| //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the CFG and CFGBuilder classes for representing and |
| // building Control-Flow Graphs (CFGs) from ASTs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/Support/SaveAndRestore.h" |
| #include "clang/Analysis/CFG.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/PrettyPrinter.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| |
| using namespace clang; |
| |
| namespace { |
| |
| static SourceLocation GetEndLoc(Decl* D) { |
| if (VarDecl* VD = dyn_cast<VarDecl>(D)) |
| if (Expr* Ex = VD->getInit()) |
| return Ex->getSourceRange().getEnd(); |
| |
| return D->getLocation(); |
| } |
| |
| /// CFGBuilder - This class implements CFG construction from an AST. |
| /// The builder is stateful: an instance of the builder should be used to only |
| /// construct a single CFG. |
| /// |
| /// Example usage: |
| /// |
| /// CFGBuilder builder; |
| /// CFG* cfg = builder.BuildAST(stmt1); |
| /// |
| /// CFG construction is done via a recursive walk of an AST. We actually parse |
| /// the AST in reverse order so that the successor of a basic block is |
| /// constructed prior to its predecessor. This allows us to nicely capture |
| /// implicit fall-throughs without extra basic blocks. |
| /// |
| class VISIBILITY_HIDDEN CFGBuilder { |
| ASTContext *Context; |
| CFG* cfg; |
| CFGBlock* Block; |
| CFGBlock* Succ; |
| CFGBlock* ContinueTargetBlock; |
| CFGBlock* BreakTargetBlock; |
| CFGBlock* SwitchTerminatedBlock; |
| CFGBlock* DefaultCaseBlock; |
| |
| // LabelMap records the mapping from Label expressions to their blocks. |
| typedef llvm::DenseMap<LabelStmt*,CFGBlock*> LabelMapTy; |
| LabelMapTy LabelMap; |
| |
| // A list of blocks that end with a "goto" that must be backpatched to their |
| // resolved targets upon completion of CFG construction. |
| typedef std::vector<CFGBlock*> BackpatchBlocksTy; |
| BackpatchBlocksTy BackpatchBlocks; |
| |
| // A list of labels whose address has been taken (for indirect gotos). |
| typedef llvm::SmallPtrSet<LabelStmt*,5> LabelSetTy; |
| LabelSetTy AddressTakenLabels; |
| |
| public: |
| explicit CFGBuilder() : cfg(NULL), Block(NULL), Succ(NULL), |
| ContinueTargetBlock(NULL), BreakTargetBlock(NULL), |
| SwitchTerminatedBlock(NULL), DefaultCaseBlock(NULL) { |
| // Create an empty CFG. |
| cfg = new CFG(); |
| } |
| |
| ~CFGBuilder() { delete cfg; } |
| |
| // buildCFG - Used by external clients to construct the CFG. |
| CFG* buildCFG(Stmt *Statement, ASTContext *C); |
| |
| private: |
| // Visitors to walk an AST and construct the CFG. |
| CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd); |
| CFGBlock *VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd); |
| CFGBlock *VisitBlockExpr(BlockExpr* E, bool alwaysAdd); |
| CFGBlock *VisitBlockDeclRefExpr(BlockDeclRefExpr* E, bool alwaysAdd); |
| CFGBlock *VisitBreakStmt(BreakStmt *B); |
| CFGBlock *VisitCallExpr(CallExpr *C, bool alwaysAdd); |
| CFGBlock *VisitCaseStmt(CaseStmt *C); |
| CFGBlock *VisitChooseExpr(ChooseExpr *C); |
| CFGBlock *VisitCompoundStmt(CompoundStmt *C); |
| CFGBlock *VisitConditionalOperator(ConditionalOperator *C); |
| CFGBlock *VisitContinueStmt(ContinueStmt *C); |
| CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); |
| CFGBlock *VisitDeclStmt(DeclStmt *DS); |
| CFGBlock *VisitDeclSubExpr(Decl* D); |
| CFGBlock *VisitDefaultStmt(DefaultStmt *D); |
| CFGBlock *VisitDoStmt(DoStmt *D); |
| CFGBlock *VisitForStmt(ForStmt *F); |
| CFGBlock *VisitGotoStmt(GotoStmt* G); |
| CFGBlock *VisitIfStmt(IfStmt *I); |
| CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); |
| CFGBlock *VisitLabelStmt(LabelStmt *L); |
| CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); |
| CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); |
| CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); |
| CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); |
| CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); |
| CFGBlock *VisitReturnStmt(ReturnStmt* R); |
| CFGBlock *VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, bool alwaysAdd); |
| CFGBlock *VisitStmtExpr(StmtExpr *S, bool alwaysAdd); |
| CFGBlock *VisitSwitchStmt(SwitchStmt *S); |
| CFGBlock *VisitWhileStmt(WhileStmt *W); |
| |
| CFGBlock *Visit(Stmt *S, bool alwaysAdd = false); |
| CFGBlock *VisitStmt(Stmt *S, bool alwaysAdd); |
| CFGBlock *VisitChildren(Stmt* S); |
| |
| // NYS == Not Yet Supported |
| CFGBlock* NYS() { |
| badCFG = true; |
| return Block; |
| } |
| |
| void autoCreateBlock() { if (!Block) Block = createBlock(); } |
| CFGBlock *createBlock(bool add_successor = true); |
| bool FinishBlock(CFGBlock* B); |
| CFGBlock *addStmt(Stmt *S) { return Visit(S, true); } |
| |
| |
| /// TryResult - a class representing a variant over the values |
| /// 'true', 'false', or 'unknown'. This is returned by TryEvaluateBool, |
| /// and is used by the CFGBuilder to decide if a branch condition |
| /// can be decided up front during CFG construction. |
| class TryResult { |
| int X; |
| public: |
| TryResult(bool b) : X(b ? 1 : 0) {} |
| TryResult() : X(-1) {} |
| |
| bool isTrue() const { return X == 1; } |
| bool isFalse() const { return X == 0; } |
| bool isKnown() const { return X >= 0; } |
| void negate() { |
| assert(isKnown()); |
| X ^= 0x1; |
| } |
| }; |
| |
| /// TryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 |
| /// if we can evaluate to a known value, otherwise return -1. |
| TryResult TryEvaluateBool(Expr *S) { |
| Expr::EvalResult Result; |
| if (!S->isTypeDependent() && !S->isValueDependent() && |
| S->Evaluate(Result, *Context) && Result.Val.isInt()) |
| return Result.Val.getInt().getBoolValue(); |
| |
| return TryResult(); |
| } |
| |
| bool badCFG; |
| }; |
| |
| // FIXME: Add support for dependent-sized array types in C++? |
| // Does it even make sense to build a CFG for an uninstantiated template? |
| static VariableArrayType* FindVA(Type* t) { |
| while (ArrayType* vt = dyn_cast<ArrayType>(t)) { |
| if (VariableArrayType* vat = dyn_cast<VariableArrayType>(vt)) |
| if (vat->getSizeExpr()) |
| return vat; |
| |
| t = vt->getElementType().getTypePtr(); |
| } |
| |
| return 0; |
| } |
| |
| /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an |
| /// arbitrary statement. Examples include a single expression or a function |
| /// body (compound statement). The ownership of the returned CFG is |
| /// transferred to the caller. If CFG construction fails, this method returns |
| /// NULL. |
| CFG* CFGBuilder::buildCFG(Stmt* Statement, ASTContext* C) { |
| Context = C; |
| assert(cfg); |
| if (!Statement) |
| return NULL; |
| |
| badCFG = false; |
| |
| // Create an empty block that will serve as the exit block for the CFG. Since |
| // this is the first block added to the CFG, it will be implicitly registered |
| // as the exit block. |
| Succ = createBlock(); |
| assert (Succ == &cfg->getExit()); |
| Block = NULL; // the EXIT block is empty. Create all other blocks lazily. |
| |
| // Visit the statements and create the CFG. |
| CFGBlock* B = addStmt(Statement); |
| if (!B) B = Succ; |
| |
| if (B) { |
| // Finalize the last constructed block. This usually involves reversing the |
| // order of the statements in the block. |
| if (Block) FinishBlock(B); |
| |
| // Backpatch the gotos whose label -> block mappings we didn't know when we |
| // encountered them. |
| for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), |
| E = BackpatchBlocks.end(); I != E; ++I ) { |
| |
| CFGBlock* B = *I; |
| GotoStmt* G = cast<GotoStmt>(B->getTerminator()); |
| LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); |
| |
| // If there is no target for the goto, then we are looking at an |
| // incomplete AST. Handle this by not registering a successor. |
| if (LI == LabelMap.end()) continue; |
| |
| B->addSuccessor(LI->second); |
| } |
| |
| // Add successors to the Indirect Goto Dispatch block (if we have one). |
| if (CFGBlock* B = cfg->getIndirectGotoBlock()) |
| for (LabelSetTy::iterator I = AddressTakenLabels.begin(), |
| E = AddressTakenLabels.end(); I != E; ++I ) { |
| |
| // Lookup the target block. |
| LabelMapTy::iterator LI = LabelMap.find(*I); |
| |
| // If there is no target block that contains label, then we are looking |
| // at an incomplete AST. Handle this by not registering a successor. |
| if (LI == LabelMap.end()) continue; |
| |
| B->addSuccessor(LI->second); |
| } |
| |
| Succ = B; |
| } |
| |
| // Create an empty entry block that has no predecessors. |
| cfg->setEntry(createBlock()); |
| |
| if (badCFG) { |
| delete cfg; |
| cfg = NULL; |
| return NULL; |
| } |
| |
| // NULL out cfg so that repeated calls to the builder will fail and that the |
| // ownership of the constructed CFG is passed to the caller. |
| CFG* t = cfg; |
| cfg = NULL; |
| return t; |
| } |
| |
| /// createBlock - Used to lazily create blocks that are connected |
| /// to the current (global) succcessor. |
| CFGBlock* CFGBuilder::createBlock(bool add_successor) { |
| CFGBlock* B = cfg->createBlock(); |
| if (add_successor && Succ) |
| B->addSuccessor(Succ); |
| return B; |
| } |
| |
| /// FinishBlock - When the last statement has been added to the block, we must |
| /// reverse the statements because they have been inserted in reverse order. |
| bool CFGBuilder::FinishBlock(CFGBlock* B) { |
| if (badCFG) |
| return false; |
| |
| assert(B); |
| B->reverseStmts(); |
| return true; |
| } |
| |
| /// Visit - Walk the subtree of a statement and add extra |
| /// blocks for ternary operators, &&, and ||. We also process "," and |
| /// DeclStmts (which may contain nested control-flow). |
| CFGBlock* CFGBuilder::Visit(Stmt * S, bool alwaysAdd) { |
| tryAgain: |
| switch (S->getStmtClass()) { |
| default: |
| return VisitStmt(S, alwaysAdd); |
| |
| case Stmt::AddrLabelExprClass: |
| return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), alwaysAdd); |
| |
| case Stmt::BinaryOperatorClass: |
| return VisitBinaryOperator(cast<BinaryOperator>(S), alwaysAdd); |
| |
| case Stmt::BlockExprClass: |
| return VisitBlockExpr(cast<BlockExpr>(S), alwaysAdd); |
| |
| case Stmt::BlockDeclRefExprClass: |
| return VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), alwaysAdd); |
| |
| case Stmt::BreakStmtClass: |
| return VisitBreakStmt(cast<BreakStmt>(S)); |
| |
| case Stmt::CallExprClass: |
| return VisitCallExpr(cast<CallExpr>(S), alwaysAdd); |
| |
| case Stmt::CaseStmtClass: |
| return VisitCaseStmt(cast<CaseStmt>(S)); |
| |
| case Stmt::ChooseExprClass: |
| return VisitChooseExpr(cast<ChooseExpr>(S)); |
| |
| case Stmt::CompoundStmtClass: |
| return VisitCompoundStmt(cast<CompoundStmt>(S)); |
| |
| case Stmt::ConditionalOperatorClass: |
| return VisitConditionalOperator(cast<ConditionalOperator>(S)); |
| |
| case Stmt::ContinueStmtClass: |
| return VisitContinueStmt(cast<ContinueStmt>(S)); |
| |
| case Stmt::DeclStmtClass: |
| return VisitDeclStmt(cast<DeclStmt>(S)); |
| |
| case Stmt::DefaultStmtClass: |
| return VisitDefaultStmt(cast<DefaultStmt>(S)); |
| |
| case Stmt::DoStmtClass: |
| return VisitDoStmt(cast<DoStmt>(S)); |
| |
| case Stmt::ForStmtClass: |
| return VisitForStmt(cast<ForStmt>(S)); |
| |
| case Stmt::GotoStmtClass: |
| return VisitGotoStmt(cast<GotoStmt>(S)); |
| |
| case Stmt::IfStmtClass: |
| return VisitIfStmt(cast<IfStmt>(S)); |
| |
| case Stmt::IndirectGotoStmtClass: |
| return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S)); |
| |
| case Stmt::LabelStmtClass: |
| return VisitLabelStmt(cast<LabelStmt>(S)); |
| |
| case Stmt::ObjCAtCatchStmtClass: |
| return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S)); |
| |
| case Stmt::CXXThrowExprClass: |
| return VisitCXXThrowExpr(cast<CXXThrowExpr>(S)); |
| |
| case Stmt::ObjCAtSynchronizedStmtClass: |
| return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S)); |
| |
| case Stmt::ObjCAtThrowStmtClass: |
| return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S)); |
| |
| case Stmt::ObjCAtTryStmtClass: |
| return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S)); |
| |
| case Stmt::ObjCForCollectionStmtClass: |
| return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S)); |
| |
| case Stmt::ParenExprClass: |
| S = cast<ParenExpr>(S)->getSubExpr(); |
| goto tryAgain; |
| |
| case Stmt::NullStmtClass: |
| return Block; |
| |
| case Stmt::ReturnStmtClass: |
| return VisitReturnStmt(cast<ReturnStmt>(S)); |
| |
| case Stmt::SizeOfAlignOfExprClass: |
| return VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), alwaysAdd); |
| |
| case Stmt::StmtExprClass: |
| return VisitStmtExpr(cast<StmtExpr>(S), alwaysAdd); |
| |
| case Stmt::SwitchStmtClass: |
| return VisitSwitchStmt(cast<SwitchStmt>(S)); |
| |
| case Stmt::WhileStmtClass: |
| return VisitWhileStmt(cast<WhileStmt>(S)); |
| } |
| } |
| |
| CFGBlock *CFGBuilder::VisitStmt(Stmt *S, bool alwaysAdd) { |
| if (alwaysAdd) { |
| autoCreateBlock(); |
| Block->appendStmt(S); |
| } |
| |
| return VisitChildren(S); |
| } |
| |
| /// VisitChildren - Visit the children of a Stmt. |
| CFGBlock *CFGBuilder::VisitChildren(Stmt* Terminator) { |
| CFGBlock *B = Block; |
| for (Stmt::child_iterator I = Terminator->child_begin(), |
| E = Terminator->child_end(); I != E; ++I) { |
| if (*I) B = Visit(*I); |
| } |
| return B; |
| } |
| |
| CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, bool alwaysAdd) { |
| AddressTakenLabels.insert(A->getLabel()); |
| |
| if (alwaysAdd) { |
| autoCreateBlock(); |
| Block->appendStmt(A); |
| } |
| |
| return Block; |
| } |
| |
| CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, bool alwaysAdd) { |
| if (B->isLogicalOp()) { // && or || |
| CFGBlock* ConfluenceBlock = Block ? Block : createBlock(); |
| ConfluenceBlock->appendStmt(B); |
| |
| if (!FinishBlock(ConfluenceBlock)) |
| return 0; |
| |
| // create the block evaluating the LHS |
| CFGBlock* LHSBlock = createBlock(false); |
| LHSBlock->setTerminator(B); |
| |
| // create the block evaluating the RHS |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* RHSBlock = addStmt(B->getRHS()); |
| if (!FinishBlock(RHSBlock)) |
| return 0; |
| |
| // See if this is a known constant. |
| TryResult KnownVal = TryEvaluateBool(B->getLHS()); |
| if (KnownVal.isKnown() && (B->getOpcode() == BinaryOperator::LOr)) |
| KnownVal.negate(); |
| |
| // Now link the LHSBlock with RHSBlock. |
| if (B->getOpcode() == BinaryOperator::LOr) { |
| LHSBlock->addSuccessor(KnownVal.isTrue() ? NULL : ConfluenceBlock); |
| LHSBlock->addSuccessor(KnownVal.isFalse() ? NULL : RHSBlock); |
| } else { |
| assert (B->getOpcode() == BinaryOperator::LAnd); |
| LHSBlock->addSuccessor(KnownVal.isFalse() ? NULL : RHSBlock); |
| LHSBlock->addSuccessor(KnownVal.isTrue() ? NULL : ConfluenceBlock); |
| } |
| |
| // Generate the blocks for evaluating the LHS. |
| Block = LHSBlock; |
| return addStmt(B->getLHS()); |
| } |
| else if (B->getOpcode() == BinaryOperator::Comma) { // , |
| autoCreateBlock(); |
| Block->appendStmt(B); |
| addStmt(B->getRHS()); |
| return addStmt(B->getLHS()); |
| } |
| |
| return VisitStmt(B, alwaysAdd); |
| } |
| |
| CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr* E, bool alwaysAdd) { |
| // FIXME |
| return NYS(); |
| } |
| |
| CFGBlock *CFGBuilder::VisitBlockDeclRefExpr(BlockDeclRefExpr* E, |
| bool alwaysAdd) { |
| // FIXME |
| return NYS(); |
| } |
| |
| CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { |
| // "break" is a control-flow statement. Thus we stop processing the current |
| // block. |
| if (Block && !FinishBlock(Block)) |
| return 0; |
| |
| // Now create a new block that ends with the break statement. |
| Block = createBlock(false); |
| Block->setTerminator(B); |
| |
| // If there is no target for the break, then we are looking at an incomplete |
| // AST. This means that the CFG cannot be constructed. |
| if (BreakTargetBlock) |
| Block->addSuccessor(BreakTargetBlock); |
| else |
| badCFG = true; |
| |
| |
| return Block; |
| } |
| |
| CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, bool alwaysAdd) { |
| // If this is a call to a no-return function, this stops the block here. |
| bool NoReturn = false; |
| if (C->getCallee()->getType().getNoReturnAttr()) { |
| NoReturn = true; |
| } |
| |
| if (FunctionDecl *FD = C->getDirectCallee()) |
| if (FD->hasAttr<NoReturnAttr>()) |
| NoReturn = true; |
| |
| if (!NoReturn) |
| return VisitStmt(C, alwaysAdd); |
| |
| if (Block && !FinishBlock(Block)) |
| return 0; |
| |
| // Create new block with no successor for the remaining pieces. |
| Block = createBlock(false); |
| Block->appendStmt(C); |
| |
| // Wire this to the exit block directly. |
| Block->addSuccessor(&cfg->getExit()); |
| |
| return VisitChildren(C); |
| } |
| |
| CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C) { |
| CFGBlock* ConfluenceBlock = Block ? Block : createBlock(); |
| ConfluenceBlock->appendStmt(C); |
| if (!FinishBlock(ConfluenceBlock)) |
| return 0; |
| |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* LHSBlock = addStmt(C->getLHS()); |
| if (!FinishBlock(LHSBlock)) |
| return 0; |
| |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* RHSBlock = addStmt(C->getRHS()); |
| if (!FinishBlock(RHSBlock)) |
| return 0; |
| |
| Block = createBlock(false); |
| // See if this is a known constant. |
| const TryResult& KnownVal = TryEvaluateBool(C->getCond()); |
| Block->addSuccessor(KnownVal.isFalse() ? NULL : LHSBlock); |
| Block->addSuccessor(KnownVal.isTrue() ? NULL : RHSBlock); |
| Block->setTerminator(C); |
| return addStmt(C->getCond()); |
| } |
| |
| |
| CFGBlock* CFGBuilder::VisitCompoundStmt(CompoundStmt* C) { |
| CFGBlock* LastBlock = Block; |
| |
| for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend(); |
| I != E; ++I ) { |
| LastBlock = addStmt(*I); |
| |
| if (badCFG) |
| return NULL; |
| } |
| return LastBlock; |
| } |
| |
| CFGBlock *CFGBuilder::VisitConditionalOperator(ConditionalOperator *C) { |
| // Create the confluence block that will "merge" the results of the ternary |
| // expression. |
| CFGBlock* ConfluenceBlock = Block ? Block : createBlock(); |
| ConfluenceBlock->appendStmt(C); |
| if (!FinishBlock(ConfluenceBlock)) |
| return 0; |
| |
| // Create a block for the LHS expression if there is an LHS expression. A |
| // GCC extension allows LHS to be NULL, causing the condition to be the |
| // value that is returned instead. |
| // e.g: x ?: y is shorthand for: x ? x : y; |
| Succ = ConfluenceBlock; |
| Block = NULL; |
| CFGBlock* LHSBlock = NULL; |
| if (C->getLHS()) { |
| LHSBlock = addStmt(C->getLHS()); |
| if (!FinishBlock(LHSBlock)) |
| return 0; |
| Block = NULL; |
| } |
| |
| // Create the block for the RHS expression. |
| Succ = ConfluenceBlock; |
| CFGBlock* RHSBlock = addStmt(C->getRHS()); |
| if (!FinishBlock(RHSBlock)) |
| return 0; |
| |
| // Create the block that will contain the condition. |
| Block = createBlock(false); |
| |
| // See if this is a known constant. |
| const TryResult& KnownVal = TryEvaluateBool(C->getCond()); |
| if (LHSBlock) { |
| Block->addSuccessor(KnownVal.isFalse() ? NULL : LHSBlock); |
| } else { |
| if (KnownVal.isFalse()) { |
| // If we know the condition is false, add NULL as the successor for |
| // the block containing the condition. In this case, the confluence |
| // block will have just one predecessor. |
| Block->addSuccessor(0); |
| assert(ConfluenceBlock->pred_size() == 1); |
| } else { |
| // If we have no LHS expression, add the ConfluenceBlock as a direct |
| // successor for the block containing the condition. Moreover, we need to |
| // reverse the order of the predecessors in the ConfluenceBlock because |
| // the RHSBlock will have been added to the succcessors already, and we |
| // want the first predecessor to the the block containing the expression |
| // for the case when the ternary expression evaluates to true. |
| Block->addSuccessor(ConfluenceBlock); |
| assert(ConfluenceBlock->pred_size() == 2); |
| std::reverse(ConfluenceBlock->pred_begin(), |
| ConfluenceBlock->pred_end()); |
| } |
| } |
| |
| Block->addSuccessor(KnownVal.isTrue() ? NULL : RHSBlock); |
| Block->setTerminator(C); |
| return addStmt(C->getCond()); |
| } |
| |
| CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { |
| autoCreateBlock(); |
| |
| if (DS->isSingleDecl()) { |
| Block->appendStmt(DS); |
| return VisitDeclSubExpr(DS->getSingleDecl()); |
| } |
| |
| CFGBlock *B = 0; |
| |
| // FIXME: Add a reverse iterator for DeclStmt to avoid this extra copy. |
| typedef llvm::SmallVector<Decl*,10> BufTy; |
| BufTy Buf(DS->decl_begin(), DS->decl_end()); |
| |
| for (BufTy::reverse_iterator I = Buf.rbegin(), E = Buf.rend(); I != E; ++I) { |
| // Get the alignment of the new DeclStmt, padding out to >=8 bytes. |
| unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8 |
| ? 8 : llvm::AlignOf<DeclStmt>::Alignment; |
| |
| // Allocate the DeclStmt using the BumpPtrAllocator. It will get |
| // automatically freed with the CFG. |
| DeclGroupRef DG(*I); |
| Decl *D = *I; |
| void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A); |
| DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); |
| |
| // Append the fake DeclStmt to block. |
| Block->appendStmt(DSNew); |
| B = VisitDeclSubExpr(D); |
| } |
| |
| return B; |
| } |
| |
| /// VisitDeclSubExpr - Utility method to add block-level expressions for |
| /// initializers in Decls. |
| CFGBlock *CFGBuilder::VisitDeclSubExpr(Decl* D) { |
| assert(Block); |
| |
| VarDecl *VD = dyn_cast<VarDecl>(D); |
| |
| if (!VD) |
| return Block; |
| |
| Expr *Init = VD->getInit(); |
| |
| if (Init) { |
| // Optimization: Don't create separate block-level statements for literals. |
| switch (Init->getStmtClass()) { |
| case Stmt::IntegerLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::StringLiteralClass: |
| break; |
| default: |
| Block = addStmt(Init); |
| } |
| } |
| |
| // If the type of VD is a VLA, then we must process its size expressions. |
| for (VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); VA != 0; |
| VA = FindVA(VA->getElementType().getTypePtr())) |
| Block = addStmt(VA->getSizeExpr()); |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitIfStmt(IfStmt* I) { |
| // We may see an if statement in the middle of a basic block, or it may be the |
| // first statement we are processing. In either case, we create a new basic |
| // block. First, we create the blocks for the then...else statements, and |
| // then we create the block containing the if statement. If we were in the |
| // middle of a block, we stop processing that block and reverse its |
| // statements. That block is then the implicit successor for the "then" and |
| // "else" clauses. |
| |
| // The block we were proccessing is now finished. Make it the successor |
| // block. |
| if (Block) { |
| Succ = Block; |
| if (!FinishBlock(Block)) |
| return 0; |
| } |
| |
| // Process the false branch. |
| CFGBlock* ElseBlock = Succ; |
| |
| if (Stmt* Else = I->getElse()) { |
| SaveAndRestore<CFGBlock*> sv(Succ); |
| |
| // NULL out Block so that the recursive call to Visit will |
| // create a new basic block. |
| Block = NULL; |
| ElseBlock = addStmt(Else); |
| |
| if (!ElseBlock) // Can occur when the Else body has all NullStmts. |
| ElseBlock = sv.get(); |
| else if (Block) { |
| if (!FinishBlock(ElseBlock)) |
| return 0; |
| } |
| } |
| |
| // Process the true branch. |
| CFGBlock* ThenBlock; |
| { |
| Stmt* Then = I->getThen(); |
| assert (Then); |
| SaveAndRestore<CFGBlock*> sv(Succ); |
| Block = NULL; |
| ThenBlock = addStmt(Then); |
| |
| if (!ThenBlock) { |
| // We can reach here if the "then" body has all NullStmts. |
| // Create an empty block so we can distinguish between true and false |
| // branches in path-sensitive analyses. |
| ThenBlock = createBlock(false); |
| ThenBlock->addSuccessor(sv.get()); |
| } else if (Block) { |
| if (!FinishBlock(ThenBlock)) |
| return 0; |
| } |
| } |
| |
| // Now create a new block containing the if statement. |
| Block = createBlock(false); |
| |
| // Set the terminator of the new block to the If statement. |
| Block->setTerminator(I); |
| |
| // See if this is a known constant. |
| const TryResult &KnownVal = TryEvaluateBool(I->getCond()); |
| |
| // Now add the successors. |
| Block->addSuccessor(KnownVal.isFalse() ? NULL : ThenBlock); |
| Block->addSuccessor(KnownVal.isTrue()? NULL : ElseBlock); |
| |
| // Add the condition as the last statement in the new block. This may create |
| // new blocks as the condition may contain control-flow. Any newly created |
| // blocks will be pointed to be "Block". |
| return addStmt(I->getCond()); |
| } |
| |
| |
| CFGBlock* CFGBuilder::VisitReturnStmt(ReturnStmt* R) { |
| // If we were in the middle of a block we stop processing that block and |
| // reverse its statements. |
| // |
| // NOTE: If a "return" appears in the middle of a block, this means that the |
| // code afterwards is DEAD (unreachable). We still keep a basic block |
| // for that code; a simple "mark-and-sweep" from the entry block will be |
| // able to report such dead blocks. |
| if (Block) FinishBlock(Block); |
| |
| // Create the new block. |
| Block = createBlock(false); |
| |
| // The Exit block is the only successor. |
| Block->addSuccessor(&cfg->getExit()); |
| |
| // Add the return statement to the block. This may create new blocks if R |
| // contains control-flow (short-circuit operations). |
| return VisitStmt(R, true); |
| } |
| |
| CFGBlock* CFGBuilder::VisitLabelStmt(LabelStmt* L) { |
| // Get the block of the labeled statement. Add it to our map. |
| addStmt(L->getSubStmt()); |
| CFGBlock* LabelBlock = Block; |
| |
| if (!LabelBlock) // This can happen when the body is empty, i.e. |
| LabelBlock = createBlock(); // scopes that only contains NullStmts. |
| |
| assert(LabelMap.find(L) == LabelMap.end() && "label already in map"); |
| LabelMap[ L ] = LabelBlock; |
| |
| // Labels partition blocks, so this is the end of the basic block we were |
| // processing (L is the block's label). Because this is label (and we have |
| // already processed the substatement) there is no extra control-flow to worry |
| // about. |
| LabelBlock->setLabel(L); |
| if (!FinishBlock(LabelBlock)) |
| return 0; |
| |
| // We set Block to NULL to allow lazy creation of a new block (if necessary); |
| Block = NULL; |
| |
| // This block is now the implicit successor of other blocks. |
| Succ = LabelBlock; |
| |
| return LabelBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitGotoStmt(GotoStmt* G) { |
| // Goto is a control-flow statement. Thus we stop processing the current |
| // block and create a new one. |
| if (Block) |
| FinishBlock(Block); |
| |
| Block = createBlock(false); |
| Block->setTerminator(G); |
| |
| // If we already know the mapping to the label block add the successor now. |
| LabelMapTy::iterator I = LabelMap.find(G->getLabel()); |
| |
| if (I == LabelMap.end()) |
| // We will need to backpatch this block later. |
| BackpatchBlocks.push_back(Block); |
| else |
| Block->addSuccessor(I->second); |
| |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitForStmt(ForStmt* F) { |
| CFGBlock* LoopSuccessor = NULL; |
| |
| // "for" is a control-flow statement. Thus we stop processing the current |
| // block. |
| if (Block) { |
| if (!FinishBlock(Block)) |
| return 0; |
| LoopSuccessor = Block; |
| } else |
| LoopSuccessor = Succ; |
| |
| // Because of short-circuit evaluation, the condition of the loop can span |
| // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
| // evaluate the condition. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(F); |
| |
| // Now add the actual condition to the condition block. Because the condition |
| // itself may contain control-flow, new blocks may be created. |
| if (Stmt* C = F->getCond()) { |
| Block = ExitConditionBlock; |
| EntryConditionBlock = addStmt(C); |
| if (Block) { |
| if (!FinishBlock(EntryConditionBlock)) |
| return 0; |
| } |
| } |
| |
| // The condition block is the implicit successor for the loop body as well as |
| // any code above the loop. |
| Succ = EntryConditionBlock; |
| |
| // See if this is a known constant. |
| TryResult KnownVal(true); |
| |
| if (F->getCond()) |
| KnownVal = TryEvaluateBool(F->getCond()); |
| |
| // Now create the loop body. |
| { |
| assert (F->getBody()); |
| |
| // Save the current values for Block, Succ, and continue and break targets |
| SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), |
| save_continue(ContinueTargetBlock), |
| save_break(BreakTargetBlock); |
| |
| // Create a new block to contain the (bottom) of the loop body. |
| Block = NULL; |
| |
| if (Stmt* I = F->getInc()) { |
| // Generate increment code in its own basic block. This is the target of |
| // continue statements. |
| Succ = addStmt(I); |
| } else { |
| // No increment code. Create a special, empty, block that is used as the |
| // target block for "looping back" to the start of the loop. |
| assert(Succ == EntryConditionBlock); |
| Succ = createBlock(); |
| } |
| |
| // Finish up the increment (or empty) block if it hasn't been already. |
| if (Block) { |
| assert(Block == Succ); |
| if (!FinishBlock(Block)) |
| return 0; |
| Block = 0; |
| } |
| |
| ContinueTargetBlock = Succ; |
| |
| // The starting block for the loop increment is the block that should |
| // represent the 'loop target' for looping back to the start of the loop. |
| ContinueTargetBlock->setLoopTarget(F); |
| |
| // All breaks should go to the code following the loop. |
| BreakTargetBlock = LoopSuccessor; |
| |
| // Now populate the body block, and in the process create new blocks as we |
| // walk the body of the loop. |
| CFGBlock* BodyBlock = addStmt(F->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = ContinueTargetBlock; // can happen for "for (...;...;...) ;" |
| else if (Block && !FinishBlock(BodyBlock)) |
| return 0; |
| |
| // This new body block is a successor to our "exit" condition block. |
| ExitConditionBlock->addSuccessor(KnownVal.isFalse() ? NULL : BodyBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. (the |
| // false branch). |
| ExitConditionBlock->addSuccessor(KnownVal.isTrue() ? NULL : LoopSuccessor); |
| |
| // If the loop contains initialization, create a new block for those |
| // statements. This block can also contain statements that precede the loop. |
| if (Stmt* I = F->getInit()) { |
| Block = createBlock(); |
| return addStmt(I); |
| } else { |
| // There is no loop initialization. We are thus basically a while loop. |
| // NULL out Block to force lazy block construction. |
| Block = NULL; |
| Succ = EntryConditionBlock; |
| return EntryConditionBlock; |
| } |
| } |
| |
| CFGBlock* CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) { |
| // Objective-C fast enumeration 'for' statements: |
| // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC |
| // |
| // for ( Type newVariable in collection_expression ) { statements } |
| // |
| // becomes: |
| // |
| // prologue: |
| // 1. collection_expression |
| // T. jump to loop_entry |
| // loop_entry: |
| // 1. side-effects of element expression |
| // 1. ObjCForCollectionStmt [performs binding to newVariable] |
| // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] |
| // TB: |
| // statements |
| // T. jump to loop_entry |
| // FB: |
| // what comes after |
| // |
| // and |
| // |
| // Type existingItem; |
| // for ( existingItem in expression ) { statements } |
| // |
| // becomes: |
| // |
| // the same with newVariable replaced with existingItem; the binding works |
| // the same except that for one ObjCForCollectionStmt::getElement() returns |
| // a DeclStmt and the other returns a DeclRefExpr. |
| // |
| |
| CFGBlock* LoopSuccessor = 0; |
| |
| if (Block) { |
| if (!FinishBlock(Block)) |
| return 0; |
| LoopSuccessor = Block; |
| Block = 0; |
| } else |
| LoopSuccessor = Succ; |
| |
| // Build the condition blocks. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(S); |
| |
| // The last statement in the block should be the ObjCForCollectionStmt, which |
| // performs the actual binding to 'element' and determines if there are any |
| // more items in the collection. |
| ExitConditionBlock->appendStmt(S); |
| Block = ExitConditionBlock; |
| |
| // Walk the 'element' expression to see if there are any side-effects. We |
| // generate new blocks as necesary. We DON'T add the statement by default to |
| // the CFG unless it contains control-flow. |
| EntryConditionBlock = Visit(S->getElement(), false); |
| if (Block) { |
| if (!FinishBlock(EntryConditionBlock)) |
| return 0; |
| Block = 0; |
| } |
| |
| // The condition block is the implicit successor for the loop body as well as |
| // any code above the loop. |
| Succ = EntryConditionBlock; |
| |
| // Now create the true branch. |
| { |
| // Save the current values for Succ, continue and break targets. |
| SaveAndRestore<CFGBlock*> save_Succ(Succ), |
| save_continue(ContinueTargetBlock), save_break(BreakTargetBlock); |
| |
| BreakTargetBlock = LoopSuccessor; |
| ContinueTargetBlock = EntryConditionBlock; |
| |
| CFGBlock* BodyBlock = addStmt(S->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = EntryConditionBlock; // can happen for "for (X in Y) ;" |
| else if (Block) { |
| if (!FinishBlock(BodyBlock)) |
| return 0; |
| } |
| |
| // This new body block is a successor to our "exit" condition block. |
| ExitConditionBlock->addSuccessor(BodyBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. |
| // (the false branch). |
| ExitConditionBlock->addSuccessor(LoopSuccessor); |
| |
| // Now create a prologue block to contain the collection expression. |
| Block = createBlock(); |
| return addStmt(S->getCollection()); |
| } |
| |
| CFGBlock* CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt* S) { |
| // FIXME: Add locking 'primitives' to CFG for @synchronized. |
| |
| // Inline the body. |
| CFGBlock *SyncBlock = addStmt(S->getSynchBody()); |
| |
| // The sync body starts its own basic block. This makes it a little easier |
| // for diagnostic clients. |
| if (SyncBlock) { |
| if (!FinishBlock(SyncBlock)) |
| return 0; |
| |
| Block = 0; |
| } |
| |
| Succ = SyncBlock; |
| |
| // Inline the sync expression. |
| return addStmt(S->getSynchExpr()); |
| } |
| |
| CFGBlock* CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt* S) { |
| // FIXME |
| return NYS(); |
| } |
| |
| CFGBlock* CFGBuilder::VisitWhileStmt(WhileStmt* W) { |
| CFGBlock* LoopSuccessor = NULL; |
| |
| // "while" is a control-flow statement. Thus we stop processing the current |
| // block. |
| if (Block) { |
| if (!FinishBlock(Block)) |
| return 0; |
| LoopSuccessor = Block; |
| } else |
| LoopSuccessor = Succ; |
| |
| // Because of short-circuit evaluation, the condition of the loop can span |
| // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
| // evaluate the condition. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(W); |
| |
| // Now add the actual condition to the condition block. Because the condition |
| // itself may contain control-flow, new blocks may be created. Thus we update |
| // "Succ" after adding the condition. |
| if (Stmt* C = W->getCond()) { |
| Block = ExitConditionBlock; |
| EntryConditionBlock = addStmt(C); |
| assert(Block == EntryConditionBlock); |
| if (Block) { |
| if (!FinishBlock(EntryConditionBlock)) |
| return 0; |
| } |
| } |
| |
| // The condition block is the implicit successor for the loop body as well as |
| // any code above the loop. |
| Succ = EntryConditionBlock; |
| |
| // See if this is a known constant. |
| const TryResult& KnownVal = TryEvaluateBool(W->getCond()); |
| |
| // Process the loop body. |
| { |
| assert(W->getBody()); |
| |
| // Save the current values for Block, Succ, and continue and break targets |
| SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), |
| save_continue(ContinueTargetBlock), |
| save_break(BreakTargetBlock); |
| |
| // Create an empty block to represent the transition block for looping back |
| // to the head of the loop. |
| Block = 0; |
| assert(Succ == EntryConditionBlock); |
| Succ = createBlock(); |
| Succ->setLoopTarget(W); |
| ContinueTargetBlock = Succ; |
| |
| // All breaks should go to the code following the loop. |
| BreakTargetBlock = LoopSuccessor; |
| |
| // NULL out Block to force lazy instantiation of blocks for the body. |
| Block = NULL; |
| |
| // Create the body. The returned block is the entry to the loop body. |
| CFGBlock* BodyBlock = addStmt(W->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = ContinueTargetBlock; // can happen for "while(...) ;" |
| else if (Block) { |
| if (!FinishBlock(BodyBlock)) |
| return 0; |
| } |
| |
| // Add the loop body entry as a successor to the condition. |
| ExitConditionBlock->addSuccessor(KnownVal.isFalse() ? NULL : BodyBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. (the |
| // false branch). |
| ExitConditionBlock->addSuccessor(KnownVal.isTrue() ? NULL : LoopSuccessor); |
| |
| // There can be no more statements in the condition block since we loop back |
| // to this block. NULL out Block to force lazy creation of another block. |
| Block = NULL; |
| |
| // Return the condition block, which is the dominating block for the loop. |
| Succ = EntryConditionBlock; |
| return EntryConditionBlock; |
| } |
| |
| |
| CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt* S) { |
| // FIXME: For now we pretend that @catch and the code it contains does not |
| // exit. |
| return Block; |
| } |
| |
| CFGBlock* CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt* S) { |
| // FIXME: This isn't complete. We basically treat @throw like a return |
| // statement. |
| |
| // If we were in the middle of a block we stop processing that block and |
| // reverse its statements. |
| if (Block && !FinishBlock(Block)) |
| return 0; |
| |
| // Create the new block. |
| Block = createBlock(false); |
| |
| // The Exit block is the only successor. |
| Block->addSuccessor(&cfg->getExit()); |
| |
| // Add the statement to the block. This may create new blocks if S contains |
| // control-flow (short-circuit operations). |
| return VisitStmt(S, true); |
| } |
| |
| CFGBlock* CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr* T) { |
| // If we were in the middle of a block we stop processing that block and |
| // reverse its statements. |
| if (Block && !FinishBlock(Block)) |
| return 0; |
| |
| // Create the new block. |
| Block = createBlock(false); |
| |
| // The Exit block is the only successor. |
| Block->addSuccessor(&cfg->getExit()); |
| |
| // Add the statement to the block. This may create new blocks if S contains |
| // control-flow (short-circuit operations). |
| return VisitStmt(T, true); |
| } |
| |
| CFGBlock *CFGBuilder::VisitDoStmt(DoStmt* D) { |
| CFGBlock* LoopSuccessor = NULL; |
| |
| // "do...while" is a control-flow statement. Thus we stop processing the |
| // current block. |
| if (Block) { |
| if (!FinishBlock(Block)) |
| return 0; |
| LoopSuccessor = Block; |
| } else |
| LoopSuccessor = Succ; |
| |
| // Because of short-circuit evaluation, the condition of the loop can span |
| // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
| // evaluate the condition. |
| CFGBlock* ExitConditionBlock = createBlock(false); |
| CFGBlock* EntryConditionBlock = ExitConditionBlock; |
| |
| // Set the terminator for the "exit" condition block. |
| ExitConditionBlock->setTerminator(D); |
| |
| // Now add the actual condition to the condition block. Because the condition |
| // itself may contain control-flow, new blocks may be created. |
| if (Stmt* C = D->getCond()) { |
| Block = ExitConditionBlock; |
| EntryConditionBlock = addStmt(C); |
| if (Block) { |
| if (!FinishBlock(EntryConditionBlock)) |
| return 0; |
| } |
| } |
| |
| // The condition block is the implicit successor for the loop body. |
| Succ = EntryConditionBlock; |
| |
| // See if this is a known constant. |
| const TryResult &KnownVal = TryEvaluateBool(D->getCond()); |
| |
| // Process the loop body. |
| CFGBlock* BodyBlock = NULL; |
| { |
| assert (D->getBody()); |
| |
| // Save the current values for Block, Succ, and continue and break targets |
| SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ), |
| save_continue(ContinueTargetBlock), |
| save_break(BreakTargetBlock); |
| |
| // All continues within this loop should go to the condition block |
| ContinueTargetBlock = EntryConditionBlock; |
| |
| // All breaks should go to the code following the loop. |
| BreakTargetBlock = LoopSuccessor; |
| |
| // NULL out Block to force lazy instantiation of blocks for the body. |
| Block = NULL; |
| |
| // Create the body. The returned block is the entry to the loop body. |
| BodyBlock = addStmt(D->getBody()); |
| |
| if (!BodyBlock) |
| BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" |
| else if (Block) { |
| if (!FinishBlock(BodyBlock)) |
| return 0; |
| } |
| |
| // Add an intermediate block between the BodyBlock and the |
| // ExitConditionBlock to represent the "loop back" transition. Create an |
| // empty block to represent the transition block for looping back to the |
| // head of the loop. |
| // FIXME: Can we do this more efficiently without adding another block? |
| Block = NULL; |
| Succ = BodyBlock; |
| CFGBlock *LoopBackBlock = createBlock(); |
| LoopBackBlock->setLoopTarget(D); |
| |
| // Add the loop body entry as a successor to the condition. |
| ExitConditionBlock->addSuccessor(KnownVal.isFalse() ? NULL : LoopBackBlock); |
| } |
| |
| // Link up the condition block with the code that follows the loop. |
| // (the false branch). |
| ExitConditionBlock->addSuccessor(KnownVal.isTrue() ? NULL : LoopSuccessor); |
| |
| // There can be no more statements in the body block(s) since we loop back to |
| // the body. NULL out Block to force lazy creation of another block. |
| Block = NULL; |
| |
| // Return the loop body, which is the dominating block for the loop. |
| Succ = BodyBlock; |
| return BodyBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitContinueStmt(ContinueStmt* C) { |
| // "continue" is a control-flow statement. Thus we stop processing the |
| // current block. |
| if (Block && !FinishBlock(Block)) |
| return 0; |
| |
| // Now create a new block that ends with the continue statement. |
| Block = createBlock(false); |
| Block->setTerminator(C); |
| |
| // If there is no target for the continue, then we are looking at an |
| // incomplete AST. This means the CFG cannot be constructed. |
| if (ContinueTargetBlock) |
| Block->addSuccessor(ContinueTargetBlock); |
| else |
| badCFG = true; |
| |
| return Block; |
| } |
| |
| CFGBlock *CFGBuilder::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E, |
| bool alwaysAdd) { |
| |
| if (alwaysAdd) { |
| autoCreateBlock(); |
| Block->appendStmt(E); |
| } |
| |
| // VLA types have expressions that must be evaluated. |
| if (E->isArgumentType()) { |
| for (VariableArrayType* VA = FindVA(E->getArgumentType().getTypePtr()); |
| VA != 0; VA = FindVA(VA->getElementType().getTypePtr())) |
| addStmt(VA->getSizeExpr()); |
| } |
| |
| return Block; |
| } |
| |
| /// VisitStmtExpr - Utility method to handle (nested) statement |
| /// expressions (a GCC extension). |
| CFGBlock* CFGBuilder::VisitStmtExpr(StmtExpr *SE, bool alwaysAdd) { |
| if (alwaysAdd) { |
| autoCreateBlock(); |
| Block->appendStmt(SE); |
| } |
| return VisitCompoundStmt(SE->getSubStmt()); |
| } |
| |
| CFGBlock* CFGBuilder::VisitSwitchStmt(SwitchStmt* Terminator) { |
| // "switch" is a control-flow statement. Thus we stop processing the current |
| // block. |
| CFGBlock* SwitchSuccessor = NULL; |
| |
| if (Block) { |
| if (!FinishBlock(Block)) |
| return 0; |
| SwitchSuccessor = Block; |
| } else SwitchSuccessor = Succ; |
| |
| // Save the current "switch" context. |
| SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock), |
| save_break(BreakTargetBlock), |
| save_default(DefaultCaseBlock); |
| |
| // Set the "default" case to be the block after the switch statement. If the |
| // switch statement contains a "default:", this value will be overwritten with |
| // the block for that code. |
| DefaultCaseBlock = SwitchSuccessor; |
| |
| // Create a new block that will contain the switch statement. |
| SwitchTerminatedBlock = createBlock(false); |
| |
| // Now process the switch body. The code after the switch is the implicit |
| // successor. |
| Succ = SwitchSuccessor; |
| BreakTargetBlock = SwitchSuccessor; |
| |
| // When visiting the body, the case statements should automatically get linked |
| // up to the switch. We also don't keep a pointer to the body, since all |
| // control-flow from the switch goes to case/default statements. |
| assert (Terminator->getBody() && "switch must contain a non-NULL body"); |
| Block = NULL; |
| CFGBlock *BodyBlock = addStmt(Terminator->getBody()); |
| if (Block) { |
| if (!FinishBlock(BodyBlock)) |
| return 0; |
| } |
| |
| // If we have no "default:" case, the default transition is to the code |
| // following the switch body. |
| SwitchTerminatedBlock->addSuccessor(DefaultCaseBlock); |
| |
| // Add the terminator and condition in the switch block. |
| SwitchTerminatedBlock->setTerminator(Terminator); |
| assert (Terminator->getCond() && "switch condition must be non-NULL"); |
| Block = SwitchTerminatedBlock; |
| |
| return addStmt(Terminator->getCond()); |
| } |
| |
| CFGBlock* CFGBuilder::VisitCaseStmt(CaseStmt* CS) { |
| // CaseStmts are essentially labels, so they are the first statement in a |
| // block. |
| |
| if (CS->getSubStmt()) |
| addStmt(CS->getSubStmt()); |
| |
| CFGBlock* CaseBlock = Block; |
| if (!CaseBlock) |
| CaseBlock = createBlock(); |
| |
| // Cases statements partition blocks, so this is the top of the basic block we |
| // were processing (the "case XXX:" is the label). |
| CaseBlock->setLabel(CS); |
| |
| if (!FinishBlock(CaseBlock)) |
| return 0; |
| |
| // Add this block to the list of successors for the block with the switch |
| // statement. |
| assert(SwitchTerminatedBlock); |
| SwitchTerminatedBlock->addSuccessor(CaseBlock); |
| |
| // We set Block to NULL to allow lazy creation of a new block (if necessary) |
| Block = NULL; |
| |
| // This block is now the implicit successor of other blocks. |
| Succ = CaseBlock; |
| |
| return CaseBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitDefaultStmt(DefaultStmt* Terminator) { |
| if (Terminator->getSubStmt()) |
| addStmt(Terminator->getSubStmt()); |
| |
| DefaultCaseBlock = Block; |
| |
| if (!DefaultCaseBlock) |
| DefaultCaseBlock = createBlock(); |
| |
| // Default statements partition blocks, so this is the top of the basic block |
| // we were processing (the "default:" is the label). |
| DefaultCaseBlock->setLabel(Terminator); |
| |
| if (!FinishBlock(DefaultCaseBlock)) |
| return 0; |
| |
| // Unlike case statements, we don't add the default block to the successors |
| // for the switch statement immediately. This is done when we finish |
| // processing the switch statement. This allows for the default case |
| // (including a fall-through to the code after the switch statement) to always |
| // be the last successor of a switch-terminated block. |
| |
| // We set Block to NULL to allow lazy creation of a new block (if necessary) |
| Block = NULL; |
| |
| // This block is now the implicit successor of other blocks. |
| Succ = DefaultCaseBlock; |
| |
| return DefaultCaseBlock; |
| } |
| |
| CFGBlock* CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt* I) { |
| // Lazily create the indirect-goto dispatch block if there isn't one already. |
| CFGBlock* IBlock = cfg->getIndirectGotoBlock(); |
| |
| if (!IBlock) { |
| IBlock = createBlock(false); |
| cfg->setIndirectGotoBlock(IBlock); |
| } |
| |
| // IndirectGoto is a control-flow statement. Thus we stop processing the |
| // current block and create a new one. |
| if (Block && !FinishBlock(Block)) |
| return 0; |
| |
| Block = createBlock(false); |
| Block->setTerminator(I); |
| Block->addSuccessor(IBlock); |
| return addStmt(I->getTarget()); |
| } |
| |
| } // end anonymous namespace |
| |
| /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has |
| /// no successors or predecessors. If this is the first block created in the |
| /// CFG, it is automatically set to be the Entry and Exit of the CFG. |
| CFGBlock* CFG::createBlock() { |
| bool first_block = begin() == end(); |
| |
| // Create the block. |
| Blocks.push_front(CFGBlock(NumBlockIDs++)); |
| |
| // If this is the first block, set it as the Entry and Exit. |
| if (first_block) Entry = Exit = &front(); |
| |
| // Return the block. |
| return &front(); |
| } |
| |
| /// buildCFG - Constructs a CFG from an AST. Ownership of the returned |
| /// CFG is returned to the caller. |
| CFG* CFG::buildCFG(Stmt* Statement, ASTContext *C) { |
| CFGBuilder Builder; |
| return Builder.buildCFG(Statement, C); |
| } |
| |
| /// reverseStmts - Reverses the orders of statements within a CFGBlock. |
| void CFGBlock::reverseStmts() { std::reverse(Stmts.begin(),Stmts.end()); } |
| |
| //===----------------------------------------------------------------------===// |
| // CFG: Queries for BlkExprs. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| typedef llvm::DenseMap<const Stmt*,unsigned> BlkExprMapTy; |
| } |
| |
| static void FindSubExprAssignments(Stmt* Terminator, llvm::SmallPtrSet<Expr*,50>& Set) { |
| if (!Terminator) |
| return; |
| |
| for (Stmt::child_iterator I=Terminator->child_begin(), E=Terminator->child_end(); I!=E; ++I) { |
| if (!*I) continue; |
| |
| if (BinaryOperator* B = dyn_cast<BinaryOperator>(*I)) |
| if (B->isAssignmentOp()) Set.insert(B); |
| |
| FindSubExprAssignments(*I, Set); |
| } |
| } |
| |
| static BlkExprMapTy* PopulateBlkExprMap(CFG& cfg) { |
| BlkExprMapTy* M = new BlkExprMapTy(); |
| |
| // Look for assignments that are used as subexpressions. These are the only |
| // assignments that we want to *possibly* register as a block-level |
| // expression. Basically, if an assignment occurs both in a subexpression and |
| // at the block-level, it is a block-level expression. |
| llvm::SmallPtrSet<Expr*,50> SubExprAssignments; |
| |
| for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) |
| for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI) |
| FindSubExprAssignments(*BI, SubExprAssignments); |
| |
| for (CFG::iterator I=cfg.begin(), E=cfg.end(); I != E; ++I) { |
| |
| // Iterate over the statements again on identify the Expr* and Stmt* at the |
| // block-level that are block-level expressions. |
| |
| for (CFGBlock::iterator BI=I->begin(), EI=I->end(); BI != EI; ++BI) |
| if (Expr* Exp = dyn_cast<Expr>(*BI)) { |
| |
| if (BinaryOperator* B = dyn_cast<BinaryOperator>(Exp)) { |
| // Assignment expressions that are not nested within another |
| // expression are really "statements" whose value is never used by |
| // another expression. |
| if (B->isAssignmentOp() && !SubExprAssignments.count(Exp)) |
| continue; |
| } else if (const StmtExpr* Terminator = dyn_cast<StmtExpr>(Exp)) { |
| // Special handling for statement expressions. The last statement in |
| // the statement expression is also a block-level expr. |
| const CompoundStmt* C = Terminator->getSubStmt(); |
| if (!C->body_empty()) { |
| unsigned x = M->size(); |
| (*M)[C->body_back()] = x; |
| } |
| } |
| |
| unsigned x = M->size(); |
| (*M)[Exp] = x; |
| } |
| |
| // Look at terminators. The condition is a block-level expression. |
| |
| Stmt* S = I->getTerminatorCondition(); |
| |
| if (S && M->find(S) == M->end()) { |
| unsigned x = M->size(); |
| (*M)[S] = x; |
| } |
| } |
| |
| return M; |
| } |
| |
| CFG::BlkExprNumTy CFG::getBlkExprNum(const Stmt* S) { |
| assert(S != NULL); |
| if (!BlkExprMap) { BlkExprMap = (void*) PopulateBlkExprMap(*this); } |
| |
| BlkExprMapTy* M = reinterpret_cast<BlkExprMapTy*>(BlkExprMap); |
| BlkExprMapTy::iterator I = M->find(S); |
| |
| if (I == M->end()) return CFG::BlkExprNumTy(); |
| else return CFG::BlkExprNumTy(I->second); |
| } |
| |
| unsigned CFG::getNumBlkExprs() { |
| if (const BlkExprMapTy* M = reinterpret_cast<const BlkExprMapTy*>(BlkExprMap)) |
| return M->size(); |
| else { |
| // We assume callers interested in the number of BlkExprs will want |
| // the map constructed if it doesn't already exist. |
| BlkExprMap = (void*) PopulateBlkExprMap(*this); |
| return reinterpret_cast<BlkExprMapTy*>(BlkExprMap)->size(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Cleanup: CFG dstor. |
| //===----------------------------------------------------------------------===// |
| |
| CFG::~CFG() { |
| delete reinterpret_cast<const BlkExprMapTy*>(BlkExprMap); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CFG pretty printing |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| class VISIBILITY_HIDDEN StmtPrinterHelper : public PrinterHelper { |
| |
| typedef llvm::DenseMap<Stmt*,std::pair<unsigned,unsigned> > StmtMapTy; |
| StmtMapTy StmtMap; |
| signed CurrentBlock; |
| unsigned CurrentStmt; |
| const LangOptions &LangOpts; |
| public: |
| |
| StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) |
| : CurrentBlock(0), CurrentStmt(0), LangOpts(LO) { |
| for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { |
| unsigned j = 1; |
| for (CFGBlock::const_iterator BI = I->begin(), BEnd = I->end() ; |
| BI != BEnd; ++BI, ++j ) |
| StmtMap[*BI] = std::make_pair(I->getBlockID(),j); |
| } |
| } |
| |
| virtual ~StmtPrinterHelper() {} |
| |
| const LangOptions &getLangOpts() const { return LangOpts; } |
| void setBlockID(signed i) { CurrentBlock = i; } |
| void setStmtID(unsigned i) { CurrentStmt = i; } |
| |
| virtual bool handledStmt(Stmt* Terminator, llvm::raw_ostream& OS) { |
| |
| StmtMapTy::iterator I = StmtMap.find(Terminator); |
| |
| if (I == StmtMap.end()) |
| return false; |
| |
| if (CurrentBlock >= 0 && I->second.first == (unsigned) CurrentBlock |
| && I->second.second == CurrentStmt) |
| return false; |
| |
| OS << "[B" << I->second.first << "." << I->second.second << "]"; |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| |
| namespace { |
| class VISIBILITY_HIDDEN CFGBlockTerminatorPrint |
| : public StmtVisitor<CFGBlockTerminatorPrint,void> { |
| |
| llvm::raw_ostream& OS; |
| StmtPrinterHelper* Helper; |
| PrintingPolicy Policy; |
| |
| public: |
| CFGBlockTerminatorPrint(llvm::raw_ostream& os, StmtPrinterHelper* helper, |
| const PrintingPolicy &Policy) |
| : OS(os), Helper(helper), Policy(Policy) {} |
| |
| void VisitIfStmt(IfStmt* I) { |
| OS << "if "; |
| I->getCond()->printPretty(OS,Helper,Policy); |
| } |
| |
| // Default case. |
| void VisitStmt(Stmt* Terminator) { |
| Terminator->printPretty(OS, Helper, Policy); |
| } |
| |
| void VisitForStmt(ForStmt* F) { |
| OS << "for (" ; |
| if (F->getInit()) OS << "..."; |
| OS << "; "; |
| if (Stmt* C = F->getCond()) C->printPretty(OS, Helper, Policy); |
| OS << "; "; |
| if (F->getInc()) OS << "..."; |
| OS << ")"; |
| } |
| |
| void VisitWhileStmt(WhileStmt* W) { |
| OS << "while " ; |
| if (Stmt* C = W->getCond()) C->printPretty(OS, Helper, Policy); |
| } |
| |
| void VisitDoStmt(DoStmt* D) { |
| OS << "do ... while "; |
| if (Stmt* C = D->getCond()) C->printPretty(OS, Helper, Policy); |
| } |
| |
| void VisitSwitchStmt(SwitchStmt* Terminator) { |
| OS << "switch "; |
| Terminator->getCond()->printPretty(OS, Helper, Policy); |
| } |
| |
| void VisitConditionalOperator(ConditionalOperator* C) { |
| C->getCond()->printPretty(OS, Helper, Policy); |
| OS << " ? ... : ..."; |
| } |
| |
| void VisitChooseExpr(ChooseExpr* C) { |
| OS << "__builtin_choose_expr( "; |
| C->getCond()->printPretty(OS, Helper, Policy); |
| OS << " )"; |
| } |
| |
| void VisitIndirectGotoStmt(IndirectGotoStmt* I) { |
| OS << "goto *"; |
| I->getTarget()->printPretty(OS, Helper, Policy); |
| } |
| |
| void VisitBinaryOperator(BinaryOperator* B) { |
| if (!B->isLogicalOp()) { |
| VisitExpr(B); |
| return; |
| } |
| |
| B->getLHS()->printPretty(OS, Helper, Policy); |
| |
| switch (B->getOpcode()) { |
| case BinaryOperator::LOr: |
| OS << " || ..."; |
| return; |
| case BinaryOperator::LAnd: |
| OS << " && ..."; |
| return; |
| default: |
| assert(false && "Invalid logical operator."); |
| } |
| } |
| |
| void VisitExpr(Expr* E) { |
| E->printPretty(OS, Helper, Policy); |
| } |
| }; |
| } // end anonymous namespace |
| |
| |
| static void print_stmt(llvm::raw_ostream &OS, StmtPrinterHelper* Helper, |
| Stmt* Terminator) { |
| if (Helper) { |
| // special printing for statement-expressions. |
| if (StmtExpr* SE = dyn_cast<StmtExpr>(Terminator)) { |
| CompoundStmt* Sub = SE->getSubStmt(); |
| |
| if (Sub->child_begin() != Sub->child_end()) { |
| OS << "({ ... ; "; |
| Helper->handledStmt(*SE->getSubStmt()->body_rbegin(),OS); |
| OS << " })\n"; |
| return; |
| } |
| } |
| |
| // special printing for comma expressions. |
| if (BinaryOperator* B = dyn_cast<BinaryOperator>(Terminator)) { |
| if (B->getOpcode() == BinaryOperator::Comma) { |
| OS << "... , "; |
| Helper->handledStmt(B->getRHS(),OS); |
| OS << '\n'; |
| return; |
| } |
| } |
| } |
| |
| Terminator->printPretty(OS, Helper, PrintingPolicy(Helper->getLangOpts())); |
| |
| // Expressions need a newline. |
| if (isa<Expr>(Terminator)) OS << '\n'; |
| } |
| |
| static void print_block(llvm::raw_ostream& OS, const CFG* cfg, |
| const CFGBlock& B, |
| StmtPrinterHelper* Helper, bool print_edges) { |
| |
| if (Helper) Helper->setBlockID(B.getBlockID()); |
| |
| // Print the header. |
| OS << "\n [ B" << B.getBlockID(); |
| |
| if (&B == &cfg->getEntry()) |
| OS << " (ENTRY) ]\n"; |
| else if (&B == &cfg->getExit()) |
| OS << " (EXIT) ]\n"; |
| else if (&B == cfg->getIndirectGotoBlock()) |
| OS << " (INDIRECT GOTO DISPATCH) ]\n"; |
| else |
| OS << " ]\n"; |
| |
| // Print the label of this block. |
| if (Stmt* Terminator = const_cast<Stmt*>(B.getLabel())) { |
| |
| if (print_edges) |
| OS << " "; |
| |
| if (LabelStmt* L = dyn_cast<LabelStmt>(Terminator)) |
| OS << L->getName(); |
| else if (CaseStmt* C = dyn_cast<CaseStmt>(Terminator)) { |
| OS << "case "; |
| C->getLHS()->printPretty(OS, Helper, |
| PrintingPolicy(Helper->getLangOpts())); |
| if (C->getRHS()) { |
| OS << " ... "; |
| C->getRHS()->printPretty(OS, Helper, |
| PrintingPolicy(Helper->getLangOpts())); |
| } |
| } else if (isa<DefaultStmt>(Terminator)) |
| OS << "default"; |
| else |
| assert(false && "Invalid label statement in CFGBlock."); |
| |
| OS << ":\n"; |
| } |
| |
| // Iterate through the statements in the block and print them. |
| unsigned j = 1; |
| |
| for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; |
| I != E ; ++I, ++j ) { |
| |
| // Print the statement # in the basic block and the statement itself. |
| if (print_edges) |
| OS << " "; |
| |
| OS << llvm::format("%3d", j) << ": "; |
| |
| if (Helper) |
| Helper->setStmtID(j); |
| |
| print_stmt(OS,Helper,*I); |
| } |
| |
| // Print the terminator of this block. |
| if (B.getTerminator()) { |
| if (print_edges) |
| OS << " "; |
| |
| OS << " T: "; |
| |
| if (Helper) Helper->setBlockID(-1); |
| |
| CFGBlockTerminatorPrint TPrinter(OS, Helper, |
| PrintingPolicy(Helper->getLangOpts())); |
| TPrinter.Visit(const_cast<Stmt*>(B.getTerminator())); |
| OS << '\n'; |
| } |
| |
| if (print_edges) { |
| // Print the predecessors of this block. |
| OS << " Predecessors (" << B.pred_size() << "):"; |
| unsigned i = 0; |
| |
| for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); |
| I != E; ++I, ++i) { |
| |
| if (i == 8 || (i-8) == 0) |
| OS << "\n "; |
| |
| OS << " B" << (*I)->getBlockID(); |
| } |
| |
| OS << '\n'; |
| |
| // Print the successors of this block. |
| OS << " Successors (" << B.succ_size() << "):"; |
| i = 0; |
| |
| for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); |
| I != E; ++I, ++i) { |
| |
| if (i == 8 || (i-8) % 10 == 0) |
| OS << "\n "; |
| |
| if (*I) |
| OS << " B" << (*I)->getBlockID(); |
| else |
| OS << " NULL"; |
| } |
| |
| OS << '\n'; |
| } |
| } |
| |
| |
| /// dump - A simple pretty printer of a CFG that outputs to stderr. |
| void CFG::dump(const LangOptions &LO) const { print(llvm::errs(), LO); } |
| |
| /// print - A simple pretty printer of a CFG that outputs to an ostream. |
| void CFG::print(llvm::raw_ostream &OS, const LangOptions &LO) const { |
| StmtPrinterHelper Helper(this, LO); |
| |
| // Print the entry block. |
| print_block(OS, this, getEntry(), &Helper, true); |
| |
| // Iterate through the CFGBlocks and print them one by one. |
| for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { |
| // Skip the entry block, because we already printed it. |
| if (&(*I) == &getEntry() || &(*I) == &getExit()) |
| continue; |
| |
| print_block(OS, this, *I, &Helper, true); |
| } |
| |
| // Print the exit block. |
| print_block(OS, this, getExit(), &Helper, true); |
| OS.flush(); |
| } |
| |
| /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. |
| void CFGBlock::dump(const CFG* cfg, const LangOptions &LO) const { |
| print(llvm::errs(), cfg, LO); |
| } |
| |
| /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. |
| /// Generally this will only be called from CFG::print. |
| void CFGBlock::print(llvm::raw_ostream& OS, const CFG* cfg, |
| const LangOptions &LO) const { |
| StmtPrinterHelper Helper(cfg, LO); |
| print_block(OS, cfg, *this, &Helper, true); |
| } |
| |
| /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. |
| void CFGBlock::printTerminator(llvm::raw_ostream &OS, |
| const LangOptions &LO) const { |
| CFGBlockTerminatorPrint TPrinter(OS, NULL, PrintingPolicy(LO)); |
| TPrinter.Visit(const_cast<Stmt*>(getTerminator())); |
| } |
| |
| Stmt* CFGBlock::getTerminatorCondition() { |
| |
| if (!Terminator) |
| return NULL; |
| |
| Expr* E = NULL; |
| |
| switch (Terminator->getStmtClass()) { |
| default: |
| break; |
| |
| case Stmt::ForStmtClass: |
| E = cast<ForStmt>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::WhileStmtClass: |
| E = cast<WhileStmt>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::DoStmtClass: |
| E = cast<DoStmt>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::IfStmtClass: |
| E = cast<IfStmt>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::ChooseExprClass: |
| E = cast<ChooseExpr>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::IndirectGotoStmtClass: |
| E = cast<IndirectGotoStmt>(Terminator)->getTarget(); |
| break; |
| |
| case Stmt::SwitchStmtClass: |
| E = cast<SwitchStmt>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::ConditionalOperatorClass: |
| E = cast<ConditionalOperator>(Terminator)->getCond(); |
| break; |
| |
| case Stmt::BinaryOperatorClass: // '&&' and '||' |
| E = cast<BinaryOperator>(Terminator)->getLHS(); |
| break; |
| |
| case Stmt::ObjCForCollectionStmtClass: |
| return Terminator; |
| } |
| |
| return E ? E->IgnoreParens() : NULL; |
| } |
| |
| bool CFGBlock::hasBinaryBranchTerminator() const { |
| |
| if (!Terminator) |
| return false; |
| |
| Expr* E = NULL; |
| |
| switch (Terminator->getStmtClass()) { |
| default: |
| return false; |
| |
| case Stmt::ForStmtClass: |
| case Stmt::WhileStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::IfStmtClass: |
| case Stmt::ChooseExprClass: |
| case Stmt::ConditionalOperatorClass: |
| case Stmt::BinaryOperatorClass: |
| return true; |
| } |
| |
| return E ? E->IgnoreParens() : NULL; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // CFG Graphviz Visualization |
| //===----------------------------------------------------------------------===// |
| |
| |
| #ifndef NDEBUG |
| static StmtPrinterHelper* GraphHelper; |
| #endif |
| |
| void CFG::viewCFG(const LangOptions &LO) const { |
| #ifndef NDEBUG |
| StmtPrinterHelper H(this, LO); |
| GraphHelper = &H; |
| llvm::ViewGraph(this,"CFG"); |
| GraphHelper = NULL; |
| #endif |
| } |
| |
| namespace llvm { |
| template<> |
| struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { |
| static std::string getNodeLabel(const CFGBlock* Node, const CFG* Graph, |
| bool ShortNames) { |
| |
| #ifndef NDEBUG |
| std::string OutSStr; |
| llvm::raw_string_ostream Out(OutSStr); |
| print_block(Out,Graph, *Node, GraphHelper, false); |
| std::string& OutStr = Out.str(); |
| |
| if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); |
| |
| // Process string output to make it nicer... |
| for (unsigned i = 0; i != OutStr.length(); ++i) |
| if (OutStr[i] == '\n') { // Left justify |
| OutStr[i] = '\\'; |
| OutStr.insert(OutStr.begin()+i+1, 'l'); |
| } |
| |
| return OutStr; |
| #else |
| return ""; |
| #endif |
| } |
| }; |
| } // end namespace llvm |