| //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements decl-related attribute processing. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include <llvm/ADT/StringExtras.h> |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| //===----------------------------------------------------------------------===// |
| |
| static const FunctionTypeProto *getFunctionProto(Decl *d) { |
| QualType Ty; |
| if (ValueDecl *decl = dyn_cast<ValueDecl>(d)) |
| Ty = decl->getType(); |
| else if (FieldDecl *decl = dyn_cast<FieldDecl>(d)) |
| Ty = decl->getType(); |
| else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d)) |
| Ty = decl->getUnderlyingType(); |
| else |
| return 0; |
| |
| if (Ty->isFunctionPointerType()) |
| Ty = Ty->getAsPointerType()->getPointeeType(); |
| |
| if (const FunctionType *FnTy = Ty->getAsFunctionType()) |
| return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType()); |
| |
| return 0; |
| } |
| |
| static inline bool isNSStringType(QualType T, ASTContext &Ctx) { |
| const PointerType *PT = T->getAsPointerType(); |
| if (!PT) |
| return false; |
| |
| const ObjCInterfaceType *ClsT =PT->getPointeeType()->getAsObjCInterfaceType(); |
| if (!ClsT) |
| return false; |
| |
| IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier(); |
| |
| // FIXME: Should we walk the chain of classes? |
| return ClsName == &Ctx.Idents.get("NSString") || |
| ClsName == &Ctx.Idents.get("NSMutableString"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute Implementations |
| //===----------------------------------------------------------------------===// |
| |
| // FIXME: All this manual attribute parsing code is gross. At the |
| // least add some helper functions to check most argument patterns (# |
| // and types of args). |
| |
| static void HandleExtVectorTypeAttr(Decl *d, const AttributeList &Attr, |
| Sema &S) { |
| TypedefDecl *tDecl = dyn_cast<TypedefDecl>(d); |
| if (tDecl == 0) { |
| S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef); |
| return; |
| } |
| |
| QualType curType = tDecl->getUnderlyingType(); |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int, |
| "ext_vector_type", sizeExpr->getSourceRange()); |
| return; |
| } |
| // unlike gcc's vector_size attribute, we do not allow vectors to be defined |
| // in conjunction with complex types (pointers, arrays, functions, etc.). |
| if (!curType->isIntegerType() && !curType->isRealFloatingType()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type, |
| curType.getAsString()); |
| return; |
| } |
| // unlike gcc's vector_size attribute, the size is specified as the |
| // number of elements, not the number of bytes. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue()); |
| |
| if (vectorSize == 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_zero_size, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| // Instantiate/Install the vector type, the number of elements is > 0. |
| tDecl->setUnderlyingType(S.Context.getExtVectorType(curType, vectorSize)); |
| // Remember this typedef decl, we will need it later for diagnostics. |
| S.ExtVectorDecls.push_back(tDecl); |
| } |
| |
| |
| /// HandleVectorSizeAttribute - this attribute is only applicable to |
| /// integral and float scalars, although arrays, pointers, and function |
| /// return values are allowed in conjunction with this construct. Aggregates |
| /// with this attribute are invalid, even if they are of the same size as a |
| /// corresponding scalar. |
| /// The raw attribute should contain precisely 1 argument, the vector size |
| /// for the variable, measured in bytes. If curType and rawAttr are well |
| /// formed, this routine will return a new vector type. |
| static void HandleVectorSizeAttr(Decl *D, const AttributeList &Attr, Sema &S) { |
| QualType CurType; |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| CurType = VD->getType(); |
| else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) |
| CurType = TD->getUnderlyingType(); |
| else { |
| S.Diag(D->getLocation(), diag::err_attr_wrong_decl, |
| std::string("vector_size"), |
| SourceRange(Attr.getLoc(), Attr.getLoc())); |
| return; |
| } |
| |
| // Check the attribute arugments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int, |
| "vector_size", sizeExpr->getSourceRange()); |
| return; |
| } |
| // navigate to the base type - we need to provide for vector pointers, |
| // vector arrays, and functions returning vectors. |
| if (CurType->isPointerType() || CurType->isArrayType() || |
| CurType->isFunctionType()) { |
| assert(0 && "HandleVector(): Complex type construction unimplemented"); |
| /* FIXME: rebuild the type from the inside out, vectorizing the inner type. |
| do { |
| if (PointerType *PT = dyn_cast<PointerType>(canonType)) |
| canonType = PT->getPointeeType().getTypePtr(); |
| else if (ArrayType *AT = dyn_cast<ArrayType>(canonType)) |
| canonType = AT->getElementType().getTypePtr(); |
| else if (FunctionType *FT = dyn_cast<FunctionType>(canonType)) |
| canonType = FT->getResultType().getTypePtr(); |
| } while (canonType->isPointerType() || canonType->isArrayType() || |
| canonType->isFunctionType()); |
| */ |
| } |
| // the base type must be integer or float. |
| if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type, |
| CurType.getAsString()); |
| return; |
| } |
| unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType)); |
| // vecSize is specified in bytes - convert to bits. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8); |
| |
| // the vector size needs to be an integral multiple of the type size. |
| if (vectorSize % typeSize) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| if (vectorSize == 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_zero_size, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| |
| // Success! Instantiate the vector type, the number of elements is > 0, and |
| // not required to be a power of 2, unlike GCC. |
| CurType = S.Context.getVectorType(CurType, vectorSize/typeSize); |
| |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| VD->setType(CurType); |
| else |
| cast<TypedefDecl>(D)->setUnderlyingType(CurType); |
| } |
| |
| static void HandlePackedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| if (TagDecl *TD = dyn_cast<TagDecl>(d)) |
| TD->addAttr(new PackedAttr()); |
| else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) { |
| // If the alignment is less than or equal to 8 bits, the packed attribute |
| // has no effect. |
| if (!FD->getType()->isIncompleteType() && |
| S.Context.getTypeAlign(FD->getType()) <= 8) |
| S.Diag(Attr.getLoc(), |
| diag::warn_attribute_ignored_for_field_of_type, |
| Attr.getName()->getName(), FD->getType().getAsString()); |
| else |
| FD->addAttr(new PackedAttr()); |
| } else |
| S.Diag(Attr.getLoc(), diag::warn_attribute_ignored, |
| Attr.getName()->getName()); |
| } |
| |
| static void HandleIBOutletAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| // The IBOutlet attribute only applies to instance variables of Objective-C |
| // classes. |
| if (ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(d)) |
| ID->addAttr(new IBOutletAttr()); |
| else |
| S.Diag(Attr.getLoc(), diag::err_attribute_iboutlet_non_ivar); |
| } |
| |
| static void HandleNonNullAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| |
| // GCC ignores the nonnull attribute on K&R style function |
| // prototypes, so we ignore it as well |
| const FunctionTypeProto *proto = getFunctionProto(d); |
| if (!proto) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "nonnull", "function"); |
| return; |
| } |
| |
| unsigned NumArgs = proto->getNumArgs(); |
| |
| // The nonnull attribute only applies to pointers. |
| llvm::SmallVector<unsigned, 10> NonNullArgs; |
| |
| for (AttributeList::arg_iterator I=Attr.arg_begin(), |
| E=Attr.arg_end(); I!=E; ++I) { |
| |
| |
| // The argument must be an integer constant expression. |
| Expr *Ex = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt ArgNum(32); |
| if (!Ex->isIntegerConstantExpr(ArgNum, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int, |
| "nonnull", Ex->getSourceRange()); |
| return; |
| } |
| |
| unsigned x = (unsigned) ArgNum.getZExtValue(); |
| |
| if (x < 1 || x > NumArgs) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds, |
| "nonnull", llvm::utostr_32(I.getArgNum()), Ex->getSourceRange()); |
| return; |
| } |
| |
| --x; |
| |
| // Is the function argument a pointer type? |
| if (!proto->getArgType(x)->isPointerType()) { |
| // FIXME: Should also highlight argument in decl. |
| S.Diag(Attr.getLoc(), diag::err_nonnull_pointers_only, |
| "nonnull", Ex->getSourceRange()); |
| return; |
| } |
| |
| NonNullArgs.push_back(x); |
| } |
| |
| if (!NonNullArgs.empty()) { |
| unsigned* start = &NonNullArgs[0]; |
| unsigned size = NonNullArgs.size(); |
| std::sort(start, start + size); |
| d->addAttr(new NonNullAttr(start, size)); |
| } |
| else |
| d->addAttr(new NonNullAttr()); |
| } |
| |
| static void HandleAliasAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| |
| Expr *Arg = static_cast<Expr*>(Attr.getArg(0)); |
| Arg = Arg->IgnoreParenCasts(); |
| StringLiteral *Str = dyn_cast<StringLiteral>(Arg); |
| |
| if (Str == 0 || Str->isWide()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string, |
| "alias", std::string("1")); |
| return; |
| } |
| |
| const char *Alias = Str->getStrData(); |
| unsigned AliasLen = Str->getByteLength(); |
| |
| // FIXME: check if target symbol exists in current file |
| |
| d->addAttr(new AliasAttr(std::string(Alias, AliasLen))); |
| } |
| |
| static void HandleNoReturnAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| FunctionDecl *Fn = dyn_cast<FunctionDecl>(d); |
| if (!Fn) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "noreturn", "function"); |
| return; |
| } |
| |
| d->addAttr(new NoReturnAttr()); |
| } |
| |
| static void HandleUnusedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| if (!isa<VarDecl>(d) && !getFunctionProto(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "unused", "variable and function"); |
| return; |
| } |
| |
| d->addAttr(new UnusedAttr()); |
| } |
| |
| static void HandleConstructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, "0 or 1"); |
| return; |
| } |
| |
| int priority = 65535; // FIXME: Do not hardcode such constants. |
| if (Attr.getNumArgs() > 0) { |
| Expr *E = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!E->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int, |
| "constructor", "1", E->getSourceRange()); |
| return; |
| } |
| priority = Idx.getZExtValue(); |
| } |
| |
| FunctionDecl *Fn = dyn_cast<FunctionDecl>(d); |
| if (!Fn) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "constructor", "function"); |
| return; |
| } |
| |
| d->addAttr(new ConstructorAttr(priority)); |
| } |
| |
| static void HandleDestructorAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0 && Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, "0 or 1"); |
| return; |
| } |
| |
| int priority = 65535; // FIXME: Do not hardcode such constants. |
| if (Attr.getNumArgs() > 0) { |
| Expr *E = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!E->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int, |
| "destructor", "1", E->getSourceRange()); |
| return; |
| } |
| priority = Idx.getZExtValue(); |
| } |
| |
| if (!isa<FunctionDecl>(d)) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "destructor", "function"); |
| return; |
| } |
| |
| d->addAttr(new DestructorAttr(priority)); |
| } |
| |
| static void HandleDeprecatedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new DeprecatedAttr()); |
| } |
| |
| static void HandleVisibilityAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| |
| Expr *Arg = static_cast<Expr*>(Attr.getArg(0)); |
| Arg = Arg->IgnoreParenCasts(); |
| StringLiteral *Str = dyn_cast<StringLiteral>(Arg); |
| |
| if (Str == 0 || Str->isWide()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string, |
| "visibility", std::string("1")); |
| return; |
| } |
| |
| const char *TypeStr = Str->getStrData(); |
| unsigned TypeLen = Str->getByteLength(); |
| VisibilityAttr::VisibilityTypes type; |
| |
| if (TypeLen == 7 && !memcmp(TypeStr, "default", 7)) |
| type = VisibilityAttr::DefaultVisibility; |
| else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6)) |
| type = VisibilityAttr::HiddenVisibility; |
| else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8)) |
| type = VisibilityAttr::HiddenVisibility; // FIXME |
| else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9)) |
| type = VisibilityAttr::ProtectedVisibility; |
| else { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported, |
| "visibility", TypeStr); |
| return; |
| } |
| |
| d->addAttr(new VisibilityAttr(type)); |
| } |
| |
| static void HandleObjCGCAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| if (!Attr.getParameterName()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string, |
| "objc_gc", std::string("1")); |
| return; |
| } |
| |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| |
| const char *TypeStr = Attr.getParameterName()->getName(); |
| unsigned TypeLen = Attr.getParameterName()->getLength(); |
| |
| ObjCGCAttr::GCAttrTypes type; |
| |
| if (TypeLen == 4 && !memcmp(TypeStr, "weak", 4)) |
| type = ObjCGCAttr::Weak; |
| else if (TypeLen == 6 && !memcmp(TypeStr, "strong", 6)) |
| type = ObjCGCAttr::Strong; |
| else { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported, |
| "objc_gc", TypeStr); |
| return; |
| } |
| |
| d->addAttr(new ObjCGCAttr(type)); |
| } |
| |
| static void HandleWeakAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new WeakAttr()); |
| } |
| |
| static void HandleDLLImportAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new DLLImportAttr()); |
| } |
| |
| static void HandleDLLExportAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new DLLExportAttr()); |
| } |
| |
| static void HandleStdCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new StdCallAttr()); |
| } |
| |
| static void HandleFastCallAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new FastCallAttr()); |
| } |
| |
| static void HandleNothrowAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| d->addAttr(new NoThrowAttr()); |
| } |
| |
| /// Handle __attribute__((format(type,idx,firstarg))) attributes |
| /// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
| static void HandleFormatAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| |
| if (!Attr.getParameterName()) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string, |
| "format", std::string("1")); |
| return; |
| } |
| |
| if (Attr.getNumArgs() != 2) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("3")); |
| return; |
| } |
| |
| // GCC ignores the format attribute on K&R style function |
| // prototypes, so we ignore it as well |
| const FunctionTypeProto *proto = getFunctionProto(d); |
| |
| if (!proto) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "format", "function"); |
| return; |
| } |
| |
| // FIXME: in C++ the implicit 'this' function parameter also counts. |
| // this is needed in order to be compatible with GCC |
| // the index must start in 1 and the limit is numargs+1 |
| unsigned NumArgs = proto->getNumArgs(); |
| unsigned FirstIdx = 1; |
| |
| const char *Format = Attr.getParameterName()->getName(); |
| unsigned FormatLen = Attr.getParameterName()->getLength(); |
| |
| // Normalize the argument, __foo__ becomes foo. |
| if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' && |
| Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') { |
| Format += 2; |
| FormatLen -= 4; |
| } |
| |
| bool Supported = false; |
| bool is_NSString = false; |
| bool is_strftime = false; |
| |
| switch (FormatLen) { |
| default: break; |
| case 5: Supported = !memcmp(Format, "scanf", 5); break; |
| case 6: Supported = !memcmp(Format, "printf", 6); break; |
| case 7: Supported = !memcmp(Format, "strfmon", 7); break; |
| case 8: |
| Supported = (is_strftime = !memcmp(Format, "strftime", 8)) || |
| (is_NSString = !memcmp(Format, "NSString", 8)); |
| break; |
| } |
| |
| if (!Supported) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported, |
| "format", Attr.getParameterName()->getName()); |
| return; |
| } |
| |
| // checks for the 2nd argument |
| Expr *IdxExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Idx(32); |
| if (!IdxExpr->isIntegerConstantExpr(Idx, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int, |
| "format", std::string("2"), IdxExpr->getSourceRange()); |
| return; |
| } |
| |
| if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds, |
| "format", std::string("2"), IdxExpr->getSourceRange()); |
| return; |
| } |
| |
| // FIXME: Do we need to bounds check? |
| unsigned ArgIdx = Idx.getZExtValue() - 1; |
| |
| // make sure the format string is really a string |
| QualType Ty = proto->getArgType(ArgIdx); |
| |
| if (is_NSString) { |
| // FIXME: do we need to check if the type is NSString*? What are |
| // the semantics? |
| if (!isNSStringType(Ty, S.Context)) { |
| // FIXME: Should highlight the actual expression that has the |
| // wrong type. |
| S.Diag(Attr.getLoc(), diag::err_format_attribute_not_NSString, |
| IdxExpr->getSourceRange()); |
| return; |
| } |
| } else if (!Ty->isPointerType() || |
| !Ty->getAsPointerType()->getPointeeType()->isCharType()) { |
| // FIXME: Should highlight the actual expression that has the |
| // wrong type. |
| S.Diag(Attr.getLoc(), diag::err_format_attribute_not_string, |
| IdxExpr->getSourceRange()); |
| return; |
| } |
| |
| // check the 3rd argument |
| Expr *FirstArgExpr = static_cast<Expr *>(Attr.getArg(1)); |
| llvm::APSInt FirstArg(32); |
| if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int, |
| "format", std::string("3"), FirstArgExpr->getSourceRange()); |
| return; |
| } |
| |
| // check if the function is variadic if the 3rd argument non-zero |
| if (FirstArg != 0) { |
| if (proto->isVariadic()) { |
| ++NumArgs; // +1 for ... |
| } else { |
| S.Diag(d->getLocation(), diag::err_format_attribute_requires_variadic); |
| return; |
| } |
| } |
| |
| // strftime requires FirstArg to be 0 because it doesn't read from any variable |
| // the input is just the current time + the format string |
| if (is_strftime) { |
| if (FirstArg != 0) { |
| S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter, |
| FirstArgExpr->getSourceRange()); |
| return; |
| } |
| // if 0 it disables parameter checking (to use with e.g. va_list) |
| } else if (FirstArg != 0 && FirstArg != NumArgs) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds, |
| "format", std::string("3"), FirstArgExpr->getSourceRange()); |
| return; |
| } |
| |
| d->addAttr(new FormatAttr(std::string(Format, FormatLen), |
| Idx.getZExtValue(), FirstArg.getZExtValue())); |
| } |
| |
| static void HandleTransparentUnionAttr(Decl *d, const AttributeList &Attr, |
| Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| TypeDecl *decl = dyn_cast<TypeDecl>(d); |
| |
| if (!decl || !S.Context.getTypeDeclType(decl)->isUnionType()) { |
| S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type, |
| "transparent_union", "union"); |
| return; |
| } |
| |
| //QualType QTy = Context.getTypeDeclType(decl); |
| //const RecordType *Ty = QTy->getAsUnionType(); |
| |
| // FIXME |
| // Ty->addAttr(new TransparentUnionAttr()); |
| } |
| |
| static void HandleAnnotateAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() != 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| Expr *argExpr = static_cast<Expr *>(Attr.getArg(0)); |
| StringLiteral *SE = dyn_cast<StringLiteral>(argExpr); |
| |
| // Make sure that there is a string literal as the annotation's single |
| // argument. |
| if (!SE) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string); |
| return; |
| } |
| d->addAttr(new AnnotateAttr(std::string(SE->getStrData(), |
| SE->getByteLength()))); |
| } |
| |
| static void HandleAlignedAttr(Decl *d, const AttributeList &Attr, Sema &S) { |
| // check the attribute arguments. |
| if (Attr.getNumArgs() > 1) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| |
| unsigned Align = 0; |
| if (Attr.getNumArgs() == 0) { |
| // FIXME: This should be the target specific maximum alignment. |
| // (For now we just use 128 bits which is the maximum on X86. |
| Align = 128; |
| return; |
| } |
| |
| Expr *alignmentExpr = static_cast<Expr *>(Attr.getArg(0)); |
| llvm::APSInt Alignment(32); |
| if (!alignmentExpr->isIntegerConstantExpr(Alignment, S.Context)) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int, |
| "aligned", alignmentExpr->getSourceRange()); |
| return; |
| } |
| d->addAttr(new AlignedAttr(Alignment.getZExtValue() * 8)); |
| } |
| |
| /// HandleModeAttr - This attribute modifies the width of a decl with |
| /// primitive type. |
| /// |
| /// Despite what would be logical, the mode attribute is a decl attribute, |
| /// not a type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make |
| /// 'G' be HImode, not an intermediate pointer. |
| /// |
| static void HandleModeAttr(Decl *D, const AttributeList &Attr, Sema &S) { |
| // This attribute isn't documented, but glibc uses it. It changes |
| // the width of an int or unsigned int to the specified size. |
| |
| // Check that there aren't any arguments |
| if (Attr.getNumArgs() != 0) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("0")); |
| return; |
| } |
| |
| IdentifierInfo *Name = Attr.getParameterName(); |
| if (!Name) { |
| S.Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name); |
| return; |
| } |
| const char *Str = Name->getName(); |
| unsigned Len = Name->getLength(); |
| |
| // Normalize the attribute name, __foo__ becomes foo. |
| if (Len > 4 && Str[0] == '_' && Str[1] == '_' && |
| Str[Len - 2] == '_' && Str[Len - 1] == '_') { |
| Str += 2; |
| Len -= 4; |
| } |
| |
| unsigned DestWidth = 0; |
| bool IntegerMode = true; |
| switch (Len) { |
| case 2: |
| if (!memcmp(Str, "QI", 2)) { DestWidth = 8; break; } |
| if (!memcmp(Str, "HI", 2)) { DestWidth = 16; break; } |
| if (!memcmp(Str, "SI", 2)) { DestWidth = 32; break; } |
| if (!memcmp(Str, "DI", 2)) { DestWidth = 64; break; } |
| if (!memcmp(Str, "TI", 2)) { DestWidth = 128; break; } |
| if (!memcmp(Str, "SF", 2)) { DestWidth = 32; IntegerMode = false; break; } |
| if (!memcmp(Str, "DF", 2)) { DestWidth = 64; IntegerMode = false; break; } |
| if (!memcmp(Str, "XF", 2)) { DestWidth = 96; IntegerMode = false; break; } |
| if (!memcmp(Str, "TF", 2)) { DestWidth = 128; IntegerMode = false; break; } |
| break; |
| case 4: |
| // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
| // pointer on PIC16 and other embedded platforms. |
| if (!memcmp(Str, "word", 4)) |
| DestWidth = S.Context.Target.getPointerWidth(0); |
| if (!memcmp(Str, "byte", 4)) |
| DestWidth = S.Context.Target.getCharWidth(); |
| break; |
| case 7: |
| if (!memcmp(Str, "pointer", 7)) |
| DestWidth = S.Context.Target.getPointerWidth(0); |
| break; |
| } |
| |
| QualType OldTy; |
| if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) |
| OldTy = TD->getUnderlyingType(); |
| else if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) |
| OldTy = VD->getType(); |
| else { |
| S.Diag(D->getLocation(), diag::err_attr_wrong_decl, "mode", |
| SourceRange(Attr.getLoc(), Attr.getLoc())); |
| return; |
| } |
| |
| // FIXME: Need proper fixed-width types |
| QualType NewTy; |
| switch (DestWidth) { |
| case 0: |
| S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode, Name->getName()); |
| return; |
| default: |
| S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode, Name->getName()); |
| return; |
| case 8: |
| assert(IntegerMode); |
| if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.SignedCharTy; |
| else |
| NewTy = S.Context.UnsignedCharTy; |
| break; |
| case 16: |
| assert(IntegerMode); |
| if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.ShortTy; |
| else |
| NewTy = S.Context.UnsignedShortTy; |
| break; |
| case 32: |
| if (!IntegerMode) |
| NewTy = S.Context.FloatTy; |
| else if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.IntTy; |
| else |
| NewTy = S.Context.UnsignedIntTy; |
| break; |
| case 64: |
| if (!IntegerMode) |
| NewTy = S.Context.DoubleTy; |
| else if (OldTy->isSignedIntegerType()) |
| NewTy = S.Context.LongLongTy; |
| else |
| NewTy = S.Context.UnsignedLongLongTy; |
| break; |
| } |
| |
| if (!OldTy->getAsBuiltinType()) |
| S.Diag(Attr.getLoc(), diag::err_mode_not_primitive); |
| else if (!(IntegerMode && OldTy->isIntegerType()) && |
| !(!IntegerMode && OldTy->isFloatingType())) { |
| S.Diag(Attr.getLoc(), diag::err_mode_wrong_type); |
| } |
| |
| // Install the new type. |
| if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D)) |
| TD->setUnderlyingType(NewTy); |
| else |
| cast<ValueDecl>(D)->setType(NewTy); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top Level Sema Entry Points |
| //===----------------------------------------------------------------------===// |
| |
| /// HandleDeclAttribute - Apply the specific attribute to the specified decl if |
| /// the attribute applies to decls. If the attribute is a type attribute, just |
| /// silently ignore it. |
| static void ProcessDeclAttribute(Decl *D, const AttributeList &Attr, Sema &S) { |
| switch (Attr.getKind()) { |
| case AttributeList::AT_IBOutlet: HandleIBOutletAttr (D, Attr, S); break; |
| case AttributeList::AT_address_space: |
| // Ignore this, this is a type attribute, handled by ProcessTypeAttributes. |
| break; |
| case AttributeList::AT_alias: HandleAliasAttr (D, Attr, S); break; |
| case AttributeList::AT_aligned: HandleAlignedAttr (D, Attr, S); break; |
| case AttributeList::AT_annotate: HandleAnnotateAttr (D, Attr, S); break; |
| case AttributeList::AT_constructor: HandleConstructorAttr(D, Attr, S); break; |
| case AttributeList::AT_deprecated: HandleDeprecatedAttr(D, Attr, S); break; |
| case AttributeList::AT_destructor: HandleDestructorAttr(D, Attr, S); break; |
| case AttributeList::AT_dllexport: HandleDLLExportAttr (D, Attr, S); break; |
| case AttributeList::AT_dllimport: HandleDLLImportAttr (D, Attr, S); break; |
| case AttributeList::AT_ext_vector_type: |
| HandleExtVectorTypeAttr(D, Attr, S); |
| break; |
| case AttributeList::AT_fastcall: HandleFastCallAttr (D, Attr, S); break; |
| case AttributeList::AT_format: HandleFormatAttr (D, Attr, S); break; |
| case AttributeList::AT_mode: HandleModeAttr (D, Attr, S); break; |
| case AttributeList::AT_nonnull: HandleNonNullAttr (D, Attr, S); break; |
| case AttributeList::AT_noreturn: HandleNoReturnAttr (D, Attr, S); break; |
| case AttributeList::AT_nothrow: HandleNothrowAttr (D, Attr, S); break; |
| case AttributeList::AT_packed: HandlePackedAttr (D, Attr, S); break; |
| case AttributeList::AT_stdcall: HandleStdCallAttr (D, Attr, S); break; |
| case AttributeList::AT_unused: HandleUnusedAttr (D, Attr, S); break; |
| case AttributeList::AT_vector_size: HandleVectorSizeAttr(D, Attr, S); break; |
| case AttributeList::AT_visibility: HandleVisibilityAttr(D, Attr, S); break; |
| case AttributeList::AT_weak: HandleWeakAttr (D, Attr, S); break; |
| case AttributeList::AT_transparent_union: |
| HandleTransparentUnionAttr(D, Attr, S); |
| break; |
| case AttributeList::AT_objc_gc: HandleObjCGCAttr (D, Attr, S); break; |
| default: |
| #if 0 |
| // TODO: when we have the full set of attributes, warn about unknown ones. |
| S.Diag(Attr->getLoc(), diag::warn_attribute_ignored, |
| Attr->getName()->getName()); |
| #endif |
| break; |
| } |
| } |
| |
| /// ProcessDeclAttributeList - Apply all the decl attributes in the specified |
| /// attribute list to the specified decl, ignoring any type attributes. |
| void Sema::ProcessDeclAttributeList(Decl *D, const AttributeList *AttrList) { |
| while (AttrList) { |
| ProcessDeclAttribute(D, *AttrList, *this); |
| AttrList = AttrList->getNext(); |
| } |
| } |
| |
| |
| /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
| /// it, apply them to D. This is a bit tricky because PD can have attributes |
| /// specified in many different places, and we need to find and apply them all. |
| void Sema::ProcessDeclAttributes(Decl *D, const Declarator &PD) { |
| // Apply decl attributes from the DeclSpec if present. |
| if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes()) |
| ProcessDeclAttributeList(D, Attrs); |
| |
| // Walk the declarator structure, applying decl attributes that were in a type |
| // position to the decl itself. This handles cases like: |
| // int *__attr__(x)** D; |
| // when X is a decl attribute. |
| for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) |
| if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs()) |
| ProcessDeclAttributeList(D, Attrs); |
| |
| // Finally, apply any attributes on the decl itself. |
| if (const AttributeList *Attrs = PD.getAttributes()) |
| ProcessDeclAttributeList(D, Attrs); |
| } |
| |