| //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/TargetInfo.h" |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Primary Expressions. |
| //===----------------------------------------------------------------------===// |
| |
| StringLiteral::StringLiteral(const char *strData, unsigned byteLength, |
| bool Wide, QualType t, SourceLocation firstLoc, |
| SourceLocation lastLoc) : |
| Expr(StringLiteralClass, t) { |
| // OPTIMIZE: could allocate this appended to the StringLiteral. |
| char *AStrData = new char[byteLength]; |
| memcpy(AStrData, strData, byteLength); |
| StrData = AStrData; |
| ByteLength = byteLength; |
| IsWide = Wide; |
| firstTokLoc = firstLoc; |
| lastTokLoc = lastLoc; |
| } |
| |
| StringLiteral::~StringLiteral() { |
| delete[] StrData; |
| } |
| |
| bool UnaryOperator::isPostfix(Opcode Op) { |
| switch (Op) { |
| case PostInc: |
| case PostDec: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "sizeof" or "[pre]++". |
| const char *UnaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown unary operator"); |
| case PostInc: return "++"; |
| case PostDec: return "--"; |
| case PreInc: return "++"; |
| case PreDec: return "--"; |
| case AddrOf: return "&"; |
| case Deref: return "*"; |
| case Plus: return "+"; |
| case Minus: return "-"; |
| case Not: return "~"; |
| case LNot: return "!"; |
| case Real: return "__real"; |
| case Imag: return "__imag"; |
| case SizeOf: return "sizeof"; |
| case AlignOf: return "alignof"; |
| case Extension: return "__extension__"; |
| case OffsetOf: return "__builtin_offsetof"; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Postfix Operators. |
| //===----------------------------------------------------------------------===// |
| |
| CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t, |
| SourceLocation rparenloc) |
| : Expr(CallExprClass, t), NumArgs(numargs) { |
| SubExprs = new Expr*[numargs+1]; |
| SubExprs[FN] = fn; |
| for (unsigned i = 0; i != numargs; ++i) |
| SubExprs[i+ARGS_START] = args[i]; |
| RParenLoc = rparenloc; |
| } |
| |
| /// setNumArgs - This changes the number of arguments present in this call. |
| /// Any orphaned expressions are deleted by this, and any new operands are set |
| /// to null. |
| void CallExpr::setNumArgs(unsigned NumArgs) { |
| // No change, just return. |
| if (NumArgs == getNumArgs()) return; |
| |
| // If shrinking # arguments, just delete the extras and forgot them. |
| if (NumArgs < getNumArgs()) { |
| for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i) |
| delete getArg(i); |
| this->NumArgs = NumArgs; |
| return; |
| } |
| |
| // Otherwise, we are growing the # arguments. New an bigger argument array. |
| Expr **NewSubExprs = new Expr*[NumArgs+1]; |
| // Copy over args. |
| for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i) |
| NewSubExprs[i] = SubExprs[i]; |
| // Null out new args. |
| for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i) |
| NewSubExprs[i] = 0; |
| |
| delete[] SubExprs; |
| SubExprs = NewSubExprs; |
| this->NumArgs = NumArgs; |
| } |
| |
| |
| bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const { |
| // The following enum mimics gcc's internal "typeclass.h" file. |
| enum gcc_type_class { |
| no_type_class = -1, |
| void_type_class, integer_type_class, char_type_class, |
| enumeral_type_class, boolean_type_class, |
| pointer_type_class, reference_type_class, offset_type_class, |
| real_type_class, complex_type_class, |
| function_type_class, method_type_class, |
| record_type_class, union_type_class, |
| array_type_class, string_type_class, |
| lang_type_class |
| }; |
| Result.setIsSigned(true); |
| |
| // All simple function calls (e.g. func()) are implicitly cast to pointer to |
| // function. As a result, we try and obtain the DeclRefExpr from the |
| // ImplicitCastExpr. |
| const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee()); |
| if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()). |
| return false; |
| const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()); |
| if (!DRE) |
| return false; |
| |
| // We have a DeclRefExpr. |
| if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) { |
| // If no argument was supplied, default to "no_type_class". This isn't |
| // ideal, however it's what gcc does. |
| Result = static_cast<uint64_t>(no_type_class); |
| if (NumArgs >= 1) { |
| QualType argType = getArg(0)->getType(); |
| |
| if (argType->isVoidType()) |
| Result = void_type_class; |
| else if (argType->isEnumeralType()) |
| Result = enumeral_type_class; |
| else if (argType->isBooleanType()) |
| Result = boolean_type_class; |
| else if (argType->isCharType()) |
| Result = string_type_class; // gcc doesn't appear to use char_type_class |
| else if (argType->isIntegerType()) |
| Result = integer_type_class; |
| else if (argType->isPointerType()) |
| Result = pointer_type_class; |
| else if (argType->isReferenceType()) |
| Result = reference_type_class; |
| else if (argType->isRealType()) |
| Result = real_type_class; |
| else if (argType->isComplexType()) |
| Result = complex_type_class; |
| else if (argType->isFunctionType()) |
| Result = function_type_class; |
| else if (argType->isStructureType()) |
| Result = record_type_class; |
| else if (argType->isUnionType()) |
| Result = union_type_class; |
| else if (argType->isArrayType()) |
| Result = array_type_class; |
| else if (argType->isUnionType()) |
| Result = union_type_class; |
| else // FIXME: offset_type_class, method_type_class, & lang_type_class? |
| assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type"); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| /// corresponds to, e.g. "<<=". |
| const char *BinaryOperator::getOpcodeStr(Opcode Op) { |
| switch (Op) { |
| default: assert(0 && "Unknown binary operator"); |
| case Mul: return "*"; |
| case Div: return "/"; |
| case Rem: return "%"; |
| case Add: return "+"; |
| case Sub: return "-"; |
| case Shl: return "<<"; |
| case Shr: return ">>"; |
| case LT: return "<"; |
| case GT: return ">"; |
| case LE: return "<="; |
| case GE: return ">="; |
| case EQ: return "=="; |
| case NE: return "!="; |
| case And: return "&"; |
| case Xor: return "^"; |
| case Or: return "|"; |
| case LAnd: return "&&"; |
| case LOr: return "||"; |
| case Assign: return "="; |
| case MulAssign: return "*="; |
| case DivAssign: return "/="; |
| case RemAssign: return "%="; |
| case AddAssign: return "+="; |
| case SubAssign: return "-="; |
| case ShlAssign: return "<<="; |
| case ShrAssign: return ">>="; |
| case AndAssign: return "&="; |
| case XorAssign: return "^="; |
| case OrAssign: return "|="; |
| case Comma: return ","; |
| } |
| } |
| |
| InitListExpr::InitListExpr(SourceLocation lbraceloc, |
| Expr **initexprs, unsigned numinits, |
| SourceLocation rbraceloc) |
| : Expr(InitListExprClass, QualType()) |
| , NumInits(numinits) |
| , LBraceLoc(lbraceloc) |
| , RBraceLoc(rbraceloc) |
| { |
| InitExprs = new Expr*[numinits]; |
| for (unsigned i = 0; i != numinits; i++) |
| InitExprs[i] = initexprs[i]; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Expression Routines |
| //===----------------------------------------------------------------------===// |
| |
| /// hasLocalSideEffect - Return true if this immediate expression has side |
| /// effects, not counting any sub-expressions. |
| bool Expr::hasLocalSideEffect() const { |
| switch (getStmtClass()) { |
| default: |
| return false; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect(); |
| case UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(this); |
| |
| switch (UO->getOpcode()) { |
| default: return false; |
| case UnaryOperator::PostInc: |
| case UnaryOperator::PostDec: |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: |
| return true; // ++/-- |
| |
| case UnaryOperator::Deref: |
| // Dereferencing a volatile pointer is a side-effect. |
| return getType().isVolatileQualified(); |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| // accessing a piece of a volatile complex is a side-effect. |
| return UO->getSubExpr()->getType().isVolatileQualified(); |
| |
| case UnaryOperator::Extension: |
| return UO->getSubExpr()->hasLocalSideEffect(); |
| } |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *BinOp = cast<BinaryOperator>(this); |
| // Consider comma to have side effects if the LHS and RHS both do. |
| if (BinOp->getOpcode() == BinaryOperator::Comma) |
| return BinOp->getLHS()->hasLocalSideEffect() && |
| BinOp->getRHS()->hasLocalSideEffect(); |
| |
| return BinOp->isAssignmentOp(); |
| } |
| case CompoundAssignOperatorClass: |
| return true; |
| |
| case ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| return Exp->getCond()->hasLocalSideEffect() |
| || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect()) |
| || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect()); |
| } |
| |
| case MemberExprClass: |
| case ArraySubscriptExprClass: |
| // If the base pointer or element is to a volatile pointer/field, accessing |
| // if is a side effect. |
| return getType().isVolatileQualified(); |
| |
| case CallExprClass: |
| // TODO: check attributes for pure/const. "void foo() { strlen("bar"); }" |
| // should warn. |
| return true; |
| case ObjCMessageExprClass: |
| return true; |
| |
| case CastExprClass: |
| // If this is a cast to void, check the operand. Otherwise, the result of |
| // the cast is unused. |
| if (getType()->isVoidType()) |
| return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect(); |
| return false; |
| } |
| } |
| |
| /// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an |
| /// incomplete type other than void. Nonarray expressions that can be lvalues: |
| /// - name, where name must be a variable |
| /// - e[i] |
| /// - (e), where e must be an lvalue |
| /// - e.name, where e must be an lvalue |
| /// - e->name |
| /// - *e, the type of e cannot be a function type |
| /// - string-constant |
| /// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension] |
| /// - reference type [C++ [expr]] |
| /// |
| Expr::isLvalueResult Expr::isLvalue() const { |
| // first, check the type (C99 6.3.2.1) |
| if (TR->isFunctionType()) // from isObjectType() |
| return LV_NotObjectType; |
| |
| if (TR->isVoidType()) |
| return LV_IncompleteVoidType; |
| |
| if (TR->isReferenceType()) // C++ [expr] |
| return LV_Valid; |
| |
| // the type looks fine, now check the expression |
| switch (getStmtClass()) { |
| case StringLiteralClass: // C99 6.5.1p4 |
| return LV_Valid; |
| case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2)))) |
| // For vectors, make sure base is an lvalue (i.e. not a function call). |
| if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType()) |
| return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(); |
| return LV_Valid; |
| case DeclRefExprClass: // C99 6.5.1p2 |
| if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl())) |
| return LV_Valid; |
| break; |
| case MemberExprClass: { // C99 6.5.2.3p4 |
| const MemberExpr *m = cast<MemberExpr>(this); |
| return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(); |
| } |
| case UnaryOperatorClass: |
| if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref) |
| return LV_Valid; // C99 6.5.3p4 |
| |
| if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real || |
| cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag) |
| return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(); // GNU. |
| break; |
| case ParenExprClass: // C99 6.5.1p5 |
| return cast<ParenExpr>(this)->getSubExpr()->isLvalue(); |
| case CompoundLiteralExprClass: // C99 6.5.2.5p5 |
| return LV_Valid; |
| case OCUVectorElementExprClass: |
| if (cast<OCUVectorElementExpr>(this)->containsDuplicateElements()) |
| return LV_DuplicateVectorComponents; |
| return LV_Valid; |
| case ObjCIvarRefExprClass: // ObjC instance variables are lvalues. |
| return LV_Valid; |
| case PreDefinedExprClass: |
| return LV_Valid; |
| default: |
| break; |
| } |
| return LV_InvalidExpression; |
| } |
| |
| /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type, |
| /// does not have an incomplete type, does not have a const-qualified type, and |
| /// if it is a structure or union, does not have any member (including, |
| /// recursively, any member or element of all contained aggregates or unions) |
| /// with a const-qualified type. |
| Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const { |
| isLvalueResult lvalResult = isLvalue(); |
| |
| switch (lvalResult) { |
| case LV_Valid: break; |
| case LV_NotObjectType: return MLV_NotObjectType; |
| case LV_IncompleteVoidType: return MLV_IncompleteVoidType; |
| case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; |
| case LV_InvalidExpression: return MLV_InvalidExpression; |
| } |
| if (TR.isConstQualified()) |
| return MLV_ConstQualified; |
| if (TR->isArrayType()) |
| return MLV_ArrayType; |
| if (TR->isIncompleteType()) |
| return MLV_IncompleteType; |
| |
| if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) { |
| if (r->hasConstFields()) |
| return MLV_ConstQualified; |
| } |
| return MLV_Valid; |
| } |
| |
| /// hasStaticStorage - Return true if this expression has static storage |
| /// duration. This means that the address of this expression is a link-time |
| /// constant. |
| bool Expr::hasStaticStorage() const { |
| switch (getStmtClass()) { |
| default: |
| return false; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()->hasStaticStorage(); |
| case ImplicitCastExprClass: |
| return cast<ImplicitCastExpr>(this)->getSubExpr()->hasStaticStorage(); |
| case CompoundLiteralExprClass: |
| return cast<CompoundLiteralExpr>(this)->isFileScope(); |
| case DeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(this)->getDecl(); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->hasStaticStorage(); |
| return false; |
| } |
| case MemberExprClass: { |
| const MemberExpr *M = cast<MemberExpr>(this); |
| return !M->isArrow() && M->getBase()->hasStaticStorage(); |
| } |
| case ArraySubscriptExprClass: |
| return cast<ArraySubscriptExpr>(this)->getBase()->hasStaticStorage(); |
| case PreDefinedExprClass: |
| return true; |
| } |
| } |
| |
| bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const { |
| switch (getStmtClass()) { |
| default: |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc); |
| case StringLiteralClass: |
| case ObjCStringLiteralClass: |
| case FloatingLiteralClass: |
| case IntegerLiteralClass: |
| case CharacterLiteralClass: |
| case ImaginaryLiteralClass: |
| case TypesCompatibleExprClass: |
| case CXXBoolLiteralExprClass: |
| return true; |
| case CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(this); |
| llvm::APSInt Result(32); |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), CE->getLocStart()))); |
| if (CE->isBuiltinClassifyType(Result)) |
| return true; |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| case DeclRefExprClass: { |
| const Decl *D = cast<DeclRefExpr>(this)->getDecl(); |
| // Accept address of function. |
| if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D)) |
| return true; |
| if (Loc) *Loc = getLocStart(); |
| if (isa<VarDecl>(D)) |
| return TR->isArrayType(); |
| return false; |
| } |
| case CompoundLiteralExprClass: |
| if (Loc) *Loc = getLocStart(); |
| // Allow "(int []){2,4}", since the array will be converted to a pointer. |
| return TR->isArrayType(); |
| case UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(this); |
| |
| // C99 6.6p9 |
| if (Exp->getOpcode() == UnaryOperator::AddrOf) { |
| if (!Exp->getSubExpr()->hasStaticStorage()) { |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| return true; |
| } |
| |
| // Get the operand value. If this is sizeof/alignof, do not evalute the |
| // operand. This affects C99 6.6p3. |
| if (!Exp->isSizeOfAlignOfOp() && |
| Exp->getOpcode() != UnaryOperator::OffsetOf && |
| !Exp->getSubExpr()->isConstantExpr(Ctx, Loc)) |
| return false; |
| |
| switch (Exp->getOpcode()) { |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| default: |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| case UnaryOperator::Extension: |
| return true; // FIXME: this is wrong. |
| case UnaryOperator::SizeOf: |
| case UnaryOperator::AlignOf: |
| case UnaryOperator::OffsetOf: |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| if (!Exp->getSubExpr()->getType()->isConstantSizeType(Ctx)) { |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| } |
| return true; |
| case UnaryOperator::LNot: |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| case UnaryOperator::Not: |
| return true; |
| } |
| } |
| case SizeOfAlignOfTypeExprClass: { |
| const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this); |
| // alignof always evaluates to a constant. |
| if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Ctx)) { |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| } |
| return true; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(this); |
| |
| // The LHS of a constant expr is always evaluated and needed. |
| if (!Exp->getLHS()->isConstantExpr(Ctx, Loc)) |
| return false; |
| |
| if (!Exp->getRHS()->isConstantExpr(Ctx, Loc)) |
| return false; |
| return true; |
| } |
| case ImplicitCastExprClass: |
| case CastExprClass: { |
| const Expr *SubExpr; |
| SourceLocation CastLoc; |
| if (const CastExpr *C = dyn_cast<CastExpr>(this)) { |
| SubExpr = C->getSubExpr(); |
| CastLoc = C->getLParenLoc(); |
| } else { |
| SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr(); |
| CastLoc = getLocStart(); |
| } |
| if (!SubExpr->isConstantExpr(Ctx, Loc)) { |
| if (Loc) *Loc = SubExpr->getLocStart(); |
| return false; |
| } |
| return true; |
| } |
| case ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| if (!Exp->getCond()->isConstantExpr(Ctx, Loc) || |
| // Handle the GNU extension for missing LHS. |
| !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) || |
| !Exp->getRHS()->isConstantExpr(Ctx, Loc)) |
| return false; |
| return true; |
| } |
| case InitListExprClass: { |
| const InitListExpr *Exp = cast<InitListExpr>(this); |
| unsigned numInits = Exp->getNumInits(); |
| for (unsigned i = 0; i < numInits; i++) { |
| if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) { |
| if (Loc) *Loc = Exp->getInit(i)->getLocStart(); |
| return false; |
| } |
| } |
| return true; |
| } |
| } |
| } |
| |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| /// an integer constant expression. Note: With the introduction of VLA's in |
| /// C99 the result of the sizeof operator is no longer always a constant |
| /// expression. The generalization of the wording to include any subexpression |
| /// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions |
| /// can appear as operands to other operators (e.g. &&, ||, ?:). For instance, |
| /// "0 || f()" can be treated as a constant expression. In C90 this expression, |
| /// occurring in a context requiring a constant, would have been a constraint |
| /// violation. FIXME: This routine currently implements C90 semantics. |
| /// To properly implement C99 semantics this routine will need to evaluate |
| /// expressions involving operators previously mentioned. |
| |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| /// comma, etc |
| /// |
| /// FIXME: This should ext-warn on overflow during evaluation! ISO C does not |
| /// permit this. This includes things like (int)1e1000 |
| /// |
| /// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof |
| /// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer |
| /// cast+dereference. |
| bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx, |
| SourceLocation *Loc, bool isEvaluated) const { |
| switch (getStmtClass()) { |
| default: |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case ParenExprClass: |
| return cast<ParenExpr>(this)->getSubExpr()-> |
| isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated); |
| case IntegerLiteralClass: |
| Result = cast<IntegerLiteral>(this)->getValue(); |
| break; |
| case CharacterLiteralClass: { |
| const CharacterLiteral *CL = cast<CharacterLiteral>(this); |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), CL->getLoc()))); |
| Result = CL->getValue(); |
| Result.setIsUnsigned(!getType()->isSignedIntegerType()); |
| break; |
| } |
| case TypesCompatibleExprClass: { |
| const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this); |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), TCE->getLocStart()))); |
| Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2()); |
| break; |
| } |
| case CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(this); |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), CE->getLocStart()))); |
| if (CE->isBuiltinClassifyType(Result)) |
| break; |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| case DeclRefExprClass: |
| if (const EnumConstantDecl *D = |
| dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) { |
| Result = D->getInitVal(); |
| break; |
| } |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(this); |
| |
| // Get the operand value. If this is sizeof/alignof, do not evalute the |
| // operand. This affects C99 6.6p3. |
| if (!Exp->isSizeOfAlignOfOp() && |
| !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated)) |
| return false; |
| |
| switch (Exp->getOpcode()) { |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| default: |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| case UnaryOperator::Extension: |
| return true; // FIXME: this is wrong. |
| case UnaryOperator::SizeOf: |
| case UnaryOperator::AlignOf: |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| if (!Exp->getSubExpr()->getType()->isConstantSizeType(Ctx)) { |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| } |
| |
| // Return the result in the right width. |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), |
| Exp->getOperatorLoc()))); |
| |
| // Get information about the size or align. |
| if (Exp->getSubExpr()->getType()->isFunctionType()) { |
| // GCC extension: sizeof(function) = 1. |
| Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1; |
| } else if (Exp->getOpcode() == UnaryOperator::AlignOf) { |
| Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType(), |
| Exp->getOperatorLoc()); |
| } else { |
| unsigned CharSize = |
| Ctx.Target.getCharWidth(Ctx.getFullLoc(Exp->getOperatorLoc())); |
| |
| Result = Ctx.getTypeSize(Exp->getSubExpr()->getType(), |
| Exp->getOperatorLoc()) / CharSize; |
| } |
| break; |
| case UnaryOperator::LNot: { |
| bool Val = Result != 0; |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), |
| Exp->getOperatorLoc()))); |
| Result = Val; |
| break; |
| } |
| case UnaryOperator::Plus: |
| break; |
| case UnaryOperator::Minus: |
| Result = -Result; |
| break; |
| case UnaryOperator::Not: |
| Result = ~Result; |
| break; |
| } |
| break; |
| } |
| case SizeOfAlignOfTypeExprClass: { |
| const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this); |
| // alignof always evaluates to a constant. |
| if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Ctx)) { |
| if (Loc) *Loc = Exp->getOperatorLoc(); |
| return false; |
| } |
| |
| // Return the result in the right width. |
| Result.zextOrTrunc( |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), Exp->getOperatorLoc()))); |
| |
| // Get information about the size or align. |
| if (Exp->getArgumentType()->isFunctionType()) { |
| // GCC extension: sizeof(function) = 1. |
| Result = Exp->isSizeOf() ? 1 : 4; |
| } else if (Exp->isSizeOf()) { |
| unsigned CharSize = |
| Ctx.Target.getCharWidth(Ctx.getFullLoc(Exp->getOperatorLoc())); |
| |
| Result = Ctx.getTypeSize(Exp->getArgumentType(), |
| Exp->getOperatorLoc()) / CharSize; |
| } |
| else |
| Result = Ctx.getTypeAlign(Exp->getArgumentType(), Exp->getOperatorLoc()); |
| |
| break; |
| } |
| case BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(this); |
| |
| // The LHS of a constant expr is always evaluated and needed. |
| if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| llvm::APSInt RHS(Result); |
| |
| // The short-circuiting &&/|| operators don't necessarily evaluate their |
| // RHS. Make sure to pass isEvaluated down correctly. |
| if (Exp->isLogicalOp()) { |
| bool RHSEval; |
| if (Exp->getOpcode() == BinaryOperator::LAnd) |
| RHSEval = Result != 0; |
| else { |
| assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical"); |
| RHSEval = Result == 0; |
| } |
| |
| if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, |
| isEvaluated & RHSEval)) |
| return false; |
| } else { |
| if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated)) |
| return false; |
| } |
| |
| switch (Exp->getOpcode()) { |
| default: |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| case BinaryOperator::Mul: |
| Result *= RHS; |
| break; |
| case BinaryOperator::Div: |
| if (RHS == 0) { |
| if (!isEvaluated) break; |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| Result /= RHS; |
| break; |
| case BinaryOperator::Rem: |
| if (RHS == 0) { |
| if (!isEvaluated) break; |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| Result %= RHS; |
| break; |
| case BinaryOperator::Add: Result += RHS; break; |
| case BinaryOperator::Sub: Result -= RHS; break; |
| case BinaryOperator::Shl: |
| Result <<= |
| static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1)); |
| break; |
| case BinaryOperator::Shr: |
| Result >>= |
| static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1)); |
| break; |
| case BinaryOperator::LT: Result = Result < RHS; break; |
| case BinaryOperator::GT: Result = Result > RHS; break; |
| case BinaryOperator::LE: Result = Result <= RHS; break; |
| case BinaryOperator::GE: Result = Result >= RHS; break; |
| case BinaryOperator::EQ: Result = Result == RHS; break; |
| case BinaryOperator::NE: Result = Result != RHS; break; |
| case BinaryOperator::And: Result &= RHS; break; |
| case BinaryOperator::Xor: Result ^= RHS; break; |
| case BinaryOperator::Or: Result |= RHS; break; |
| case BinaryOperator::LAnd: |
| Result = Result != 0 && RHS != 0; |
| break; |
| case BinaryOperator::LOr: |
| Result = Result != 0 || RHS != 0; |
| break; |
| |
| case BinaryOperator::Comma: |
| // C99 6.6p3: "shall not contain assignment, ..., or comma operators, |
| // *except* when they are contained within a subexpression that is not |
| // evaluated". Note that Assignment can never happen due to constraints |
| // on the LHS subexpr, so we don't need to check it here. |
| if (isEvaluated) { |
| if (Loc) *Loc = getLocStart(); |
| return false; |
| } |
| |
| // The result of the constant expr is the RHS. |
| Result = RHS; |
| return true; |
| } |
| |
| assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!"); |
| break; |
| } |
| case ImplicitCastExprClass: |
| case CastExprClass: { |
| const Expr *SubExpr; |
| SourceLocation CastLoc; |
| if (const CastExpr *C = dyn_cast<CastExpr>(this)) { |
| SubExpr = C->getSubExpr(); |
| CastLoc = C->getLParenLoc(); |
| } else { |
| SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr(); |
| CastLoc = getLocStart(); |
| } |
| |
| // C99 6.6p6: shall only convert arithmetic types to integer types. |
| if (!SubExpr->getType()->isArithmeticType() || |
| !getType()->isIntegerType()) { |
| if (Loc) *Loc = SubExpr->getLocStart(); |
| return false; |
| } |
| |
| uint32_t DestWidth = |
| static_cast<uint32_t>(Ctx.getTypeSize(getType(), CastLoc)); |
| |
| // Handle simple integer->integer casts. |
| if (SubExpr->getType()->isIntegerType()) { |
| if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| if (getType()->isBooleanType()) { |
| // Conversion to bool compares against zero. |
| Result = Result != 0; |
| Result.zextOrTrunc(DestWidth); |
| } else if (SubExpr->getType()->isSignedIntegerType()) |
| Result.sextOrTrunc(DestWidth); |
| else // If the input is unsigned, do a zero extend, noop, or truncate. |
| Result.zextOrTrunc(DestWidth); |
| break; |
| } |
| |
| // Allow floating constants that are the immediate operands of casts or that |
| // are parenthesized. |
| const Expr *Operand = SubExpr; |
| while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand)) |
| Operand = PE->getSubExpr(); |
| |
| // If this isn't a floating literal, we can't handle it. |
| const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand); |
| if (!FL) { |
| if (Loc) *Loc = Operand->getLocStart(); |
| return false; |
| } |
| |
| // If the destination is boolean, compare against zero. |
| if (getType()->isBooleanType()) { |
| Result = !FL->getValue().isZero(); |
| Result.zextOrTrunc(DestWidth); |
| break; |
| } |
| |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = getType()->isSignedIntegerType(); |
| |
| // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can |
| // be called multiple times per AST. |
| uint64_t Space[4]; |
| (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned, |
| llvm::APFloat::rmTowardZero); |
| Result = llvm::APInt(DestWidth, 4, Space); |
| break; |
| } |
| case ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(this); |
| |
| if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| |
| const Expr *TrueExp = Exp->getLHS(); |
| const Expr *FalseExp = Exp->getRHS(); |
| if (Result == 0) std::swap(TrueExp, FalseExp); |
| |
| // Evaluate the false one first, discard the result. |
| if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false)) |
| return false; |
| // Evalute the true one, capture the result. |
| if (TrueExp && |
| !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated)) |
| return false; |
| break; |
| } |
| } |
| |
| // Cases that are valid constant exprs fall through to here. |
| Result.setIsUnsigned(getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| /// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an |
| /// integer constant expression with the value zero, or if this is one that is |
| /// cast to void*. |
| bool Expr::isNullPointerConstant(ASTContext &Ctx) const { |
| // Strip off a cast to void*, if it exists. |
| if (const CastExpr *CE = dyn_cast<CastExpr>(this)) { |
| // Check that it is a cast to void*. |
| if (const PointerType *PT = dyn_cast<PointerType>(CE->getType())) { |
| QualType Pointee = PT->getPointeeType(); |
| if (Pointee.getQualifiers() == 0 && Pointee->isVoidType() && // to void* |
| CE->getSubExpr()->getType()->isIntegerType()) // from int. |
| return CE->getSubExpr()->isNullPointerConstant(Ctx); |
| } |
| } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) { |
| // Ignore the ImplicitCastExpr type entirely. |
| return ICE->getSubExpr()->isNullPointerConstant(Ctx); |
| } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) { |
| // Accept ((void*)0) as a null pointer constant, as many other |
| // implementations do. |
| return PE->getSubExpr()->isNullPointerConstant(Ctx); |
| } |
| |
| // This expression must be an integer type. |
| if (!getType()->isIntegerType()) |
| return false; |
| |
| // If we have an integer constant expression, we need to *evaluate* it and |
| // test for the value 0. |
| llvm::APSInt Val(32); |
| return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0; |
| } |
| |
| unsigned OCUVectorElementExpr::getNumElements() const { |
| return strlen(Accessor.getName()); |
| } |
| |
| |
| /// getComponentType - Determine whether the components of this access are |
| /// "point" "color" or "texture" elements. |
| OCUVectorElementExpr::ElementType |
| OCUVectorElementExpr::getElementType() const { |
| // derive the component type, no need to waste space. |
| const char *compStr = Accessor.getName(); |
| |
| if (OCUVectorType::getPointAccessorIdx(*compStr) != -1) return Point; |
| if (OCUVectorType::getColorAccessorIdx(*compStr) != -1) return Color; |
| |
| assert(OCUVectorType::getTextureAccessorIdx(*compStr) != -1 && |
| "getComponentType(): Illegal accessor"); |
| return Texture; |
| } |
| |
| /// containsDuplicateElements - Return true if any element access is |
| /// repeated. |
| bool OCUVectorElementExpr::containsDuplicateElements() const { |
| const char *compStr = Accessor.getName(); |
| unsigned length = strlen(compStr); |
| |
| for (unsigned i = 0; i < length-1; i++) { |
| const char *s = compStr+i; |
| for (const char c = *s++; *s; s++) |
| if (c == *s) |
| return true; |
| } |
| return false; |
| } |
| |
| /// getEncodedElementAccess - We encode fields with two bits per component. |
| unsigned OCUVectorElementExpr::getEncodedElementAccess() const { |
| const char *compStr = Accessor.getName(); |
| unsigned length = getNumElements(); |
| |
| unsigned Result = 0; |
| |
| while (length--) { |
| Result <<= 2; |
| int Idx = OCUVectorType::getAccessorIdx(compStr[length]); |
| assert(Idx != -1 && "Invalid accessor letter"); |
| Result |= Idx; |
| } |
| return Result; |
| } |
| |
| // constructor for instance messages. |
| ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto), ClassName(0) { |
| NumArgs = nargs; |
| SubExprs = new Expr*[NumArgs+1]; |
| SubExprs[RECEIVER] = receiver; |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| // constructor for class messages. |
| // FIXME: clsName should be typed to ObjCInterfaceType |
| ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo, |
| QualType retType, ObjCMethodDecl *mproto, |
| SourceLocation LBrac, SourceLocation RBrac, |
| Expr **ArgExprs, unsigned nargs) |
| : Expr(ObjCMessageExprClass, retType), SelName(selInfo), |
| MethodProto(mproto), ClassName(clsName) { |
| NumArgs = nargs; |
| SubExprs = new Expr*[NumArgs+1]; |
| SubExprs[RECEIVER] = 0; |
| if (NumArgs) { |
| for (unsigned i = 0; i != NumArgs; ++i) |
| SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]); |
| } |
| LBracloc = LBrac; |
| RBracloc = RBrac; |
| } |
| |
| |
| bool ChooseExpr::isConditionTrue(ASTContext &C) const { |
| llvm::APSInt CondVal(32); |
| bool IsConst = getCond()->isIntegerConstantExpr(CondVal, C); |
| assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst; |
| return CondVal != 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Child Iterators for iterating over subexpressions/substatements |
| //===----------------------------------------------------------------------===// |
| |
| // DeclRefExpr |
| Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); } |
| |
| // ObjCIvarRefExpr |
| Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator ObjCIvarRefExpr::child_end() { return child_iterator(); } |
| |
| // PreDefinedExpr |
| Stmt::child_iterator PreDefinedExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator PreDefinedExpr::child_end() { return child_iterator(); } |
| |
| // IntegerLiteral |
| Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); } |
| |
| // CharacterLiteral |
| Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); } |
| |
| // FloatingLiteral |
| Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); } |
| |
| // ImaginaryLiteral |
| Stmt::child_iterator ImaginaryLiteral::child_begin() { |
| return reinterpret_cast<Stmt**>(&Val); |
| } |
| Stmt::child_iterator ImaginaryLiteral::child_end() { |
| return reinterpret_cast<Stmt**>(&Val)+1; |
| } |
| |
| // StringLiteral |
| Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); } |
| Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); } |
| |
| // ParenExpr |
| Stmt::child_iterator ParenExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Val); |
| } |
| Stmt::child_iterator ParenExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Val)+1; |
| } |
| |
| // UnaryOperator |
| Stmt::child_iterator UnaryOperator::child_begin() { |
| return reinterpret_cast<Stmt**>(&Val); |
| } |
| Stmt::child_iterator UnaryOperator::child_end() { |
| return reinterpret_cast<Stmt**>(&Val+1); |
| } |
| |
| // SizeOfAlignOfTypeExpr |
| Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() { |
| // If the type is a VLA type (and not a typedef), the size expression of the |
| // VLA needs to be treated as an executable expression. |
| if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr())) |
| return child_iterator(T); |
| else |
| return child_iterator(); |
| } |
| Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ArraySubscriptExpr |
| Stmt::child_iterator ArraySubscriptExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubExprs); |
| } |
| Stmt::child_iterator ArraySubscriptExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; |
| } |
| |
| // CallExpr |
| Stmt::child_iterator CallExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubExprs[0]); |
| } |
| Stmt::child_iterator CallExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&SubExprs[NumArgs+ARGS_START]); |
| } |
| |
| // MemberExpr |
| Stmt::child_iterator MemberExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Base); |
| } |
| Stmt::child_iterator MemberExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Base)+1; |
| } |
| |
| // OCUVectorElementExpr |
| Stmt::child_iterator OCUVectorElementExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Base); |
| } |
| Stmt::child_iterator OCUVectorElementExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Base)+1; |
| } |
| |
| // CompoundLiteralExpr |
| Stmt::child_iterator CompoundLiteralExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Init); |
| } |
| Stmt::child_iterator CompoundLiteralExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Init)+1; |
| } |
| |
| // ImplicitCastExpr |
| Stmt::child_iterator ImplicitCastExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Op); |
| } |
| Stmt::child_iterator ImplicitCastExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Op)+1; |
| } |
| |
| // CastExpr |
| Stmt::child_iterator CastExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Op); |
| } |
| Stmt::child_iterator CastExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Op)+1; |
| } |
| |
| // BinaryOperator |
| Stmt::child_iterator BinaryOperator::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubExprs); |
| } |
| Stmt::child_iterator BinaryOperator::child_end() { |
| return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; |
| } |
| |
| // ConditionalOperator |
| Stmt::child_iterator ConditionalOperator::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubExprs); |
| } |
| Stmt::child_iterator ConditionalOperator::child_end() { |
| return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; |
| } |
| |
| // AddrLabelExpr |
| Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); } |
| |
| // StmtExpr |
| Stmt::child_iterator StmtExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubStmt); |
| } |
| Stmt::child_iterator StmtExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&SubStmt)+1; |
| } |
| |
| // TypesCompatibleExpr |
| Stmt::child_iterator TypesCompatibleExpr::child_begin() { |
| return child_iterator(); |
| } |
| |
| Stmt::child_iterator TypesCompatibleExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ChooseExpr |
| Stmt::child_iterator ChooseExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubExprs); |
| } |
| |
| Stmt::child_iterator ChooseExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR; |
| } |
| |
| // VAArgExpr |
| Stmt::child_iterator VAArgExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&Val); |
| } |
| |
| Stmt::child_iterator VAArgExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&Val)+1; |
| } |
| |
| // InitListExpr |
| Stmt::child_iterator InitListExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&InitExprs[0]); |
| } |
| Stmt::child_iterator InitListExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&InitExprs[NumInits]); |
| } |
| |
| // ObjCStringLiteral |
| Stmt::child_iterator ObjCStringLiteral::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCStringLiteral::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCEncodeExpr |
| Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); } |
| Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); } |
| |
| // ObjCSelectorExpr |
| Stmt::child_iterator ObjCSelectorExpr::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCSelectorExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCProtocolExpr |
| Stmt::child_iterator ObjCProtocolExpr::child_begin() { |
| return child_iterator(); |
| } |
| Stmt::child_iterator ObjCProtocolExpr::child_end() { |
| return child_iterator(); |
| } |
| |
| // ObjCMessageExpr |
| Stmt::child_iterator ObjCMessageExpr::child_begin() { |
| return reinterpret_cast<Stmt**>(&SubExprs[0]); |
| } |
| Stmt::child_iterator ObjCMessageExpr::child_end() { |
| return reinterpret_cast<Stmt**>(&SubExprs[getNumArgs()+ARGS_START]); |
| } |
| |