| //=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a meta-engine for path-sensitive dataflow analysis that |
| // is built on GREngine, but provides the boilerplate to execute transfer |
| // functions and build the ExplodedGraph at the expression level. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: Restructure checker registration. |
| #include "ExprEngineInternalChecks.h" |
| |
| #include "clang/GR/BugReporter/BugType.h" |
| #include "clang/GR/PathSensitive/AnalysisManager.h" |
| #include "clang/GR/PathSensitive/ExprEngine.h" |
| #include "clang/GR/PathSensitive/ExprEngineBuilders.h" |
| #include "clang/GR/PathSensitive/Checker.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/PrettyStackTrace.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/ImmutableList.h" |
| |
| #ifndef NDEBUG |
| #include "llvm/Support/GraphWriter.h" |
| #endif |
| |
| using namespace clang; |
| using namespace GR; |
| using llvm::dyn_cast; |
| using llvm::dyn_cast_or_null; |
| using llvm::cast; |
| using llvm::APSInt; |
| |
| namespace { |
| // Trait class for recording returned expression in the state. |
| struct ReturnExpr { |
| static int TagInt; |
| typedef const Stmt *data_type; |
| }; |
| int ReturnExpr::TagInt; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility functions. |
| //===----------------------------------------------------------------------===// |
| |
| static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) { |
| IdentifierInfo* II = &Ctx.Idents.get(name); |
| return Ctx.Selectors.getSelector(0, &II); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Checker worklist routines. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::CheckerVisit(const Stmt *S, ExplodedNodeSet &Dst, |
| ExplodedNodeSet &Src, CallbackKind Kind) { |
| |
| // Determine if we already have a cached 'CheckersOrdered' vector |
| // specifically tailored for the provided <CallbackKind, Stmt kind>. This |
| // can reduce the number of checkers actually called. |
| CheckersOrdered *CO = &Checkers; |
| llvm::OwningPtr<CheckersOrdered> NewCO; |
| |
| // The cache key is made up of the and the callback kind (pre- or post-visit) |
| // and the statement kind. |
| CallbackTag K = GetCallbackTag(Kind, S->getStmtClass()); |
| |
| CheckersOrdered *& CO_Ref = COCache[K]; |
| |
| if (!CO_Ref) { |
| // If we have no previously cached CheckersOrdered vector for this |
| // statement kind, then create one. |
| NewCO.reset(new CheckersOrdered); |
| } |
| else { |
| // Use the already cached set. |
| CO = CO_Ref; |
| } |
| |
| if (CO->empty()) { |
| // If there are no checkers, return early without doing any |
| // more work. |
| Dst.insert(Src); |
| return; |
| } |
| |
| ExplodedNodeSet Tmp; |
| ExplodedNodeSet *PrevSet = &Src; |
| unsigned checkersEvaluated = 0; |
| |
| for (CheckersOrdered::iterator I=CO->begin(), E=CO->end(); I!=E; ++I) { |
| // If all nodes are sunk, bail out early. |
| if (PrevSet->empty()) |
| break; |
| ExplodedNodeSet *CurrSet = 0; |
| if (I+1 == E) |
| CurrSet = &Dst; |
| else { |
| CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; |
| CurrSet->clear(); |
| } |
| void *tag = I->first; |
| Checker *checker = I->second; |
| bool respondsToCallback = true; |
| |
| for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); |
| NI != NE; ++NI) { |
| |
| checker->GR_Visit(*CurrSet, *Builder, *this, S, *NI, tag, |
| Kind == PreVisitStmtCallback, respondsToCallback); |
| |
| } |
| |
| PrevSet = CurrSet; |
| |
| if (NewCO.get()) { |
| ++checkersEvaluated; |
| if (respondsToCallback) |
| NewCO->push_back(*I); |
| } |
| } |
| |
| // If we built NewCO, check if we called all the checkers. This is important |
| // so that we know that we accurately determined the entire set of checkers |
| // that responds to this callback. Note that 'checkersEvaluated' might |
| // not be the same as Checkers.size() if one of the Checkers generates |
| // a sink node. |
| if (NewCO.get() && checkersEvaluated == Checkers.size()) |
| CO_Ref = NewCO.take(); |
| |
| // Don't autotransition. The CheckerContext objects should do this |
| // automatically. |
| } |
| |
| void ExprEngine::CheckerEvalNilReceiver(const ObjCMessageExpr *ME, |
| ExplodedNodeSet &Dst, |
| const GRState *state, |
| ExplodedNode *Pred) { |
| bool evaluated = false; |
| ExplodedNodeSet DstTmp; |
| |
| for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { |
| void *tag = I->first; |
| Checker *checker = I->second; |
| |
| if (checker->GR_evalNilReceiver(DstTmp, *Builder, *this, ME, Pred, state, |
| tag)) { |
| evaluated = true; |
| break; |
| } else |
| // The checker didn't evaluate the expr. Restore the Dst. |
| DstTmp.clear(); |
| } |
| |
| if (evaluated) |
| Dst.insert(DstTmp); |
| else |
| Dst.insert(Pred); |
| } |
| |
| // CheckerEvalCall returns true if one of the checkers processed the node. |
| // This may return void when all call evaluation logic goes to some checker |
| // in the future. |
| bool ExprEngine::CheckerEvalCall(const CallExpr *CE, |
| ExplodedNodeSet &Dst, |
| ExplodedNode *Pred) { |
| bool evaluated = false; |
| ExplodedNodeSet DstTmp; |
| |
| for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { |
| void *tag = I->first; |
| Checker *checker = I->second; |
| |
| if (checker->GR_evalCallExpr(DstTmp, *Builder, *this, CE, Pred, tag)) { |
| evaluated = true; |
| break; |
| } else |
| // The checker didn't evaluate the expr. Restore the DstTmp set. |
| DstTmp.clear(); |
| } |
| |
| if (evaluated) |
| Dst.insert(DstTmp); |
| else |
| Dst.insert(Pred); |
| |
| return evaluated; |
| } |
| |
| // FIXME: This is largely copy-paste from CheckerVisit(). Need to |
| // unify. |
| void ExprEngine::CheckerVisitBind(const Stmt *StoreE, ExplodedNodeSet &Dst, |
| ExplodedNodeSet &Src, SVal location, |
| SVal val, bool isPrevisit) { |
| |
| if (Checkers.empty()) { |
| Dst.insert(Src); |
| return; |
| } |
| |
| ExplodedNodeSet Tmp; |
| ExplodedNodeSet *PrevSet = &Src; |
| |
| for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) |
| { |
| ExplodedNodeSet *CurrSet = 0; |
| if (I+1 == E) |
| CurrSet = &Dst; |
| else { |
| CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; |
| CurrSet->clear(); |
| } |
| |
| void *tag = I->first; |
| Checker *checker = I->second; |
| |
| for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); |
| NI != NE; ++NI) |
| checker->GR_VisitBind(*CurrSet, *Builder, *this, StoreE, |
| *NI, tag, location, val, isPrevisit); |
| |
| // Update which NodeSet is the current one. |
| PrevSet = CurrSet; |
| } |
| |
| // Don't autotransition. The CheckerContext objects should do this |
| // automatically. |
| } |
| //===----------------------------------------------------------------------===// |
| // Engine construction and deletion. |
| //===----------------------------------------------------------------------===// |
| |
| static void RegisterInternalChecks(ExprEngine &Eng) { |
| // Register internal "built-in" BugTypes with the BugReporter. These BugTypes |
| // are different than what probably many checks will do since they don't |
| // create BugReports on-the-fly but instead wait until ExprEngine finishes |
| // analyzing a function. Generation of BugReport objects is done via a call |
| // to 'FlushReports' from BugReporter. |
| // The following checks do not need to have their associated BugTypes |
| // explicitly registered with the BugReporter. If they issue any BugReports, |
| // their associated BugType will get registered with the BugReporter |
| // automatically. Note that the check itself is owned by the ExprEngine |
| // object. |
| RegisterAdjustedReturnValueChecker(Eng); |
| // CallAndMessageChecker should be registered before AttrNonNullChecker, |
| // where we assume arguments are not undefined. |
| RegisterCallAndMessageChecker(Eng); |
| RegisterAttrNonNullChecker(Eng); |
| RegisterDereferenceChecker(Eng); |
| RegisterVLASizeChecker(Eng); |
| RegisterDivZeroChecker(Eng); |
| RegisterReturnUndefChecker(Eng); |
| RegisterUndefinedArraySubscriptChecker(Eng); |
| RegisterUndefinedAssignmentChecker(Eng); |
| RegisterUndefBranchChecker(Eng); |
| RegisterUndefCapturedBlockVarChecker(Eng); |
| RegisterUndefResultChecker(Eng); |
| RegisterStackAddrLeakChecker(Eng); |
| RegisterObjCAtSyncChecker(Eng); |
| |
| // This is not a checker yet. |
| RegisterNoReturnFunctionChecker(Eng); |
| RegisterBuiltinFunctionChecker(Eng); |
| RegisterOSAtomicChecker(Eng); |
| RegisterUnixAPIChecker(Eng); |
| RegisterMacOSXAPIChecker(Eng); |
| } |
| |
| ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf) |
| : AMgr(mgr), |
| Engine(*this), |
| G(Engine.getGraph()), |
| Builder(NULL), |
| StateMgr(getContext(), mgr.getStoreManagerCreator(), |
| mgr.getConstraintManagerCreator(), G.getAllocator(), |
| *this), |
| SymMgr(StateMgr.getSymbolManager()), |
| svalBuilder(StateMgr.getSValBuilder()), |
| EntryNode(NULL), currentStmt(NULL), |
| NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL), |
| RaiseSel(GetNullarySelector("raise", getContext())), |
| BR(mgr, *this), TF(tf) { |
| // Register internal checks. |
| RegisterInternalChecks(*this); |
| |
| // FIXME: Eventually remove the TF object entirely. |
| TF->RegisterChecks(*this); |
| TF->RegisterPrinters(getStateManager().Printers); |
| } |
| |
| ExprEngine::~ExprEngine() { |
| BR.FlushReports(); |
| delete [] NSExceptionInstanceRaiseSelectors; |
| |
| // Delete the set of checkers. |
| for (CheckersOrdered::iterator I=Checkers.begin(), E=Checkers.end(); I!=E;++I) |
| delete I->second; |
| |
| for (CheckersOrderedCache::iterator I=COCache.begin(), E=COCache.end(); |
| I!=E;++I) |
| delete I->second; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods. |
| //===----------------------------------------------------------------------===// |
| |
| const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) { |
| const GRState *state = StateMgr.getInitialState(InitLoc); |
| |
| // Preconditions. |
| |
| // FIXME: It would be nice if we had a more general mechanism to add |
| // such preconditions. Some day. |
| do { |
| const Decl *D = InitLoc->getDecl(); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // Precondition: the first argument of 'main' is an integer guaranteed |
| // to be > 0. |
| const IdentifierInfo *II = FD->getIdentifier(); |
| if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) |
| break; |
| |
| const ParmVarDecl *PD = FD->getParamDecl(0); |
| QualType T = PD->getType(); |
| if (!T->isIntegerType()) |
| break; |
| |
| const MemRegion *R = state->getRegion(PD, InitLoc); |
| if (!R) |
| break; |
| |
| SVal V = state->getSVal(loc::MemRegionVal(R)); |
| SVal Constraint_untested = evalBinOp(state, BO_GT, V, |
| svalBuilder.makeZeroVal(T), |
| getContext().IntTy); |
| |
| DefinedOrUnknownSVal *Constraint = |
| dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested); |
| |
| if (!Constraint) |
| break; |
| |
| if (const GRState *newState = state->assume(*Constraint, true)) |
| state = newState; |
| |
| break; |
| } |
| |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| // Precondition: 'self' is always non-null upon entry to an Objective-C |
| // method. |
| const ImplicitParamDecl *SelfD = MD->getSelfDecl(); |
| const MemRegion *R = state->getRegion(SelfD, InitLoc); |
| SVal V = state->getSVal(loc::MemRegionVal(R)); |
| |
| if (const Loc *LV = dyn_cast<Loc>(&V)) { |
| // Assume that the pointer value in 'self' is non-null. |
| state = state->assume(*LV, true); |
| assert(state && "'self' cannot be null"); |
| } |
| } |
| } while (0); |
| |
| return state; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-level transfer function logic (Dispatcher). |
| //===----------------------------------------------------------------------===// |
| |
| /// evalAssume - Called by ConstraintManager. Used to call checker-specific |
| /// logic for handling assumptions on symbolic values. |
| const GRState *ExprEngine::ProcessAssume(const GRState *state, SVal cond, |
| bool assumption) { |
| // Determine if we already have a cached 'CheckersOrdered' vector |
| // specifically tailored for processing assumptions. This |
| // can reduce the number of checkers actually called. |
| CheckersOrdered *CO = &Checkers; |
| llvm::OwningPtr<CheckersOrdered> NewCO; |
| |
| CallbackTag K = GetCallbackTag(ProcessAssumeCallback); |
| CheckersOrdered *& CO_Ref = COCache[K]; |
| |
| if (!CO_Ref) { |
| // If we have no previously cached CheckersOrdered vector for this |
| // statement kind, then create one. |
| NewCO.reset(new CheckersOrdered); |
| } |
| else { |
| // Use the already cached set. |
| CO = CO_Ref; |
| } |
| |
| if (!CO->empty()) { |
| // Let the checkers have a crack at the assume before the transfer functions |
| // get their turn. |
| for (CheckersOrdered::iterator I = CO->begin(), E = CO->end(); I!=E; ++I) { |
| |
| // If any checker declares the state infeasible (or if it starts that |
| // way), bail out. |
| if (!state) |
| return NULL; |
| |
| Checker *C = I->second; |
| bool respondsToCallback = true; |
| |
| state = C->evalAssume(state, cond, assumption, &respondsToCallback); |
| |
| // Check if we're building the cache of checkers that care about |
| // assumptions. |
| if (NewCO.get() && respondsToCallback) |
| NewCO->push_back(*I); |
| } |
| |
| // If we got through all the checkers, and we built a list of those that |
| // care about assumptions, save it. |
| if (NewCO.get()) |
| CO_Ref = NewCO.take(); |
| } |
| |
| // If the state is infeasible at this point, bail out. |
| if (!state) |
| return NULL; |
| |
| return TF->evalAssume(state, cond, assumption); |
| } |
| |
| bool ExprEngine::WantsRegionChangeUpdate(const GRState* state) { |
| CallbackTag K = GetCallbackTag(EvalRegionChangesCallback); |
| CheckersOrdered *CO = COCache[K]; |
| |
| if (!CO) |
| CO = &Checkers; |
| |
| for (CheckersOrdered::iterator I = CO->begin(), E = CO->end(); I != E; ++I) { |
| Checker *C = I->second; |
| if (C->WantsRegionChangeUpdate(state)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| const GRState * |
| ExprEngine::ProcessRegionChanges(const GRState *state, |
| const MemRegion * const *Begin, |
| const MemRegion * const *End) { |
| // FIXME: Most of this method is copy-pasted from ProcessAssume. |
| |
| // Determine if we already have a cached 'CheckersOrdered' vector |
| // specifically tailored for processing region changes. This |
| // can reduce the number of checkers actually called. |
| CheckersOrdered *CO = &Checkers; |
| llvm::OwningPtr<CheckersOrdered> NewCO; |
| |
| CallbackTag K = GetCallbackTag(EvalRegionChangesCallback); |
| CheckersOrdered *& CO_Ref = COCache[K]; |
| |
| if (!CO_Ref) { |
| // If we have no previously cached CheckersOrdered vector for this |
| // callback, then create one. |
| NewCO.reset(new CheckersOrdered); |
| } |
| else { |
| // Use the already cached set. |
| CO = CO_Ref; |
| } |
| |
| // If there are no checkers, just return the state as is. |
| if (CO->empty()) |
| return state; |
| |
| for (CheckersOrdered::iterator I = CO->begin(), E = CO->end(); I != E; ++I) { |
| // If any checker declares the state infeasible (or if it starts that way), |
| // bail out. |
| if (!state) |
| return NULL; |
| |
| Checker *C = I->second; |
| bool respondsToCallback = true; |
| |
| state = C->EvalRegionChanges(state, Begin, End, &respondsToCallback); |
| |
| // See if we're building a cache of checkers that care about region changes. |
| if (NewCO.get() && respondsToCallback) |
| NewCO->push_back(*I); |
| } |
| |
| // If we got through all the checkers, and we built a list of those that |
| // care about region changes, save it. |
| if (NewCO.get()) |
| CO_Ref = NewCO.take(); |
| |
| return state; |
| } |
| |
| void ExprEngine::ProcessEndWorklist(bool hasWorkRemaining) { |
| for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); |
| I != E; ++I) { |
| I->second->VisitEndAnalysis(G, BR, *this); |
| } |
| } |
| |
| void ExprEngine::ProcessElement(const CFGElement E, |
| StmtNodeBuilder& builder) { |
| switch (E.getKind()) { |
| case CFGElement::Statement: |
| ProcessStmt(E.getAs<CFGStmt>(), builder); |
| break; |
| case CFGElement::Initializer: |
| ProcessInitializer(E.getAs<CFGInitializer>(), builder); |
| break; |
| case CFGElement::ImplicitDtor: |
| ProcessImplicitDtor(E.getAs<CFGImplicitDtor>(), builder); |
| break; |
| default: |
| // Suppress compiler warning. |
| llvm_unreachable("Unexpected CFGElement kind."); |
| } |
| } |
| |
| void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) { |
| currentStmt = S.getStmt(); |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| currentStmt->getLocStart(), |
| "Error evaluating statement"); |
| |
| Builder = &builder; |
| EntryNode = builder.getBasePredecessor(); |
| |
| // Create the cleaned state. |
| const LocationContext *LC = EntryNode->getLocationContext(); |
| SymbolReaper SymReaper(LC, currentStmt, SymMgr); |
| |
| if (AMgr.shouldPurgeDead()) { |
| const GRState *St = EntryNode->getState(); |
| |
| for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); |
| I != E; ++I) { |
| Checker *checker = I->second; |
| checker->MarkLiveSymbols(St, SymReaper); |
| } |
| |
| const StackFrameContext *SFC = LC->getCurrentStackFrame(); |
| CleanedState = StateMgr.RemoveDeadBindings(St, SFC, SymReaper); |
| } else { |
| CleanedState = EntryNode->getState(); |
| } |
| |
| // Process any special transfer function for dead symbols. |
| ExplodedNodeSet Tmp; |
| |
| if (!SymReaper.hasDeadSymbols()) |
| Tmp.Add(EntryNode); |
| else { |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| SaveOr OldHasGen(Builder->HasGeneratedNode); |
| |
| SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols); |
| Builder->PurgingDeadSymbols = true; |
| |
| // FIXME: This should soon be removed. |
| ExplodedNodeSet Tmp2; |
| getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode, |
| CleanedState, SymReaper); |
| |
| if (Checkers.empty()) |
| Tmp.insert(Tmp2); |
| else { |
| ExplodedNodeSet Tmp3; |
| ExplodedNodeSet *SrcSet = &Tmp2; |
| for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end(); |
| I != E; ++I) { |
| ExplodedNodeSet *DstSet = 0; |
| if (I+1 == E) |
| DstSet = &Tmp; |
| else { |
| DstSet = (SrcSet == &Tmp2) ? &Tmp3 : &Tmp2; |
| DstSet->clear(); |
| } |
| |
| void *tag = I->first; |
| Checker *checker = I->second; |
| for (ExplodedNodeSet::iterator NI = SrcSet->begin(), NE = SrcSet->end(); |
| NI != NE; ++NI) |
| checker->GR_evalDeadSymbols(*DstSet, *Builder, *this, currentStmt, |
| *NI, SymReaper, tag); |
| SrcSet = DstSet; |
| } |
| } |
| |
| if (!Builder->BuildSinks && !Builder->HasGeneratedNode) |
| Tmp.Add(EntryNode); |
| } |
| |
| bool HasAutoGenerated = false; |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| ExplodedNodeSet Dst; |
| |
| // Set the cleaned state. |
| Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I)); |
| |
| // Visit the statement. |
| Visit(currentStmt, *I, Dst); |
| |
| // Do we need to auto-generate a node? We only need to do this to generate |
| // a node with a "cleaned" state; CoreEngine will actually handle |
| // auto-transitions for other cases. |
| if (Dst.size() == 1 && *Dst.begin() == EntryNode |
| && !Builder->HasGeneratedNode && !HasAutoGenerated) { |
| HasAutoGenerated = true; |
| builder.generateNode(currentStmt, GetState(EntryNode), *I); |
| } |
| } |
| |
| // NULL out these variables to cleanup. |
| CleanedState = NULL; |
| EntryNode = NULL; |
| |
| currentStmt = 0; |
| |
| Builder = NULL; |
| } |
| |
| void ExprEngine::ProcessInitializer(const CFGInitializer Init, |
| StmtNodeBuilder &builder) { |
| // We don't set EntryNode and currentStmt. And we don't clean up state. |
| const CXXBaseOrMemberInitializer *BMI = Init.getInitializer(); |
| |
| ExplodedNode *Pred = builder.getBasePredecessor(); |
| const LocationContext *LC = Pred->getLocationContext(); |
| |
| if (BMI->isAnyMemberInitializer()) { |
| ExplodedNodeSet Dst; |
| |
| // Evaluate the initializer. |
| Visit(BMI->getInit(), Pred, Dst); |
| |
| for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){ |
| ExplodedNode *Pred = *I; |
| const GRState *state = Pred->getState(); |
| |
| const FieldDecl *FD = BMI->getAnyMember(); |
| const RecordDecl *RD = FD->getParent(); |
| const CXXThisRegion *ThisR = getCXXThisRegion(cast<CXXRecordDecl>(RD), |
| cast<StackFrameContext>(LC)); |
| |
| SVal ThisV = state->getSVal(ThisR); |
| SVal FieldLoc = state->getLValue(FD, ThisV); |
| SVal InitVal = state->getSVal(BMI->getInit()); |
| state = state->bindLoc(FieldLoc, InitVal); |
| |
| // Use a custom node building process. |
| PostInitializer PP(BMI, LC); |
| // Builder automatically add the generated node to the deferred set, |
| // which are processed in the builder's dtor. |
| builder.generateNode(PP, state, Pred); |
| } |
| } |
| } |
| |
| void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, |
| StmtNodeBuilder &builder) { |
| Builder = &builder; |
| |
| switch (D.getDtorKind()) { |
| case CFGElement::AutomaticObjectDtor: |
| ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), builder); |
| break; |
| case CFGElement::BaseDtor: |
| ProcessBaseDtor(cast<CFGBaseDtor>(D), builder); |
| break; |
| case CFGElement::MemberDtor: |
| ProcessMemberDtor(cast<CFGMemberDtor>(D), builder); |
| break; |
| case CFGElement::TemporaryDtor: |
| ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), builder); |
| break; |
| default: |
| llvm_unreachable("Unexpected dtor kind."); |
| } |
| } |
| |
| void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor, |
| StmtNodeBuilder &builder) { |
| ExplodedNode *pred = builder.getBasePredecessor(); |
| const GRState *state = pred->getState(); |
| const VarDecl *varDecl = dtor.getVarDecl(); |
| |
| QualType varType = varDecl->getType(); |
| |
| if (const ReferenceType *refType = varType->getAs<ReferenceType>()) |
| varType = refType->getPointeeType(); |
| |
| const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl(); |
| assert(recordDecl && "get CXXRecordDecl fail"); |
| const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor(); |
| |
| Loc dest = state->getLValue(varDecl, pred->getLocationContext()); |
| |
| ExplodedNodeSet dstSet; |
| VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(), |
| dtor.getTriggerStmt(), pred, dstSet); |
| } |
| |
| void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, |
| StmtNodeBuilder &builder) { |
| } |
| |
| void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, |
| StmtNodeBuilder &builder) { |
| } |
| |
| void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, |
| StmtNodeBuilder &builder) { |
| } |
| |
| void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| S->getLocStart(), |
| "Error evaluating statement"); |
| |
| // Expressions to ignore. |
| if (const Expr *Ex = dyn_cast<Expr>(S)) |
| S = Ex->IgnoreParens(); |
| |
| // FIXME: add metadata to the CFG so that we can disable |
| // this check when we KNOW that there is no block-level subexpression. |
| // The motivation is that this check requires a hashtable lookup. |
| |
| if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) { |
| Dst.Add(Pred); |
| return; |
| } |
| |
| switch (S->getStmtClass()) { |
| // C++ stuff we don't support yet. |
| case Stmt::CXXBindTemporaryExprClass: |
| case Stmt::CXXCatchStmtClass: |
| case Stmt::CXXDefaultArgExprClass: |
| case Stmt::CXXDependentScopeMemberExprClass: |
| case Stmt::ExprWithCleanupsClass: |
| case Stmt::CXXNullPtrLiteralExprClass: |
| case Stmt::CXXPseudoDestructorExprClass: |
| case Stmt::CXXTemporaryObjectExprClass: |
| case Stmt::CXXThrowExprClass: |
| case Stmt::CXXTryStmtClass: |
| case Stmt::CXXTypeidExprClass: |
| case Stmt::CXXUuidofExprClass: |
| case Stmt::CXXUnresolvedConstructExprClass: |
| case Stmt::CXXScalarValueInitExprClass: |
| case Stmt::DependentScopeDeclRefExprClass: |
| case Stmt::UnaryTypeTraitExprClass: |
| case Stmt::BinaryTypeTraitExprClass: |
| case Stmt::UnresolvedLookupExprClass: |
| case Stmt::UnresolvedMemberExprClass: |
| case Stmt::CXXNoexceptExprClass: |
| { |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| Builder->BuildSinks = true; |
| MakeNode(Dst, S, Pred, GetState(Pred)); |
| break; |
| } |
| |
| case Stmt::ParenExprClass: |
| llvm_unreachable("ParenExprs already handled."); |
| // Cases that should never be evaluated simply because they shouldn't |
| // appear in the CFG. |
| case Stmt::BreakStmtClass: |
| case Stmt::CaseStmtClass: |
| case Stmt::CompoundStmtClass: |
| case Stmt::ContinueStmtClass: |
| case Stmt::DefaultStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::GotoStmtClass: |
| case Stmt::IndirectGotoStmtClass: |
| case Stmt::LabelStmtClass: |
| case Stmt::NoStmtClass: |
| case Stmt::NullStmtClass: |
| case Stmt::SwitchCaseClass: |
| case Stmt::OpaqueValueExprClass: |
| llvm_unreachable("Stmt should not be in analyzer evaluation loop"); |
| break; |
| |
| case Stmt::GNUNullExprClass: { |
| MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull())); |
| break; |
| } |
| |
| case Stmt::ObjCAtSynchronizedStmtClass: |
| VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); |
| break; |
| |
| // Cases not handled yet; but will handle some day. |
| case Stmt::DesignatedInitExprClass: |
| case Stmt::ExtVectorElementExprClass: |
| case Stmt::ImaginaryLiteralClass: |
| case Stmt::ImplicitValueInitExprClass: |
| case Stmt::ObjCAtCatchStmtClass: |
| case Stmt::ObjCAtFinallyStmtClass: |
| case Stmt::ObjCAtTryStmtClass: |
| case Stmt::ObjCEncodeExprClass: |
| case Stmt::ObjCIsaExprClass: |
| case Stmt::ObjCPropertyRefExprClass: |
| case Stmt::ObjCProtocolExprClass: |
| case Stmt::ObjCSelectorExprClass: |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::ParenListExprClass: |
| case Stmt::PredefinedExprClass: |
| case Stmt::ShuffleVectorExprClass: |
| case Stmt::VAArgExprClass: |
| // Fall through. |
| |
| // Cases we intentionally don't evaluate, since they don't need |
| // to be explicitly evaluated. |
| case Stmt::AddrLabelExprClass: |
| case Stmt::IntegerLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::FloatingLiteralClass: |
| Dst.Add(Pred); // No-op. Simply propagate the current state unchanged. |
| break; |
| |
| case Stmt::ArraySubscriptExprClass: |
| VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::AsmStmtClass: |
| VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst); |
| break; |
| |
| case Stmt::BlockDeclRefExprClass: { |
| const BlockDeclRefExpr *BE = cast<BlockDeclRefExpr>(S); |
| VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::BlockExprClass: |
| VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator* B = cast<BinaryOperator>(S); |
| if (B->isLogicalOp()) { |
| VisitLogicalExpr(B, Pred, Dst); |
| break; |
| } |
| else if (B->getOpcode() == BO_Comma) { |
| const GRState* state = GetState(Pred); |
| MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS()))); |
| break; |
| } |
| |
| if (AMgr.shouldEagerlyAssume() && |
| (B->isRelationalOp() || B->isEqualityOp())) { |
| ExplodedNodeSet Tmp; |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); |
| evalEagerlyAssume(Dst, Tmp, cast<Expr>(S)); |
| } |
| else |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| |
| break; |
| } |
| |
| case Stmt::CallExprClass: { |
| const CallExpr* C = cast<CallExpr>(S); |
| VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst); |
| break; |
| } |
| |
| case Stmt::CXXConstructExprClass: { |
| const CXXConstructExpr *C = cast<CXXConstructExpr>(S); |
| // For block-level CXXConstructExpr, we don't have a destination region. |
| // Let VisitCXXConstructExpr() create one. |
| VisitCXXConstructExpr(C, 0, Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CXXMemberCallExprClass: { |
| const CXXMemberCallExpr *MCE = cast<CXXMemberCallExpr>(S); |
| VisitCXXMemberCallExpr(MCE, Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CXXOperatorCallExprClass: { |
| const CXXOperatorCallExpr *C = cast<CXXOperatorCallExpr>(S); |
| VisitCXXOperatorCallExpr(C, Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CXXNewExprClass: { |
| const CXXNewExpr *NE = cast<CXXNewExpr>(S); |
| VisitCXXNewExpr(NE, Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CXXDeleteExprClass: { |
| const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S); |
| VisitCXXDeleteExpr(CDE, Pred, Dst); |
| break; |
| } |
| // FIXME: ChooseExpr is really a constant. We need to fix |
| // the CFG do not model them as explicit control-flow. |
| |
| case Stmt::ChooseExprClass: { // __builtin_choose_expr |
| const ChooseExpr* C = cast<ChooseExpr>(S); |
| VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CompoundAssignOperatorClass: |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| break; |
| |
| case Stmt::CompoundLiteralExprClass: |
| VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::ConditionalOperatorClass: { // '?' operator |
| const ConditionalOperator* C = cast<ConditionalOperator>(S); |
| VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::CXXThisExprClass: |
| VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::DeclRefExprClass: { |
| const DeclRefExpr *DE = cast<DeclRefExpr>(S); |
| VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::DeclStmtClass: |
| VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); |
| break; |
| |
| case Stmt::ForStmtClass: |
| // This case isn't for branch processing, but for handling the |
| // initialization of a condition variable. |
| VisitCondInit(cast<ForStmt>(S)->getConditionVariable(), S, Pred, Dst); |
| break; |
| |
| case Stmt::ImplicitCastExprClass: |
| case Stmt::CStyleCastExprClass: |
| case Stmt::CXXStaticCastExprClass: |
| case Stmt::CXXDynamicCastExprClass: |
| case Stmt::CXXReinterpretCastExprClass: |
| case Stmt::CXXConstCastExprClass: |
| case Stmt::CXXFunctionalCastExprClass: { |
| const CastExpr* C = cast<CastExpr>(S); |
| VisitCast(C, C->getSubExpr(), Pred, Dst); |
| break; |
| } |
| |
| case Stmt::IfStmtClass: |
| // This case isn't for branch processing, but for handling the |
| // initialization of a condition variable. |
| VisitCondInit(cast<IfStmt>(S)->getConditionVariable(), S, Pred, Dst); |
| break; |
| |
| case Stmt::InitListExprClass: |
| VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::MemberExprClass: |
| VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); |
| break; |
| case Stmt::ObjCIvarRefExprClass: |
| VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::ObjCForCollectionStmtClass: |
| VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); |
| break; |
| |
| case Stmt::ObjCMessageExprClass: |
| VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::ObjCAtThrowStmtClass: { |
| // FIXME: This is not complete. We basically treat @throw as |
| // an abort. |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| Builder->BuildSinks = true; |
| MakeNode(Dst, S, Pred, GetState(Pred)); |
| break; |
| } |
| |
| case Stmt::ReturnStmtClass: |
| VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); |
| break; |
| |
| case Stmt::OffsetOfExprClass: |
| VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::SizeOfAlignOfExprClass: |
| VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst); |
| break; |
| |
| case Stmt::StmtExprClass: { |
| const StmtExpr* SE = cast<StmtExpr>(S); |
| |
| if (SE->getSubStmt()->body_empty()) { |
| // Empty statement expression. |
| assert(SE->getType() == getContext().VoidTy |
| && "Empty statement expression must have void type."); |
| Dst.Add(Pred); |
| break; |
| } |
| |
| if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { |
| const GRState* state = GetState(Pred); |
| MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr))); |
| } |
| else |
| Dst.Add(Pred); |
| |
| break; |
| } |
| |
| case Stmt::StringLiteralClass: { |
| const GRState* state = GetState(Pred); |
| SVal V = state->getLValue(cast<StringLiteral>(S)); |
| MakeNode(Dst, S, Pred, state->BindExpr(S, V)); |
| return; |
| } |
| |
| case Stmt::SwitchStmtClass: |
| // This case isn't for branch processing, but for handling the |
| // initialization of a condition variable. |
| VisitCondInit(cast<SwitchStmt>(S)->getConditionVariable(), S, Pred, Dst); |
| break; |
| |
| case Stmt::UnaryOperatorClass: { |
| const UnaryOperator *U = cast<UnaryOperator>(S); |
| if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) { |
| ExplodedNodeSet Tmp; |
| VisitUnaryOperator(U, Pred, Tmp); |
| evalEagerlyAssume(Dst, Tmp, U); |
| } |
| else |
| VisitUnaryOperator(U, Pred, Dst); |
| break; |
| } |
| |
| case Stmt::WhileStmtClass: |
| // This case isn't for branch processing, but for handling the |
| // initialization of a condition variable. |
| VisitCondInit(cast<WhileStmt>(S)->getConditionVariable(), S, Pred, Dst); |
| break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Block entrance. (Update counters). |
| //===----------------------------------------------------------------------===// |
| |
| bool ExprEngine::ProcessBlockEntrance(const CFGBlock* B, |
| const ExplodedNode *Pred, |
| BlockCounter BC) { |
| return BC.getNumVisited(Pred->getLocationContext()->getCurrentStackFrame(), |
| B->getBlockID()) < AMgr.getMaxVisit(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Generic node creation. |
| //===----------------------------------------------------------------------===// |
| |
| ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S, |
| ExplodedNode* Pred, const GRState* St, |
| ProgramPoint::Kind K, const void *tag) { |
| assert (Builder && "StmtNodeBuilder not present."); |
| SaveAndRestore<const void*> OldTag(Builder->Tag); |
| Builder->Tag = tag; |
| return Builder->MakeNode(Dst, S, Pred, St, K); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Branch processing. |
| //===----------------------------------------------------------------------===// |
| |
| const GRState* ExprEngine::MarkBranch(const GRState* state, |
| const Stmt* Terminator, |
| bool branchTaken) { |
| |
| switch (Terminator->getStmtClass()) { |
| default: |
| return state; |
| |
| case Stmt::BinaryOperatorClass: { // '&&' and '||' |
| |
| const BinaryOperator* B = cast<BinaryOperator>(Terminator); |
| BinaryOperator::Opcode Op = B->getOpcode(); |
| |
| assert (Op == BO_LAnd || Op == BO_LOr); |
| |
| // For &&, if we take the true branch, then the value of the whole |
| // expression is that of the RHS expression. |
| // |
| // For ||, if we take the false branch, then the value of the whole |
| // expression is that of the RHS expression. |
| |
| const Expr* Ex = (Op == BO_LAnd && branchTaken) || |
| (Op == BO_LOr && !branchTaken) |
| ? B->getRHS() : B->getLHS(); |
| |
| return state->BindExpr(B, UndefinedVal(Ex)); |
| } |
| |
| case Stmt::ConditionalOperatorClass: { // ?: |
| |
| const ConditionalOperator* C = cast<ConditionalOperator>(Terminator); |
| |
| // For ?, if branchTaken == true then the value is either the LHS or |
| // the condition itself. (GNU extension). |
| |
| const Expr* Ex; |
| |
| if (branchTaken) |
| Ex = C->getLHS() ? C->getLHS() : C->getCond(); |
| else |
| Ex = C->getRHS(); |
| |
| return state->BindExpr(C, UndefinedVal(Ex)); |
| } |
| |
| case Stmt::ChooseExprClass: { // ?: |
| |
| const ChooseExpr* C = cast<ChooseExpr>(Terminator); |
| |
| const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS(); |
| return state->BindExpr(C, UndefinedVal(Ex)); |
| } |
| } |
| } |
| |
| /// RecoverCastedSymbol - A helper function for ProcessBranch that is used |
| /// to try to recover some path-sensitivity for casts of symbolic |
| /// integers that promote their values (which are currently not tracked well). |
| /// This function returns the SVal bound to Condition->IgnoreCasts if all the |
| // cast(s) did was sign-extend the original value. |
| static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state, |
| const Stmt* Condition, ASTContext& Ctx) { |
| |
| const Expr *Ex = dyn_cast<Expr>(Condition); |
| if (!Ex) |
| return UnknownVal(); |
| |
| uint64_t bits = 0; |
| bool bitsInit = false; |
| |
| while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { |
| QualType T = CE->getType(); |
| |
| if (!T->isIntegerType()) |
| return UnknownVal(); |
| |
| uint64_t newBits = Ctx.getTypeSize(T); |
| if (!bitsInit || newBits < bits) { |
| bitsInit = true; |
| bits = newBits; |
| } |
| |
| Ex = CE->getSubExpr(); |
| } |
| |
| // We reached a non-cast. Is it a symbolic value? |
| QualType T = Ex->getType(); |
| |
| if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) |
| return UnknownVal(); |
| |
| return state->getSVal(Ex); |
| } |
| |
| void ExprEngine::ProcessBranch(const Stmt* Condition, const Stmt* Term, |
| BranchNodeBuilder& builder) { |
| |
| // Check for NULL conditions; e.g. "for(;;)" |
| if (!Condition) { |
| builder.markInfeasible(false); |
| return; |
| } |
| |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| Condition->getLocStart(), |
| "Error evaluating branch"); |
| |
| for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) { |
| void *tag = I->first; |
| Checker *checker = I->second; |
| checker->VisitBranchCondition(builder, *this, Condition, tag); |
| } |
| |
| // If the branch condition is undefined, return; |
| if (!builder.isFeasible(true) && !builder.isFeasible(false)) |
| return; |
| |
| const GRState* PrevState = builder.getState(); |
| SVal X = PrevState->getSVal(Condition); |
| |
| if (X.isUnknown()) { |
| // Give it a chance to recover from unknown. |
| if (const Expr *Ex = dyn_cast<Expr>(Condition)) { |
| if (Ex->getType()->isIntegerType()) { |
| // Try to recover some path-sensitivity. Right now casts of symbolic |
| // integers that promote their values are currently not tracked well. |
| // If 'Condition' is such an expression, try and recover the |
| // underlying value and use that instead. |
| SVal recovered = RecoverCastedSymbol(getStateManager(), |
| builder.getState(), Condition, |
| getContext()); |
| |
| if (!recovered.isUnknown()) { |
| X = recovered; |
| } |
| } |
| } |
| // If the condition is still unknown, give up. |
| if (X.isUnknown()) { |
| builder.generateNode(MarkBranch(PrevState, Term, true), true); |
| builder.generateNode(MarkBranch(PrevState, Term, false), false); |
| return; |
| } |
| } |
| |
| DefinedSVal V = cast<DefinedSVal>(X); |
| |
| // Process the true branch. |
| if (builder.isFeasible(true)) { |
| if (const GRState *state = PrevState->assume(V, true)) |
| builder.generateNode(MarkBranch(state, Term, true), true); |
| else |
| builder.markInfeasible(true); |
| } |
| |
| // Process the false branch. |
| if (builder.isFeasible(false)) { |
| if (const GRState *state = PrevState->assume(V, false)) |
| builder.generateNode(MarkBranch(state, Term, false), false); |
| else |
| builder.markInfeasible(false); |
| } |
| } |
| |
| /// ProcessIndirectGoto - Called by CoreEngine. Used to generate successor |
| /// nodes by processing the 'effects' of a computed goto jump. |
| void ExprEngine::ProcessIndirectGoto(IndirectGotoNodeBuilder& builder) { |
| |
| const GRState *state = builder.getState(); |
| SVal V = state->getSVal(builder.getTarget()); |
| |
| // Three possibilities: |
| // |
| // (1) We know the computed label. |
| // (2) The label is NULL (or some other constant), or Undefined. |
| // (3) We have no clue about the label. Dispatch to all targets. |
| // |
| |
| typedef IndirectGotoNodeBuilder::iterator iterator; |
| |
| if (isa<loc::GotoLabel>(V)) { |
| const LabelStmt* L = cast<loc::GotoLabel>(V).getLabel(); |
| |
| for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) { |
| if (I.getLabel() == L) { |
| builder.generateNode(I, state); |
| return; |
| } |
| } |
| |
| assert (false && "No block with label."); |
| return; |
| } |
| |
| if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) { |
| // Dispatch to the first target and mark it as a sink. |
| //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); |
| // FIXME: add checker visit. |
| // UndefBranches.insert(N); |
| return; |
| } |
| |
| // This is really a catch-all. We don't support symbolics yet. |
| // FIXME: Implement dispatch for symbolic pointers. |
| |
| for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) |
| builder.generateNode(I, state); |
| } |
| |
| |
| void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L, |
| const Expr* R, |
| ExplodedNode* Pred, ExplodedNodeSet& Dst) { |
| |
| assert(Ex == currentStmt && |
| Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)); |
| |
| const GRState* state = GetState(Pred); |
| SVal X = state->getSVal(Ex); |
| |
| assert (X.isUndef()); |
| |
| const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData(); |
| assert(SE); |
| X = state->getSVal(SE); |
| |
| // Make sure that we invalidate the previous binding. |
| MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true)); |
| } |
| |
| /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path |
| /// nodes when the control reaches the end of a function. |
| void ExprEngine::ProcessEndPath(EndPathNodeBuilder& builder) { |
| getTF().evalEndPath(*this, builder); |
| StateMgr.EndPath(builder.getState()); |
| for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){ |
| void *tag = I->first; |
| Checker *checker = I->second; |
| checker->evalEndPath(builder, tag, *this); |
| } |
| } |
| |
| /// ProcessSwitch - Called by CoreEngine. Used to generate successor |
| /// nodes by processing the 'effects' of a switch statement. |
| void ExprEngine::ProcessSwitch(SwitchNodeBuilder& builder) { |
| typedef SwitchNodeBuilder::iterator iterator; |
| const GRState* state = builder.getState(); |
| const Expr* CondE = builder.getCondition(); |
| SVal CondV_untested = state->getSVal(CondE); |
| |
| if (CondV_untested.isUndef()) { |
| //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); |
| // FIXME: add checker |
| //UndefBranches.insert(N); |
| |
| return; |
| } |
| DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested); |
| |
| const GRState *DefaultSt = state; |
| |
| iterator I = builder.begin(), EI = builder.end(); |
| bool defaultIsFeasible = I == EI; |
| |
| for ( ; I != EI; ++I) { |
| const CaseStmt* Case = I.getCase(); |
| |
| // Evaluate the LHS of the case value. |
| Expr::EvalResult V1; |
| bool b = Case->getLHS()->Evaluate(V1, getContext()); |
| |
| // Sanity checks. These go away in Release builds. |
| assert(b && V1.Val.isInt() && !V1.HasSideEffects |
| && "Case condition must evaluate to an integer constant."); |
| b = b; // silence unused variable warning |
| assert(V1.Val.getInt().getBitWidth() == |
| getContext().getTypeSize(CondE->getType())); |
| |
| // Get the RHS of the case, if it exists. |
| Expr::EvalResult V2; |
| |
| if (const Expr* E = Case->getRHS()) { |
| b = E->Evaluate(V2, getContext()); |
| assert(b && V2.Val.isInt() && !V2.HasSideEffects |
| && "Case condition must evaluate to an integer constant."); |
| b = b; // silence unused variable warning |
| } |
| else |
| V2 = V1; |
| |
| // FIXME: Eventually we should replace the logic below with a range |
| // comparison, rather than concretize the values within the range. |
| // This should be easy once we have "ranges" for NonLVals. |
| |
| do { |
| nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt())); |
| DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, |
| CondV, CaseVal); |
| |
| // Now "assume" that the case matches. |
| if (const GRState* stateNew = state->assume(Res, true)) { |
| builder.generateCaseStmtNode(I, stateNew); |
| |
| // If CondV evaluates to a constant, then we know that this |
| // is the *only* case that we can take, so stop evaluating the |
| // others. |
| if (isa<nonloc::ConcreteInt>(CondV)) |
| return; |
| } |
| |
| // Now "assume" that the case doesn't match. Add this state |
| // to the default state (if it is feasible). |
| if (DefaultSt) { |
| if (const GRState *stateNew = DefaultSt->assume(Res, false)) { |
| defaultIsFeasible = true; |
| DefaultSt = stateNew; |
| } |
| else { |
| defaultIsFeasible = false; |
| DefaultSt = NULL; |
| } |
| } |
| |
| // Concretize the next value in the range. |
| if (V1.Val.getInt() == V2.Val.getInt()) |
| break; |
| |
| ++V1.Val.getInt(); |
| assert (V1.Val.getInt() <= V2.Val.getInt()); |
| |
| } while (true); |
| } |
| |
| if (!defaultIsFeasible) |
| return; |
| |
| // If we have switch(enum value), the default branch is not |
| // feasible if all of the enum constants not covered by 'case:' statements |
| // are not feasible values for the switch condition. |
| // |
| // Note that this isn't as accurate as it could be. Even if there isn't |
| // a case for a particular enum value as long as that enum value isn't |
| // feasible then it shouldn't be considered for making 'default:' reachable. |
| const SwitchStmt *SS = builder.getSwitch(); |
| const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); |
| if (CondExpr->getType()->getAs<EnumType>()) { |
| if (SS->isAllEnumCasesCovered()) |
| return; |
| } |
| |
| builder.generateDefaultCaseNode(DefaultSt); |
| } |
| |
| void ExprEngine::ProcessCallEnter(CallEnterNodeBuilder &B) { |
| const GRState *state = B.getState()->EnterStackFrame(B.getCalleeContext()); |
| B.generateNode(state); |
| } |
| |
| void ExprEngine::ProcessCallExit(CallExitNodeBuilder &B) { |
| const GRState *state = B.getState(); |
| const ExplodedNode *Pred = B.getPredecessor(); |
| const StackFrameContext *calleeCtx = |
| cast<StackFrameContext>(Pred->getLocationContext()); |
| const Stmt *CE = calleeCtx->getCallSite(); |
| |
| // If the callee returns an expression, bind its value to CallExpr. |
| const Stmt *ReturnedExpr = state->get<ReturnExpr>(); |
| if (ReturnedExpr) { |
| SVal RetVal = state->getSVal(ReturnedExpr); |
| state = state->BindExpr(CE, RetVal); |
| // Clear the return expr GDM. |
| state = state->remove<ReturnExpr>(); |
| } |
| |
| // Bind the constructed object value to CXXConstructExpr. |
| if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) { |
| const CXXThisRegion *ThisR = |
| getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx); |
| |
| SVal ThisV = state->getSVal(ThisR); |
| // Always bind the region to the CXXConstructExpr. |
| state = state->BindExpr(CCE, ThisV); |
| } |
| |
| B.generateNode(state); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer functions: logical operations ('&&', '||'). |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| |
| assert(B->getOpcode() == BO_LAnd || |
| B->getOpcode() == BO_LOr); |
| |
| assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B)); |
| |
| const GRState* state = GetState(Pred); |
| SVal X = state->getSVal(B); |
| assert(X.isUndef()); |
| |
| const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData(); |
| assert(Ex); |
| |
| if (Ex == B->getRHS()) { |
| X = state->getSVal(Ex); |
| |
| // Handle undefined values. |
| if (X.isUndef()) { |
| MakeNode(Dst, B, Pred, state->BindExpr(B, X)); |
| return; |
| } |
| |
| DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X); |
| |
| // We took the RHS. Because the value of the '&&' or '||' expression must |
| // evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0 |
| // or 1. Alternatively, we could take a lazy approach, and calculate this |
| // value later when necessary. We don't have the machinery in place for |
| // this right now, and since most logical expressions are used for branches, |
| // the payoff is not likely to be large. Instead, we do eager evaluation. |
| if (const GRState *newState = state->assume(XD, true)) |
| MakeNode(Dst, B, Pred, |
| newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType()))); |
| |
| if (const GRState *newState = state->assume(XD, false)) |
| MakeNode(Dst, B, Pred, |
| newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType()))); |
| } |
| else { |
| // We took the LHS expression. Depending on whether we are '&&' or |
| // '||' we know what the value of the expression is via properties of |
| // the short-circuiting. |
| X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U, |
| B->getType()); |
| MakeNode(Dst, B, Pred, state->BindExpr(B, X)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer functions: Loads and stores. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| |
| ExplodedNodeSet Tmp; |
| |
| CanQualType T = getContext().getCanonicalType(BE->getType()); |
| SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T, |
| Pred->getLocationContext()); |
| |
| MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V), |
| ProgramPoint::PostLValueKind); |
| |
| // Post-visit the BlockExpr. |
| CheckerVisit(BE, Dst, Tmp, PostVisitStmtCallback); |
| } |
| |
| void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| const GRState *state = GetState(Pred); |
| |
| if (const VarDecl* VD = dyn_cast<VarDecl>(D)) { |
| assert(Ex->isLValue()); |
| SVal V = state->getLValue(VD, Pred->getLocationContext()); |
| |
| // For references, the 'lvalue' is the pointer address stored in the |
| // reference region. |
| if (VD->getType()->isReferenceType()) { |
| if (const MemRegion *R = V.getAsRegion()) |
| V = state->getSVal(R); |
| else |
| V = UnknownVal(); |
| } |
| |
| MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) { |
| assert(!Ex->isLValue()); |
| SVal V = svalBuilder.makeIntVal(ED->getInitVal()); |
| MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V)); |
| return; |
| } |
| if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) { |
| SVal V = svalBuilder.getFunctionPointer(FD); |
| MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V), |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| assert (false && |
| "ValueDecl support for this ValueDecl not implemented."); |
| } |
| |
| /// VisitArraySubscriptExpr - Transfer function for array accesses |
| void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst){ |
| |
| const Expr* Base = A->getBase()->IgnoreParens(); |
| const Expr* Idx = A->getIdx()->IgnoreParens(); |
| |
| // Evaluate the base. |
| ExplodedNodeSet Tmp; |
| Visit(Base, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) { |
| ExplodedNodeSet Tmp2; |
| Visit(Idx, *I1, Tmp2); // Evaluate the index. |
| ExplodedNodeSet Tmp3; |
| CheckerVisit(A, Tmp3, Tmp2, PreVisitStmtCallback); |
| |
| for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) { |
| const GRState* state = GetState(*I2); |
| SVal V = state->getLValue(A->getType(), state->getSVal(Idx), |
| state->getSVal(Base)); |
| assert(A->isLValue()); |
| MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind); |
| } |
| } |
| } |
| |
| /// VisitMemberExpr - Transfer function for member expressions. |
| void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| |
| Expr *baseExpr = M->getBase()->IgnoreParens(); |
| ExplodedNodeSet dstBase; |
| Visit(baseExpr, Pred, dstBase); |
| |
| FieldDecl *field = dyn_cast<FieldDecl>(M->getMemberDecl()); |
| if (!field) // FIXME: skipping member expressions for non-fields |
| return; |
| |
| for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); |
| I != E; ++I) { |
| const GRState* state = GetState(*I); |
| SVal baseExprVal = state->getSVal(baseExpr); |
| if (isa<nonloc::LazyCompoundVal>(baseExprVal) || |
| isa<nonloc::CompoundVal>(baseExprVal)) { |
| MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal())); |
| continue; |
| } |
| |
| // FIXME: Should we insert some assumption logic in here to determine |
| // if "Base" is a valid piece of memory? Before we put this assumption |
| // later when using FieldOffset lvals (which we no longer have). |
| |
| // For all other cases, compute an lvalue. |
| SVal L = state->getLValue(field, baseExprVal); |
| if (M->isLValue()) |
| MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind); |
| else |
| evalLoad(Dst, M, *I, state, L); |
| } |
| } |
| |
| /// evalBind - Handle the semantics of binding a value to a specific location. |
| /// This method is used by evalStore and (soon) VisitDeclStmt, and others. |
| void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE, |
| ExplodedNode* Pred, const GRState* state, |
| SVal location, SVal Val, bool atDeclInit) { |
| |
| |
| // Do a previsit of the bind. |
| ExplodedNodeSet CheckedSet, Src; |
| Src.Add(Pred); |
| CheckerVisitBind(StoreE, CheckedSet, Src, location, Val, true); |
| |
| for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); |
| I!=E; ++I) { |
| |
| if (Pred != *I) |
| state = GetState(*I); |
| |
| const GRState* newState = 0; |
| |
| if (atDeclInit) { |
| const VarRegion *VR = |
| cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion()); |
| |
| newState = state->bindDecl(VR, Val); |
| } |
| else { |
| if (location.isUnknown()) { |
| // We know that the new state will be the same as the old state since |
| // the location of the binding is "unknown". Consequently, there |
| // is no reason to just create a new node. |
| newState = state; |
| } |
| else { |
| // We are binding to a value other than 'unknown'. Perform the binding |
| // using the StoreManager. |
| newState = state->bindLoc(cast<Loc>(location), Val); |
| } |
| } |
| |
| // The next thing to do is check if the TransferFuncs object wants to |
| // update the state based on the new binding. If the GRTransferFunc object |
| // doesn't do anything, just auto-propagate the current state. |
| |
| // NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE' |
| // is non-NULL. Checkers typically care about |
| |
| StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE, |
| true); |
| |
| getTF().evalBind(BuilderRef, location, Val); |
| } |
| } |
| |
| /// evalStore - Handle the semantics of a store via an assignment. |
| /// @param Dst The node set to store generated state nodes |
| /// @param AssignE The assignment expression if the store happens in an |
| /// assignment. |
| /// @param LocatioinE The location expression that is stored to. |
| /// @param state The current simulation state |
| /// @param location The location to store the value |
| /// @param Val The value to be stored |
| void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE, |
| const Expr* LocationE, |
| ExplodedNode* Pred, |
| const GRState* state, SVal location, SVal Val, |
| const void *tag) { |
| |
| assert(Builder && "StmtNodeBuilder must be defined."); |
| |
| // Evaluate the location (checks for bad dereferences). |
| ExplodedNodeSet Tmp; |
| evalLocation(Tmp, LocationE, Pred, state, location, tag, false); |
| |
| if (Tmp.empty()) |
| return; |
| |
| assert(!location.isUndef()); |
| |
| SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind, |
| ProgramPoint::PostStoreKind); |
| SaveAndRestore<const void*> OldTag(Builder->Tag, tag); |
| |
| // Proceed with the store. We use AssignE as the anchor for the PostStore |
| // ProgramPoint if it is non-NULL, and LocationE otherwise. |
| const Expr *StoreE = AssignE ? AssignE : LocationE; |
| |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) |
| evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val); |
| } |
| |
| void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex, |
| ExplodedNode* Pred, |
| const GRState* state, SVal location, |
| const void *tag, QualType LoadTy) { |
| assert(!isa<NonLoc>(location) && "location cannot be a NonLoc."); |
| |
| // Are we loading from a region? This actually results in two loads; one |
| // to fetch the address of the referenced value and one to fetch the |
| // referenced value. |
| if (const TypedRegion *TR = |
| dyn_cast_or_null<TypedRegion>(location.getAsRegion())) { |
| |
| QualType ValTy = TR->getValueType(); |
| if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) { |
| static int loadReferenceTag = 0; |
| ExplodedNodeSet Tmp; |
| evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag, |
| getContext().getPointerType(RT->getPointeeType())); |
| |
| // Perform the load from the referenced value. |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { |
| state = GetState(*I); |
| location = state->getSVal(Ex); |
| evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy); |
| } |
| return; |
| } |
| } |
| |
| evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy); |
| } |
| |
| void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex, |
| ExplodedNode* Pred, |
| const GRState* state, SVal location, |
| const void *tag, QualType LoadTy) { |
| |
| // Evaluate the location (checks for bad dereferences). |
| ExplodedNodeSet Tmp; |
| evalLocation(Tmp, Ex, Pred, state, location, tag, true); |
| |
| if (Tmp.empty()) |
| return; |
| |
| assert(!location.isUndef()); |
| |
| SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind); |
| SaveAndRestore<const void*> OldTag(Builder->Tag); |
| |
| // Proceed with the load. |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { |
| state = GetState(*NI); |
| |
| if (location.isUnknown()) { |
| // This is important. We must nuke the old binding. |
| MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()), |
| ProgramPoint::PostLoadKind, tag); |
| } |
| else { |
| if (LoadTy.isNull()) |
| LoadTy = Ex->getType(); |
| SVal V = state->getSVal(cast<Loc>(location), LoadTy); |
| MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V), |
| ProgramPoint::PostLoadKind, tag); |
| } |
| } |
| } |
| |
| void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S, |
| ExplodedNode* Pred, |
| const GRState* state, SVal location, |
| const void *tag, bool isLoad) { |
| // Early checks for performance reason. |
| if (location.isUnknown() || Checkers.empty()) { |
| Dst.Add(Pred); |
| return; |
| } |
| |
| ExplodedNodeSet Src, Tmp; |
| Src.Add(Pred); |
| ExplodedNodeSet *PrevSet = &Src; |
| |
| for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I) |
| { |
| ExplodedNodeSet *CurrSet = 0; |
| if (I+1 == E) |
| CurrSet = &Dst; |
| else { |
| CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp; |
| CurrSet->clear(); |
| } |
| |
| void *tag = I->first; |
| Checker *checker = I->second; |
| |
| for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end(); |
| NI != NE; ++NI) { |
| // Use the 'state' argument only when the predecessor node is the |
| // same as Pred. This allows us to catch updates to the state. |
| checker->GR_visitLocation(*CurrSet, *Builder, *this, S, *NI, |
| *NI == Pred ? state : GetState(*NI), |
| location, tag, isLoad); |
| } |
| |
| // Update which NodeSet is the current one. |
| PrevSet = CurrSet; |
| } |
| } |
| |
| bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE, |
| ExplodedNode *Pred) { |
| const GRState *state = GetState(Pred); |
| const Expr *Callee = CE->getCallee(); |
| SVal L = state->getSVal(Callee); |
| |
| const FunctionDecl *FD = L.getAsFunctionDecl(); |
| if (!FD) |
| return false; |
| |
| // Check if the function definition is in the same translation unit. |
| if (FD->hasBody(FD)) { |
| const StackFrameContext *stackFrame = |
| AMgr.getStackFrame(AMgr.getAnalysisContext(FD), |
| Pred->getLocationContext(), |
| CE, Builder->getBlock(), Builder->getIndex()); |
| // Now we have the definition of the callee, create a CallEnter node. |
| CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); |
| |
| ExplodedNode *N = Builder->generateNode(Loc, state, Pred); |
| Dst.Add(N); |
| return true; |
| } |
| |
| // Check if we can find the function definition in other translation units. |
| if (AMgr.hasIndexer()) { |
| AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD); |
| if (C == 0) |
| return false; |
| const StackFrameContext *stackFrame = |
| AMgr.getStackFrame(C, Pred->getLocationContext(), |
| CE, Builder->getBlock(), Builder->getIndex()); |
| CallEnter Loc(CE, stackFrame, Pred->getLocationContext()); |
| ExplodedNode *N = Builder->generateNode(Loc, state, Pred); |
| Dst.Add(N); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void ExprEngine::VisitCall(const CallExpr* CE, ExplodedNode* Pred, |
| CallExpr::const_arg_iterator AI, |
| CallExpr::const_arg_iterator AE, |
| ExplodedNodeSet& Dst) { |
| |
| // Determine the type of function we're calling (if available). |
| const FunctionProtoType *Proto = NULL; |
| QualType FnType = CE->getCallee()->IgnoreParens()->getType(); |
| if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) |
| Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>(); |
| |
| // Evaluate the arguments. |
| ExplodedNodeSet ArgsEvaluated; |
| evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, ArgsEvaluated); |
| |
| // Now process the call itself. |
| ExplodedNodeSet DstTmp; |
| const Expr* Callee = CE->getCallee()->IgnoreParens(); |
| |
| for (ExplodedNodeSet::iterator NI=ArgsEvaluated.begin(), |
| NE=ArgsEvaluated.end(); NI != NE; ++NI) { |
| // Evaluate the callee. |
| ExplodedNodeSet DstTmp2; |
| Visit(Callee, *NI, DstTmp2); |
| // Perform the previsit of the CallExpr, storing the results in DstTmp. |
| CheckerVisit(CE, DstTmp, DstTmp2, PreVisitStmtCallback); |
| } |
| |
| // Finally, evaluate the function call. We try each of the checkers |
| // to see if the can evaluate the function call. |
| ExplodedNodeSet DstTmp3; |
| |
| for (ExplodedNodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end(); |
| DI != DE; ++DI) { |
| |
| const GRState* state = GetState(*DI); |
| SVal L = state->getSVal(Callee); |
| |
| // FIXME: Add support for symbolic function calls (calls involving |
| // function pointer values that are symbolic). |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| ExplodedNodeSet DstChecker; |
| |
| // If the callee is processed by a checker, skip the rest logic. |
| if (CheckerEvalCall(CE, DstChecker, *DI)) |
| DstTmp3.insert(DstChecker); |
| else if (AMgr.shouldInlineCall() && InlineCall(Dst, CE, *DI)) { |
| // Callee is inlined. We shouldn't do post call checking. |
| return; |
| } |
| else { |
| for (ExplodedNodeSet::iterator DI_Checker = DstChecker.begin(), |
| DE_Checker = DstChecker.end(); |
| DI_Checker != DE_Checker; ++DI_Checker) { |
| |
| // Dispatch to the plug-in transfer function. |
| unsigned oldSize = DstTmp3.size(); |
| SaveOr OldHasGen(Builder->HasGeneratedNode); |
| Pred = *DI_Checker; |
| |
| // Dispatch to transfer function logic to handle the call itself. |
| // FIXME: Allow us to chain together transfer functions. |
| assert(Builder && "StmtNodeBuilder must be defined."); |
| getTF().evalCall(DstTmp3, *this, *Builder, CE, L, Pred); |
| |
| // Handle the case where no nodes where generated. Auto-generate that |
| // contains the updated state if we aren't generating sinks. |
| if (!Builder->BuildSinks && DstTmp3.size() == oldSize && |
| !Builder->HasGeneratedNode) |
| MakeNode(DstTmp3, CE, Pred, state); |
| } |
| } |
| } |
| |
| // Finally, perform the post-condition check of the CallExpr and store |
| // the created nodes in 'Dst'. |
| CheckerVisit(CE, Dst, DstTmp3, PostVisitStmtCallback); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function: Objective-C ivar references. |
| //===----------------------------------------------------------------------===// |
| |
| static std::pair<const void*,const void*> EagerlyAssumeTag |
| = std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0)); |
| |
| void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, |
| const Expr *Ex) { |
| for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { |
| ExplodedNode *Pred = *I; |
| |
| // Test if the previous node was as the same expression. This can happen |
| // when the expression fails to evaluate to anything meaningful and |
| // (as an optimization) we don't generate a node. |
| ProgramPoint P = Pred->getLocation(); |
| if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) { |
| Dst.Add(Pred); |
| continue; |
| } |
| |
| const GRState* state = GetState(Pred); |
| SVal V = state->getSVal(Ex); |
| if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) { |
| // First assume that the condition is true. |
| if (const GRState *stateTrue = state->assume(*SEV, true)) { |
| stateTrue = stateTrue->BindExpr(Ex, |
| svalBuilder.makeIntVal(1U, Ex->getType())); |
| Dst.Add(Builder->generateNode(PostStmtCustom(Ex, |
| &EagerlyAssumeTag, Pred->getLocationContext()), |
| stateTrue, Pred)); |
| } |
| |
| // Next, assume that the condition is false. |
| if (const GRState *stateFalse = state->assume(*SEV, false)) { |
| stateFalse = stateFalse->BindExpr(Ex, |
| svalBuilder.makeIntVal(0U, Ex->getType())); |
| Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag, |
| Pred->getLocationContext()), |
| stateFalse, Pred)); |
| } |
| } |
| else |
| Dst.Add(Pred); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function: Objective-C @synchronized. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| |
| // The mutex expression is a CFGElement, so we don't need to explicitly |
| // visit it since it will already be processed. |
| |
| // Pre-visit the ObjCAtSynchronizedStmt. |
| ExplodedNodeSet Tmp; |
| Tmp.Add(Pred); |
| CheckerVisit(S, Dst, Tmp, PreVisitStmtCallback); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function: Objective-C ivar references. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| |
| // Visit the base expression, which is needed for computing the lvalue |
| // of the ivar. |
| ExplodedNodeSet dstBase; |
| const Expr *baseExpr = Ex->getBase(); |
| Visit(baseExpr, Pred, dstBase); |
| |
| // Using the base, compute the lvalue of the instance variable. |
| for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end(); |
| I!=E; ++I) { |
| ExplodedNode *nodeBase = *I; |
| const GRState *state = GetState(nodeBase); |
| SVal baseVal = state->getSVal(baseExpr); |
| SVal location = state->getLValue(Ex->getDecl(), baseVal); |
| MakeNode(Dst, Ex, *I, state->BindExpr(Ex, location)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function: Objective-C fast enumeration 'for' statements. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S, |
| ExplodedNode* Pred, ExplodedNodeSet& Dst) { |
| |
| // ObjCForCollectionStmts are processed in two places. This method |
| // handles the case where an ObjCForCollectionStmt* occurs as one of the |
| // statements within a basic block. This transfer function does two things: |
| // |
| // (1) binds the next container value to 'element'. This creates a new |
| // node in the ExplodedGraph. |
| // |
| // (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating |
| // whether or not the container has any more elements. This value |
| // will be tested in ProcessBranch. We need to explicitly bind |
| // this value because a container can contain nil elements. |
| // |
| // FIXME: Eventually this logic should actually do dispatches to |
| // 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration). |
| // This will require simulating a temporary NSFastEnumerationState, either |
| // through an SVal or through the use of MemRegions. This value can |
| // be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop |
| // terminates we reclaim the temporary (it goes out of scope) and we |
| // we can test if the SVal is 0 or if the MemRegion is null (depending |
| // on what approach we take). |
| // |
| // For now: simulate (1) by assigning either a symbol or nil if the |
| // container is empty. Thus this transfer function will by default |
| // result in state splitting. |
| |
| const Stmt* elem = S->getElement(); |
| SVal ElementV; |
| |
| if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) { |
| const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl()); |
| assert (ElemD->getInit() == 0); |
| ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext()); |
| VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV); |
| return; |
| } |
| |
| ExplodedNodeSet Tmp; |
| Visit(cast<Expr>(elem), Pred, Tmp); |
| for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { |
| const GRState* state = GetState(*I); |
| VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem)); |
| } |
| } |
| |
| void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S, |
| ExplodedNode* Pred, ExplodedNodeSet& Dst, |
| SVal ElementV) { |
| |
| // Check if the location we are writing back to is a null pointer. |
| const Stmt* elem = S->getElement(); |
| ExplodedNodeSet Tmp; |
| evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false); |
| |
| if (Tmp.empty()) |
| return; |
| |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { |
| Pred = *NI; |
| const GRState *state = GetState(Pred); |
| |
| // Handle the case where the container still has elements. |
| SVal TrueV = svalBuilder.makeTruthVal(1); |
| const GRState *hasElems = state->BindExpr(S, TrueV); |
| |
| // Handle the case where the container has no elements. |
| SVal FalseV = svalBuilder.makeTruthVal(0); |
| const GRState *noElems = state->BindExpr(S, FalseV); |
| |
| if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV)) |
| if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) { |
| // FIXME: The proper thing to do is to really iterate over the |
| // container. We will do this with dispatch logic to the store. |
| // For now, just 'conjure' up a symbolic value. |
| QualType T = R->getValueType(); |
| assert(Loc::IsLocType(T)); |
| unsigned Count = Builder->getCurrentBlockCount(); |
| SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count); |
| SVal V = svalBuilder.makeLoc(Sym); |
| hasElems = hasElems->bindLoc(ElementV, V); |
| |
| // Bind the location to 'nil' on the false branch. |
| SVal nilV = svalBuilder.makeIntVal(0, T); |
| noElems = noElems->bindLoc(ElementV, nilV); |
| } |
| |
| // Create the new nodes. |
| MakeNode(Dst, S, Pred, hasElems); |
| MakeNode(Dst, S, Pred, noElems); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer function: Objective-C message expressions. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ObjCMsgWLItem { |
| public: |
| ObjCMessageExpr::const_arg_iterator I; |
| ExplodedNode *N; |
| |
| ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n) |
| : I(i), N(n) {} |
| }; |
| } // end anonymous namespace |
| |
| void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst){ |
| |
| // Create a worklist to process both the arguments. |
| llvm::SmallVector<ObjCMsgWLItem, 20> WL; |
| |
| // But first evaluate the receiver (if any). |
| ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end(); |
| if (const Expr *Receiver = ME->getInstanceReceiver()) { |
| ExplodedNodeSet Tmp; |
| Visit(Receiver, Pred, Tmp); |
| |
| if (Tmp.empty()) |
| return; |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) |
| WL.push_back(ObjCMsgWLItem(AI, *I)); |
| } |
| else |
| WL.push_back(ObjCMsgWLItem(AI, Pred)); |
| |
| // Evaluate the arguments. |
| ExplodedNodeSet ArgsEvaluated; |
| while (!WL.empty()) { |
| ObjCMsgWLItem Item = WL.back(); |
| WL.pop_back(); |
| |
| if (Item.I == AE) { |
| ArgsEvaluated.insert(Item.N); |
| continue; |
| } |
| |
| // Evaluate the subexpression. |
| ExplodedNodeSet Tmp; |
| |
| // FIXME: [Objective-C++] handle arguments that are references |
| Visit(*Item.I, Item.N, Tmp); |
| |
| // Enqueue evaluating the next argument on the worklist. |
| ++(Item.I); |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) |
| WL.push_back(ObjCMsgWLItem(Item.I, *NI)); |
| } |
| |
| // Now that the arguments are processed, handle the previsits checks. |
| ExplodedNodeSet DstPrevisit; |
| CheckerVisit(ME, DstPrevisit, ArgsEvaluated, PreVisitStmtCallback); |
| |
| // Proceed with evaluate the message expression. |
| ExplodedNodeSet dstEval; |
| |
| for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(), |
| DE = DstPrevisit.end(); DI != DE; ++DI) { |
| |
| Pred = *DI; |
| bool RaisesException = false; |
| unsigned oldSize = dstEval.size(); |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| SaveOr OldHasGen(Builder->HasGeneratedNode); |
| |
| if (const Expr *Receiver = ME->getInstanceReceiver()) { |
| const GRState *state = GetState(Pred); |
| |
| // Bifurcate the state into nil and non-nil ones. |
| DefinedOrUnknownSVal receiverVal = |
| cast<DefinedOrUnknownSVal>(state->getSVal(Receiver)); |
| |
| const GRState *notNilState, *nilState; |
| llvm::tie(notNilState, nilState) = state->assume(receiverVal); |
| |
| // There are three cases: can be nil or non-nil, must be nil, must be |
| // non-nil. We handle must be nil, and merge the rest two into non-nil. |
| if (nilState && !notNilState) { |
| CheckerEvalNilReceiver(ME, dstEval, nilState, Pred); |
| continue; |
| } |
| |
| // Check if the "raise" message was sent. |
| assert(notNilState); |
| if (ME->getSelector() == RaiseSel) |
| RaisesException = true; |
| |
| // Check if we raise an exception. For now treat these as sinks. |
| // Eventually we will want to handle exceptions properly. |
| if (RaisesException) |
| Builder->BuildSinks = true; |
| |
| // Dispatch to plug-in transfer function. |
| evalObjCMessageExpr(dstEval, ME, Pred, notNilState); |
| } |
| else if (ObjCInterfaceDecl *Iface = ME->getReceiverInterface()) { |
| IdentifierInfo* ClsName = Iface->getIdentifier(); |
| Selector S = ME->getSelector(); |
| |
| // Check for special instance methods. |
| if (!NSExceptionII) { |
| ASTContext& Ctx = getContext(); |
| NSExceptionII = &Ctx.Idents.get("NSException"); |
| } |
| |
| if (ClsName == NSExceptionII) { |
| enum { NUM_RAISE_SELECTORS = 2 }; |
| |
| // Lazily create a cache of the selectors. |
| if (!NSExceptionInstanceRaiseSelectors) { |
| ASTContext& Ctx = getContext(); |
| NSExceptionInstanceRaiseSelectors = |
| new Selector[NUM_RAISE_SELECTORS]; |
| llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II; |
| unsigned idx = 0; |
| |
| // raise:format: |
| II.push_back(&Ctx.Idents.get("raise")); |
| II.push_back(&Ctx.Idents.get("format")); |
| NSExceptionInstanceRaiseSelectors[idx++] = |
| Ctx.Selectors.getSelector(II.size(), &II[0]); |
| |
| // raise:format::arguments: |
| II.push_back(&Ctx.Idents.get("arguments")); |
| NSExceptionInstanceRaiseSelectors[idx++] = |
| Ctx.Selectors.getSelector(II.size(), &II[0]); |
| } |
| |
| for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i) |
| if (S == NSExceptionInstanceRaiseSelectors[i]) { |
| RaisesException = true; |
| break; |
| } |
| } |
| |
| // Check if we raise an exception. For now treat these as sinks. |
| // Eventually we will want to handle exceptions properly. |
| if (RaisesException) |
| Builder->BuildSinks = true; |
| |
| // Dispatch to plug-in transfer function. |
| evalObjCMessageExpr(dstEval, ME, Pred, Builder->GetState(Pred)); |
| } |
| |
| // Handle the case where no nodes where generated. Auto-generate that |
| // contains the updated state if we aren't generating sinks. |
| if (!Builder->BuildSinks && dstEval.size() == oldSize && |
| !Builder->HasGeneratedNode) |
| MakeNode(dstEval, ME, Pred, GetState(Pred)); |
| } |
| |
| // Finally, perform the post-condition check of the ObjCMessageExpr and store |
| // the created nodes in 'Dst'. |
| CheckerVisit(ME, Dst, dstEval, PostVisitStmtCallback); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer functions: Miscellaneous statements. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, |
| ExplodedNode *Pred, ExplodedNodeSet &Dst) { |
| |
| ExplodedNodeSet S1; |
| Visit(Ex, Pred, S1); |
| ExplodedNodeSet S2; |
| CheckerVisit(CastE, S2, S1, PreVisitStmtCallback); |
| |
| if (CastE->getCastKind() == CK_LValueToRValue) { |
| for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) { |
| ExplodedNode *subExprNode = *I; |
| const GRState *state = GetState(subExprNode); |
| evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex)); |
| } |
| return; |
| } |
| |
| // All other casts. |
| QualType T = CastE->getType(); |
| QualType ExTy = Ex->getType(); |
| |
| if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) |
| T = ExCast->getTypeAsWritten(); |
| |
| #if 0 |
| // If we are evaluating the cast in an lvalue context, we implicitly want |
| // the cast to evaluate to a location. |
| if (asLValue) { |
| ASTContext &Ctx = getContext(); |
| T = Ctx.getPointerType(Ctx.getCanonicalType(T)); |
| ExTy = Ctx.getPointerType(Ctx.getCanonicalType(ExTy)); |
| } |
| #endif |
| |
| switch (CastE->getCastKind()) { |
| case CK_ToVoid: |
| for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) |
| Dst.Add(*I); |
| return; |
| |
| case CK_LValueToRValue: |
| case CK_NoOp: |
| case CK_FunctionToPointerDecay: |
| for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { |
| // Copy the SVal of Ex to CastE. |
| ExplodedNode *N = *I; |
| const GRState *state = GetState(N); |
| SVal V = state->getSVal(Ex); |
| state = state->BindExpr(CastE, V); |
| MakeNode(Dst, CastE, N, state); |
| } |
| return; |
| |
| case CK_GetObjCProperty: |
| case CK_Dependent: |
| case CK_ArrayToPointerDecay: |
| case CK_BitCast: |
| case CK_LValueBitCast: |
| case CK_IntegralCast: |
| case CK_NullToPointer: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_AnyPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| |
| case CK_ObjCObjectLValueCast: { |
| // Delegate to SValBuilder to process. |
| for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { |
| ExplodedNode* N = *I; |
| const GRState* state = GetState(N); |
| SVal V = state->getSVal(Ex); |
| V = svalBuilder.evalCast(V, T, ExTy); |
| state = state->BindExpr(CastE, V); |
| MakeNode(Dst, CastE, N, state); |
| } |
| return; |
| } |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| // For DerivedToBase cast, delegate to the store manager. |
| for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) { |
| ExplodedNode *node = *I; |
| const GRState *state = GetState(node); |
| SVal val = state->getSVal(Ex); |
| val = getStoreManager().evalDerivedToBase(val, T); |
| state = state->BindExpr(CastE, val); |
| MakeNode(Dst, CastE, node, state); |
| } |
| return; |
| |
| // Various C++ casts that are not handled yet. |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_BaseToDerived: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_UserDefinedConversion: |
| case CK_ConstructorConversion: |
| case CK_VectorSplat: |
| case CK_MemberPointerToBoolean: { |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| Builder->BuildSinks = true; |
| MakeNode(Dst, CastE, Pred, GetState(Pred)); |
| return; |
| } |
| } |
| } |
| |
| void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| const InitListExpr* ILE |
| = cast<InitListExpr>(CL->getInitializer()->IgnoreParens()); |
| ExplodedNodeSet Tmp; |
| Visit(ILE, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) { |
| const GRState* state = GetState(*I); |
| SVal ILV = state->getSVal(ILE); |
| const LocationContext *LC = (*I)->getLocationContext(); |
| state = state->bindCompoundLiteral(CL, LC, ILV); |
| |
| if (CL->isLValue()) { |
| MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC))); |
| } |
| else |
| MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV)); |
| } |
| } |
| |
| void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, |
| ExplodedNodeSet& Dst) { |
| |
| // The CFG has one DeclStmt per Decl. |
| const Decl* D = *DS->decl_begin(); |
| |
| if (!D || !isa<VarDecl>(D)) |
| return; |
| |
| const VarDecl* VD = dyn_cast<VarDecl>(D); |
| const Expr* InitEx = VD->getInit(); |
| |
| // FIXME: static variables may have an initializer, but the second |
| // time a function is called those values may not be current. |
| ExplodedNodeSet Tmp; |
| |
| if (InitEx) { |
| if (VD->getType()->isReferenceType() && !InitEx->isLValue()) { |
| // If the initializer is C++ record type, it should already has a |
| // temp object. |
| if (!InitEx->getType()->isRecordType()) |
| CreateCXXTemporaryObject(InitEx, Pred, Tmp); |
| else |
| Tmp.Add(Pred); |
| } else |
| Visit(InitEx, Pred, Tmp); |
| } else |
| Tmp.Add(Pred); |
| |
| ExplodedNodeSet Tmp2; |
| CheckerVisit(DS, Tmp2, Tmp, PreVisitStmtCallback); |
| |
| for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) { |
| ExplodedNode *N = *I; |
| const GRState *state = GetState(N); |
| |
| // Decls without InitExpr are not initialized explicitly. |
| const LocationContext *LC = N->getLocationContext(); |
| |
| if (InitEx) { |
| SVal InitVal = state->getSVal(InitEx); |
| |
| // We bound the temp obj region to the CXXConstructExpr. Now recover |
| // the lazy compound value when the variable is not a reference. |
| if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() && |
| !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){ |
| InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion()); |
| assert(isa<nonloc::LazyCompoundVal>(InitVal)); |
| } |
| |
| // Recover some path-sensitivity if a scalar value evaluated to |
| // UnknownVal. |
| if ((InitVal.isUnknown() || |
| !getConstraintManager().canReasonAbout(InitVal)) && |
| !VD->getType()->isReferenceType()) { |
| InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, |
| Builder->getCurrentBlockCount()); |
| } |
| |
| evalBind(Dst, DS, *I, state, |
| loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); |
| } |
| else { |
| state = state->bindDeclWithNoInit(state->getRegion(VD, LC)); |
| MakeNode(Dst, DS, *I, state); |
| } |
| } |
| } |
| |
| void ExprEngine::VisitCondInit(const VarDecl *VD, const Stmt *S, |
| ExplodedNode *Pred, ExplodedNodeSet& Dst) { |
| |
| const Expr* InitEx = VD->getInit(); |
| ExplodedNodeSet Tmp; |
| Visit(InitEx, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| ExplodedNode *N = *I; |
| const GRState *state = GetState(N); |
| |
| const LocationContext *LC = N->getLocationContext(); |
| SVal InitVal = state->getSVal(InitEx); |
| |
| // Recover some path-sensitivity if a scalar value evaluated to |
| // UnknownVal. |
| if (InitVal.isUnknown() || |
| !getConstraintManager().canReasonAbout(InitVal)) { |
| InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx, |
| Builder->getCurrentBlockCount()); |
| } |
| |
| evalBind(Dst, S, N, state, |
| loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true); |
| } |
| } |
| |
| namespace { |
| // This class is used by VisitInitListExpr as an item in a worklist |
| // for processing the values contained in an InitListExpr. |
| class InitListWLItem { |
| public: |
| llvm::ImmutableList<SVal> Vals; |
| ExplodedNode* N; |
| InitListExpr::const_reverse_iterator Itr; |
| |
| InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals, |
| InitListExpr::const_reverse_iterator itr) |
| : Vals(vals), N(n), Itr(itr) {} |
| }; |
| } |
| |
| |
| void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| |
| const GRState* state = GetState(Pred); |
| QualType T = getContext().getCanonicalType(E->getType()); |
| unsigned NumInitElements = E->getNumInits(); |
| |
| if (T->isArrayType() || T->isRecordType() || T->isVectorType()) { |
| llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList(); |
| |
| // Handle base case where the initializer has no elements. |
| // e.g: static int* myArray[] = {}; |
| if (NumInitElements == 0) { |
| SVal V = svalBuilder.makeCompoundVal(T, StartVals); |
| MakeNode(Dst, E, Pred, state->BindExpr(E, V)); |
| return; |
| } |
| |
| // Create a worklist to process the initializers. |
| llvm::SmallVector<InitListWLItem, 10> WorkList; |
| WorkList.reserve(NumInitElements); |
| WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin())); |
| InitListExpr::const_reverse_iterator ItrEnd = E->rend(); |
| assert(!(E->rbegin() == E->rend())); |
| |
| // Process the worklist until it is empty. |
| while (!WorkList.empty()) { |
| InitListWLItem X = WorkList.back(); |
| WorkList.pop_back(); |
| |
| ExplodedNodeSet Tmp; |
| Visit(*X.Itr, X.N, Tmp); |
| |
| InitListExpr::const_reverse_iterator NewItr = X.Itr + 1; |
| |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) { |
| // Get the last initializer value. |
| state = GetState(*NI); |
| SVal InitV = state->getSVal(cast<Expr>(*X.Itr)); |
| |
| // Construct the new list of values by prepending the new value to |
| // the already constructed list. |
| llvm::ImmutableList<SVal> NewVals = |
| getBasicVals().consVals(InitV, X.Vals); |
| |
| if (NewItr == ItrEnd) { |
| // Now we have a list holding all init values. Make CompoundValData. |
| SVal V = svalBuilder.makeCompoundVal(T, NewVals); |
| |
| // Make final state and node. |
| MakeNode(Dst, E, *NI, state->BindExpr(E, V)); |
| } |
| else { |
| // Still some initializer values to go. Push them onto the worklist. |
| WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr)); |
| } |
| } |
| } |
| |
| return; |
| } |
| |
| if (Loc::IsLocType(T) || T->isIntegerType()) { |
| assert (E->getNumInits() == 1); |
| ExplodedNodeSet Tmp; |
| const Expr* Init = E->getInit(0); |
| Visit(Init, Pred, Tmp); |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) { |
| state = GetState(*I); |
| MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init))); |
| } |
| return; |
| } |
| |
| assert(0 && "unprocessed InitListExpr type"); |
| } |
| |
| /// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type). |
| void ExprEngine::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr* Ex, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| QualType T = Ex->getTypeOfArgument(); |
| CharUnits amt; |
| |
| if (Ex->isSizeOf()) { |
| if (T == getContext().VoidTy) { |
| // sizeof(void) == 1 byte. |
| amt = CharUnits::One(); |
| } |
| else if (!T->isConstantSizeType()) { |
| assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); |
| |
| // FIXME: Add support for VLA type arguments, not just VLA expressions. |
| // When that happens, we should probably refactor VLASizeChecker's code. |
| if (Ex->isArgumentType()) { |
| Dst.Add(Pred); |
| return; |
| } |
| |
| // Get the size by getting the extent of the sub-expression. |
| // First, visit the sub-expression to find its region. |
| const Expr *Arg = Ex->getArgumentExpr(); |
| ExplodedNodeSet Tmp; |
| Visit(Arg, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| const GRState* state = GetState(*I); |
| const MemRegion *MR = state->getSVal(Arg).getAsRegion(); |
| |
| // If the subexpression can't be resolved to a region, we don't know |
| // anything about its size. Just leave the state as is and continue. |
| if (!MR) { |
| Dst.Add(*I); |
| continue; |
| } |
| |
| // The result is the extent of the VLA. |
| SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder); |
| MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent)); |
| } |
| |
| return; |
| } |
| else if (T->getAs<ObjCObjectType>()) { |
| // Some code tries to take the sizeof an ObjCObjectType, relying that |
| // the compiler has laid out its representation. Just report Unknown |
| // for these. |
| Dst.Add(Pred); |
| return; |
| } |
| else { |
| // All other cases. |
| amt = getContext().getTypeSizeInChars(T); |
| } |
| } |
| else // Get alignment of the type. |
| amt = getContext().getTypeAlignInChars(T); |
| |
| MakeNode(Dst, Ex, Pred, |
| GetState(Pred)->BindExpr(Ex, |
| svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType()))); |
| } |
| |
| void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE, |
| ExplodedNode* Pred, ExplodedNodeSet& Dst) { |
| Expr::EvalResult Res; |
| if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) { |
| const APSInt &IV = Res.Val.getInt(); |
| assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); |
| assert(OOE->getType()->isIntegerType()); |
| assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); |
| SVal X = svalBuilder.makeIntVal(IV); |
| MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X)); |
| return; |
| } |
| // FIXME: Handle the case where __builtin_offsetof is not a constant. |
| Dst.Add(Pred); |
| } |
| |
| void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| |
| switch (U->getOpcode()) { |
| |
| default: |
| break; |
| |
| case UO_Real: { |
| const Expr* Ex = U->getSubExpr()->IgnoreParens(); |
| ExplodedNodeSet Tmp; |
| Visit(Ex, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| |
| // FIXME: We don't have complex SValues yet. |
| if (Ex->getType()->isAnyComplexType()) { |
| // Just report "Unknown." |
| Dst.Add(*I); |
| continue; |
| } |
| |
| // For all other types, UO_Real is an identity operation. |
| assert (U->getType() == Ex->getType()); |
| const GRState* state = GetState(*I); |
| MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); |
| } |
| |
| return; |
| } |
| |
| case UO_Imag: { |
| |
| const Expr* Ex = U->getSubExpr()->IgnoreParens(); |
| ExplodedNodeSet Tmp; |
| Visit(Ex, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| // FIXME: We don't have complex SValues yet. |
| if (Ex->getType()->isAnyComplexType()) { |
| // Just report "Unknown." |
| Dst.Add(*I); |
| continue; |
| } |
| |
| // For all other types, UO_Imag returns 0. |
| const GRState* state = GetState(*I); |
| SVal X = svalBuilder.makeZeroVal(Ex->getType()); |
| MakeNode(Dst, U, *I, state->BindExpr(U, X)); |
| } |
| |
| return; |
| } |
| |
| case UO_Plus: |
| assert(!U->isLValue()); |
| // FALL-THROUGH. |
| case UO_Deref: |
| case UO_AddrOf: |
| case UO_Extension: { |
| |
| // Unary "+" is a no-op, similar to a parentheses. We still have places |
| // where it may be a block-level expression, so we need to |
| // generate an extra node that just propagates the value of the |
| // subexpression. |
| |
| const Expr* Ex = U->getSubExpr()->IgnoreParens(); |
| ExplodedNodeSet Tmp; |
| Visit(Ex, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| const GRState* state = GetState(*I); |
| MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex))); |
| } |
| |
| return; |
| } |
| |
| case UO_LNot: |
| case UO_Minus: |
| case UO_Not: { |
| assert (!U->isLValue()); |
| const Expr* Ex = U->getSubExpr()->IgnoreParens(); |
| ExplodedNodeSet Tmp; |
| Visit(Ex, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) { |
| const GRState* state = GetState(*I); |
| |
| // Get the value of the subexpression. |
| SVal V = state->getSVal(Ex); |
| |
| if (V.isUnknownOrUndef()) { |
| MakeNode(Dst, U, *I, state->BindExpr(U, V)); |
| continue; |
| } |
| |
| // QualType DstT = getContext().getCanonicalType(U->getType()); |
| // QualType SrcT = getContext().getCanonicalType(Ex->getType()); |
| // |
| // if (DstT != SrcT) // Perform promotions. |
| // V = evalCast(V, DstT); |
| // |
| // if (V.isUnknownOrUndef()) { |
| // MakeNode(Dst, U, *I, BindExpr(St, U, V)); |
| // continue; |
| // } |
| |
| switch (U->getOpcode()) { |
| default: |
| assert(false && "Invalid Opcode."); |
| break; |
| |
| case UO_Not: |
| // FIXME: Do we need to handle promotions? |
| state = state->BindExpr(U, evalComplement(cast<NonLoc>(V))); |
| break; |
| |
| case UO_Minus: |
| // FIXME: Do we need to handle promotions? |
| state = state->BindExpr(U, evalMinus(cast<NonLoc>(V))); |
| break; |
| |
| case UO_LNot: |
| |
| // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." |
| // |
| // Note: technically we do "E == 0", but this is the same in the |
| // transfer functions as "0 == E". |
| SVal Result; |
| |
| if (isa<Loc>(V)) { |
| Loc X = svalBuilder.makeNull(); |
| Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X, |
| U->getType()); |
| } |
| else { |
| nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); |
| Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X, |
| U->getType()); |
| } |
| |
| state = state->BindExpr(U, Result); |
| |
| break; |
| } |
| |
| MakeNode(Dst, U, *I, state); |
| } |
| |
| return; |
| } |
| } |
| |
| // Handle ++ and -- (both pre- and post-increment). |
| assert (U->isIncrementDecrementOp()); |
| ExplodedNodeSet Tmp; |
| const Expr* Ex = U->getSubExpr()->IgnoreParens(); |
| Visit(Ex, Pred, Tmp); |
| |
| for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) { |
| |
| const GRState* state = GetState(*I); |
| SVal loc = state->getSVal(Ex); |
| |
| // Perform a load. |
| ExplodedNodeSet Tmp2; |
| evalLoad(Tmp2, Ex, *I, state, loc); |
| |
| for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) { |
| |
| state = GetState(*I2); |
| SVal V2_untested = state->getSVal(Ex); |
| |
| // Propagate unknown and undefined values. |
| if (V2_untested.isUnknownOrUndef()) { |
| MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested)); |
| continue; |
| } |
| DefinedSVal V2 = cast<DefinedSVal>(V2_untested); |
| |
| // Handle all other values. |
| BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add |
| : BO_Sub; |
| |
| // If the UnaryOperator has non-location type, use its type to create the |
| // constant value. If the UnaryOperator has location type, create the |
| // constant with int type and pointer width. |
| SVal RHS; |
| |
| if (U->getType()->isAnyPointerType()) |
| RHS = svalBuilder.makeIntValWithPtrWidth(1, false); |
| else |
| RHS = svalBuilder.makeIntVal(1, U->getType()); |
| |
| SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); |
| |
| // Conjure a new symbol if necessary to recover precision. |
| if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){ |
| DefinedOrUnknownSVal SymVal = |
| svalBuilder.getConjuredSymbolVal(NULL, Ex, |
| Builder->getCurrentBlockCount()); |
| Result = SymVal; |
| |
| // If the value is a location, ++/-- should always preserve |
| // non-nullness. Check if the original value was non-null, and if so |
| // propagate that constraint. |
| if (Loc::IsLocType(U->getType())) { |
| DefinedOrUnknownSVal Constraint = |
| svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); |
| |
| if (!state->assume(Constraint, true)) { |
| // It isn't feasible for the original value to be null. |
| // Propagate this constraint. |
| Constraint = svalBuilder.evalEQ(state, SymVal, |
| svalBuilder.makeZeroVal(U->getType())); |
| |
| |
| state = state->assume(Constraint, false); |
| assert(state); |
| } |
| } |
| } |
| |
| // Since the lvalue-to-rvalue conversion is explicit in the AST, |
| // we bind an l-value if the operator is prefix and an lvalue (in C++). |
| if (U->isPrefix() && U->isLValue()) |
| state = state->BindExpr(U, loc); |
| else |
| state = state->BindExpr(U, V2); |
| |
| // Perform the store. |
| evalStore(Dst, NULL, U, *I2, state, loc, Result); |
| } |
| } |
| } |
| |
| void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst); |
| } |
| |
| void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A, |
| AsmStmt::const_outputs_iterator I, |
| AsmStmt::const_outputs_iterator E, |
| ExplodedNode* Pred, ExplodedNodeSet& Dst) { |
| if (I == E) { |
| VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst); |
| return; |
| } |
| |
| ExplodedNodeSet Tmp; |
| Visit(*I, Pred, Tmp); |
| ++I; |
| |
| for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI) |
| VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst); |
| } |
| |
| void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A, |
| AsmStmt::const_inputs_iterator I, |
| AsmStmt::const_inputs_iterator E, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| if (I == E) { |
| |
| // We have processed both the inputs and the outputs. All of the outputs |
| // should evaluate to Locs. Nuke all of their values. |
| |
| // FIXME: Some day in the future it would be nice to allow a "plug-in" |
| // which interprets the inline asm and stores proper results in the |
| // outputs. |
| |
| const GRState* state = GetState(Pred); |
| |
| for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(), |
| OE = A->end_outputs(); OI != OE; ++OI) { |
| |
| SVal X = state->getSVal(*OI); |
| assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef. |
| |
| if (isa<Loc>(X)) |
| state = state->bindLoc(cast<Loc>(X), UnknownVal()); |
| } |
| |
| MakeNode(Dst, A, Pred, state); |
| return; |
| } |
| |
| ExplodedNodeSet Tmp; |
| Visit(*I, Pred, Tmp); |
| |
| ++I; |
| |
| for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI) |
| VisitAsmStmtHelperInputs(A, I, E, *NI, Dst); |
| } |
| |
| void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| ExplodedNodeSet Src; |
| if (const Expr *RetE = RS->getRetValue()) { |
| // Record the returned expression in the state. It will be used in |
| // ProcessCallExit to bind the return value to the call expr. |
| { |
| static int Tag = 0; |
| SaveAndRestore<const void *> OldTag(Builder->Tag, &Tag); |
| const GRState *state = GetState(Pred); |
| state = state->set<ReturnExpr>(RetE); |
| Pred = Builder->generateNode(RetE, state, Pred); |
| } |
| // We may get a NULL Pred because we generated a cached node. |
| if (Pred) |
| Visit(RetE, Pred, Src); |
| } |
| else { |
| Src.Add(Pred); |
| } |
| |
| ExplodedNodeSet CheckedSet; |
| CheckerVisit(RS, CheckedSet, Src, PreVisitStmtCallback); |
| |
| for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); |
| I != E; ++I) { |
| |
| assert(Builder && "StmtNodeBuilder must be defined."); |
| |
| Pred = *I; |
| unsigned size = Dst.size(); |
| |
| SaveAndRestore<bool> OldSink(Builder->BuildSinks); |
| SaveOr OldHasGen(Builder->HasGeneratedNode); |
| |
| getTF().evalReturn(Dst, *this, *Builder, RS, Pred); |
| |
| // Handle the case where no nodes where generated. |
| if (!Builder->BuildSinks && Dst.size() == size && |
| !Builder->HasGeneratedNode) |
| MakeNode(Dst, RS, Pred, GetState(Pred)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer functions: Binary operators. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, |
| ExplodedNode* Pred, |
| ExplodedNodeSet& Dst) { |
| ExplodedNodeSet Tmp1; |
| Expr* LHS = B->getLHS()->IgnoreParens(); |
| Expr* RHS = B->getRHS()->IgnoreParens(); |
| |
| Visit(LHS, Pred, Tmp1); |
| ExplodedNodeSet Tmp3; |
| |
| for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) { |
| SVal LeftV = GetState(*I1)->getSVal(LHS); |
| ExplodedNodeSet Tmp2; |
| Visit(RHS, *I1, Tmp2); |
| |
| ExplodedNodeSet CheckedSet; |
| CheckerVisit(B, CheckedSet, Tmp2, PreVisitStmtCallback); |
| |
| // With both the LHS and RHS evaluated, process the operation itself. |
| |
| for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end(); |
| I2 != E2; ++I2) { |
| |
| const GRState *state = GetState(*I2); |
| SVal RightV = state->getSVal(RHS); |
| |
| BinaryOperator::Opcode Op = B->getOpcode(); |
| |
| if (Op == BO_Assign) { |
| // EXPERIMENTAL: "Conjured" symbols. |
| // FIXME: Handle structs. |
| QualType T = RHS->getType(); |
| |
| if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV)) |
| { |
| unsigned Count = Builder->getCurrentBlockCount(); |
| RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count); |
| } |
| |
| SVal ExprVal = B->isLValue() ? LeftV : RightV; |
| |
| // Simulate the effects of a "store": bind the value of the RHS |
| // to the L-Value represented by the LHS. |
| evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV); |
| continue; |
| } |
| |
| if (!B->isAssignmentOp()) { |
| // Process non-assignments except commas or short-circuited |
| // logical expressions (LAnd and LOr). |
| SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); |
| |
| if (Result.isUnknown()) { |
| MakeNode(Tmp3, B, *I2, state); |
| continue; |
| } |
| |
| state = state->BindExpr(B, Result); |
| |
| MakeNode(Tmp3, B, *I2, state); |
| continue; |
| } |
| |
| assert (B->isCompoundAssignmentOp()); |
| |
| switch (Op) { |
| default: |
| assert(0 && "Invalid opcode for compound assignment."); |
| case BO_MulAssign: Op = BO_Mul; break; |
| case BO_DivAssign: Op = BO_Div; break; |
| case BO_RemAssign: Op = BO_Rem; break; |
| case BO_AddAssign: Op = BO_Add; break; |
| case BO_SubAssign: Op = BO_Sub; break; |
| case BO_ShlAssign: Op = BO_Shl; break; |
| case BO_ShrAssign: Op = BO_Shr; break; |
| case BO_AndAssign: Op = BO_And; break; |
| case BO_XorAssign: Op = BO_Xor; break; |
| case BO_OrAssign: Op = BO_Or; break; |
| } |
| |
| // Perform a load (the LHS). This performs the checks for |
| // null dereferences, and so on. |
| ExplodedNodeSet Tmp4; |
| SVal location = state->getSVal(LHS); |
| evalLoad(Tmp4, LHS, *I2, state, location); |
| |
| for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4; |
| ++I4) { |
| state = GetState(*I4); |
| SVal V = state->getSVal(LHS); |
| |
| // Get the computation type. |
| QualType CTy = |
| cast<CompoundAssignOperator>(B)->getComputationResultType(); |
| CTy = getContext().getCanonicalType(CTy); |
| |
| QualType CLHSTy = |
| cast<CompoundAssignOperator>(B)->getComputationLHSType(); |
| CLHSTy = getContext().getCanonicalType(CLHSTy); |
| |
| QualType LTy = getContext().getCanonicalType(LHS->getType()); |
| QualType RTy = getContext().getCanonicalType(RHS->getType()); |
| |
| // Promote LHS. |
| V = svalBuilder.evalCast(V, CLHSTy, LTy); |
| |
| // Compute the result of the operation. |
| SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), |
| B->getType(), CTy); |
| |
| // EXPERIMENTAL: "Conjured" symbols. |
| // FIXME: Handle structs. |
| |
| SVal LHSVal; |
| |
| if (Result.isUnknown() || |
| !getConstraintManager().canReasonAbout(Result)) { |
| |
| unsigned Count = Builder->getCurrentBlockCount(); |
| |
| // The symbolic value is actually for the type of the left-hand side |
| // expression, not the computation type, as this is the value the |
| // LValue on the LHS will bind to. |
| LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count); |
| |
| // However, we need to convert the symbol to the computation type. |
| Result = svalBuilder.evalCast(LHSVal, CTy, LTy); |
| } |
| else { |
| // The left-hand side may bind to a different value then the |
| // computation type. |
| LHSVal = svalBuilder.evalCast(Result, LTy, CTy); |
| } |
| |
| evalStore(Tmp3, B, LHS, *I4, state->BindExpr(B, Result), |
| location, LHSVal); |
| } |
| } |
| } |
| |
| CheckerVisit(B, Dst, Tmp3, PostVisitStmtCallback); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Checker registration/lookup. |
| //===----------------------------------------------------------------------===// |
| |
| Checker *ExprEngine::lookupChecker(void *tag) const { |
| CheckerMap::const_iterator I = CheckerM.find(tag); |
| return (I == CheckerM.end()) ? NULL : Checkers[I->second].second; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visualization. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| static ExprEngine* GraphPrintCheckerState; |
| static SourceManager* GraphPrintSourceManager; |
| |
| namespace llvm { |
| template<> |
| struct DOTGraphTraits<ExplodedNode*> : |
| public DefaultDOTGraphTraits { |
| |
| DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} |
| |
| // FIXME: Since we do not cache error nodes in ExprEngine now, this does not |
| // work. |
| static std::string getNodeAttributes(const ExplodedNode* N, void*) { |
| |
| #if 0 |
| // FIXME: Replace with a general scheme to tell if the node is |
| // an error node. |
| if (GraphPrintCheckerState->isImplicitNullDeref(N) || |
| GraphPrintCheckerState->isExplicitNullDeref(N) || |
| GraphPrintCheckerState->isUndefDeref(N) || |
| GraphPrintCheckerState->isUndefStore(N) || |
| GraphPrintCheckerState->isUndefControlFlow(N) || |
| GraphPrintCheckerState->isUndefResult(N) || |
| GraphPrintCheckerState->isBadCall(N) || |
| GraphPrintCheckerState->isUndefArg(N)) |
| return "color=\"red\",style=\"filled\""; |
| |
| if (GraphPrintCheckerState->isNoReturnCall(N)) |
| return "color=\"blue\",style=\"filled\""; |
| #endif |
| return ""; |
| } |
| |
| static std::string getNodeLabel(const ExplodedNode* N, void*){ |
| |
| std::string sbuf; |
| llvm::raw_string_ostream Out(sbuf); |
| |
| // Program Location. |
| ProgramPoint Loc = N->getLocation(); |
| |
| switch (Loc.getKind()) { |
| case ProgramPoint::BlockEntranceKind: |
| Out << "Block Entrance: B" |
| << cast<BlockEntrance>(Loc).getBlock()->getBlockID(); |
| break; |
| |
| case ProgramPoint::BlockExitKind: |
| assert (false); |
| break; |
| |
| case ProgramPoint::CallEnterKind: |
| Out << "CallEnter"; |
| break; |
| |
| case ProgramPoint::CallExitKind: |
| Out << "CallExit"; |
| break; |
| |
| default: { |
| if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) { |
| const Stmt* S = L->getStmt(); |
| SourceLocation SLoc = S->getLocStart(); |
| |
| Out << S->getStmtClassName() << ' ' << (void*) S << ' '; |
| LangOptions LO; // FIXME. |
| S->printPretty(Out, 0, PrintingPolicy(LO)); |
| |
| if (SLoc.isFileID()) { |
| Out << "\\lline=" |
| << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) |
| << " col=" |
| << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc) |
| << "\\l"; |
| } |
| |
| if (isa<PreStmt>(Loc)) |
| Out << "\\lPreStmt\\l;"; |
| else if (isa<PostLoad>(Loc)) |
| Out << "\\lPostLoad\\l;"; |
| else if (isa<PostStore>(Loc)) |
| Out << "\\lPostStore\\l"; |
| else if (isa<PostLValue>(Loc)) |
| Out << "\\lPostLValue\\l"; |
| |
| #if 0 |
| // FIXME: Replace with a general scheme to determine |
| // the name of the check. |
| if (GraphPrintCheckerState->isImplicitNullDeref(N)) |
| Out << "\\|Implicit-Null Dereference.\\l"; |
| else if (GraphPrintCheckerState->isExplicitNullDeref(N)) |
| Out << "\\|Explicit-Null Dereference.\\l"; |
| else if (GraphPrintCheckerState->isUndefDeref(N)) |
| Out << "\\|Dereference of undefialied value.\\l"; |
| else if (GraphPrintCheckerState->isUndefStore(N)) |
| Out << "\\|Store to Undefined Loc."; |
| else if (GraphPrintCheckerState->isUndefResult(N)) |
| Out << "\\|Result of operation is undefined."; |
| else if (GraphPrintCheckerState->isNoReturnCall(N)) |
| Out << "\\|Call to function marked \"noreturn\"."; |
| else if (GraphPrintCheckerState->isBadCall(N)) |
| Out << "\\|Call to NULL/Undefined."; |
| else if (GraphPrintCheckerState->isUndefArg(N)) |
| Out << "\\|Argument in call is undefined"; |
| #endif |
| |
| break; |
| } |
| |
| const BlockEdge& E = cast<BlockEdge>(Loc); |
| Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" |
| << E.getDst()->getBlockID() << ')'; |
| |
| if (const Stmt* T = E.getSrc()->getTerminator()) { |
| |
| SourceLocation SLoc = T->getLocStart(); |
| |
| Out << "\\|Terminator: "; |
| LangOptions LO; // FIXME. |
| E.getSrc()->printTerminator(Out, LO); |
| |
| if (SLoc.isFileID()) { |
| Out << "\\lline=" |
| << GraphPrintSourceManager->getInstantiationLineNumber(SLoc) |
| << " col=" |
| << GraphPrintSourceManager->getInstantiationColumnNumber(SLoc); |
| } |
| |
| if (isa<SwitchStmt>(T)) { |
| const Stmt* Label = E.getDst()->getLabel(); |
| |
| if (Label) { |
| if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) { |
| Out << "\\lcase "; |
| LangOptions LO; // FIXME. |
| C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); |
| |
| if (const Stmt* RHS = C->getRHS()) { |
| Out << " .. "; |
| RHS->printPretty(Out, 0, PrintingPolicy(LO)); |
| } |
| |
| Out << ":"; |
| } |
| else { |
| assert (isa<DefaultStmt>(Label)); |
| Out << "\\ldefault:"; |
| } |
| } |
| else |
| Out << "\\l(implicit) default:"; |
| } |
| else if (isa<IndirectGotoStmt>(T)) { |
| // FIXME |
| } |
| else { |
| Out << "\\lCondition: "; |
| if (*E.getSrc()->succ_begin() == E.getDst()) |
| Out << "true"; |
| else |
| Out << "false"; |
| } |
| |
| Out << "\\l"; |
| } |
| |
| #if 0 |
| // FIXME: Replace with a general scheme to determine |
| // the name of the check. |
| if (GraphPrintCheckerState->isUndefControlFlow(N)) { |
| Out << "\\|Control-flow based on\\lUndefined value.\\l"; |
| } |
| #endif |
| } |
| } |
| |
| const GRState *state = N->getState(); |
| Out << "\\|StateID: " << (void*) state |
| << " NodeID: " << (void*) N << "\\|"; |
| state->printDOT(Out, *N->getLocationContext()->getCFG()); |
| Out << "\\l"; |
| return Out.str(); |
| } |
| }; |
| } // end llvm namespace |
| #endif |
| |
| #ifndef NDEBUG |
| template <typename ITERATOR> |
| ExplodedNode* GetGraphNode(ITERATOR I) { return *I; } |
| |
| template <> ExplodedNode* |
| GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator> |
| (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) { |
| return I->first; |
| } |
| #endif |
| |
| void ExprEngine::ViewGraph(bool trim) { |
| #ifndef NDEBUG |
| if (trim) { |
| std::vector<ExplodedNode*> Src; |
| |
| // Flush any outstanding reports to make sure we cover all the nodes. |
| // This does not cause them to get displayed. |
| for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) |
| const_cast<BugType*>(*I)->FlushReports(BR); |
| |
| // Iterate through the reports and get their nodes. |
| for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) { |
| for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end(); |
| I2!=E2; ++I2) { |
| const BugReportEquivClass& EQ = *I2; |
| const BugReport &R = **EQ.begin(); |
| ExplodedNode *N = const_cast<ExplodedNode*>(R.getErrorNode()); |
| if (N) Src.push_back(N); |
| } |
| } |
| |
| ViewGraph(&Src[0], &Src[0]+Src.size()); |
| } |
| else { |
| GraphPrintCheckerState = this; |
| GraphPrintSourceManager = &getContext().getSourceManager(); |
| |
| llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); |
| |
| GraphPrintCheckerState = NULL; |
| GraphPrintSourceManager = NULL; |
| } |
| #endif |
| } |
| |
| void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { |
| #ifndef NDEBUG |
| GraphPrintCheckerState = this; |
| GraphPrintSourceManager = &getContext().getSourceManager(); |
| |
| std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first); |
| |
| if (!TrimmedG.get()) |
| llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; |
| else |
| llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); |
| |
| GraphPrintCheckerState = NULL; |
| GraphPrintSourceManager = NULL; |
| #endif |
| } |