |
| |
| /// \brief Determine whether the given scope specifier has a template-id in it. |
| static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { |
| if (!SS.isSet()) |
| return false; |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a member function, a member class |
| // or a static data member of a class template specialization, the name of |
| // the class template specialization in the qualified-id for the member |
| // name shall be a simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); |
| NNS; NNS = NNS->getPrefix()) |
| if (Type *T = NNS->getAsType()) |
| if (isa<TemplateSpecializationType>(T)) |
| return true; |
| |
| return false; |
| } |
| |
| // Explicit instantiation of a class template specialization |
| // FIXME: Implement extern template semantics |
| Sema::DeclResult |
| Sema::ActOnExplicitInstantiation(Scope *S, |
| SourceLocation ExternLoc, |
| SourceLocation TemplateLoc, |
| unsigned TagSpec, |
| SourceLocation KWLoc, |
| const CXXScopeSpec &SS, |
| TemplateTy TemplateD, |
| SourceLocation TemplateNameLoc, |
| SourceLocation LAngleLoc, |
| ASTTemplateArgsPtr TemplateArgsIn, |
| SourceLocation RAngleLoc, |
| AttributeList *Attr) { |
| // Find the class template we're specializing |
| TemplateName Name = TemplateD.getAsVal<TemplateName>(); |
| ClassTemplateDecl *ClassTemplate |
| = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); |
| |
| // Check that the specialization uses the same tag kind as the |
| // original template. |
| TagDecl::TagKind Kind; |
| switch (TagSpec) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break; |
| case DeclSpec::TST_union: Kind = TagDecl::TK_union; break; |
| case DeclSpec::TST_class: Kind = TagDecl::TK_class; break; |
| } |
| if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), |
| Kind, KWLoc, |
| *ClassTemplate->getIdentifier())) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag) |
| << ClassTemplate |
| << CodeModificationHint::CreateReplacement(KWLoc, |
| ClassTemplate->getTemplatedDecl()->getKindName()); |
| Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
| diag::note_previous_use); |
| Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // There are two forms of explicit instantiation: an explicit instantiation |
| // definition and an explicit instantiation declaration. An explicit |
| // instantiation declaration begins with the extern keyword. [...] |
| TemplateSpecializationKind TSK |
| = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
| : TSK_ExplicitInstantiationDeclaration; |
| |
| // Translate the parser's template argument list in our AST format. |
| TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
| translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
| |
| // Check that the template argument list is well-formed for this |
| // template. |
| TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(), |
| TemplateArgs.size()); |
| if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, |
| TemplateArgs, false, Converted)) |
| return true; |
| |
| assert((Converted.structuredSize() == |
| ClassTemplate->getTemplateParameters()->size()) && |
| "Converted template argument list is too short!"); |
| |
| // Find the class template specialization declaration that |
| // corresponds to these arguments. |
| llvm::FoldingSetNodeID ID; |
| ClassTemplateSpecializationDecl::Profile(ID, |
| Converted.getFlatArguments(), |
| Converted.flatSize(), |
| Context); |
| void *InsertPos = 0; |
| ClassTemplateSpecializationDecl *PrevDecl |
| = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); |
| |
| // C++0x [temp.explicit]p2: |
| // [...] An explicit instantiation shall appear in an enclosing |
| // namespace of its template. [...] |
| // |
| // This is C++ DR 275. |
| CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, |
| SS.isSet()); |
| |
| ClassTemplateSpecializationDecl *Specialization = 0; |
| |
| bool ReusedDecl = false; |
| if (PrevDecl) { |
| bool SuppressNew = false; |
| if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, |
| PrevDecl, |
| PrevDecl->getSpecializationKind(), |
| PrevDecl->getPointOfInstantiation(), |
| SuppressNew)) |
| return DeclPtrTy::make(PrevDecl); |
| |
| if (SuppressNew) |
| return DeclPtrTy::make(PrevDecl); |
| |
| if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation || |
| PrevDecl->getSpecializationKind() == TSK_Undeclared) { |
| // Since the only prior class template specialization with these |
| // arguments was referenced but not declared, reuse that |
| // declaration node as our own, updating its source location to |
| // reflect our new declaration. |
| Specialization = PrevDecl; |
| Specialization->setLocation(TemplateNameLoc); |
| PrevDecl = 0; |
| ReusedDecl = true; |
| } |
| } |
| |
| if (!Specialization) { |
| // Create a new class template specialization declaration node for |
| // this explicit specialization. |
| Specialization |
| = ClassTemplateSpecializationDecl::Create(Context, |
| ClassTemplate->getDeclContext(), |
| TemplateNameLoc, |
| ClassTemplate, |
| Converted, PrevDecl); |
| |
| if (PrevDecl) { |
| // Remove the previous declaration from the folding set, since we want |
| // to introduce a new declaration. |
| ClassTemplate->getSpecializations().RemoveNode(PrevDecl); |
| ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| // Insert the new specialization. |
| ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos); |
| } |
| |
| // Build the fully-sugared type for this explicit instantiation as |
| // the user wrote in the explicit instantiation itself. This means |
| // that we'll pretty-print the type retrieved from the |
| // specialization's declaration the way that the user actually wrote |
| // the explicit instantiation, rather than formatting the name based |
| // on the "canonical" representation used to store the template |
| // arguments in the specialization. |
| QualType WrittenTy |
| = Context.getTemplateSpecializationType(Name, TemplateArgs, |
| Context.getTypeDeclType(Specialization)); |
| Specialization->setTypeAsWritten(WrittenTy); |
| TemplateArgsIn.release(); |
| |
| if (!ReusedDecl) { |
| // Add the explicit instantiation into its lexical context. However, |
| // since explicit instantiations are never found by name lookup, we |
| // just put it into the declaration context directly. |
| Specialization->setLexicalDeclContext(CurContext); |
| CurContext->addDecl(Specialization); |
| } |
| |
| // C++ [temp.explicit]p3: |
| // A definition of a class template or class member template |
| // shall be in scope at the point of the explicit instantiation of |
| // the class template or class member template. |
| // |
| // This check comes when we actually try to perform the |
| // instantiation. |
| ClassTemplateSpecializationDecl *Def |
| = cast_or_null<ClassTemplateSpecializationDecl>( |
| Specialization->getDefinition()); |
| if (!Def) |
| InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); |
| |
| // Instantiate the members of this class template specialization. |
| Def = cast_or_null<ClassTemplateSpecializationDecl>( |
| Specialization->getDefinition()); |
| if (Def) |
| InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); |
| |
| return DeclPtrTy::make(Specialization); |
| } |
| |
| // Explicit instantiation of a member class of a class template. |
| Sema::DeclResult |
| Sema::ActOnExplicitInstantiation(Scope *S, |
| SourceLocation ExternLoc, |
| SourceLocation TemplateLoc, |
| unsigned TagSpec, |
| SourceLocation KWLoc, |
| const CXXScopeSpec &SS, |
| IdentifierInfo *Name, |
| SourceLocation NameLoc, |
| AttributeList *Attr) { |
| |
| bool Owned = false; |
| bool IsDependent = false; |
| DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference, |
| KWLoc, SS, Name, NameLoc, Attr, AS_none, |
| MultiTemplateParamsArg(*this, 0, 0), |
| Owned, IsDependent); |
| assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); |
| |
| if (!TagD) |
| return true; |
| |
| TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>()); |
| if (Tag->isEnum()) { |
| Diag(TemplateLoc, diag::err_explicit_instantiation_enum) |
| << Context.getTypeDeclType(Tag); |
| return true; |
| } |
| |
| if (Tag->isInvalidDecl()) |
| return true; |
| |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); |
| CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); |
| if (!Pattern) { |
| Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) |
| << Context.getTypeDeclType(Record); |
| Diag(Record->getLocation(), diag::note_nontemplate_decl_here); |
| return true; |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a class or member class, the |
| // elaborated-type-specifier in the declaration shall include a |
| // simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| if (!ScopeSpecifierHasTemplateId(SS)) |
| Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id) |
| << Record << SS.getRange(); |
| |
| // C++0x [temp.explicit]p2: |
| // There are two forms of explicit instantiation: an explicit instantiation |
| // definition and an explicit instantiation declaration. An explicit |
| // instantiation declaration begins with the extern keyword. [...] |
| TemplateSpecializationKind TSK |
| = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
| : TSK_ExplicitInstantiationDeclaration; |
| |
| // C++0x [temp.explicit]p2: |
| // [...] An explicit instantiation shall appear in an enclosing |
| // namespace of its template. [...] |
| // |
| // This is C++ DR 275. |
| CheckExplicitInstantiationScope(*this, Record, NameLoc, true); |
| |
| // Verify that it is okay to explicitly instantiate here. |
| CXXRecordDecl *PrevDecl |
| = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration()); |
| if (!PrevDecl && Record->getDefinition()) |
| PrevDecl = Record; |
| if (PrevDecl) { |
| MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); |
| bool SuppressNew = false; |
| assert(MSInfo && "No member specialization information?"); |
| if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, |
| PrevDecl, |
| MSInfo->getTemplateSpecializationKind(), |
| MSInfo->getPointOfInstantiation(), |
| SuppressNew)) |
| return true; |
| if (SuppressNew) |
| return TagD; |
| } |
| |
| CXXRecordDecl *RecordDef |
| = cast_or_null<CXXRecordDecl>(Record->getDefinition()); |
| if (!RecordDef) { |
| // C++ [temp.explicit]p3: |
| // A definition of a member class of a class template shall be in scope |
| // at the point of an explicit instantiation of the member class. |
| CXXRecordDecl *Def |
| = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); |
| if (!Def) { |
| Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) |
| << 0 << Record->getDeclName() << Record->getDeclContext(); |
| Diag(Pattern->getLocation(), diag::note_forward_declaration) |
| << Pattern; |
| return true; |
| } else { |
| if (InstantiateClass(NameLoc, Record, Def, |
| getTemplateInstantiationArgs(Record), |
| TSK)) |
| return true; |
| |
| RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); |
| if (!RecordDef) |
| return true; |
| } |
| } |
| |
| // Instantiate all of the members of the class. |
| InstantiateClassMembers(NameLoc, RecordDef, |
| getTemplateInstantiationArgs(Record), TSK); |
| |
| // FIXME: We don't have any representation for explicit instantiations of |
| // member classes. Such a representation is not needed for compilation, but it |
| // should be available for clients that want to see all of the declarations in |
| // the source code. |
| return TagD; |
| } |
| |
| Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S, |
| SourceLocation ExternLoc, |
| SourceLocation TemplateLoc, |
| Declarator &D) { |
| // Explicit instantiations always require a name. |
| DeclarationName Name = GetNameForDeclarator(D); |
| if (!Name) { |
| if (!D.isInvalidType()) |
| Diag(D.getDeclSpec().getSourceRange().getBegin(), |
| diag::err_explicit_instantiation_requires_name) |
| << D.getDeclSpec().getSourceRange() |
| << D.getSourceRange(); |
| |
| return true; |
| } |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0 || |
| (S->getFlags() & Scope::TemplateParamScope) != 0) |
| S = S->getParent(); |
| |
| // Determine the type of the declaration. |
| QualType R = GetTypeForDeclarator(D, S, 0); |
| if (R.isNull()) |
| return true; |
| |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| // Cannot explicitly instantiate a typedef. |
| Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) |
| << Name; |
| return true; |
| } |
| |
| // C++0x [temp.explicit]p1: |
| // [...] An explicit instantiation of a function template shall not use the |
| // inline or constexpr specifiers. |
| // Presumably, this also applies to member functions of class templates as |
| // well. |
| if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x) |
| Diag(D.getDeclSpec().getInlineSpecLoc(), |
| diag::err_explicit_instantiation_inline) |
| <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| |
| // FIXME: check for constexpr specifier. |
| |
| // C++0x [temp.explicit]p2: |
| // There are two forms of explicit instantiation: an explicit instantiation |
| // definition and an explicit instantiation declaration. An explicit |
| // instantiation declaration begins with the extern keyword. [...] |
| TemplateSpecializationKind TSK |
| = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
| : TSK_ExplicitInstantiationDeclaration; |
| |
| LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName); |
| LookupParsedName(Previous, S, &D.getCXXScopeSpec()); |
| |
| if (!R->isFunctionType()) { |
| // C++ [temp.explicit]p1: |
| // A [...] static data member of a class template can be explicitly |
| // instantiated from the member definition associated with its class |
| // template. |
| if (Previous.isAmbiguous()) |
| return true; |
| |
| VarDecl *Prev = Previous.getAsSingle<VarDecl>(); |
| if (!Prev || !Prev->isStaticDataMember()) { |
| // We expect to see a data data member here. |
| Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) |
| << Name; |
| for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
| P != PEnd; ++P) |
| Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); |
| return true; |
| } |
| |
| if (!Prev->getInstantiatedFromStaticDataMember()) { |
| // FIXME: Check for explicit specialization? |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_data_member_not_instantiated) |
| << Prev; |
| Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); |
| // FIXME: Can we provide a note showing where this was declared? |
| return true; |
| } |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a member function, a member class |
| // or a static data member of a class template specialization, the name of |
| // the class template specialization in the qualified-id for the member |
| // name shall be a simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_without_qualified_id) |
| << Prev << D.getCXXScopeSpec().getRange(); |
| |
| // Check the scope of this explicit instantiation. |
| CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); |
| |
| // Verify that it is okay to explicitly instantiate here. |
| MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); |
| assert(MSInfo && "Missing static data member specialization info?"); |
| bool SuppressNew = false; |
| if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, |
| MSInfo->getTemplateSpecializationKind(), |
| MSInfo->getPointOfInstantiation(), |
| SuppressNew)) |
| return true; |
| if (SuppressNew) |
| return DeclPtrTy(); |
| |
| // Instantiate static data member. |
| Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); |
| if (TSK == TSK_ExplicitInstantiationDefinition) |
| InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false, |
| /*DefinitionRequired=*/true); |
| |
| // FIXME: Create an ExplicitInstantiation node? |
| return DeclPtrTy(); |
| } |
| |
| // If the declarator is a template-id, translate the parser's template |
| // argument list into our AST format. |
| bool HasExplicitTemplateArgs = false; |
| TemplateArgumentListInfo TemplateArgs; |
| if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { |
| TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
| TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); |
| TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); |
| ASTTemplateArgsPtr TemplateArgsPtr(*this, |
| TemplateId->getTemplateArgs(), |
| TemplateId->NumArgs); |
| translateTemplateArguments(TemplateArgsPtr, TemplateArgs); |
| HasExplicitTemplateArgs = true; |
| TemplateArgsPtr.release(); |
| } |
| |
| // C++ [temp.explicit]p1: |
| // A [...] function [...] can be explicitly instantiated from its template. |
| // A member function [...] of a class template can be explicitly |
| // instantiated from the member definition associated with its class |
| // template. |
| UnresolvedSet<8> Matches; |
| for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
| P != PEnd; ++P) { |
| NamedDecl *Prev = *P; |
| if (!HasExplicitTemplateArgs) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { |
| if (Context.hasSameUnqualifiedType(Method->getType(), R)) { |
| Matches.clear(); |
| |
| Matches.addDecl(Method, P.getAccess()); |
| if (Method->getTemplateSpecializationKind() == TSK_Undeclared) |
| break; |
| } |
| } |
| } |
| |
| FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); |
| if (!FunTmpl) |
| continue; |
| |
| TemplateDeductionInfo Info(Context, D.getIdentifierLoc()); |
| FunctionDecl *Specialization = 0; |
| if (TemplateDeductionResult TDK |
| = DeduceTemplateArguments(FunTmpl, |
| (HasExplicitTemplateArgs ? &TemplateArgs : 0), |
| R, Specialization, Info)) { |
| // FIXME: Keep track of almost-matches? |
| (void)TDK; |
| continue; |
| } |
| |
| Matches.addDecl(Specialization, P.getAccess()); |
| } |
| |
| // Find the most specialized function template specialization. |
| UnresolvedSetIterator Result |
| = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, |
| D.getIdentifierLoc(), |
| PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name, |
| PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name, |
| PartialDiagnostic(diag::note_explicit_instantiation_candidate)); |
| |
| if (Result == Matches.end()) |
| return true; |
| |
| // Ignore access control bits, we don't need them for redeclaration checking. |
| FunctionDecl *Specialization = cast<FunctionDecl>(*Result); |
| |
| if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_member_function_not_instantiated) |
| << Specialization |
| << (Specialization->getTemplateSpecializationKind() == |
| TSK_ExplicitSpecialization); |
| Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); |
| return true; |
| } |
| |
| FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration(); |
| if (!PrevDecl && Specialization->isThisDeclarationADefinition()) |
| PrevDecl = Specialization; |
| |
| if (PrevDecl) { |
| bool SuppressNew = false; |
| if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, |
| PrevDecl, |
| PrevDecl->getTemplateSpecializationKind(), |
| PrevDecl->getPointOfInstantiation(), |
| SuppressNew)) |
| return true; |
| |
| // FIXME: We may still want to build some representation of this |
| // explicit specialization. |
| if (SuppressNew) |
| return DeclPtrTy(); |
| } |
| |
| Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); |
| |
| if (TSK == TSK_ExplicitInstantiationDefinition) |
| InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization, |
| false, /*DefinitionRequired=*/true); |
| |
| // C++0x [temp.explicit]p2: |
| // If the explicit instantiation is for a member function, a member class |
| // or a static data member of a class template specialization, the name of |
| // the class template specialization in the qualified-id for the member |
| // name shall be a simple-template-id. |
| // |
| // C++98 has the same restriction, just worded differently. |
| FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); |
| if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && |
| D.getCXXScopeSpec().isSet() && |
| !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) |
| Diag(D.getIdentifierLoc(), |
| diag::err_explicit_instantiation_without_qualified_id) |
| << Specialization << D.getCXXScopeSpec().getRange(); |
| |
| CheckExplicitInstantiationScope(*this, |
| FunTmpl? (NamedDecl *)FunTmpl |
| : Specialization->getInstantiatedFromMemberFunction(), |
| D.getIdentifierLoc(), |
| D.getCXXScopeSpec().isSet()); |
| |
| // FIXME: Create some kind of ExplicitInstantiationDecl here. |
| return DeclPtrTy(); |
| } |
| |
| Sema::TypeResult |
| Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
| const CXXScopeSpec &SS, IdentifierInfo *Name, |
| SourceLocation TagLoc, SourceLocation NameLoc) { |
| // This has to hold, because SS is expected to be defined. |
| assert(Name && "Expected a name in a dependent tag"); |
| |
| NestedNameSpecifier *NNS |
| = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| if (!NNS) |
| return true; |
| |
| QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc)); |
| if (T.isNull()) |
| return true; |
| |
| TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec); |
| QualType ElabType = Context.getElaboratedType(T, TagKind); |
| |
| return ElabType.getAsOpaquePtr(); |
| } |
| |
| Sema::TypeResult |
| Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, |
| const IdentifierInfo &II, SourceLocation IdLoc) { |
| NestedNameSpecifier *NNS |
| = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| if (!NNS) |
| return true; |
| |
| QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc)); |
| if (T.isNull()) |
| return true; |
| return T.getAsOpaquePtr(); |
| } |
| |
| Sema::TypeResult |
| Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS, |
| SourceLocation TemplateLoc, TypeTy *Ty) { |
| QualType T = GetTypeFromParser(Ty); |
| NestedNameSpecifier *NNS |
| = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); |
| const TemplateSpecializationType *TemplateId |
| = T->getAs<TemplateSpecializationType>(); |
| assert(TemplateId && "Expected a template specialization type"); |
| |
| if (computeDeclContext(SS, false)) { |
| // If we can compute a declaration context, then the "typename" |
| // keyword was superfluous. Just build a QualifiedNameType to keep |
| // track of the nested-name-specifier. |
| |
| // FIXME: Note that the QualifiedNameType had the "typename" keyword! |
| return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr(); |
| } |
| |
| return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr(); |
| } |
| |
| /// \brief Build the type that describes a C++ typename specifier, |
| /// e.g., "typename T::type". |
| QualType |
| Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II, |
| SourceRange Range) { |
| CXXRecordDecl *CurrentInstantiation = 0; |
| if (NNS->isDependent()) { |
| CurrentInstantiation = getCurrentInstantiationOf(NNS); |
| |
| // If the nested-name-specifier does not refer to the current |
| // instantiation, then build a typename type. |
| if (!CurrentInstantiation) |
| return Context.getTypenameType(NNS, &II); |
| |
| // The nested-name-specifier refers to the current instantiation, so the |
| // "typename" keyword itself is superfluous. In C++03, the program is |
| // actually ill-formed. However, DR 382 (in C++0x CD1) allows such |
| // extraneous "typename" keywords, and we retroactively apply this DR to |
| // C++03 code. |
| } |
| |
| DeclContext *Ctx = 0; |
| |
| if (CurrentInstantiation) |
| Ctx = CurrentInstantiation; |
| else { |
| CXXScopeSpec SS; |
| SS.setScopeRep(NNS); |
| SS.setRange(Range); |
| if (RequireCompleteDeclContext(SS)) |
| return QualType(); |
| |
| Ctx = computeDeclContext(SS); |
| } |
| assert(Ctx && "No declaration context?"); |
| |
| DeclarationName Name(&II); |
| LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName); |
| LookupQualifiedName(Result, Ctx); |
| unsigned DiagID = 0; |
| Decl *Referenced = 0; |
| switch (Result.getResultKind()) { |
| case LookupResult::NotFound: |
| DiagID = diag::err_typename_nested_not_found; |
| break; |
| |
| case LookupResult::NotFoundInCurrentInstantiation: |
| // Okay, it's a member of an unknown instantiation. |
| return Context.getTypenameType(NNS, &II); |
| |
| case LookupResult::Found: |
| if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { |
| // We found a type. Build a QualifiedNameType, since the |
| // typename-specifier was just sugar. FIXME: Tell |
| // QualifiedNameType that it has a "typename" prefix. |
| return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type)); |
| } |
| |
| DiagID = diag::err_typename_nested_not_type; |
| Referenced = Result.getFoundDecl(); |
| break; |
| |
| case LookupResult::FoundUnresolvedValue: |
| llvm_unreachable("unresolved using decl in non-dependent context"); |
| return QualType(); |
| |
| case LookupResult::FoundOverloaded: |
| DiagID = diag::err_typename_nested_not_type; |
| Referenced = *Result.begin(); |
| break; |
| |
| case LookupResult::Ambiguous: |
| return QualType(); |
| } |
| |
| // If we get here, it's because name lookup did not find a |
| // type. Emit an appropriate diagnostic and return an error. |
| Diag(Range.getEnd(), DiagID) << Range << Name << Ctx; |
| if (Referenced) |
| Diag(Referenced->getLocation(), diag::note_typename_refers_here) |
| << Name; |
| return QualType(); |
| } |
| |
| namespace { |
| // See Sema::RebuildTypeInCurrentInstantiation |
| class CurrentInstantiationRebuilder |
| : public TreeTransform<CurrentInstantiationRebuilder> { |
| SourceLocation Loc; |
| DeclarationName Entity; |
| |
| public: |
| CurrentInstantiationRebuilder(Sema &SemaRef, |
| SourceLocation Loc, |
| DeclarationName Entity) |
| : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), |
| Loc(Loc), Entity(Entity) { } |
| |
| /// \brief Determine whether the given type \p T has already been |
| /// transformed. |
| /// |
| /// For the purposes of type reconstruction, a type has already been |
| /// transformed if it is NULL or if it is not dependent. |
| bool AlreadyTransformed(QualType T) { |
| return T.isNull() || !T->isDependentType(); |
| } |
| |
| /// \brief Returns the location of the entity whose type is being |
| /// rebuilt. |
| SourceLocation getBaseLocation() { return Loc; } |
| |
| /// \brief Returns the name of the entity whose type is being rebuilt. |
| DeclarationName getBaseEntity() { return Entity; } |
| |
| /// \brief Sets the "base" location and entity when that |
| /// information is known based on another transformation. |
| void setBase(SourceLocation Loc, DeclarationName Entity) { |
| this->Loc = Loc; |
| this->Entity = Entity; |
| } |
| |
| /// \brief Transforms an expression by returning the expression itself |
| /// (an identity function). |
| /// |
| /// FIXME: This is completely unsafe; we will need to actually clone the |
| /// expressions. |
| Sema::OwningExprResult TransformExpr(Expr *E) { |
| return getSema().Owned(E); |
| } |
| |
| /// \brief Transforms a typename type by determining whether the type now |
| /// refers to a member of the current instantiation, and then |
| /// type-checking and building a QualifiedNameType (when possible). |
| QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL); |
| }; |
| } |
| |
| QualType |
| CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB, |
| TypenameTypeLoc TL) { |
| TypenameType *T = TL.getTypePtr(); |
| |
| NestedNameSpecifier *NNS |
| = TransformNestedNameSpecifier(T->getQualifier(), |
| /*FIXME:*/SourceRange(getBaseLocation())); |
| if (!NNS) |
| return QualType(); |
| |
| // If the nested-name-specifier did not change, and we cannot compute the |
| // context corresponding to the nested-name-specifier, then this |
| // typename type will not change; exit early. |
| CXXScopeSpec SS; |
| SS.setRange(SourceRange(getBaseLocation())); |
| SS.setScopeRep(NNS); |
| |
| QualType Result; |
| if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0) |
| Result = QualType(T, 0); |
| |
| // Rebuild the typename type, which will probably turn into a |
| // QualifiedNameType. |
| else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) { |
| QualType NewTemplateId |
| = TransformType(QualType(TemplateId, 0)); |
| if (NewTemplateId.isNull()) |
| return QualType(); |
| |
| if (NNS == T->getQualifier() && |
| NewTemplateId == QualType(TemplateId, 0)) |
| Result = QualType(T, 0); |
| else |
| Result = getDerived().RebuildTypenameType(NNS, NewTemplateId); |
| } else |
| Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(), |
| SourceRange(TL.getNameLoc())); |
| |
| TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result); |
| NewTL.setNameLoc(TL.getNameLoc()); |
| return Result; |
| } |
| |
| /// \brief Rebuilds a type within the context of the current instantiation. |
| /// |
| /// The type \p T is part of the type of an out-of-line member definition of |
| /// a class template (or class template partial specialization) that was parsed |
| /// and constructed before we entered the scope of the class template (or |
| /// partial specialization thereof). This routine will rebuild that type now |
| /// that we have entered the declarator's scope, which may produce different |
| /// canonical types, e.g., |
| /// |
| /// \code |
| /// template<typename T> |
| /// struct X { |
| /// typedef T* pointer; |
| /// pointer data(); |
| /// }; |
| /// |
| /// template<typename T> |
| /// typename X<T>::pointer X<T>::data() { ... } |
| /// \endcode |
| /// |
| /// Here, the type "typename X<T>::pointer" will be created as a TypenameType, |
| /// since we do not know that we can look into X<T> when we parsed the type. |
| /// This function will rebuild the type, performing the lookup of "pointer" |
| /// in X<T> and returning a QualifiedNameType whose canonical type is the same |
| /// as the canonical type of T*, allowing the return types of the out-of-line |
| /// definition and the declaration to match. |
| QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc, |
| DeclarationName Name) { |
| if (T.isNull() || !T->isDependentType()) |
| return T; |
| |
| CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); |
| return Rebuilder.TransformType(T); |
| } |
| |
| /// \brief Produces a formatted string that describes the binding of |
| /// template parameters to template arguments. |
| std::string |
| Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
| const TemplateArgumentList &Args) { |
| // FIXME: For variadic templates, we'll need to get the structured list. |
| return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(), |
| Args.flat_size()); |
| } |
| |
| std::string |
| Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
| const TemplateArgument *Args, |
| unsigned NumArgs) { |
| std::string Result; |
| |
| if (!Params || Params->size() == 0 || NumArgs == 0) |
| return Result; |
| |
| for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
| if (I >= NumArgs) |
| break; |
| |
| if (I == 0) |
| Result += "[with "; |
| else |
| Result += ", "; |
| |
| if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { |
| Result += Id->getName(); |
| } else { |
| Result += '$'; |
| Result += llvm::utostr(I); |
| } |
| |
| Result += " = "; |
| |
| switch (Args[I].getKind()) { |
| case TemplateArgument::Null: |
| Result += "<no value>"; |
| break; |
| |
| case TemplateArgument::Type: { |
| std::string TypeStr; |
| Args[I].getAsType().getAsStringInternal(TypeStr, |
| Context.PrintingPolicy); |
| Result += TypeStr; |
| break; |
| } |
| |
| case TemplateArgument::Declaration: { |
| bool Unnamed = true; |
| if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) { |
| if (ND->getDeclName()) { |
| Unnamed = false; |
| Result += ND->getNameAsString(); |
| } |
| } |
| |
| if (Unnamed) { |
| Result += "<anonymous>"; |
| } |
| break; |
| } |
| |
| case TemplateArgument::Template: { |
| std::string Str; |
| llvm::raw_string_ostream OS(Str); |
| Args[I].getAsTemplate().print(OS, Context.PrintingPolicy); |
| Result += OS.str(); |
| break; |
| } |
| |
| case TemplateArgument::Integral: { |
| Result += Args[I].getAsIntegral()->toString(10); |
| break; |
| } |
| |
| case TemplateArgument::Expression: { |
| assert(false && "No expressions in deduced template arguments!"); |
| Result += "<expression>"; |
| break; |
| } |
| |
| case TemplateArgument::Pack: |
| // FIXME: Format template argument packs |
| Result += "<template argument pack>"; |
| break; |
| } |
| } |
| |
| Result += ']'; |
| return Result; |
| } |