| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr constant evaluator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/Support/Compiler.h" |
| using namespace clang; |
| using llvm::APSInt; |
| |
| #define USE_NEW_EVALUATOR 0 |
| |
| static bool CalcFakeICEVal(const Expr *Expr, |
| llvm::APSInt &Result, |
| ASTContext &Context) { |
| // Calculate the value of an expression that has a calculatable |
| // value, but isn't an ICE. Currently, this only supports |
| // a very narrow set of extensions, but it can be expanded if needed. |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(Expr)) |
| return CalcFakeICEVal(PE->getSubExpr(), Result, Context); |
| |
| if (const CastExpr *CE = dyn_cast<CastExpr>(Expr)) { |
| QualType CETy = CE->getType(); |
| if ((CETy->isIntegralType() && !CETy->isBooleanType()) || |
| CETy->isPointerType()) { |
| if (CalcFakeICEVal(CE->getSubExpr(), Result, Context)) { |
| Result.extOrTrunc(Context.getTypeSize(CETy)); |
| // FIXME: This assumes pointers are signed. |
| Result.setIsSigned(CETy->isSignedIntegerType() || |
| CETy->isPointerType()); |
| return true; |
| } |
| } |
| } |
| |
| if (Expr->getType()->isIntegralType()) |
| return Expr->isIntegerConstantExpr(Result, Context); |
| |
| return false; |
| } |
| |
| /// EvalInfo - This is a private struct used by the evaluator to capture |
| /// information about a subexpression as it is folded. It retains information |
| /// about the AST context, but also maintains information about the folded |
| /// expression. |
| /// |
| /// If an expression could be evaluated, it is still possible it is not a C |
| /// "integer constant expression" or constant expression. If not, this struct |
| /// captures information about how and why not. |
| /// |
| /// One bit of information passed *into* the request for constant folding |
| /// indicates whether the subexpression is "evaluated" or not according to C |
| /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
| /// evaluate the expression regardless of what the RHS is, but C only allows |
| /// certain things in certain situations. |
| struct EvalInfo { |
| ASTContext &Ctx; |
| |
| /// isEvaluated - True if the subexpression is required to be evaluated, false |
| /// if it is short-circuited (according to C rules). |
| bool isEvaluated; |
| |
| /// ICEDiag - If the expression is unfoldable, then ICEDiag contains the |
| /// error diagnostic indicating why it is not foldable and DiagLoc indicates a |
| /// caret position for the error. If it is foldable, but the expression is |
| /// not an integer constant expression, ICEDiag contains the extension |
| /// diagnostic to emit which describes why it isn't an integer constant |
| /// expression. If this expression *is* an integer-constant-expr, then |
| /// ICEDiag is zero. |
| /// |
| /// The caller can choose to emit this diagnostic or not, depending on whether |
| /// they require an i-c-e or a constant or not. DiagLoc indicates the caret |
| /// position for the report. |
| /// |
| /// If ICEDiag is zero, then this expression is an i-c-e. |
| unsigned ICEDiag; |
| SourceLocation DiagLoc; |
| |
| EvalInfo(ASTContext &ctx) : Ctx(ctx), isEvaluated(true), ICEDiag(0) {} |
| }; |
| |
| |
| static bool EvaluatePointer(const Expr *E, APValue &Result, EvalInfo &Info); |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VISIBILITY_HIDDEN PointerExprEvaluator |
| : public StmtVisitor<PointerExprEvaluator, APValue> { |
| EvalInfo &Info; |
| public: |
| |
| PointerExprEvaluator(EvalInfo &info) : Info(info) {} |
| |
| APValue VisitStmt(Stmt *S) { |
| // FIXME: Remove this when we support more expressions. |
| printf("Unhandled pointer statement\n"); |
| S->dump(); |
| return APValue(); |
| } |
| |
| APValue VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| |
| APValue VisitBinaryOperator(const BinaryOperator *E); |
| APValue VisitCastExpr(const CastExpr* E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluatePointer(const Expr* E, APValue& Result, EvalInfo &Info) { |
| if (!E->getType()->isPointerType()) |
| return false; |
| Result = PointerExprEvaluator(Info).Visit(const_cast<Expr*>(E)); |
| return Result.isLValue(); |
| } |
| |
| APValue PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() != BinaryOperator::Add && |
| E->getOpcode() != BinaryOperator::Sub) |
| return APValue(); |
| |
| const Expr *PExp = E->getLHS(); |
| const Expr *IExp = E->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| APValue ResultLValue; |
| if (!EvaluatePointer(PExp, ResultLValue, Info)) |
| return APValue(); |
| |
| llvm::APSInt AdditionalOffset(32); |
| if (!EvaluateInteger(IExp, AdditionalOffset, Info)) |
| return APValue(); |
| |
| uint64_t Offset = ResultLValue.getLValueOffset(); |
| if (E->getOpcode() == BinaryOperator::Add) |
| Offset += AdditionalOffset.getZExtValue(); |
| else |
| Offset -= AdditionalOffset.getZExtValue(); |
| |
| return APValue(ResultLValue.getLValueBase(), Offset); |
| } |
| |
| |
| APValue PointerExprEvaluator::VisitCastExpr(const CastExpr* E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| // Check for pointer->pointer cast |
| if (SubExpr->getType()->isPointerType()) { |
| APValue Result; |
| if (EvaluatePointer(SubExpr, Result, Info)) |
| return Result; |
| return APValue(); |
| } |
| |
| if (SubExpr->getType()->isArithmeticType()) { |
| llvm::APSInt Result(32); |
| if (EvaluateInteger(SubExpr, Result, Info)) { |
| Result.extOrTrunc((unsigned)Info.Ctx.getTypeSize(E->getType())); |
| return APValue(0, Result.getZExtValue()); |
| } |
| } |
| |
| assert(0 && "Unhandled cast"); |
| return APValue(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VISIBILITY_HIDDEN IntExprEvaluator |
| : public StmtVisitor<IntExprEvaluator, bool> { |
| EvalInfo &Info; |
| APSInt &Result; |
| public: |
| IntExprEvaluator(EvalInfo &info, APSInt &result) |
| : Info(info), Result(result) {} |
| |
| unsigned getIntTypeSizeInBits(QualType T) const { |
| return (unsigned)Info.Ctx.getIntWidth(T); |
| } |
| |
| bool Extension(SourceLocation L, diag::kind D) { |
| Info.DiagLoc = L; |
| Info.ICEDiag = D; |
| return true; // still a constant. |
| } |
| |
| bool Error(SourceLocation L, diag::kind D) { |
| // If this is in an unevaluated portion of the subexpression, ignore the |
| // error. |
| if (!Info.isEvaluated) |
| return true; |
| |
| Info.DiagLoc = L; |
| Info.ICEDiag = D; |
| return false; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitStmt(Stmt *S) { |
| return Error(S->getLocStart(), diag::err_expr_not_constant); |
| } |
| |
| bool VisitParenExpr(ParenExpr *E) { return Visit(E->getSubExpr()); } |
| |
| bool VisitIntegerLiteral(const IntegerLiteral *E) { |
| Result = E->getValue(); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| bool VisitCharacterLiteral(const CharacterLiteral *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = E->getValue(); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| bool VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = Info.Ctx.typesAreCompatible(E->getArgType1(), E->getArgType2()); |
| return true; |
| } |
| bool VisitDeclRefExpr(const DeclRefExpr *E); |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| |
| bool VisitCastExpr(CastExpr* E) { |
| return HandleCast(E->getLParenLoc(), E->getSubExpr(), E->getType()); |
| } |
| bool VisitImplicitCastExpr(ImplicitCastExpr* E) { |
| return HandleCast(E->getLocStart(), E->getSubExpr(), E->getType()); |
| } |
| bool VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) { |
| return EvaluateSizeAlignOf(E->isSizeOf(), E->getArgumentType(), |
| E->getType()); |
| } |
| |
| private: |
| bool HandleCast(SourceLocation CastLoc, Expr *SubExpr, QualType DestType); |
| bool EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy, QualType DstTy); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateInteger(const Expr* E, APSInt &Result, EvalInfo &Info) { |
| return IntExprEvaluator(Info, Result).Visit(const_cast<Expr*>(E)); |
| } |
| |
| bool IntExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
| // Enums are integer constant exprs. |
| if (const EnumConstantDecl *D = dyn_cast<EnumConstantDecl>(E->getDecl())) { |
| Result = D->getInitVal(); |
| return true; |
| } |
| |
| // Otherwise, random variable references are not constants. |
| return Error(E->getLocStart(), diag::err_expr_not_constant); |
| } |
| |
| |
| bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| // __builtin_type_compatible_p is a constant. |
| if (E->isBuiltinClassifyType(Result)) |
| return true; |
| |
| return Error(E->getLocStart(), diag::err_expr_not_constant); |
| } |
| |
| bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| // The LHS of a constant expr is always evaluated and needed. |
| llvm::APSInt RHS(32); |
| if (!Visit(E->getLHS())) |
| return false; // error in subexpression. |
| |
| bool OldEval = Info.isEvaluated; |
| |
| // The short-circuiting &&/|| operators don't necessarily evaluate their |
| // RHS. Make sure to pass isEvaluated down correctly. |
| if ((E->getOpcode() == BinaryOperator::LAnd && Result == 0) || |
| (E->getOpcode() == BinaryOperator::LOr && Result != 0)) |
| Info.isEvaluated = false; |
| |
| if (!EvaluateInteger(E->getRHS(), RHS, Info)) |
| return false; |
| Info.isEvaluated = OldEval; |
| |
| switch (E->getOpcode()) { |
| default: return Error(E->getOperatorLoc(), diag::err_expr_not_constant); |
| case BinaryOperator::Mul: Result *= RHS; return true; |
| case BinaryOperator::Add: Result += RHS; return true; |
| case BinaryOperator::Sub: Result -= RHS; return true; |
| case BinaryOperator::And: Result &= RHS; return true; |
| case BinaryOperator::Xor: Result ^= RHS; return true; |
| case BinaryOperator::Or: Result |= RHS; return true; |
| case BinaryOperator::Div: |
| if (RHS == 0) |
| return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero); |
| Result /= RHS; |
| return true; |
| case BinaryOperator::Rem: |
| if (RHS == 0) |
| return Error(E->getOperatorLoc(), diag::err_expr_divide_by_zero); |
| Result %= RHS; |
| return true; |
| case BinaryOperator::Shl: |
| // FIXME: Warn about out of range shift amounts! |
| Result <<= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1); |
| break; |
| case BinaryOperator::Shr: |
| Result >>= (unsigned)RHS.getLimitedValue(Result.getBitWidth()-1); |
| break; |
| |
| case BinaryOperator::LT: |
| Result = Result < RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::GT: |
| Result = Result > RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::LE: |
| Result = Result <= RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::GE: |
| Result = Result >= RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::EQ: |
| Result = Result == RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::NE: |
| Result = Result != RHS; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::LAnd: |
| Result = Result != 0 && RHS != 0; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| case BinaryOperator::LOr: |
| Result = Result != 0 || RHS != 0; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| break; |
| |
| |
| case BinaryOperator::Comma: |
| // Result of the comma is just the result of the RHS. |
| Result = RHS; |
| |
| // C99 6.6p3: "shall not contain assignment, ..., or comma operators, |
| // *except* when they are contained within a subexpression that is not |
| // evaluated". Note that Assignment can never happen due to constraints |
| // on the LHS subexpr, so we don't need to check it here. |
| if (!Info.isEvaluated) |
| return true; |
| |
| // If the value is evaluated, we can accept it as an extension. |
| return Extension(E->getOperatorLoc(), diag::ext_comma_in_constant_expr); |
| } |
| |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| /// EvaluateSizeAlignOf - Evaluate sizeof(SrcTy) or alignof(SrcTy) with a result |
| /// as a DstTy type. |
| bool IntExprEvaluator::EvaluateSizeAlignOf(bool isSizeOf, QualType SrcTy, |
| QualType DstTy) { |
| // Return the result in the right width. |
| Result.zextOrTrunc(getIntTypeSizeInBits(DstTy)); |
| Result.setIsUnsigned(DstTy->isUnsignedIntegerType()); |
| |
| // sizeof(void) and __alignof__(void) = 1 as a gcc extension. |
| if (SrcTy->isVoidType()) |
| Result = 1; |
| |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| if (!SrcTy->isConstantSizeType()) { |
| // FIXME: Should we attempt to evaluate this? |
| return false; |
| } |
| |
| // GCC extension: sizeof(function) = 1. |
| if (SrcTy->isFunctionType()) { |
| // FIXME: AlignOf shouldn't be unconditionally 4! |
| Result = isSizeOf ? 1 : 4; |
| return true; |
| } |
| |
| // Get information about the size or align. |
| unsigned CharSize = Info.Ctx.Target.getCharWidth(); |
| if (isSizeOf) |
| Result = getIntTypeSizeInBits(SrcTy) / CharSize; |
| else |
| Result = Info.Ctx.getTypeAlign(SrcTy) / CharSize; |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| // Special case unary operators that do not need their subexpression |
| // evaluated. offsetof/sizeof/alignof are all special. |
| if (E->isOffsetOfOp()) { |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = E->evaluateOffsetOf(Info.Ctx); |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| if (E->isSizeOfAlignOfOp()) |
| return EvaluateSizeAlignOf(E->getOpcode() == UnaryOperator::SizeOf, |
| E->getSubExpr()->getType(), E->getType()); |
| |
| // Get the operand value into 'Result'. |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| return Error(E->getOperatorLoc(), diag::err_expr_not_constant); |
| case UnaryOperator::LNot: { |
| bool Val = Result == 0; |
| Result.zextOrTrunc(getIntTypeSizeInBits(E->getType())); |
| Result = Val; |
| break; |
| } |
| case UnaryOperator::Extension: |
| // FIXME: Should extension allow i-c-e extension expressions in its scope? |
| // If so, we could clear the diagnostic ID. |
| case UnaryOperator::Plus: |
| // The result is always just the subexpr. |
| break; |
| case UnaryOperator::Minus: |
| Result = -Result; |
| break; |
| case UnaryOperator::Not: |
| Result = ~Result; |
| break; |
| } |
| |
| Result.setIsUnsigned(E->getType()->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| /// HandleCast - This is used to evaluate implicit or explicit casts where the |
| /// result type is integer. |
| bool IntExprEvaluator::HandleCast(SourceLocation CastLoc, |
| Expr *SubExpr, QualType DestType) { |
| unsigned DestWidth = getIntTypeSizeInBits(DestType); |
| |
| // Handle simple integer->integer casts. |
| if (SubExpr->getType()->isIntegerType()) { |
| if (!Visit(SubExpr)) |
| return false; |
| |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| if (DestType->isBooleanType()) { |
| // Conversion to bool compares against zero. |
| Result = Result != 0; |
| Result.zextOrTrunc(DestWidth); |
| } else |
| Result.extOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| // FIXME: Clean this up! |
| if (SubExpr->getType()->isPointerType()) { |
| APValue LV; |
| if (!EvaluatePointer(SubExpr, LV, Info)) |
| return false; |
| if (LV.getLValueBase()) |
| return false; |
| |
| Result.extOrTrunc(DestWidth); |
| Result = LV.getLValueOffset(); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| if (!SubExpr->getType()->isRealFloatingType()) |
| return Error(CastLoc, diag::err_expr_not_constant); |
| |
| // FIXME: Generalize floating point constant folding! For now we just permit |
| // which is allowed by integer constant expressions. |
| |
| // Allow floating constants that are the immediate operands of casts or that |
| // are parenthesized. |
| const Expr *Operand = SubExpr; |
| while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand)) |
| Operand = PE->getSubExpr(); |
| |
| // If this isn't a floating literal, we can't handle it. |
| const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand); |
| if (!FL) |
| return Error(CastLoc, diag::err_expr_not_constant); |
| |
| // If the destination is boolean, compare against zero. |
| if (DestType->isBooleanType()) { |
| Result = !FL->getValue().isZero(); |
| Result.zextOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerType()); |
| return true; |
| } |
| |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = DestType->isSignedIntegerType(); |
| |
| // FIXME: Warning for overflow. |
| uint64_t Space[4]; |
| (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned, |
| llvm::APFloat::rmTowardZero); |
| Result = llvm::APInt(DestWidth, 4, Space); |
| Result.setIsUnsigned(!DestSigned); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top level TryEvaluate. |
| //===----------------------------------------------------------------------===// |
| |
| bool Expr::tryEvaluate(APValue &Result, ASTContext &Ctx) const { |
| llvm::APSInt sInt(32); |
| #if USE_NEW_EVALUATOR |
| EvalInfo Info(Ctx); |
| if (getType()->isIntegerType()) { |
| if (EvaluateInteger(this, sInt, Info)) { |
| Result = APValue(sInt); |
| return true; |
| } |
| } else |
| return false; |
| |
| #else |
| if (CalcFakeICEVal(this, sInt, Ctx)) { |
| Result = APValue(sInt); |
| return true; |
| } |
| #endif |
| |
| return false; |
| } |