| //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defined the types Store and StoreManager. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Analysis/PathSensitive/Store.h" |
| #include "clang/Analysis/PathSensitive/GRState.h" |
| |
| using namespace clang; |
| |
| StoreManager::StoreManager(GRStateManager &stateMgr) |
| : ValMgr(stateMgr.getValueManager()), StateMgr(stateMgr), |
| MRMgr(ValMgr.getRegionManager()) {} |
| |
| StoreManager::CastResult |
| StoreManager::MakeElementRegion(const GRState *state, const MemRegion *region, |
| QualType pointeeTy, QualType castToTy, |
| uint64_t index) { |
| // Create a new ElementRegion. |
| SVal idx = ValMgr.makeArrayIndex(index); |
| return CastResult(state, MRMgr.getElementRegion(pointeeTy, idx, region, |
| ValMgr.getContext())); |
| } |
| |
| // FIXME: Merge with the implementation of the same method in MemRegion.cpp |
| static bool IsCompleteType(ASTContext &Ctx, QualType Ty) { |
| if (const RecordType *RT = Ty->getAs<RecordType>()) { |
| const RecordDecl *D = RT->getDecl(); |
| if (!D->getDefinition(Ctx)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| StoreManager::CastResult |
| StoreManager::CastRegion(const GRState *state, const MemRegion* R, |
| QualType CastToTy) { |
| |
| ASTContext& Ctx = StateMgr.getContext(); |
| |
| // Handle casts to Objective-C objects. |
| if (CastToTy->isObjCObjectPointerType()) |
| return CastResult(state, R->getBaseRegion()); |
| |
| if (CastToTy->isBlockPointerType()) { |
| // FIXME: We may need different solutions, depending on the symbol |
| // involved. Blocks can be casted to/from 'id', as they can be treated |
| // as Objective-C objects. This could possibly be handled by enhancing |
| // our reasoning of downcasts of symbolic objects. |
| if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R)) |
| return CastResult(state, R); |
| |
| // We don't know what to make of it. Return a NULL region, which |
| // will be interpretted as UnknownVal. |
| return CastResult(state, NULL); |
| } |
| |
| // Now assume we are casting from pointer to pointer. Other cases should |
| // already be handled. |
| QualType PointeeTy = CastToTy->getAs<PointerType>()->getPointeeType(); |
| QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); |
| |
| // Handle casts to void*. We just pass the region through. |
| if (CanonPointeeTy.getUnqualifiedType() == Ctx.VoidTy) |
| return CastResult(state, R); |
| |
| // Handle casts from compatible types. |
| if (R->isBoundable()) |
| if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) { |
| QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx)); |
| if (CanonPointeeTy == ObjTy) |
| return CastResult(state, R); |
| } |
| |
| // Process region cast according to the kind of the region being cast. |
| switch (R->getKind()) { |
| case MemRegion::BEG_TYPED_REGIONS: |
| case MemRegion::MemSpaceRegionKind: |
| case MemRegion::BEG_DECL_REGIONS: |
| case MemRegion::END_DECL_REGIONS: |
| case MemRegion::END_TYPED_REGIONS: { |
| assert(0 && "Invalid region cast"); |
| break; |
| } |
| case MemRegion::CodeTextRegionKind: { |
| // CodeTextRegion should be cast to only a function or block pointer type, |
| // although they can in practice be casted to anything, e.g, void*, |
| // char*, etc. |
| // Just pass the region through. |
| break; |
| } |
| |
| case MemRegion::StringRegionKind: |
| case MemRegion::ObjCObjectRegionKind: |
| // FIXME: Need to handle arbitrary downcasts. |
| case MemRegion::SymbolicRegionKind: |
| case MemRegion::AllocaRegionKind: |
| case MemRegion::CompoundLiteralRegionKind: |
| case MemRegion::FieldRegionKind: |
| case MemRegion::ObjCIvarRegionKind: |
| case MemRegion::VarRegionKind: |
| return MakeElementRegion(state, R, PointeeTy, CastToTy); |
| |
| case MemRegion::ElementRegionKind: { |
| // If we are casting from an ElementRegion to another type, the |
| // algorithm is as follows: |
| // |
| // (1) Compute the "raw offset" of the ElementRegion from the |
| // base region. This is done by calling 'getAsRawOffset()'. |
| // |
| // (2a) If we get a 'RegionRawOffset' after calling |
| // 'getAsRawOffset()', determine if the absolute offset |
| // can be exactly divided into chunks of the size of the |
| // casted-pointee type. If so, create a new ElementRegion with |
| // the pointee-cast type as the new ElementType and the index |
| // being the offset divded by the chunk size. If not, create |
| // a new ElementRegion at offset 0 off the raw offset region. |
| // |
| // (2b) If we don't a get a 'RegionRawOffset' after calling |
| // 'getAsRawOffset()', it means that we are at offset 0. |
| // |
| // FIXME: Handle symbolic raw offsets. |
| |
| const ElementRegion *elementR = cast<ElementRegion>(R); |
| const RegionRawOffset &rawOff = elementR->getAsRawOffset(); |
| const MemRegion *baseR = rawOff.getRegion(); |
| |
| // If we cannot compute a raw offset, throw up our hands and return |
| // a NULL MemRegion*. |
| if (!baseR) |
| return CastResult(state, NULL); |
| |
| int64_t off = rawOff.getByteOffset(); |
| |
| if (off == 0) { |
| // Edge case: we are at 0 bytes off the beginning of baseR. We |
| // check to see if type we are casting to is the same as the base |
| // region. If so, just return the base region. |
| if (const TypedRegion *TR = dyn_cast<TypedRegion>(baseR)) { |
| QualType ObjTy = Ctx.getCanonicalType(TR->getValueType(Ctx)); |
| QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy); |
| if (CanonPointeeTy == ObjTy) |
| return CastResult(state, baseR); |
| } |
| |
| // Otherwise, create a new ElementRegion at offset 0. |
| return MakeElementRegion(state, baseR, PointeeTy, CastToTy, 0); |
| } |
| |
| // We have a non-zero offset from the base region. We want to determine |
| // if the offset can be evenly divided by sizeof(PointeeTy). If so, |
| // we create an ElementRegion whose index is that value. Otherwise, we |
| // create two ElementRegions, one that reflects a raw offset and the other |
| // that reflects the cast. |
| |
| // Compute the index for the new ElementRegion. |
| int64_t newIndex = 0; |
| const MemRegion *newSuperR = 0; |
| |
| // We can only compute sizeof(PointeeTy) if it is a complete type. |
| if (IsCompleteType(Ctx, PointeeTy)) { |
| // Compute the size in **bytes**. |
| int64_t pointeeTySize = (int64_t) (Ctx.getTypeSize(PointeeTy) / 8); |
| |
| // Is the offset a multiple of the size? If so, we can layer the |
| // ElementRegion (with elementType == PointeeTy) directly on top of |
| // the base region. |
| if (off % pointeeTySize == 0) { |
| newIndex = off / pointeeTySize; |
| newSuperR = baseR; |
| } |
| } |
| |
| if (!newSuperR) { |
| // Create an intermediate ElementRegion to represent the raw byte. |
| // This will be the super region of the final ElementRegion. |
| SVal idx = ValMgr.makeArrayIndex(off); |
| newSuperR = MRMgr.getElementRegion(Ctx.CharTy, idx, baseR, Ctx); |
| } |
| |
| return MakeElementRegion(state, newSuperR, PointeeTy, CastToTy, newIndex); |
| } |
| } |
| |
| return CastResult(state, R); |
| } |
| |
| |
| /// CastRetrievedVal - Used by subclasses of StoreManager to implement |
| /// implicit casts that arise from loads from regions that are reinterpreted |
| /// as another region. |
| SValuator::CastResult StoreManager::CastRetrievedVal(SVal V, |
| const GRState *state, |
| const TypedRegion *R, |
| QualType castTy) { |
| if (castTy.isNull()) |
| return SValuator::CastResult(state, V); |
| |
| ASTContext &Ctx = ValMgr.getContext(); |
| return ValMgr.getSValuator().EvalCast(V, state, castTy, R->getValueType(Ctx)); |
| } |
| |