| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Standard Promotions and Conversions |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| void Sema::DefaultFunctionArrayConversion(Expr *&E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (const ReferenceType *ref = Ty->getAsReferenceType()) { |
| ImpCastExprToType(E, ref->getPointeeType()); // C++ [expr] |
| Ty = E->getType(); |
| } |
| if (Ty->isFunctionType()) |
| ImpCastExprToType(E, Context.getPointerType(Ty)); |
| else if (Ty->isArrayType()) { |
| // In C90 mode, arrays only promote to pointers if the array expression is |
| // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
| // type 'array of type' is converted to an expression that has type 'pointer |
| // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
| // that has type 'array of type' ...". The relevant change is "an lvalue" |
| // (C90) to "an expression" (C99). |
| if (getLangOptions().C99 || E->isLvalue(Context) == Expr::LV_Valid) |
| ImpCastExprToType(E, Context.getArrayDecayedType(Ty)); |
| } |
| } |
| |
| /// UsualUnaryConversions - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes surpressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| Expr *Sema::UsualUnaryConversions(Expr *&Expr) { |
| QualType Ty = Expr->getType(); |
| assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); |
| |
| if (const ReferenceType *Ref = Ty->getAsReferenceType()) { |
| ImpCastExprToType(Expr, Ref->getPointeeType()); // C++ [expr] |
| Ty = Expr->getType(); |
| } |
| if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2 |
| ImpCastExprToType(Expr, Context.IntTy); |
| else |
| DefaultFunctionArrayConversion(Expr); |
| |
| return Expr; |
| } |
| |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
| /// do not have a prototype. Arguments that have type float are promoted to |
| /// double. All other argument types are converted by UsualUnaryConversions(). |
| void Sema::DefaultArgumentPromotion(Expr *&Expr) { |
| QualType Ty = Expr->getType(); |
| assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); |
| |
| // If this is a 'float' (CVR qualified or typedef) promote to double. |
| if (const BuiltinType *BT = Ty->getAsBuiltinType()) |
| if (BT->getKind() == BuiltinType::Float) |
| return ImpCastExprToType(Expr, Context.DoubleTy); |
| |
| UsualUnaryConversions(Expr); |
| } |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| /// FIXME: verify the conversion rules for "complex int" are consistent with |
| /// GCC. |
| QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr, |
| bool isCompAssign) { |
| if (!isCompAssign) { |
| UsualUnaryConversions(lhsExpr); |
| UsualUnaryConversions(rhsExpr); |
| } |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType lhs = |
| Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType(); |
| QualType rhs = |
| Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (lhs == rhs) |
| return lhs; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!lhs->isArithmeticType() || !rhs->isArithmeticType()) |
| return lhs; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (lhs->isComplexType() || rhs->isComplexType()) { |
| // if we have an integer operand, the result is the complex type. |
| if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { |
| // convert the rhs to the lhs complex type. |
| if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { |
| // convert the lhs to the rhs complex type. |
| if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); |
| return rhs; |
| } |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| int result = Context.getFloatingTypeOrder(lhs, rhs); |
| |
| if (result > 0) { // The left side is bigger, convert rhs. |
| rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs); |
| if (!isCompAssign) |
| ImpCastExprToType(rhsExpr, rhs); |
| } else if (result < 0) { // The right side is bigger, convert lhs. |
| lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs); |
| if (!isCompAssign) |
| ImpCastExprToType(lhsExpr, lhs); |
| } |
| // At this point, lhs and rhs have the same rank/size. Now, make sure the |
| // domains match. This is a requirement for our implementation, C99 |
| // does not require this promotion. |
| if (lhs != rhs) { // Domains don't match, we have complex/float mix. |
| if (lhs->isRealFloatingType()) { // handle "double, _Complex double". |
| if (!isCompAssign) |
| ImpCastExprToType(lhsExpr, rhs); |
| return rhs; |
| } else { // handle "_Complex double, double". |
| if (!isCompAssign) |
| ImpCastExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| } |
| return lhs; // The domain/size match exactly. |
| } |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) { |
| // if we have an integer operand, the result is the real floating type. |
| if (rhs->isIntegerType() || rhs->isComplexIntegerType()) { |
| // convert rhs to the lhs floating point type. |
| if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (lhs->isIntegerType() || lhs->isComplexIntegerType()) { |
| // convert lhs to the rhs floating point type. |
| if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); |
| return rhs; |
| } |
| // We have two real floating types, float/complex combos were handled above. |
| // Convert the smaller operand to the bigger result. |
| int result = Context.getFloatingTypeOrder(lhs, rhs); |
| |
| if (result > 0) { // convert the rhs |
| if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (result < 0) { // convert the lhs |
| if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); // convert the lhs |
| return rhs; |
| } |
| assert(0 && "Sema::UsualArithmeticConversions(): illegal float comparison"); |
| } |
| if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) { |
| // Handle GCC complex int extension. |
| const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType(); |
| const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType(); |
| |
| if (lhsComplexInt && rhsComplexInt) { |
| if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(), |
| rhsComplexInt->getElementType()) >= 0) { |
| // convert the rhs |
| if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); |
| return lhs; |
| } |
| if (!isCompAssign) |
| ImpCastExprToType(lhsExpr, rhs); // convert the lhs |
| return rhs; |
| } else if (lhsComplexInt && rhs->isIntegerType()) { |
| // convert the rhs to the lhs complex type. |
| if (!isCompAssign) ImpCastExprToType(rhsExpr, lhs); |
| return lhs; |
| } else if (rhsComplexInt && lhs->isIntegerType()) { |
| // convert the lhs to the rhs complex type. |
| if (!isCompAssign) ImpCastExprToType(lhsExpr, rhs); |
| return rhs; |
| } |
| } |
| // Finally, we have two differing integer types. |
| // The rules for this case are in C99 6.3.1.8 |
| int compare = Context.getIntegerTypeOrder(lhs, rhs); |
| bool lhsSigned = lhs->isSignedIntegerType(), |
| rhsSigned = rhs->isSignedIntegerType(); |
| QualType destType; |
| if (lhsSigned == rhsSigned) { |
| // Same signedness; use the higher-ranked type |
| destType = compare >= 0 ? lhs : rhs; |
| } else if (compare != (lhsSigned ? 1 : -1)) { |
| // The unsigned type has greater than or equal rank to the |
| // signed type, so use the unsigned type |
| destType = lhsSigned ? rhs : lhs; |
| } else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) { |
| // The two types are different widths; if we are here, that |
| // means the signed type is larger than the unsigned type, so |
| // use the signed type. |
| destType = lhsSigned ? lhs : rhs; |
| } else { |
| // The signed type is higher-ranked than the unsigned type, |
| // but isn't actually any bigger (like unsigned int and long |
| // on most 32-bit systems). Use the unsigned type corresponding |
| // to the signed type. |
| destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs); |
| } |
| if (!isCompAssign) { |
| ImpCastExprToType(lhsExpr, destType); |
| ImpCastExprToType(rhsExpr, destType); |
| } |
| return destType; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic Analysis for various Expression Types |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| Action::ExprResult |
| Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) { |
| assert(NumStringToks && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target); |
| if (Literal.hadError) |
| return ExprResult(true); |
| |
| llvm::SmallVector<SourceLocation, 4> StringTokLocs; |
| for (unsigned i = 0; i != NumStringToks; ++i) |
| StringTokLocs.push_back(StringToks[i].getLocation()); |
| |
| // Verify that pascal strings aren't too large. |
| if (Literal.Pascal && Literal.GetStringLength() > 256) |
| return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long, |
| SourceRange(StringToks[0].getLocation(), |
| StringToks[NumStringToks-1].getLocation())); |
| |
| QualType StrTy = Context.CharTy; |
| if (Literal.AnyWide) StrTy = Context.getWCharType(); |
| if (Literal.Pascal) StrTy = Context.UnsignedCharTy; |
| |
| // Get an array type for the string, according to C99 6.4.5. This includes |
| // the nul terminator character as well as the string length for pascal |
| // strings. |
| StrTy = Context.getConstantArrayType(StrTy, |
| llvm::APInt(32, Literal.GetStringLength()+1), |
| ArrayType::Normal, 0); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| return new StringLiteral(Literal.GetString(), Literal.GetStringLength(), |
| Literal.AnyWide, StrTy, |
| StringToks[0].getLocation(), |
| StringToks[NumStringToks-1].getLocation()); |
| } |
| |
| |
| /// ActOnIdentifierExpr - The parser read an identifier in expression context, |
| /// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this |
| /// identifier is used in a function call context. |
| Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc, |
| IdentifierInfo &II, |
| bool HasTrailingLParen) { |
| // Could be enum-constant, value decl, instance variable, etc. |
| Decl *D = LookupDecl(&II, Decl::IDNS_Ordinary, S); |
| |
| // If this reference is in an Objective-C method, then ivar lookup happens as |
| // well. |
| if (getCurMethodDecl()) { |
| ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D); |
| // There are two cases to handle here. 1) scoped lookup could have failed, |
| // in which case we should look for an ivar. 2) scoped lookup could have |
| // found a decl, but that decl is outside the current method (i.e. a global |
| // variable). In these two cases, we do a lookup for an ivar with this |
| // name, if the lookup suceeds, we replace it our current decl. |
| if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) { |
| ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface(); |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(&II)) { |
| // FIXME: This should use a new expr for a direct reference, don't turn |
| // this into Self->ivar, just return a BareIVarExpr or something. |
| IdentifierInfo &II = Context.Idents.get("self"); |
| ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false); |
| return new ObjCIvarRefExpr(IV, IV->getType(), Loc, |
| static_cast<Expr*>(SelfExpr.Val), true, true); |
| } |
| } |
| // Needed to implement property "super.method" notation. |
| if (SD == 0 && &II == SuperID) { |
| QualType T = Context.getPointerType(Context.getObjCInterfaceType( |
| getCurMethodDecl()->getClassInterface())); |
| return new PredefinedExpr(Loc, T, PredefinedExpr::ObjCSuper); |
| } |
| } |
| |
| if (D == 0) { |
| // Otherwise, this could be an implicitly declared function reference (legal |
| // in C90, extension in C99). |
| if (HasTrailingLParen && |
| !getLangOptions().CPlusPlus) // Not in C++. |
| D = ImplicitlyDefineFunction(Loc, II, S); |
| else { |
| // If this name wasn't predeclared and if this is not a function call, |
| // diagnose the problem. |
| return Diag(Loc, diag::err_undeclared_var_use, II.getName()); |
| } |
| } |
| |
| if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) { |
| // check if referencing an identifier with __attribute__((deprecated)). |
| if (VD->getAttr<DeprecatedAttr>()) |
| Diag(Loc, diag::warn_deprecated, VD->getName()); |
| |
| // Only create DeclRefExpr's for valid Decl's. |
| if (VD->isInvalidDecl()) |
| return true; |
| return new DeclRefExpr(VD, VD->getType(), Loc); |
| } |
| |
| if (CXXFieldDecl *FD = dyn_cast<CXXFieldDecl>(D)) { |
| if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) { |
| if (MD->isStatic()) |
| // "invalid use of member 'x' in static member function" |
| return Diag(Loc, diag::err_invalid_member_use_in_static_method, |
| FD->getName()); |
| if (cast<CXXRecordDecl>(MD->getParent()) != FD->getParent()) |
| // "invalid use of nonstatic data member 'x'" |
| return Diag(Loc, diag::err_invalid_non_static_member_use, |
| FD->getName()); |
| |
| if (FD->isInvalidDecl()) |
| return true; |
| |
| // FIXME: Use DeclRefExpr or a new Expr for a direct CXXField reference. |
| ExprResult ThisExpr = ActOnCXXThis(SourceLocation()); |
| return new MemberExpr(static_cast<Expr*>(ThisExpr.Val), |
| true, FD, Loc, FD->getType()); |
| } |
| |
| return Diag(Loc, diag::err_invalid_non_static_member_use, FD->getName()); |
| } |
| |
| if (isa<TypedefDecl>(D)) |
| return Diag(Loc, diag::err_unexpected_typedef, II.getName()); |
| if (isa<ObjCInterfaceDecl>(D)) |
| return Diag(Loc, diag::err_unexpected_interface, II.getName()); |
| if (isa<NamespaceDecl>(D)) |
| return Diag(Loc, diag::err_unexpected_namespace, II.getName()); |
| |
| assert(0 && "Invalid decl"); |
| abort(); |
| } |
| |
| Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, |
| tok::TokenKind Kind) { |
| PredefinedExpr::IdentType IT; |
| |
| switch (Kind) { |
| default: assert(0 && "Unknown simple primary expr!"); |
| case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
| case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break; |
| case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break; |
| } |
| |
| // Verify that this is in a function context. |
| if (getCurFunctionDecl() == 0 && getCurMethodDecl() == 0) |
| return Diag(Loc, diag::err_predef_outside_function); |
| |
| // Pre-defined identifiers are of type char[x], where x is the length of the |
| // string. |
| unsigned Length; |
| if (getCurFunctionDecl()) |
| Length = getCurFunctionDecl()->getIdentifier()->getLength(); |
| else |
| Length = getCurMethodDecl()->getSynthesizedMethodSize(); |
| |
| llvm::APInt LengthI(32, Length + 1); |
| QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0); |
| return new PredefinedExpr(Loc, ResTy, IT); |
| } |
| |
| Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) { |
| llvm::SmallString<16> CharBuffer; |
| CharBuffer.resize(Tok.getLength()); |
| const char *ThisTokBegin = &CharBuffer[0]; |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); |
| |
| CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError()) |
| return ExprResult(true); |
| |
| QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy; |
| |
| return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type, |
| Tok.getLocation()); |
| } |
| |
| Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) { |
| // fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or type suffix. |
| if (Tok.getLength() == 1) { |
| const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation()); |
| |
| unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy)); |
| return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'), |
| Context.IntTy, |
| Tok.getLocation())); |
| } |
| llvm::SmallString<512> IntegerBuffer; |
| IntegerBuffer.resize(Tok.getLength()); |
| const char *ThisTokBegin = &IntegerBuffer[0]; |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin); |
| NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength, |
| Tok.getLocation(), PP); |
| if (Literal.hadError) |
| return ExprResult(true); |
| |
| Expr *Res; |
| |
| if (Literal.isFloatingLiteral()) { |
| QualType Ty; |
| if (Literal.isFloat) |
| Ty = Context.FloatTy; |
| else if (!Literal.isLong) |
| Ty = Context.DoubleTy; |
| else |
| Ty = Context.LongDoubleTy; |
| |
| const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty); |
| |
| // isExact will be set by GetFloatValue(). |
| bool isExact = false; |
| Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact, |
| Ty, Tok.getLocation()); |
| |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprResult(true); |
| } else { |
| QualType Ty; |
| |
| // long long is a C99 feature. |
| if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x && |
| Literal.isLongLong) |
| Diag(Tok.getLocation(), diag::ext_longlong); |
| |
| // Get the value in the widest-possible width. |
| llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, warn and force to ull. |
| Diag(Tok.getLocation(), diag::warn_integer_too_large); |
| Ty = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && |
| "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| unsigned Width = 0; |
| if (!Literal.isLong && !Literal.isLongLong) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.Target.getIntWidth(); |
| |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| Ty = Context.IntTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedIntTy; |
| Width = IntSize; |
| } |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (Ty.isNull() && !Literal.isLongLong) { |
| unsigned LongSize = Context.Target.getLongWidth(); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| Ty = Context.LongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongTy; |
| Width = LongSize; |
| } |
| } |
| |
| // Finally, check long long if needed. |
| if (Ty.isNull()) { |
| unsigned LongLongSize = Context.Target.getLongLongWidth(); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0) |
| Ty = Context.LongLongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongLongTy; |
| Width = LongLongSize; |
| } |
| } |
| |
| // If we still couldn't decide a type, we probably have something that |
| // does not fit in a signed long long, but has no U suffix. |
| if (Ty.isNull()) { |
| Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed); |
| Ty = Context.UnsignedLongLongTy; |
| Width = Context.Target.getLongLongWidth(); |
| } |
| |
| if (ResultVal.getBitWidth() != Width) |
| ResultVal.trunc(Width); |
| } |
| |
| Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) |
| Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType())); |
| |
| return Res; |
| } |
| |
| Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, |
| ExprTy *Val) { |
| Expr *E = (Expr *)Val; |
| assert((E != 0) && "ActOnParenExpr() missing expr"); |
| return new ParenExpr(L, R, E); |
| } |
| |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// See C99 6.3.2.1p[2-4] for more details. |
| QualType Sema::CheckSizeOfAlignOfOperand(QualType exprType, |
| SourceLocation OpLoc, |
| const SourceRange &ExprRange, |
| bool isSizeof) { |
| // C99 6.5.3.4p1: |
| if (isa<FunctionType>(exprType) && isSizeof) |
| // alignof(function) is allowed. |
| Diag(OpLoc, diag::ext_sizeof_function_type, ExprRange); |
| else if (exprType->isVoidType()) |
| Diag(OpLoc, diag::ext_sizeof_void_type, isSizeof ? "sizeof" : "__alignof", |
| ExprRange); |
| else if (exprType->isIncompleteType()) { |
| Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type : |
| diag::err_alignof_incomplete_type, |
| exprType.getAsString(), ExprRange); |
| return QualType(); // error |
| } |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return Context.getSizeType(); |
| } |
| |
| Action::ExprResult Sema:: |
| ActOnSizeOfAlignOfTypeExpr(SourceLocation OpLoc, bool isSizeof, |
| SourceLocation LPLoc, TypeTy *Ty, |
| SourceLocation RPLoc) { |
| // If error parsing type, ignore. |
| if (Ty == 0) return true; |
| |
| // Verify that this is a valid expression. |
| QualType ArgTy = QualType::getFromOpaquePtr(Ty); |
| |
| QualType resultType = |
| CheckSizeOfAlignOfOperand(ArgTy, OpLoc, SourceRange(LPLoc, RPLoc),isSizeof); |
| |
| if (resultType.isNull()) |
| return true; |
| return new SizeOfAlignOfTypeExpr(isSizeof, ArgTy, resultType, OpLoc, RPLoc); |
| } |
| |
| QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) { |
| DefaultFunctionArrayConversion(V); |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V->getType()->getAsComplexType()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V->getType()->isArithmeticType()) |
| return V->getType(); |
| |
| // Reject anything else. |
| Diag(Loc, diag::err_realimag_invalid_type, V->getType().getAsString()); |
| return QualType(); |
| } |
| |
| |
| |
| Action::ExprResult Sema::ActOnPostfixUnaryOp(SourceLocation OpLoc, |
| tok::TokenKind Kind, |
| ExprTy *Input) { |
| UnaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UnaryOperator::PostInc; break; |
| case tok::minusminus: Opc = UnaryOperator::PostDec; break; |
| } |
| QualType result = CheckIncrementDecrementOperand((Expr *)Input, OpLoc); |
| if (result.isNull()) |
| return true; |
| return new UnaryOperator((Expr *)Input, Opc, result, OpLoc); |
| } |
| |
| Action::ExprResult Sema:: |
| ActOnArraySubscriptExpr(ExprTy *Base, SourceLocation LLoc, |
| ExprTy *Idx, SourceLocation RLoc) { |
| Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx); |
| |
| // Perform default conversions. |
| DefaultFunctionArrayConversion(LHSExp); |
| DefaultFunctionArrayConversion(RHSExp); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (const PointerType *PTy = LHSTy->getAsPointerType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| // FIXME: need to deal with const... |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAsPointerType()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| // FIXME: need to deal with const... |
| ResultType = PTy->getPointeeType(); |
| } else if (const VectorType *VTy = LHSTy->getAsVectorType()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| |
| // Component access limited to variables (reject vec4.rg[1]). |
| if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) && |
| !isa<ExtVectorElementExpr>(BaseExpr)) |
| return Diag(LLoc, diag::err_ext_vector_component_access, |
| SourceRange(LLoc, RLoc)); |
| // FIXME: need to deal with const... |
| ResultType = VTy->getElementType(); |
| } else { |
| return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value, |
| RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType()) |
| return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript, |
| IndexExpr->getSourceRange()); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice, |
| // the following check catches trying to index a pointer to a function (e.g. |
| // void (*)(int)) and pointers to incomplete types. Functions are not |
| // objects in C99. |
| if (!ResultType->isObjectType()) |
| return Diag(BaseExpr->getLocStart(), |
| diag::err_typecheck_subscript_not_object, |
| BaseExpr->getType().getAsString(), BaseExpr->getSourceRange()); |
| |
| return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc); |
| } |
| |
| QualType Sema:: |
| CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc, |
| IdentifierInfo &CompName, SourceLocation CompLoc) { |
| const ExtVectorType *vecType = baseType->getAsExtVectorType(); |
| |
| // This flag determines whether or not the component is to be treated as a |
| // special name, or a regular GLSL-style component access. |
| bool SpecialComponent = false; |
| |
| // The vector accessor can't exceed the number of elements. |
| const char *compStr = CompName.getName(); |
| if (strlen(compStr) > vecType->getNumElements()) { |
| Diag(OpLoc, diag::err_ext_vector_component_exceeds_length, |
| baseType.getAsString(), SourceRange(CompLoc)); |
| return QualType(); |
| } |
| |
| // Check that we've found one of the special components, or that the component |
| // names must come from the same set. |
| if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") || |
| !strcmp(compStr, "e") || !strcmp(compStr, "o")) { |
| SpecialComponent = true; |
| } else if (vecType->getPointAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1); |
| } else if (vecType->getColorAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1); |
| } else if (vecType->getTextureAccessorIdx(*compStr) != -1) { |
| do |
| compStr++; |
| while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1); |
| } |
| |
| if (!SpecialComponent && *compStr) { |
| // We didn't get to the end of the string. This means the component names |
| // didn't come from the same set *or* we encountered an illegal name. |
| Diag(OpLoc, diag::err_ext_vector_component_name_illegal, |
| std::string(compStr,compStr+1), SourceRange(CompLoc)); |
| return QualType(); |
| } |
| // Each component accessor can't exceed the vector type. |
| compStr = CompName.getName(); |
| while (*compStr) { |
| if (vecType->isAccessorWithinNumElements(*compStr)) |
| compStr++; |
| else |
| break; |
| } |
| if (!SpecialComponent && *compStr) { |
| // We didn't get to the end of the string. This means a component accessor |
| // exceeds the number of elements in the vector. |
| Diag(OpLoc, diag::err_ext_vector_component_exceeds_length, |
| baseType.getAsString(), SourceRange(CompLoc)); |
| return QualType(); |
| } |
| |
| // If we have a special component name, verify that the current vector length |
| // is an even number, since all special component names return exactly half |
| // the elements. |
| if (SpecialComponent && (vecType->getNumElements() & 1U)) { |
| return QualType(); |
| } |
| |
| // The component accessor looks fine - now we need to compute the actual type. |
| // The vector type is implied by the component accessor. For example, |
| // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc. |
| // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2. |
| unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2 |
| : strlen(CompName.getName()); |
| if (CompSize == 1) |
| return vecType->getElementType(); |
| |
| QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize); |
| // Now look up the TypeDefDecl from the vector type. Without this, |
| // diagostics look bad. We want extended vector types to appear built-in. |
| for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) { |
| if (ExtVectorDecls[i]->getUnderlyingType() == VT) |
| return Context.getTypedefType(ExtVectorDecls[i]); |
| } |
| return VT; // should never get here (a typedef type should always be found). |
| } |
| |
| Action::ExprResult Sema:: |
| ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc, |
| tok::TokenKind OpKind, SourceLocation MemberLoc, |
| IdentifierInfo &Member) { |
| Expr *BaseExpr = static_cast<Expr *>(Base); |
| assert(BaseExpr && "no record expression"); |
| |
| // Perform default conversions. |
| DefaultFunctionArrayConversion(BaseExpr); |
| |
| QualType BaseType = BaseExpr->getType(); |
| assert(!BaseType.isNull() && "no type for member expression"); |
| |
| // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr |
| // must have pointer type, and the accessed type is the pointee. |
| if (OpKind == tok::arrow) { |
| if (const PointerType *PT = BaseType->getAsPointerType()) |
| BaseType = PT->getPointeeType(); |
| else |
| return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow, |
| BaseType.getAsString(), BaseExpr->getSourceRange()); |
| } |
| |
| // Handle field access to simple records. This also handles access to fields |
| // of the ObjC 'id' struct. |
| if (const RecordType *RTy = BaseType->getAsRecordType()) { |
| RecordDecl *RDecl = RTy->getDecl(); |
| if (RTy->isIncompleteType()) |
| return Diag(OpLoc, diag::err_typecheck_incomplete_tag, RDecl->getName(), |
| BaseExpr->getSourceRange()); |
| // The record definition is complete, now make sure the member is valid. |
| FieldDecl *MemberDecl = RDecl->getMember(&Member); |
| if (!MemberDecl) |
| return Diag(MemberLoc, diag::err_typecheck_no_member, Member.getName(), |
| BaseExpr->getSourceRange()); |
| |
| // Figure out the type of the member; see C99 6.5.2.3p3 |
| // FIXME: Handle address space modifiers |
| QualType MemberType = MemberDecl->getType(); |
| unsigned combinedQualifiers = |
| MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers(); |
| MemberType = MemberType.getQualifiedType(combinedQualifiers); |
| |
| return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl, |
| MemberLoc, MemberType); |
| } |
| |
| // Handle access to Objective-C instance variables, such as "Obj->ivar" and |
| // (*Obj).ivar. |
| if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) { |
| if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) |
| return new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc, BaseExpr, |
| OpKind == tok::arrow); |
| return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar, |
| IFTy->getDecl()->getName(), Member.getName(), |
| BaseExpr->getSourceRange()); |
| } |
| |
| // Handle Objective-C property access, which is "Obj.property" where Obj is a |
| // pointer to a (potentially qualified) interface type. |
| const PointerType *PTy; |
| const ObjCInterfaceType *IFTy; |
| if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) && |
| (IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) { |
| ObjCInterfaceDecl *IFace = IFTy->getDecl(); |
| |
| // FIXME: The logic for looking up nullary and unary selectors should be |
| // shared with the code in ActOnInstanceMessage. |
| |
| // Before we look for explicit property declarations, we check for |
| // nullary methods (which allow '.' notation). |
| Selector Sel = PP.getSelectorTable().getNullarySelector(&Member); |
| if (ObjCMethodDecl *MD = IFace->lookupInstanceMethod(Sel)) |
| return new ObjCPropertyRefExpr(MD, MD->getResultType(), |
| MemberLoc, BaseExpr); |
| |
| // If this reference is in an @implementation, check for 'private' methods. |
| if (ObjCMethodDecl *CurMeth = getCurMethodDecl()) { |
| if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface()) |
| if (ObjCImplementationDecl *ImpDecl = |
| ObjCImplementations[ClassDecl->getIdentifier()]) |
| if (ObjCMethodDecl *MD = ImpDecl->getInstanceMethod(Sel)) |
| return new ObjCPropertyRefExpr(MD, MD->getResultType(), |
| MemberLoc, BaseExpr); |
| } |
| |
| // FIXME: Need to deal with setter methods that take 1 argument. E.g.: |
| // @interface NSBundle : NSObject {} |
| // - (NSString *)bundlePath; |
| // - (void)setBundlePath:(NSString *)x; |
| // @end |
| // void someMethod() { frameworkBundle.bundlePath = 0; } |
| // |
| if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) |
| return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr); |
| |
| // Lastly, check protocols on qualified interfaces. |
| for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(), |
| E = IFTy->qual_end(); I != E; ++I) |
| if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) |
| return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr); |
| } |
| |
| // Handle 'field access' to vectors, such as 'V.xx'. |
| if (BaseType->isExtVectorType() && OpKind == tok::period) { |
| // Component access limited to variables (reject vec4.rg.g). |
| if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) && |
| !isa<ExtVectorElementExpr>(BaseExpr)) |
| return Diag(MemberLoc, diag::err_ext_vector_component_access, |
| BaseExpr->getSourceRange()); |
| QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc); |
| if (ret.isNull()) |
| return true; |
| return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc); |
| } |
| |
| return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union, |
| BaseType.getAsString(), BaseExpr->getSourceRange()); |
| } |
| |
| /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| Action::ExprResult Sema:: |
| ActOnCallExpr(ExprTy *fn, SourceLocation LParenLoc, |
| ExprTy **args, unsigned NumArgs, |
| SourceLocation *CommaLocs, SourceLocation RParenLoc) { |
| Expr *Fn = static_cast<Expr *>(fn); |
| Expr **Args = reinterpret_cast<Expr**>(args); |
| assert(Fn && "no function call expression"); |
| FunctionDecl *FDecl = NULL; |
| |
| // Promote the function operand. |
| UsualUnaryConversions(Fn); |
| |
| // If we're directly calling a function, get the declaration for |
| // that function. |
| if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn)) |
| if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr())) |
| FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl()); |
| |
| // Make the call expr early, before semantic checks. This guarantees cleanup |
| // of arguments and function on error. |
| llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs, |
| Context.BoolTy, RParenLoc)); |
| |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall have |
| // type pointer to function". |
| const PointerType *PT = Fn->getType()->getAsPointerType(); |
| if (PT == 0) |
| return Diag(LParenLoc, diag::err_typecheck_call_not_function, |
| Fn->getSourceRange()); |
| const FunctionType *FuncT = PT->getPointeeType()->getAsFunctionType(); |
| if (FuncT == 0) |
| return Diag(LParenLoc, diag::err_typecheck_call_not_function, |
| Fn->getSourceRange()); |
| |
| // We know the result type of the call, set it. |
| TheCall->setType(FuncT->getResultType()); |
| |
| if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) { |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgs; |
| |
| // If too few arguments are available (and we don't have default |
| // arguments for the remaining parameters), don't make the call. |
| if (NumArgs < NumArgsInProto) { |
| if (FDecl && NumArgs >= FDecl->getMinRequiredArguments()) { |
| // Use default arguments for missing arguments |
| NumArgsToCheck = NumArgsInProto; |
| TheCall->setNumArgs(NumArgsInProto); |
| } else |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, |
| Fn->getSourceRange()); |
| } |
| |
| // If too many are passed and not variadic, error on the extras and drop |
| // them. |
| if (NumArgs > NumArgsInProto) { |
| if (!Proto->isVariadic()) { |
| Diag(Args[NumArgsInProto]->getLocStart(), |
| diag::err_typecheck_call_too_many_args, Fn->getSourceRange(), |
| SourceRange(Args[NumArgsInProto]->getLocStart(), |
| Args[NumArgs-1]->getLocEnd())); |
| // This deletes the extra arguments. |
| TheCall->setNumArgs(NumArgsInProto); |
| } |
| NumArgsToCheck = NumArgsInProto; |
| } |
| |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = 0; i != NumArgsToCheck; i++) { |
| QualType ProtoArgType = Proto->getArgType(i); |
| |
| Expr *Arg; |
| if (i < NumArgs) |
| Arg = Args[i]; |
| else |
| Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i)); |
| QualType ArgType = Arg->getType(); |
| |
| // Compute implicit casts from the operand to the formal argument type. |
| AssignConvertType ConvTy = |
| CheckSingleAssignmentConstraints(ProtoArgType, Arg); |
| TheCall->setArg(i, Arg); |
| |
| if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), ProtoArgType, |
| ArgType, Arg, "passing")) |
| return true; |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (Proto->isVariadic()) { |
| // Promote the arguments (C99 6.5.2.2p7). |
| for (unsigned i = NumArgsInProto; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| DefaultArgumentPromotion(Arg); |
| TheCall->setArg(i, Arg); |
| } |
| } |
| } else { |
| assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!"); |
| |
| // Promote the arguments (C99 6.5.2.2p6). |
| for (unsigned i = 0; i != NumArgs; i++) { |
| Expr *Arg = Args[i]; |
| DefaultArgumentPromotion(Arg); |
| TheCall->setArg(i, Arg); |
| } |
| } |
| |
| // Do special checking on direct calls to functions. |
| if (FDecl) |
| return CheckFunctionCall(FDecl, TheCall.take()); |
| |
| return TheCall.take(); |
| } |
| |
| Action::ExprResult Sema:: |
| ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty, |
| SourceLocation RParenLoc, ExprTy *InitExpr) { |
| assert((Ty != 0) && "ActOnCompoundLiteral(): missing type"); |
| QualType literalType = QualType::getFromOpaquePtr(Ty); |
| // FIXME: put back this assert when initializers are worked out. |
| //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression"); |
| Expr *literalExpr = static_cast<Expr*>(InitExpr); |
| |
| if (literalType->isArrayType()) { |
| if (literalType->isVariableArrayType()) |
| return Diag(LParenLoc, |
| diag::err_variable_object_no_init, |
| SourceRange(LParenLoc, |
| literalExpr->getSourceRange().getEnd())); |
| } else if (literalType->isIncompleteType()) { |
| return Diag(LParenLoc, |
| diag::err_typecheck_decl_incomplete_type, |
| literalType.getAsString(), |
| SourceRange(LParenLoc, |
| literalExpr->getSourceRange().getEnd())); |
| } |
| |
| if (CheckInitializerTypes(literalExpr, literalType)) |
| return true; |
| |
| bool isFileScope = !getCurFunctionDecl() && !getCurMethodDecl(); |
| if (isFileScope) { // 6.5.2.5p3 |
| if (CheckForConstantInitializer(literalExpr, literalType)) |
| return true; |
| } |
| return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr, isFileScope); |
| } |
| |
| Action::ExprResult Sema:: |
| ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit, |
| SourceLocation RBraceLoc) { |
| Expr **InitList = reinterpret_cast<Expr**>(initlist); |
| |
| // Semantic analysis for initializers is done by ActOnDeclarator() and |
| // CheckInitializer() - it requires knowledge of the object being intialized. |
| |
| InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc); |
| E->setType(Context.VoidTy); // FIXME: just a place holder for now. |
| return E; |
| } |
| |
| /// CheckCastTypes - Check type constraints for casting between types. |
| bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) { |
| UsualUnaryConversions(castExpr); |
| |
| // C99 6.5.4p2: the cast type needs to be void or scalar and the expression |
| // type needs to be scalar. |
| if (castType->isVoidType()) { |
| // Cast to void allows any expr type. |
| } else if (!castType->isScalarType() && !castType->isVectorType()) { |
| // GCC struct/union extension: allow cast to self. |
| if (Context.getCanonicalType(castType) != |
| Context.getCanonicalType(castExpr->getType()) || |
| (!castType->isStructureType() && !castType->isUnionType())) { |
| // Reject any other conversions to non-scalar types. |
| return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar, |
| castType.getAsString(), castExpr->getSourceRange()); |
| } |
| |
| // accept this, but emit an ext-warn. |
| Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar, |
| castType.getAsString(), castExpr->getSourceRange()); |
| } else if (!castExpr->getType()->isScalarType() && |
| !castExpr->getType()->isVectorType()) { |
| return Diag(castExpr->getLocStart(), |
| diag::err_typecheck_expect_scalar_operand, |
| castExpr->getType().getAsString(),castExpr->getSourceRange()); |
| } else if (castExpr->getType()->isVectorType()) { |
| if (CheckVectorCast(TyR, castExpr->getType(), castType)) |
| return true; |
| } else if (castType->isVectorType()) { |
| if (CheckVectorCast(TyR, castType, castExpr->getType())) |
| return true; |
| } |
| return false; |
| } |
| |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) { |
| assert(VectorTy->isVectorType() && "Not a vector type!"); |
| |
| if (Ty->isVectorType() || Ty->isIntegerType()) { |
| if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty)) |
| return Diag(R.getBegin(), |
| Ty->isVectorType() ? |
| diag::err_invalid_conversion_between_vectors : |
| diag::err_invalid_conversion_between_vector_and_integer, |
| VectorTy.getAsString().c_str(), |
| Ty.getAsString().c_str(), R); |
| } else |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar, |
| VectorTy.getAsString().c_str(), |
| Ty.getAsString().c_str(), R); |
| |
| return false; |
| } |
| |
| Action::ExprResult Sema:: |
| ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty, |
| SourceLocation RParenLoc, ExprTy *Op) { |
| assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr"); |
| |
| Expr *castExpr = static_cast<Expr*>(Op); |
| QualType castType = QualType::getFromOpaquePtr(Ty); |
| |
| if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr)) |
| return true; |
| return new ExplicitCastExpr(castType, castExpr, LParenLoc); |
| } |
| |
| /// Note that lex is not null here, even if this is the gnu "x ?: y" extension. |
| /// In that case, lex = cond. |
| inline QualType Sema::CheckConditionalOperands( // C99 6.5.15 |
| Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) { |
| UsualUnaryConversions(cond); |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| QualType condT = cond->getType(); |
| QualType lexT = lex->getType(); |
| QualType rexT = rex->getType(); |
| |
| // first, check the condition. |
| if (!condT->isScalarType()) { // C99 6.5.15p2 |
| Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar, |
| condT.getAsString()); |
| return QualType(); |
| } |
| |
| // Now check the two expressions. |
| |
| // If both operands have arithmetic type, do the usual arithmetic conversions |
| // to find a common type: C99 6.5.15p3,5. |
| if (lexT->isArithmeticType() && rexT->isArithmeticType()) { |
| UsualArithmeticConversions(lex, rex); |
| return lex->getType(); |
| } |
| |
| // If both operands are the same structure or union type, the result is that |
| // type. |
| if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = rexT->getAsRecordType()) |
| if (LHSRT->getDecl() == RHSRT->getDecl()) |
| // "If both the operands have structure or union type, the result has |
| // that type." This implies that CV qualifiers are dropped. |
| return lexT.getUnqualifiedType(); |
| } |
| |
| // C99 6.5.15p5: "If both operands have void type, the result has void type." |
| // The following || allows only one side to be void (a GCC-ism). |
| if (lexT->isVoidType() || rexT->isVoidType()) { |
| if (!lexT->isVoidType()) |
| Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void, |
| rex->getSourceRange()); |
| if (!rexT->isVoidType()) |
| Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void, |
| lex->getSourceRange()); |
| ImpCastExprToType(lex, Context.VoidTy); |
| ImpCastExprToType(rex, Context.VoidTy); |
| return Context.VoidTy; |
| } |
| // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has |
| // the type of the other operand." |
| if (lexT->isPointerType() && rex->isNullPointerConstant(Context)) { |
| ImpCastExprToType(rex, lexT); // promote the null to a pointer. |
| return lexT; |
| } |
| if (rexT->isPointerType() && lex->isNullPointerConstant(Context)) { |
| ImpCastExprToType(lex, rexT); // promote the null to a pointer. |
| return rexT; |
| } |
| // Handle the case where both operands are pointers before we handle null |
| // pointer constants in case both operands are null pointer constants. |
| if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6 |
| if (const PointerType *RHSPT = rexT->getAsPointerType()) { |
| // get the "pointed to" types |
| QualType lhptee = LHSPT->getPointeeType(); |
| QualType rhptee = RHSPT->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && |
| rhptee->isIncompleteOrObjectType()) { |
| // Figure out necessary qualifiers (C99 6.5.15p6) |
| QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| ImpCastExprToType(lex, destType); // add qualifiers if necessary |
| ImpCastExprToType(rex, destType); // promote to void* |
| return destType; |
| } |
| if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { |
| QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| ImpCastExprToType(lex, destType); // add qualifiers if necessary |
| ImpCastExprToType(rex, destType); // promote to void* |
| return destType; |
| } |
| |
| if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) { |
| Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers, |
| lexT.getAsString(), rexT.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType voidPtrTy = Context.getPointerType(Context.VoidTy); |
| ImpCastExprToType(lex, voidPtrTy); |
| ImpCastExprToType(rex, voidPtrTy); |
| return voidPtrTy; |
| } |
| // The pointer types are compatible. |
| // C99 6.5.15p6: If both operands are pointers to compatible types *or* to |
| // differently qualified versions of compatible types, the result type is |
| // a pointer to an appropriately qualified version of the *composite* |
| // type. |
| // FIXME: Need to calculate the composite type. |
| // FIXME: Need to add qualifiers |
| QualType compositeType = lexT; |
| ImpCastExprToType(lex, compositeType); |
| ImpCastExprToType(rex, compositeType); |
| return compositeType; |
| } |
| } |
| // Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type |
| // evaluates to "struct objc_object *" (and is handled above when comparing |
| // id with statically typed objects). FIXME: Do we need an ImpCastExprToType? |
| if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) { |
| if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true)) |
| return Context.getObjCIdType(); |
| } |
| // Otherwise, the operands are not compatible. |
| Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands, |
| lexT.getAsString(), rexT.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| |
| /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| ExprTy *Cond, ExprTy *LHS, |
| ExprTy *RHS) { |
| Expr *CondExpr = (Expr *) Cond; |
| Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS; |
| |
| // If this is the gnu "x ?: y" extension, analyze the types as though the LHS |
| // was the condition. |
| bool isLHSNull = LHSExpr == 0; |
| if (isLHSNull) |
| LHSExpr = CondExpr; |
| |
| QualType result = CheckConditionalOperands(CondExpr, LHSExpr, |
| RHSExpr, QuestionLoc); |
| if (result.isNull()) |
| return true; |
| return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr, |
| RHSExpr, result); |
| } |
| |
| |
| // CheckPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| Sema::AssignConvertType |
| Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) { |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = lhsType->getAsPointerType()->getPointeeType(); |
| rhptee = rhsType->getAsPointerType()->getPointeeType(); |
| |
| // make sure we operate on the canonical type |
| lhptee = Context.getCanonicalType(lhptee); |
| rhptee = Context.getCanonicalType(rhptee); |
| |
| AssignConvertType ConvTy = Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| // FIXME: Handle ASQualType |
| if ((lhptee.getCVRQualifiers() & rhptee.getCVRQualifiers()) != |
| rhptee.getCVRQualifiers()) |
| ConvTy = CompatiblePointerDiscardsQualifiers; |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee->isVoidType()) { |
| if (rhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(rhptee->isFunctionType()); |
| return FunctionVoidPointer; |
| } |
| |
| if (rhptee->isVoidType()) { |
| if (lhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(lhptee->isFunctionType()); |
| return FunctionVoidPointer; |
| } |
| |
| // Check for ObjC interfaces |
| const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType(); |
| if (LHSIface && RHSIface && |
| Context.canAssignObjCInterfaces(LHSIface, RHSIface)) |
| return ConvTy; |
| |
| // ID acts sort of like void* for ObjC interfaces |
| if (LHSIface && Context.isObjCIdType(rhptee)) |
| return ConvTy; |
| if (RHSIface && Context.isObjCIdType(lhptee)) |
| return ConvTy; |
| |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(), |
| rhptee.getUnqualifiedType())) |
| return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers |
| return ConvTy; |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) { |
| // Get canonical types. We're not formatting these types, just comparing |
| // them. |
| lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType(); |
| rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType(); |
| |
| if (lhsType == rhsType) |
| return Compatible; // Common case: fast path an exact match. |
| |
| if (lhsType->isReferenceType() || rhsType->isReferenceType()) { |
| if (Context.typesAreCompatible(lhsType, rhsType)) |
| return Compatible; |
| return Incompatible; |
| } |
| |
| if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) { |
| if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false)) |
| return Compatible; |
| // Relax integer conversions like we do for pointers below. |
| if (rhsType->isIntegerType()) |
| return IntToPointer; |
| if (lhsType->isIntegerType()) |
| return PointerToInt; |
| return Incompatible; |
| } |
| |
| if (lhsType->isVectorType() || rhsType->isVectorType()) { |
| // For ExtVector, allow vector splats; float -> <n x float> |
| if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) |
| if (LV->getElementType() == rhsType) |
| return Compatible; |
| |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a bitcast; |
| // no bits are changed but the result type is different. |
| if (getLangOptions().LaxVectorConversions && |
| lhsType->isVectorType() && rhsType->isVectorType()) { |
| if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType)) |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| if (lhsType->isArithmeticType() && rhsType->isArithmeticType()) |
| return Compatible; |
| |
| if (isa<PointerType>(lhsType)) { |
| if (rhsType->isIntegerType()) |
| return IntToPointer; |
| |
| if (isa<PointerType>(rhsType)) |
| return CheckPointerTypesForAssignment(lhsType, rhsType); |
| return Incompatible; |
| } |
| |
| if (isa<PointerType>(rhsType)) { |
| // C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer. |
| if (lhsType == Context.BoolTy) |
| return Compatible; |
| |
| if (lhsType->isIntegerType()) |
| return PointerToInt; |
| |
| if (isa<PointerType>(lhsType)) |
| return CheckPointerTypesForAssignment(lhsType, rhsType); |
| return Incompatible; |
| } |
| |
| if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) { |
| if (Context.typesAreCompatible(lhsType, rhsType)) |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) { |
| // C99 6.5.16.1p1: the left operand is a pointer and the right is |
| // a null pointer constant. |
| if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType()) |
| && rExpr->isNullPointerConstant(Context)) { |
| ImpCastExprToType(rExpr, lhsType); |
| return Compatible; |
| } |
| // This check seems unnatural, however it is necessary to ensure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary |
| // expressions that surpress this implicit conversion (&, sizeof). |
| // |
| // Suppress this for references: C99 8.5.3p5. FIXME: revisit when references |
| // are better understood. |
| if (!lhsType->isReferenceType()) |
| DefaultFunctionArrayConversion(rExpr); |
| |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(lhsType, rExpr->getType()); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| if (rExpr->getType() != lhsType) |
| ImpCastExprToType(rExpr, lhsType); |
| return result; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) { |
| return CheckAssignmentConstraints(lhsType, rhsType); |
| } |
| |
| QualType Sema::InvalidOperands(SourceLocation loc, Expr *&lex, Expr *&rex) { |
| Diag(loc, diag::err_typecheck_invalid_operands, |
| lex->getType().getAsString(), rex->getType().getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckVectorOperands(SourceLocation loc, Expr *&lex, |
| Expr *&rex) { |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType lhsType = |
| Context.getCanonicalType(lex->getType()).getUnqualifiedType(); |
| QualType rhsType = |
| Context.getCanonicalType(rex->getType()).getUnqualifiedType(); |
| |
| // If the vector types are identical, return. |
| if (lhsType == rhsType) |
| return lhsType; |
| |
| // Handle the case of a vector & extvector type of the same size and element |
| // type. It would be nice if we only had one vector type someday. |
| if (getLangOptions().LaxVectorConversions) |
| if (const VectorType *LV = lhsType->getAsVectorType()) |
| if (const VectorType *RV = rhsType->getAsVectorType()) |
| if (LV->getElementType() == RV->getElementType() && |
| LV->getNumElements() == RV->getNumElements()) |
| return lhsType->isExtVectorType() ? lhsType : rhsType; |
| |
| // If the lhs is an extended vector and the rhs is a scalar of the same type |
| // or a literal, promote the rhs to the vector type. |
| if (const ExtVectorType *V = lhsType->getAsExtVectorType()) { |
| QualType eltType = V->getElementType(); |
| |
| if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) || |
| (eltType->isIntegerType() && isa<IntegerLiteral>(rex)) || |
| (eltType->isFloatingType() && isa<FloatingLiteral>(rex))) { |
| ImpCastExprToType(rex, lhsType); |
| return lhsType; |
| } |
| } |
| |
| // If the rhs is an extended vector and the lhs is a scalar of the same type, |
| // promote the lhs to the vector type. |
| if (const ExtVectorType *V = rhsType->getAsExtVectorType()) { |
| QualType eltType = V->getElementType(); |
| |
| if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) || |
| (eltType->isIntegerType() && isa<IntegerLiteral>(lex)) || |
| (eltType->isFloatingType() && isa<FloatingLiteral>(lex))) { |
| ImpCastExprToType(lex, rhsType); |
| return rhsType; |
| } |
| } |
| |
| // You cannot convert between vector values of different size. |
| Diag(loc, diag::err_typecheck_vector_not_convertable, |
| lex->getType().getAsString(), rex->getType().getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| |
| inline QualType Sema::CheckMultiplyDivideOperands( |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| QualType lhsType = lex->getType(), rhsType = rex->getType(); |
| |
| if (lhsType->isVectorType() || rhsType->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckRemainderOperands( |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| QualType lhsType = lex->getType(), rhsType = rex->getType(); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckAdditionOperands( // C99 6.5.6 |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| |
| // Put any potential pointer into PExp |
| Expr* PExp = lex, *IExp = rex; |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| if (const PointerType* PTy = PExp->getType()->getAsPointerType()) { |
| if (IExp->getType()->isIntegerType()) { |
| // Check for arithmetic on pointers to incomplete types |
| if (!PTy->getPointeeType()->isObjectType()) { |
| if (PTy->getPointeeType()->isVoidType()) { |
| Diag(loc, diag::ext_gnu_void_ptr, |
| lex->getSourceRange(), rex->getSourceRange()); |
| } else { |
| Diag(loc, diag::err_typecheck_arithmetic_incomplete_type, |
| lex->getType().getAsString(), lex->getSourceRange()); |
| return QualType(); |
| } |
| } |
| return PExp->getType(); |
| } |
| } |
| |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex, |
| SourceLocation loc, bool isCompAssign) { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| // Enforce type constraints: C99 6.5.6p3. |
| |
| // Handle the common case first (both operands are arithmetic). |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| return compType; |
| |
| // Either ptr - int or ptr - ptr. |
| if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) { |
| QualType lpointee = LHSPTy->getPointeeType(); |
| |
| // The LHS must be an object type, not incomplete, function, etc. |
| if (!lpointee->isObjectType()) { |
| // Handle the GNU void* extension. |
| if (lpointee->isVoidType()) { |
| Diag(loc, diag::ext_gnu_void_ptr, |
| lex->getSourceRange(), rex->getSourceRange()); |
| } else { |
| Diag(loc, diag::err_typecheck_sub_ptr_object, |
| lex->getType().getAsString(), lex->getSourceRange()); |
| return QualType(); |
| } |
| } |
| |
| // The result type of a pointer-int computation is the pointer type. |
| if (rex->getType()->isIntegerType()) |
| return lex->getType(); |
| |
| // Handle pointer-pointer subtractions. |
| if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) { |
| QualType rpointee = RHSPTy->getPointeeType(); |
| |
| // RHS must be an object type, unless void (GNU). |
| if (!rpointee->isObjectType()) { |
| // Handle the GNU void* extension. |
| if (rpointee->isVoidType()) { |
| if (!lpointee->isVoidType()) |
| Diag(loc, diag::ext_gnu_void_ptr, |
| lex->getSourceRange(), rex->getSourceRange()); |
| } else { |
| Diag(loc, diag::err_typecheck_sub_ptr_object, |
| rex->getType().getAsString(), rex->getSourceRange()); |
| return QualType(); |
| } |
| } |
| |
| // Pointee types must be compatible. |
| if (!Context.typesAreCompatible(lpointee.getUnqualifiedType(), |
| rpointee.getUnqualifiedType())) { |
| Diag(loc, diag::err_typecheck_sub_ptr_compatible, |
| lex->getType().getAsString(), rex->getType().getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| return QualType(); |
| } |
| |
| return Context.getPointerDiffType(); |
| } |
| } |
| |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| // C99 6.5.7 |
| QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation loc, |
| bool isCompAssign) { |
| // C99 6.5.7p2: Each of the operands shall have integer type. |
| if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType()) |
| return InvalidOperands(loc, lex, rex); |
| |
| // Shifts don't perform usual arithmetic conversions, they just do integer |
| // promotions on each operand. C99 6.5.7p3 |
| if (!isCompAssign) |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| |
| // "The type of the result is that of the promoted left operand." |
| return lex->getType(); |
| } |
| |
| static bool areComparableObjCInterfaces(QualType LHS, QualType RHS, |
| ASTContext& Context) { |
| const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType(); |
| const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType(); |
| // ID acts sort of like void* for ObjC interfaces |
| if (LHSIface && Context.isObjCIdType(RHS)) |
| return true; |
| if (RHSIface && Context.isObjCIdType(LHS)) |
| return true; |
| if (!LHSIface || !RHSIface) |
| return false; |
| return Context.canAssignObjCInterfaces(LHSIface, RHSIface) || |
| Context.canAssignObjCInterfaces(RHSIface, LHSIface); |
| } |
| |
| // C99 6.5.8 |
| QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation loc, |
| bool isRelational) { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorCompareOperands(lex, rex, loc, isRelational); |
| |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType()) |
| UsualArithmeticConversions(lex, rex); |
| else { |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| } |
| QualType lType = lex->getType(); |
| QualType rType = rex->getType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| if (!lType->isFloatingType()) { |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) |
| if (DRL->getDecl() == DRR->getDecl()) |
| Diag(loc, diag::warn_selfcomparison); |
| } |
| |
| if (isRelational) { |
| if (lType->isRealType() && rType->isRealType()) |
| return Context.IntTy; |
| } else { |
| // Check for comparisons of floating point operands using != and ==. |
| if (lType->isFloatingType()) { |
| assert (rType->isFloatingType()); |
| CheckFloatComparison(loc,lex,rex); |
| } |
| |
| if (lType->isArithmeticType() && rType->isArithmeticType()) |
| return Context.IntTy; |
| } |
| |
| bool LHSIsNull = lex->isNullPointerConstant(Context); |
| bool RHSIsNull = rex->isNullPointerConstant(Context); |
| |
| // All of the following pointer related warnings are GCC extensions, except |
| // when handling null pointer constants. One day, we can consider making them |
| // errors (when -pedantic-errors is enabled). |
| if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2 |
| QualType LCanPointeeTy = |
| Context.getCanonicalType(lType->getAsPointerType()->getPointeeType()); |
| QualType RCanPointeeTy = |
| Context.getCanonicalType(rType->getAsPointerType()->getPointeeType()); |
| |
| if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2 |
| !LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() && |
| !Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), |
| RCanPointeeTy.getUnqualifiedType()) && |
| !areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) { |
| Diag(loc, diag::ext_typecheck_comparison_of_distinct_pointers, |
| lType.getAsString(), rType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| } |
| ImpCastExprToType(rex, lType); // promote the pointer to pointer |
| return Context.IntTy; |
| } |
| if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) { |
| if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) { |
| ImpCastExprToType(rex, lType); |
| return Context.IntTy; |
| } |
| } |
| if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) && |
| rType->isIntegerType()) { |
| if (!RHSIsNull) |
| Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer, |
| lType.getAsString(), rType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| ImpCastExprToType(rex, lType); // promote the integer to pointer |
| return Context.IntTy; |
| } |
| if (lType->isIntegerType() && |
| (rType->isPointerType() || rType->isObjCQualifiedIdType())) { |
| if (!LHSIsNull) |
| Diag(loc, diag::ext_typecheck_comparison_of_pointer_integer, |
| lType.getAsString(), rType.getAsString(), |
| lex->getSourceRange(), rex->getSourceRange()); |
| ImpCastExprToType(lex, rType); // promote the integer to pointer |
| return Context.IntTy; |
| } |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that |
| /// operates on extended vector types. Instead of producing an IntTy result, |
| /// like a scalar comparison, a vector comparison produces a vector of integer |
| /// types. |
| QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex, |
| SourceLocation loc, |
| bool isRelational) { |
| // Check to make sure we're operating on vectors of the same type and width, |
| // Allowing one side to be a scalar of element type. |
| QualType vType = CheckVectorOperands(loc, lex, rex); |
| if (vType.isNull()) |
| return vType; |
| |
| QualType lType = lex->getType(); |
| QualType rType = rex->getType(); |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| if (!lType->isFloatingType()) { |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens())) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens())) |
| if (DRL->getDecl() == DRR->getDecl()) |
| Diag(loc, diag::warn_selfcomparison); |
| } |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (!isRelational && lType->isFloatingType()) { |
| assert (rType->isFloatingType()); |
| CheckFloatComparison(loc,lex,rex); |
| } |
| |
| // Return the type for the comparison, which is the same as vector type for |
| // integer vectors, or an integer type of identical size and number of |
| // elements for floating point vectors. |
| if (lType->isIntegerType()) |
| return lType; |
| |
| const VectorType *VTy = lType->getAsVectorType(); |
| |
| // FIXME: need to deal with non-32b int / non-64b long long |
| unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); |
| if (TypeSize == 32) { |
| return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); |
| } |
| assert(TypeSize == 64 && "Unhandled vector element size in vector compare"); |
| return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands( |
| Expr *&lex, Expr *&rex, SourceLocation loc, bool isCompAssign) |
| { |
| if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) |
| return CheckVectorOperands(loc, lex, rex); |
| |
| QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign); |
| |
| if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType()) |
| return compType; |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14] |
| Expr *&lex, Expr *&rex, SourceLocation loc) |
| { |
| UsualUnaryConversions(lex); |
| UsualUnaryConversions(rex); |
| |
| if (lex->getType()->isScalarType() && rex->getType()->isScalarType()) |
| return Context.IntTy; |
| return InvalidOperands(loc, lex, rex); |
| } |
| |
| inline QualType Sema::CheckAssignmentOperands( // C99 6.5.16.1 |
| Expr *lex, Expr *&rex, SourceLocation loc, QualType compoundType) |
| { |
| QualType lhsType = lex->getType(); |
| QualType rhsType = compoundType.isNull() ? rex->getType() : compoundType; |
| Expr::isModifiableLvalueResult mlval = lex->isModifiableLvalue(Context); |
| |
| switch (mlval) { // C99 6.5.16p2 |
| case Expr::MLV_Valid: |
| break; |
| case Expr::MLV_ConstQualified: |
| Diag(loc, diag::err_typecheck_assign_const, lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_ArrayType: |
| Diag(loc, diag::err_typecheck_array_not_modifiable_lvalue, |
| lhsType.getAsString(), lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_NotObjectType: |
| Diag(loc, diag::err_typecheck_non_object_not_modifiable_lvalue, |
| lhsType.getAsString(), lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_InvalidExpression: |
| Diag(loc, diag::err_typecheck_expression_not_modifiable_lvalue, |
| lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| Diag(loc, diag::err_typecheck_incomplete_type_not_modifiable_lvalue, |
| lhsType.getAsString(), lex->getSourceRange()); |
| return QualType(); |
| case Expr::MLV_DuplicateVectorComponents: |
| Diag(loc, diag::err_typecheck_duplicate_vector_components_not_mlvalue, |
| lex->getSourceRange()); |
| return QualType(); |
| } |
| |
| AssignConvertType ConvTy; |
| if (compoundType.isNull()) { |
| // Simple assignment "x = y". |
| ConvTy = CheckSingleAssignmentConstraints(lhsType, rex); |
| |
| // If the RHS is a unary plus or minus, check to see if they = and + are |
| // right next to each other. If so, the user may have typo'd "x =+ 4" |
| // instead of "x += 4". |
| Expr *RHSCheck = rex; |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) |
| RHSCheck = ICE->getSubExpr(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { |
| if ((UO->getOpcode() == UnaryOperator::Plus || |
| UO->getOpcode() == UnaryOperator::Minus) && |
| loc.isFileID() && UO->getOperatorLoc().isFileID() && |
| // Only if the two operators are exactly adjacent. |
| loc.getFileLocWithOffset(1) == UO->getOperatorLoc()) |
| Diag(loc, diag::warn_not_compound_assign, |
| UO->getOpcode() == UnaryOperator::Plus ? "+" : "-", |
| SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc())); |
| } |
| } else { |
| // Compound assignment "x += y" |
| ConvTy = CheckCompoundAssignmentConstraints(lhsType, rhsType); |
| } |
| |
| if (DiagnoseAssignmentResult(ConvTy, loc, lhsType, rhsType, |
| rex, "assigning")) |
| return QualType(); |
| |
| // C99 6.5.16p3: The type of an assignment expression is the type of the |
| // left operand unless the left operand has qualified type, in which case |
| // it is the unqualified version of the type of the left operand. |
| // C99 6.5.16.1p2: In simple assignment, the value of the right operand |
| // is converted to the type of the assignment expression (above). |
| // C++ 5.17p1: the type of the assignment expression is that of its left |
| // oprdu. |
| return lhsType.getUnqualifiedType(); |
| } |
| |
| inline QualType Sema::CheckCommaOperands( // C99 6.5.17 |
| Expr *&lex, Expr *&rex, SourceLocation loc) { |
| |
| // Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions. |
| DefaultFunctionArrayConversion(rex); |
| return rex->getType(); |
| } |
| |
| /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine |
| /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions. |
| QualType Sema::CheckIncrementDecrementOperand(Expr *op, SourceLocation OpLoc) { |
| QualType resType = op->getType(); |
| assert(!resType.isNull() && "no type for increment/decrement expression"); |
| |
| // C99 6.5.2.4p1: We allow complex as a GCC extension. |
| if (const PointerType *pt = resType->getAsPointerType()) { |
| if (pt->getPointeeType()->isVoidType()) { |
| Diag(OpLoc, diag::ext_gnu_void_ptr, op->getSourceRange()); |
| } else if (!pt->getPointeeType()->isObjectType()) { |
| // C99 6.5.2.4p2, 6.5.6p2 |
| Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type, |
| resType.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| } else if (!resType->isRealType()) { |
| if (resType->isComplexType()) |
| // C99 does not support ++/-- on complex types. |
| Diag(OpLoc, diag::ext_integer_increment_complex, |
| resType.getAsString(), op->getSourceRange()); |
| else { |
| Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement, |
| resType.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| } |
| // At this point, we know we have a real, complex or pointer type. |
| // Now make sure the operand is a modifiable lvalue. |
| Expr::isModifiableLvalueResult mlval = op->isModifiableLvalue(Context); |
| if (mlval != Expr::MLV_Valid) { |
| // FIXME: emit a more precise diagnostic... |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_incr_decr, |
| op->getSourceRange()); |
| return QualType(); |
| } |
| return resType; |
| } |
| |
| /// getPrimaryDecl - Helper function for CheckAddressOfOperand(). |
| /// This routine allows us to typecheck complex/recursive expressions |
| /// where the declaration is needed for type checking. We only need to |
| /// handle cases when the expression references a function designator |
| /// or is an lvalue. Here are some examples: |
| /// - &(x) => x |
| /// - &*****f => f for f a function designator. |
| /// - &s.xx => s |
| /// - &s.zz[1].yy -> s, if zz is an array |
| /// - *(x + 1) -> x, if x is an array |
| /// - &"123"[2] -> 0 |
| /// - & __real__ x -> x |
| static ValueDecl *getPrimaryDecl(Expr *E) { |
| switch (E->getStmtClass()) { |
| case Stmt::DeclRefExprClass: |
| return cast<DeclRefExpr>(E)->getDecl(); |
| case Stmt::MemberExprClass: |
| // Fields cannot be declared with a 'register' storage class. |
| // &X->f is always ok, even if X is declared register. |
| if (cast<MemberExpr>(E)->isArrow()) |
| return 0; |
| return getPrimaryDecl(cast<MemberExpr>(E)->getBase()); |
| case Stmt::ArraySubscriptExprClass: { |
| // &X[4] and &4[X] refers to X if X is not a pointer. |
| |
| ValueDecl *VD = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase()); |
| if (!VD || VD->getType()->isPointerType()) |
| return 0; |
| else |
| return VD; |
| } |
| case Stmt::UnaryOperatorClass: { |
| UnaryOperator *UO = cast<UnaryOperator>(E); |
| |
| switch(UO->getOpcode()) { |
| case UnaryOperator::Deref: { |
| // *(X + 1) refers to X if X is not a pointer. |
| ValueDecl *VD = getPrimaryDecl(UO->getSubExpr()); |
| if (!VD || VD->getType()->isPointerType()) |
| return 0; |
| return VD; |
| } |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| case UnaryOperator::Extension: |
| return getPrimaryDecl(UO->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| case Stmt::BinaryOperatorClass: { |
| BinaryOperator *BO = cast<BinaryOperator>(E); |
| |
| // Handle cases involving pointer arithmetic. The result of an |
| // Assign or AddAssign is not an lvalue so they can be ignored. |
| |
| // (x + n) or (n + x) => x |
| if (BO->getOpcode() == BinaryOperator::Add) { |
| if (BO->getLHS()->getType()->isPointerType()) { |
| return getPrimaryDecl(BO->getLHS()); |
| } else if (BO->getRHS()->getType()->isPointerType()) { |
| return getPrimaryDecl(BO->getRHS()); |
| } |
| } |
| |
| return 0; |
| } |
| case Stmt::ParenExprClass: |
| return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr()); |
| case Stmt::ImplicitCastExprClass: |
| // &X[4] when X is an array, has an implicit cast from array to pointer. |
| return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr()); |
| default: |
| return 0; |
| } |
| } |
| |
| /// CheckAddressOfOperand - The operand of & must be either a function |
| /// designator or an lvalue designating an object. If it is an lvalue, the |
| /// object cannot be declared with storage class register or be a bit field. |
| /// Note: The usual conversions are *not* applied to the operand of the & |
| /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue. |
| QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) { |
| if (getLangOptions().C99) { |
| // Implement C99-only parts of addressof rules. |
| if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) { |
| if (uOp->getOpcode() == UnaryOperator::Deref) |
| // Per C99 6.5.3.2, the address of a deref always returns a valid result |
| // (assuming the deref expression is valid). |
| return uOp->getSubExpr()->getType(); |
| } |
| // Technically, there should be a check for array subscript |
| // expressions here, but the result of one is always an lvalue anyway. |
| } |
| ValueDecl *dcl = getPrimaryDecl(op); |
| Expr::isLvalueResult lval = op->isLvalue(Context); |
| |
| if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1 |
| if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators |
| // FIXME: emit more specific diag... |
| Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof, |
| op->getSourceRange()); |
| return QualType(); |
| } |
| } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1 |
| if (MemExpr->getMemberDecl()->isBitField()) { |
| Diag(OpLoc, diag::err_typecheck_address_of, |
| std::string("bit-field"), op->getSourceRange()); |
| return QualType(); |
| } |
| // Check for Apple extension for accessing vector components. |
| } else if (isa<ArraySubscriptExpr>(op) && |
| cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) { |
| Diag(OpLoc, diag::err_typecheck_address_of, |
| std::string("vector"), op->getSourceRange()); |
| return QualType(); |
| } else if (dcl) { // C99 6.5.3.2p1 |
| // We have an lvalue with a decl. Make sure the decl is not declared |
| // with the register storage-class specifier. |
| if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) { |
| if (vd->getStorageClass() == VarDecl::Register) { |
| Diag(OpLoc, diag::err_typecheck_address_of, |
| std::string("register variable"), op->getSourceRange()); |
| return QualType(); |
| } |
| } else |
| assert(0 && "Unknown/unexpected decl type"); |
| } |
| |
| // If the operand has type "type", the result has type "pointer to type". |
| return Context.getPointerType(op->getType()); |
| } |
| |
| QualType Sema::CheckIndirectionOperand(Expr *op, SourceLocation OpLoc) { |
| UsualUnaryConversions(op); |
| QualType qType = op->getType(); |
| |
| if (const PointerType *PT = qType->getAsPointerType()) { |
| // Note that per both C89 and C99, this is always legal, even |
| // if ptype is an incomplete type or void. |
| // It would be possible to warn about dereferencing a |
| // void pointer, but it's completely well-defined, |
| // and such a warning is unlikely to catch any mistakes. |
| return PT->getPointeeType(); |
| } |
| Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer, |
| qType.getAsString(), op->getSourceRange()); |
| return QualType(); |
| } |
| |
| static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode( |
| tok::TokenKind Kind) { |
| BinaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown binop!"); |
| case tok::star: Opc = BinaryOperator::Mul; break; |
| case tok::slash: Opc = BinaryOperator::Div; break; |
| case tok::percent: Opc = BinaryOperator::Rem; break; |
| case tok::plus: Opc = BinaryOperator::Add; break; |
| case tok::minus: Opc = BinaryOperator::Sub; break; |
| case tok::lessless: Opc = BinaryOperator::Shl; break; |
| case tok::greatergreater: Opc = BinaryOperator::Shr; break; |
| case tok::lessequal: Opc = BinaryOperator::LE; break; |
| case tok::less: Opc = BinaryOperator::LT; break; |
| case tok::greaterequal: Opc = BinaryOperator::GE; break; |
| case tok::greater: Opc = BinaryOperator::GT; break; |
| case tok::exclaimequal: Opc = BinaryOperator::NE; break; |
| case tok::equalequal: Opc = BinaryOperator::EQ; break; |
| case tok::amp: Opc = BinaryOperator::And; break; |
| case tok::caret: Opc = BinaryOperator::Xor; break; |
| case tok::pipe: Opc = BinaryOperator::Or; break; |
| case tok::ampamp: Opc = BinaryOperator::LAnd; break; |
| case tok::pipepipe: Opc = BinaryOperator::LOr; break; |
| case tok::equal: Opc = BinaryOperator::Assign; break; |
| case tok::starequal: Opc = BinaryOperator::MulAssign; break; |
| case tok::slashequal: Opc = BinaryOperator::DivAssign; break; |
| case tok::percentequal: Opc = BinaryOperator::RemAssign; break; |
| case tok::plusequal: Opc = BinaryOperator::AddAssign; break; |
| case tok::minusequal: Opc = BinaryOperator::SubAssign; break; |
| case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break; |
| case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break; |
| case tok::ampequal: Opc = BinaryOperator::AndAssign; break; |
| case tok::caretequal: Opc = BinaryOperator::XorAssign; break; |
| case tok::pipeequal: Opc = BinaryOperator::OrAssign; break; |
| case tok::comma: Opc = BinaryOperator::Comma; break; |
| } |
| return Opc; |
| } |
| |
| static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode( |
| tok::TokenKind Kind) { |
| UnaryOperator::Opcode Opc; |
| switch (Kind) { |
| default: assert(0 && "Unknown unary op!"); |
| case tok::plusplus: Opc = UnaryOperator::PreInc; break; |
| case tok::minusminus: Opc = UnaryOperator::PreDec; break; |
| case tok::amp: Opc = UnaryOperator::AddrOf; break; |
| case tok::star: Opc = UnaryOperator::Deref; break; |
| case tok::plus: Opc = UnaryOperator::Plus; break; |
| case tok::minus: Opc = UnaryOperator::Minus; break; |
| case tok::tilde: Opc = UnaryOperator::Not; break; |
| case tok::exclaim: Opc = UnaryOperator::LNot; break; |
| case tok::kw_sizeof: Opc = UnaryOperator::SizeOf; break; |
| case tok::kw___alignof: Opc = UnaryOperator::AlignOf; break; |
| case tok::kw___real: Opc = UnaryOperator::Real; break; |
| case tok::kw___imag: Opc = UnaryOperator::Imag; break; |
| case tok::kw___extension__: Opc = UnaryOperator::Extension; break; |
| } |
| return Opc; |
| } |
| |
| // Binary Operators. 'Tok' is the token for the operator. |
| Action::ExprResult Sema::ActOnBinOp(SourceLocation TokLoc, tok::TokenKind Kind, |
| ExprTy *LHS, ExprTy *RHS) { |
| BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind); |
| Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS; |
| |
| assert((lhs != 0) && "ActOnBinOp(): missing left expression"); |
| assert((rhs != 0) && "ActOnBinOp(): missing right expression"); |
| |
| QualType ResultTy; // Result type of the binary operator. |
| QualType CompTy; // Computation type for compound assignments (e.g. '+=') |
| |
| switch (Opc) { |
| default: |
| assert(0 && "Unknown binary expr!"); |
| case BinaryOperator::Assign: |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, QualType()); |
| break; |
| case BinaryOperator::Mul: |
| case BinaryOperator::Div: |
| ResultTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Rem: |
| ResultTy = CheckRemainderOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Add: |
| ResultTy = CheckAdditionOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Sub: |
| ResultTy = CheckSubtractionOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::Shl: |
| case BinaryOperator::Shr: |
| ResultTy = CheckShiftOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::LE: |
| case BinaryOperator::LT: |
| case BinaryOperator::GE: |
| case BinaryOperator::GT: |
| ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, true); |
| break; |
| case BinaryOperator::EQ: |
| case BinaryOperator::NE: |
| ResultTy = CheckCompareOperands(lhs, rhs, TokLoc, false); |
| break; |
| case BinaryOperator::And: |
| case BinaryOperator::Xor: |
| case BinaryOperator::Or: |
| ResultTy = CheckBitwiseOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::LAnd: |
| case BinaryOperator::LOr: |
| ResultTy = CheckLogicalOperands(lhs, rhs, TokLoc); |
| break; |
| case BinaryOperator::MulAssign: |
| case BinaryOperator::DivAssign: |
| CompTy = CheckMultiplyDivideOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::RemAssign: |
| CompTy = CheckRemainderOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::AddAssign: |
| CompTy = CheckAdditionOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::SubAssign: |
| CompTy = CheckSubtractionOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::ShlAssign: |
| case BinaryOperator::ShrAssign: |
| CompTy = CheckShiftOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::AndAssign: |
| case BinaryOperator::XorAssign: |
| case BinaryOperator::OrAssign: |
| CompTy = CheckBitwiseOperands(lhs, rhs, TokLoc, true); |
| if (!CompTy.isNull()) |
| ResultTy = CheckAssignmentOperands(lhs, rhs, TokLoc, CompTy); |
| break; |
| case BinaryOperator::Comma: |
| ResultTy = CheckCommaOperands(lhs, rhs, TokLoc); |
| break; |
| } |
| if (ResultTy.isNull()) |
| return true; |
| if (CompTy.isNull()) |
| return new BinaryOperator(lhs, rhs, Opc, ResultTy, TokLoc); |
| else |
| return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, TokLoc); |
| } |
| |
| // Unary Operators. 'Tok' is the token for the operator. |
| Action::ExprResult Sema::ActOnUnaryOp(SourceLocation OpLoc, tok::TokenKind Op, |
| ExprTy *input) { |
| Expr *Input = (Expr*)input; |
| UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op); |
| QualType resultType; |
| switch (Opc) { |
| default: |
| assert(0 && "Unimplemented unary expr!"); |
| case UnaryOperator::PreInc: |
| case UnaryOperator::PreDec: |
| resultType = CheckIncrementDecrementOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::AddrOf: |
| resultType = CheckAddressOfOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Deref: |
| DefaultFunctionArrayConversion(Input); |
| resultType = CheckIndirectionOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Plus: |
| case UnaryOperator::Minus: |
| UsualUnaryConversions(Input); |
| resultType = Input->getType(); |
| if (!resultType->isArithmeticType()) // C99 6.5.3.3p1 |
| return Diag(OpLoc, diag::err_typecheck_unary_expr, |
| resultType.getAsString()); |
| break; |
| case UnaryOperator::Not: // bitwise complement |
| UsualUnaryConversions(Input); |
| resultType = Input->getType(); |
| // C99 6.5.3.3p1. We allow complex int and float as a GCC extension. |
| if (resultType->isComplexType() || resultType->isComplexIntegerType()) |
| // C99 does not support '~' for complex conjugation. |
| Diag(OpLoc, diag::ext_integer_complement_complex, |
| resultType.getAsString(), Input->getSourceRange()); |
| else if (!resultType->isIntegerType()) |
| return Diag(OpLoc, diag::err_typecheck_unary_expr, |
| resultType.getAsString(), Input->getSourceRange()); |
| break; |
| case UnaryOperator::LNot: // logical negation |
| // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5). |
| DefaultFunctionArrayConversion(Input); |
| resultType = Input->getType(); |
| if (!resultType->isScalarType()) // C99 6.5.3.3p1 |
| return Diag(OpLoc, diag::err_typecheck_unary_expr, |
| resultType.getAsString()); |
| // LNot always has type int. C99 6.5.3.3p5. |
| resultType = Context.IntTy; |
| break; |
| case UnaryOperator::SizeOf: |
| resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, |
| Input->getSourceRange(), true); |
| break; |
| case UnaryOperator::AlignOf: |
| resultType = CheckSizeOfAlignOfOperand(Input->getType(), OpLoc, |
| Input->getSourceRange(), false); |
| break; |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| resultType = CheckRealImagOperand(Input, OpLoc); |
| break; |
| case UnaryOperator::Extension: |
| resultType = Input->getType(); |
| break; |
| } |
| if (resultType.isNull()) |
| return true; |
| return new UnaryOperator(Input, Opc, resultType, OpLoc); |
| } |
| |
| /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo". |
| Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, |
| SourceLocation LabLoc, |
| IdentifierInfo *LabelII) { |
| // Look up the record for this label identifier. |
| LabelStmt *&LabelDecl = LabelMap[LabelII]; |
| |
| // If we haven't seen this label yet, create a forward reference. It |
| // will be validated and/or cleaned up in ActOnFinishFunctionBody. |
| if (LabelDecl == 0) |
| LabelDecl = new LabelStmt(LabLoc, LabelII, 0); |
| |
| // Create the AST node. The address of a label always has type 'void*'. |
| return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl, |
| Context.getPointerType(Context.VoidTy)); |
| } |
| |
| Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt, |
| SourceLocation RPLoc) { // "({..})" |
| Stmt *SubStmt = static_cast<Stmt*>(substmt); |
| assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!"); |
| CompoundStmt *Compound = cast<CompoundStmt>(SubStmt); |
| |
| // FIXME: there are a variety of strange constraints to enforce here, for |
| // example, it is not possible to goto into a stmt expression apparently. |
| // More semantic analysis is needed. |
| |
| // FIXME: the last statement in the compount stmt has its value used. We |
| // should not warn about it being unused. |
| |
| // If there are sub stmts in the compound stmt, take the type of the last one |
| // as the type of the stmtexpr. |
| QualType Ty = Context.VoidTy; |
| |
| if (!Compound->body_empty()) { |
| Stmt *LastStmt = Compound->body_back(); |
| // If LastStmt is a label, skip down through into the body. |
| while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) |
| LastStmt = Label->getSubStmt(); |
| |
| if (Expr *LastExpr = dyn_cast<Expr>(LastStmt)) |
| Ty = LastExpr->getType(); |
| } |
| |
| return new StmtExpr(Compound, Ty, LPLoc, RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc, |
| SourceLocation TypeLoc, |
| TypeTy *argty, |
| OffsetOfComponent *CompPtr, |
| unsigned NumComponents, |
| SourceLocation RPLoc) { |
| QualType ArgTy = QualType::getFromOpaquePtr(argty); |
| assert(!ArgTy.isNull() && "Missing type argument!"); |
| |
| // We must have at least one component that refers to the type, and the first |
| // one is known to be a field designator. Verify that the ArgTy represents |
| // a struct/union/class. |
| if (!ArgTy->isRecordType()) |
| return Diag(TypeLoc, diag::err_offsetof_record_type,ArgTy.getAsString()); |
| |
| // Otherwise, create a compound literal expression as the base, and |
| // iteratively process the offsetof designators. |
| Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false); |
| |
| // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a |
| // GCC extension, diagnose them. |
| if (NumComponents != 1) |
| Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator, |
| SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd)); |
| |
| for (unsigned i = 0; i != NumComponents; ++i) { |
| const OffsetOfComponent &OC = CompPtr[i]; |
| if (OC.isBrackets) { |
| // Offset of an array sub-field. TODO: Should we allow vector elements? |
| const ArrayType *AT = Context.getAsArrayType(Res->getType()); |
| if (!AT) { |
| delete Res; |
| return Diag(OC.LocEnd, diag::err_offsetof_array_type, |
| Res->getType().getAsString()); |
| } |
| |
| // FIXME: C++: Verify that operator[] isn't overloaded. |
| |
| // C99 6.5.2.1p1 |
| Expr *Idx = static_cast<Expr*>(OC.U.E); |
| if (!Idx->getType()->isIntegerType()) |
| return Diag(Idx->getLocStart(), diag::err_typecheck_subscript, |
| Idx->getSourceRange()); |
| |
| Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd); |
| continue; |
| } |
| |
| const RecordType *RC = Res->getType()->getAsRecordType(); |
| if (!RC) { |
| delete Res; |
| return Diag(OC.LocEnd, diag::err_offsetof_record_type, |
| Res->getType().getAsString()); |
| } |
| |
| // Get the decl corresponding to this. |
| RecordDecl *RD = RC->getDecl(); |
| FieldDecl *MemberDecl = RD->getMember(OC.U.IdentInfo); |
| if (!MemberDecl) |
| return Diag(BuiltinLoc, diag::err_typecheck_no_member, |
| OC.U.IdentInfo->getName(), |
| SourceRange(OC.LocStart, OC.LocEnd)); |
| |
| // FIXME: C++: Verify that MemberDecl isn't a static field. |
| // FIXME: Verify that MemberDecl isn't a bitfield. |
| // MemberDecl->getType() doesn't get the right qualifiers, but it doesn't |
| // matter here. |
| Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd, MemberDecl->getType()); |
| } |
| |
| return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(), |
| BuiltinLoc); |
| } |
| |
| |
| Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc, |
| TypeTy *arg1, TypeTy *arg2, |
| SourceLocation RPLoc) { |
| QualType argT1 = QualType::getFromOpaquePtr(arg1); |
| QualType argT2 = QualType::getFromOpaquePtr(arg2); |
| |
| assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)"); |
| |
| return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc); |
| } |
| |
| Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond, |
| ExprTy *expr1, ExprTy *expr2, |
| SourceLocation RPLoc) { |
| Expr *CondExpr = static_cast<Expr*>(cond); |
| Expr *LHSExpr = static_cast<Expr*>(expr1); |
| Expr *RHSExpr = static_cast<Expr*>(expr2); |
| |
| assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)"); |
| |
| // The conditional expression is required to be a constant expression. |
| llvm::APSInt condEval(32); |
| SourceLocation ExpLoc; |
| if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc)) |
| return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant, |
| CondExpr->getSourceRange()); |
| |
| // If the condition is > zero, then the AST type is the same as the LSHExpr. |
| QualType resType = condEval.getZExtValue() ? LHSExpr->getType() : |
| RHSExpr->getType(); |
| return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc); |
| } |
| |
| /// ExprsMatchFnType - return true if the Exprs in array Args have |
| /// QualTypes that match the QualTypes of the arguments of the FnType. |
| /// The number of arguments has already been validated to match the number of |
| /// arguments in FnType. |
| static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType, |
| ASTContext &Context) { |
| unsigned NumParams = FnType->getNumArgs(); |
| for (unsigned i = 0; i != NumParams; ++i) { |
| QualType ExprTy = Context.getCanonicalType(Args[i]->getType()); |
| QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i)); |
| |
| if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType()) |
| return false; |
| } |
| return true; |
| } |
| |
| Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs, |
| SourceLocation *CommaLocs, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| // __builtin_overload requires at least 2 arguments |
| if (NumArgs < 2) |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, |
| SourceRange(BuiltinLoc, RParenLoc)); |
| |
| // The first argument is required to be a constant expression. It tells us |
| // the number of arguments to pass to each of the functions to be overloaded. |
| Expr **Args = reinterpret_cast<Expr**>(args); |
| Expr *NParamsExpr = Args[0]; |
| llvm::APSInt constEval(32); |
| SourceLocation ExpLoc; |
| if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc)) |
| return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant, |
| NParamsExpr->getSourceRange()); |
| |
| // Verify that the number of parameters is > 0 |
| unsigned NumParams = constEval.getZExtValue(); |
| if (NumParams == 0) |
| return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant, |
| NParamsExpr->getSourceRange()); |
| // Verify that we have at least 1 + NumParams arguments to the builtin. |
| if ((NumParams + 1) > NumArgs) |
| return Diag(RParenLoc, diag::err_typecheck_call_too_few_args, |
| SourceRange(BuiltinLoc, RParenLoc)); |
| |
| // Figure out the return type, by matching the args to one of the functions |
| // listed after the parameters. |
| OverloadExpr *OE = 0; |
| for (unsigned i = NumParams + 1; i < NumArgs; ++i) { |
| // UsualUnaryConversions will convert the function DeclRefExpr into a |
| // pointer to function. |
| Expr *Fn = UsualUnaryConversions(Args[i]); |
| const FunctionTypeProto *FnType = 0; |
| if (const PointerType *PT = Fn->getType()->getAsPointerType()) |
| FnType = PT->getPointeeType()->getAsFunctionTypeProto(); |
| |
| // The Expr type must be FunctionTypeProto, since FunctionTypeProto has no |
| // parameters, and the number of parameters must match the value passed to |
| // the builtin. |
| if (!FnType || (FnType->getNumArgs() != NumParams)) |
| return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype, |
| Fn->getSourceRange()); |
| |
| // Scan the parameter list for the FunctionType, checking the QualType of |
| // each parameter against the QualTypes of the arguments to the builtin. |
| // If they match, return a new OverloadExpr. |
| if (ExprsMatchFnType(Args+1, FnType, Context)) { |
| if (OE) |
| return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match, |
| OE->getFn()->getSourceRange()); |
| // Remember our match, and continue processing the remaining arguments |
| // to catch any errors. |
| OE = new OverloadExpr(Args, NumArgs, i, FnType->getResultType(), |
| BuiltinLoc, RParenLoc); |
| } |
| } |
| // Return the newly created OverloadExpr node, if we succeded in matching |
| // exactly one of the candidate functions. |
| if (OE) |
| return OE; |
| |
| // If we didn't find a matching function Expr in the __builtin_overload list |
| // the return an error. |
| std::string typeNames; |
| for (unsigned i = 0; i != NumParams; ++i) { |
| if (i != 0) typeNames += ", "; |
| typeNames += Args[i+1]->getType().getAsString(); |
| } |
| |
| return Diag(BuiltinLoc, diag::err_overload_no_match, typeNames, |
| SourceRange(BuiltinLoc, RParenLoc)); |
| } |
| |
| Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, |
| ExprTy *expr, TypeTy *type, |
| SourceLocation RPLoc) { |
| Expr *E = static_cast<Expr*>(expr); |
| QualType T = QualType::getFromOpaquePtr(type); |
| |
| InitBuiltinVaListType(); |
| |
| // Get the va_list type |
| QualType VaListType = Context.getBuiltinVaListType(); |
| // Deal with implicit array decay; for example, on x86-64, |
| // va_list is an array, but it's supposed to decay to |
| // a pointer for va_arg. |
| if (VaListType->isArrayType()) |
| VaListType = Context.getArrayDecayedType(VaListType); |
| // Make sure the input expression also decays appropriately. |
| UsualUnaryConversions(E); |
| |
| if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible) |
| return Diag(E->getLocStart(), |
| diag::err_first_argument_to_va_arg_not_of_type_va_list, |
| E->getType().getAsString(), |
| E->getSourceRange()); |
| |
| // FIXME: Warn if a non-POD type is passed in. |
| |
| return new VAArgExpr(BuiltinLoc, E, T, RPLoc); |
| } |
| |
| bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy, |
| SourceLocation Loc, |
| QualType DstType, QualType SrcType, |
| Expr *SrcExpr, const char *Flavor) { |
| // Decode the result (notice that AST's are still created for extensions). |
| bool isInvalid = false; |
| unsigned DiagKind; |
| switch (ConvTy) { |
| default: assert(0 && "Unknown conversion type"); |
| case Compatible: return false; |
| case PointerToInt: |
| DiagKind = diag::ext_typecheck_convert_pointer_int; |
| break; |
| case IntToPointer: |
| DiagKind = diag::ext_typecheck_convert_int_pointer; |
| break; |
| case IncompatiblePointer: |
| DiagKind = diag::ext_typecheck_convert_incompatible_pointer; |
| break; |
| case FunctionVoidPointer: |
| DiagKind = diag::ext_typecheck_convert_pointer_void_func; |
| break; |
| case CompatiblePointerDiscardsQualifiers: |
| DiagKind = diag::ext_typecheck_convert_discards_qualifiers; |
| break; |
| case Incompatible: |
| DiagKind = diag::err_typecheck_convert_incompatible; |
| isInvalid = true; |
| break; |
| } |
| |
| Diag(Loc, DiagKind, DstType.getAsString(), SrcType.getAsString(), Flavor, |
| SrcExpr->getSourceRange()); |
| return isInvalid; |
| } |