| //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file provides Sema routines for C++ overloading. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "Sema.h" | 
 | #include "Lookup.h" | 
 | #include "SemaInit.h" | 
 | #include "clang/Basic/Diagnostic.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/TypeOrdering.h" | 
 | #include "clang/Basic/PartialDiagnostic.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include <algorithm> | 
 |  | 
 | namespace clang { | 
 |  | 
 | /// GetConversionCategory - Retrieve the implicit conversion | 
 | /// category corresponding to the given implicit conversion kind. | 
 | ImplicitConversionCategory | 
 | GetConversionCategory(ImplicitConversionKind Kind) { | 
 |   static const ImplicitConversionCategory | 
 |     Category[(int)ICK_Num_Conversion_Kinds] = { | 
 |     ICC_Identity, | 
 |     ICC_Lvalue_Transformation, | 
 |     ICC_Lvalue_Transformation, | 
 |     ICC_Lvalue_Transformation, | 
 |     ICC_Identity, | 
 |     ICC_Qualification_Adjustment, | 
 |     ICC_Promotion, | 
 |     ICC_Promotion, | 
 |     ICC_Promotion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion, | 
 |     ICC_Conversion | 
 |   }; | 
 |   return Category[(int)Kind]; | 
 | } | 
 |  | 
 | /// GetConversionRank - Retrieve the implicit conversion rank | 
 | /// corresponding to the given implicit conversion kind. | 
 | ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { | 
 |   static const ImplicitConversionRank | 
 |     Rank[(int)ICK_Num_Conversion_Kinds] = { | 
 |     ICR_Exact_Match, | 
 |     ICR_Exact_Match, | 
 |     ICR_Exact_Match, | 
 |     ICR_Exact_Match, | 
 |     ICR_Exact_Match, | 
 |     ICR_Exact_Match, | 
 |     ICR_Promotion, | 
 |     ICR_Promotion, | 
 |     ICR_Promotion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Conversion, | 
 |     ICR_Complex_Real_Conversion | 
 |   }; | 
 |   return Rank[(int)Kind]; | 
 | } | 
 |  | 
 | /// GetImplicitConversionName - Return the name of this kind of | 
 | /// implicit conversion. | 
 | const char* GetImplicitConversionName(ImplicitConversionKind Kind) { | 
 |   static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { | 
 |     "No conversion", | 
 |     "Lvalue-to-rvalue", | 
 |     "Array-to-pointer", | 
 |     "Function-to-pointer", | 
 |     "Noreturn adjustment", | 
 |     "Qualification", | 
 |     "Integral promotion", | 
 |     "Floating point promotion", | 
 |     "Complex promotion", | 
 |     "Integral conversion", | 
 |     "Floating conversion", | 
 |     "Complex conversion", | 
 |     "Floating-integral conversion", | 
 |     "Complex-real conversion", | 
 |     "Pointer conversion", | 
 |     "Pointer-to-member conversion", | 
 |     "Boolean conversion", | 
 |     "Compatible-types conversion", | 
 |     "Derived-to-base conversion" | 
 |   }; | 
 |   return Name[Kind]; | 
 | } | 
 |  | 
 | /// StandardConversionSequence - Set the standard conversion | 
 | /// sequence to the identity conversion. | 
 | void StandardConversionSequence::setAsIdentityConversion() { | 
 |   First = ICK_Identity; | 
 |   Second = ICK_Identity; | 
 |   Third = ICK_Identity; | 
 |   DeprecatedStringLiteralToCharPtr = false; | 
 |   ReferenceBinding = false; | 
 |   DirectBinding = false; | 
 |   RRefBinding = false; | 
 |   CopyConstructor = 0; | 
 | } | 
 |  | 
 | /// getRank - Retrieve the rank of this standard conversion sequence | 
 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the | 
 | /// implicit conversions. | 
 | ImplicitConversionRank StandardConversionSequence::getRank() const { | 
 |   ImplicitConversionRank Rank = ICR_Exact_Match; | 
 |   if  (GetConversionRank(First) > Rank) | 
 |     Rank = GetConversionRank(First); | 
 |   if  (GetConversionRank(Second) > Rank) | 
 |     Rank = GetConversionRank(Second); | 
 |   if  (GetConversionRank(Third) > Rank) | 
 |     Rank = GetConversionRank(Third); | 
 |   return Rank; | 
 | } | 
 |  | 
 | /// isPointerConversionToBool - Determines whether this conversion is | 
 | /// a conversion of a pointer or pointer-to-member to bool. This is | 
 | /// used as part of the ranking of standard conversion sequences | 
 | /// (C++ 13.3.3.2p4). | 
 | bool StandardConversionSequence::isPointerConversionToBool() const { | 
 |   // Note that FromType has not necessarily been transformed by the | 
 |   // array-to-pointer or function-to-pointer implicit conversions, so | 
 |   // check for their presence as well as checking whether FromType is | 
 |   // a pointer. | 
 |   if (getToType(1)->isBooleanType() && | 
 |       (getFromType()->isPointerType() || getFromType()->isBlockPointerType() || | 
 |        First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// isPointerConversionToVoidPointer - Determines whether this | 
 | /// conversion is a conversion of a pointer to a void pointer. This is | 
 | /// used as part of the ranking of standard conversion sequences (C++ | 
 | /// 13.3.3.2p4). | 
 | bool | 
 | StandardConversionSequence:: | 
 | isPointerConversionToVoidPointer(ASTContext& Context) const { | 
 |   QualType FromType = getFromType(); | 
 |   QualType ToType = getToType(1); | 
 |  | 
 |   // Note that FromType has not necessarily been transformed by the | 
 |   // array-to-pointer implicit conversion, so check for its presence | 
 |   // and redo the conversion to get a pointer. | 
 |   if (First == ICK_Array_To_Pointer) | 
 |     FromType = Context.getArrayDecayedType(FromType); | 
 |  | 
 |   if (Second == ICK_Pointer_Conversion && FromType->isPointerType()) | 
 |     if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) | 
 |       return ToPtrType->getPointeeType()->isVoidType(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// DebugPrint - Print this standard conversion sequence to standard | 
 | /// error. Useful for debugging overloading issues. | 
 | void StandardConversionSequence::DebugPrint() const { | 
 |   llvm::raw_ostream &OS = llvm::errs(); | 
 |   bool PrintedSomething = false; | 
 |   if (First != ICK_Identity) { | 
 |     OS << GetImplicitConversionName(First); | 
 |     PrintedSomething = true; | 
 |   } | 
 |  | 
 |   if (Second != ICK_Identity) { | 
 |     if (PrintedSomething) { | 
 |       OS << " -> "; | 
 |     } | 
 |     OS << GetImplicitConversionName(Second); | 
 |  | 
 |     if (CopyConstructor) { | 
 |       OS << " (by copy constructor)"; | 
 |     } else if (DirectBinding) { | 
 |       OS << " (direct reference binding)"; | 
 |     } else if (ReferenceBinding) { | 
 |       OS << " (reference binding)"; | 
 |     } | 
 |     PrintedSomething = true; | 
 |   } | 
 |  | 
 |   if (Third != ICK_Identity) { | 
 |     if (PrintedSomething) { | 
 |       OS << " -> "; | 
 |     } | 
 |     OS << GetImplicitConversionName(Third); | 
 |     PrintedSomething = true; | 
 |   } | 
 |  | 
 |   if (!PrintedSomething) { | 
 |     OS << "No conversions required"; | 
 |   } | 
 | } | 
 |  | 
 | /// DebugPrint - Print this user-defined conversion sequence to standard | 
 | /// error. Useful for debugging overloading issues. | 
 | void UserDefinedConversionSequence::DebugPrint() const { | 
 |   llvm::raw_ostream &OS = llvm::errs(); | 
 |   if (Before.First || Before.Second || Before.Third) { | 
 |     Before.DebugPrint(); | 
 |     OS << " -> "; | 
 |   } | 
 |   OS << '\'' << ConversionFunction << '\''; | 
 |   if (After.First || After.Second || After.Third) { | 
 |     OS << " -> "; | 
 |     After.DebugPrint(); | 
 |   } | 
 | } | 
 |  | 
 | /// DebugPrint - Print this implicit conversion sequence to standard | 
 | /// error. Useful for debugging overloading issues. | 
 | void ImplicitConversionSequence::DebugPrint() const { | 
 |   llvm::raw_ostream &OS = llvm::errs(); | 
 |   switch (ConversionKind) { | 
 |   case StandardConversion: | 
 |     OS << "Standard conversion: "; | 
 |     Standard.DebugPrint(); | 
 |     break; | 
 |   case UserDefinedConversion: | 
 |     OS << "User-defined conversion: "; | 
 |     UserDefined.DebugPrint(); | 
 |     break; | 
 |   case EllipsisConversion: | 
 |     OS << "Ellipsis conversion"; | 
 |     break; | 
 |   case AmbiguousConversion: | 
 |     OS << "Ambiguous conversion"; | 
 |     break; | 
 |   case BadConversion: | 
 |     OS << "Bad conversion"; | 
 |     break; | 
 |   } | 
 |  | 
 |   OS << "\n"; | 
 | } | 
 |  | 
 | void AmbiguousConversionSequence::construct() { | 
 |   new (&conversions()) ConversionSet(); | 
 | } | 
 |  | 
 | void AmbiguousConversionSequence::destruct() { | 
 |   conversions().~ConversionSet(); | 
 | } | 
 |  | 
 | void | 
 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { | 
 |   FromTypePtr = O.FromTypePtr; | 
 |   ToTypePtr = O.ToTypePtr; | 
 |   new (&conversions()) ConversionSet(O.conversions()); | 
 | } | 
 |  | 
 | namespace { | 
 |   // Structure used by OverloadCandidate::DeductionFailureInfo to store | 
 |   // template parameter and template argument information. | 
 |   struct DFIParamWithArguments { | 
 |     TemplateParameter Param; | 
 |     TemplateArgument FirstArg; | 
 |     TemplateArgument SecondArg; | 
 |   }; | 
 | } | 
 |    | 
 | /// \brief Convert from Sema's representation of template deduction information | 
 | /// to the form used in overload-candidate information. | 
 | OverloadCandidate::DeductionFailureInfo | 
 | static MakeDeductionFailureInfo(Sema::TemplateDeductionResult TDK, | 
 |                                 const Sema::TemplateDeductionInfo &Info) { | 
 |   OverloadCandidate::DeductionFailureInfo Result; | 
 |   Result.Result = static_cast<unsigned>(TDK); | 
 |   Result.Data = 0; | 
 |   switch (TDK) { | 
 |   case Sema::TDK_Success: | 
 |   case Sema::TDK_InstantiationDepth: | 
 |   case Sema::TDK_TooManyArguments: | 
 |   case Sema::TDK_TooFewArguments: | 
 |     break; | 
 |        | 
 |   case Sema::TDK_Incomplete: | 
 |   case Sema::TDK_InvalidExplicitArguments: | 
 |     Result.Data = Info.Param.getOpaqueValue(); | 
 |     break; | 
 |        | 
 |   case Sema::TDK_Inconsistent: | 
 |   case Sema::TDK_InconsistentQuals: { | 
 |     DFIParamWithArguments *Saved = new DFIParamWithArguments; | 
 |     Saved->Param = Info.Param; | 
 |     Saved->FirstArg = Info.FirstArg; | 
 |     Saved->SecondArg = Info.SecondArg; | 
 |     Result.Data = Saved; | 
 |     break; | 
 |   } | 
 |        | 
 |   case Sema::TDK_SubstitutionFailure: | 
 |   case Sema::TDK_NonDeducedMismatch: | 
 |   case Sema::TDK_FailedOverloadResolution: | 
 |     break;   | 
 |   } | 
 |    | 
 |   return Result; | 
 | } | 
 |  | 
 | void OverloadCandidate::DeductionFailureInfo::Destroy() { | 
 |   switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
 |   case Sema::TDK_Success: | 
 |   case Sema::TDK_InstantiationDepth: | 
 |   case Sema::TDK_Incomplete: | 
 |   case Sema::TDK_TooManyArguments: | 
 |   case Sema::TDK_TooFewArguments: | 
 |   case Sema::TDK_InvalidExplicitArguments: | 
 |     break; | 
 |        | 
 |   case Sema::TDK_Inconsistent: | 
 |   case Sema::TDK_InconsistentQuals: | 
 |     delete static_cast<DFIParamWithArguments*>(Data); | 
 |     Data = 0; | 
 |     break; | 
 |        | 
 |   // Unhandled | 
 |   case Sema::TDK_SubstitutionFailure: | 
 |   case Sema::TDK_NonDeducedMismatch: | 
 |   case Sema::TDK_FailedOverloadResolution: | 
 |     break; | 
 |   } | 
 | } | 
 |    | 
 | TemplateParameter  | 
 | OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { | 
 |   switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
 |   case Sema::TDK_Success: | 
 |   case Sema::TDK_InstantiationDepth: | 
 |   case Sema::TDK_TooManyArguments: | 
 |   case Sema::TDK_TooFewArguments: | 
 |     return TemplateParameter(); | 
 |      | 
 |   case Sema::TDK_Incomplete: | 
 |   case Sema::TDK_InvalidExplicitArguments: | 
 |     return TemplateParameter::getFromOpaqueValue(Data);     | 
 |  | 
 |   case Sema::TDK_Inconsistent: | 
 |   case Sema::TDK_InconsistentQuals: | 
 |     return static_cast<DFIParamWithArguments*>(Data)->Param; | 
 |        | 
 |   // Unhandled | 
 |   case Sema::TDK_SubstitutionFailure: | 
 |   case Sema::TDK_NonDeducedMismatch: | 
 |   case Sema::TDK_FailedOverloadResolution: | 
 |     break; | 
 |   } | 
 |    | 
 |   return TemplateParameter(); | 
 | } | 
 |    | 
 | const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { | 
 |   switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
 |   case Sema::TDK_Success: | 
 |   case Sema::TDK_InstantiationDepth: | 
 |   case Sema::TDK_Incomplete: | 
 |   case Sema::TDK_TooManyArguments: | 
 |   case Sema::TDK_TooFewArguments: | 
 |   case Sema::TDK_InvalidExplicitArguments: | 
 |     return 0; | 
 |  | 
 |   case Sema::TDK_Inconsistent: | 
 |   case Sema::TDK_InconsistentQuals: | 
 |     return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;       | 
 |  | 
 |   // Unhandled | 
 |   case Sema::TDK_SubstitutionFailure: | 
 |   case Sema::TDK_NonDeducedMismatch: | 
 |   case Sema::TDK_FailedOverloadResolution: | 
 |     break; | 
 |   } | 
 |    | 
 |   return 0; | 
 | }     | 
 |  | 
 | const TemplateArgument * | 
 | OverloadCandidate::DeductionFailureInfo::getSecondArg() { | 
 |   switch (static_cast<Sema::TemplateDeductionResult>(Result)) { | 
 |   case Sema::TDK_Success: | 
 |   case Sema::TDK_InstantiationDepth: | 
 |   case Sema::TDK_Incomplete: | 
 |   case Sema::TDK_TooManyArguments: | 
 |   case Sema::TDK_TooFewArguments: | 
 |   case Sema::TDK_InvalidExplicitArguments: | 
 |     return 0; | 
 |  | 
 |   case Sema::TDK_Inconsistent: | 
 |   case Sema::TDK_InconsistentQuals: | 
 |     return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; | 
 |  | 
 |   // Unhandled | 
 |   case Sema::TDK_SubstitutionFailure: | 
 |   case Sema::TDK_NonDeducedMismatch: | 
 |   case Sema::TDK_FailedOverloadResolution: | 
 |     break; | 
 |   } | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 | void OverloadCandidateSet::clear() { | 
 |   //  | 
 |   for (iterator C = begin(), CEnd = end(); C != CEnd; ++C) { | 
 |     if (C->FailureKind == ovl_fail_bad_deduction) | 
 |       C->DeductionFailure.Destroy(); | 
 |   } | 
 |         | 
 |   inherited::clear(); | 
 |   Functions.clear(); | 
 | } | 
 |    | 
 | // IsOverload - Determine whether the given New declaration is an | 
 | // overload of the declarations in Old. This routine returns false if | 
 | // New and Old cannot be overloaded, e.g., if New has the same | 
 | // signature as some function in Old (C++ 1.3.10) or if the Old | 
 | // declarations aren't functions (or function templates) at all. When | 
 | // it does return false, MatchedDecl will point to the decl that New | 
 | // cannot be overloaded with.  This decl may be a UsingShadowDecl on | 
 | // top of the underlying declaration. | 
 | // | 
 | // Example: Given the following input: | 
 | // | 
 | //   void f(int, float); // #1 | 
 | //   void f(int, int); // #2 | 
 | //   int f(int, int); // #3 | 
 | // | 
 | // When we process #1, there is no previous declaration of "f", | 
 | // so IsOverload will not be used. | 
 | // | 
 | // When we process #2, Old contains only the FunctionDecl for #1.  By | 
 | // comparing the parameter types, we see that #1 and #2 are overloaded | 
 | // (since they have different signatures), so this routine returns | 
 | // false; MatchedDecl is unchanged. | 
 | // | 
 | // When we process #3, Old is an overload set containing #1 and #2. We | 
 | // compare the signatures of #3 to #1 (they're overloaded, so we do | 
 | // nothing) and then #3 to #2. Since the signatures of #3 and #2 are | 
 | // identical (return types of functions are not part of the | 
 | // signature), IsOverload returns false and MatchedDecl will be set to | 
 | // point to the FunctionDecl for #2. | 
 | Sema::OverloadKind | 
 | Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old, | 
 |                     NamedDecl *&Match) { | 
 |   for (LookupResult::iterator I = Old.begin(), E = Old.end(); | 
 |          I != E; ++I) { | 
 |     NamedDecl *OldD = (*I)->getUnderlyingDecl(); | 
 |     if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { | 
 |       if (!IsOverload(New, OldT->getTemplatedDecl())) { | 
 |         Match = *I; | 
 |         return Ovl_Match; | 
 |       } | 
 |     } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { | 
 |       if (!IsOverload(New, OldF)) { | 
 |         Match = *I; | 
 |         return Ovl_Match; | 
 |       } | 
 |     } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) { | 
 |       // We can overload with these, which can show up when doing | 
 |       // redeclaration checks for UsingDecls. | 
 |       assert(Old.getLookupKind() == LookupUsingDeclName); | 
 |     } else if (isa<UnresolvedUsingValueDecl>(OldD)) { | 
 |       // Optimistically assume that an unresolved using decl will | 
 |       // overload; if it doesn't, we'll have to diagnose during | 
 |       // template instantiation. | 
 |     } else { | 
 |       // (C++ 13p1): | 
 |       //   Only function declarations can be overloaded; object and type | 
 |       //   declarations cannot be overloaded. | 
 |       Match = *I; | 
 |       return Ovl_NonFunction; | 
 |     } | 
 |   } | 
 |  | 
 |   return Ovl_Overload; | 
 | } | 
 |  | 
 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { | 
 |   FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); | 
 |   FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); | 
 |  | 
 |   // C++ [temp.fct]p2: | 
 |   //   A function template can be overloaded with other function templates | 
 |   //   and with normal (non-template) functions. | 
 |   if ((OldTemplate == 0) != (NewTemplate == 0)) | 
 |     return true; | 
 |  | 
 |   // Is the function New an overload of the function Old? | 
 |   QualType OldQType = Context.getCanonicalType(Old->getType()); | 
 |   QualType NewQType = Context.getCanonicalType(New->getType()); | 
 |  | 
 |   // Compare the signatures (C++ 1.3.10) of the two functions to | 
 |   // determine whether they are overloads. If we find any mismatch | 
 |   // in the signature, they are overloads. | 
 |  | 
 |   // If either of these functions is a K&R-style function (no | 
 |   // prototype), then we consider them to have matching signatures. | 
 |   if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || | 
 |       isa<FunctionNoProtoType>(NewQType.getTypePtr())) | 
 |     return false; | 
 |  | 
 |   FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); | 
 |   FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); | 
 |  | 
 |   // The signature of a function includes the types of its | 
 |   // parameters (C++ 1.3.10), which includes the presence or absence | 
 |   // of the ellipsis; see C++ DR 357). | 
 |   if (OldQType != NewQType && | 
 |       (OldType->getNumArgs() != NewType->getNumArgs() || | 
 |        OldType->isVariadic() != NewType->isVariadic() || | 
 |        !FunctionArgTypesAreEqual(OldType, NewType))) | 
 |     return true; | 
 |  | 
 |   // C++ [temp.over.link]p4: | 
 |   //   The signature of a function template consists of its function | 
 |   //   signature, its return type and its template parameter list. The names | 
 |   //   of the template parameters are significant only for establishing the | 
 |   //   relationship between the template parameters and the rest of the | 
 |   //   signature. | 
 |   // | 
 |   // We check the return type and template parameter lists for function | 
 |   // templates first; the remaining checks follow. | 
 |   if (NewTemplate && | 
 |       (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), | 
 |                                        OldTemplate->getTemplateParameters(), | 
 |                                        false, TPL_TemplateMatch) || | 
 |        OldType->getResultType() != NewType->getResultType())) | 
 |     return true; | 
 |  | 
 |   // If the function is a class member, its signature includes the | 
 |   // cv-qualifiers (if any) on the function itself. | 
 |   // | 
 |   // As part of this, also check whether one of the member functions | 
 |   // is static, in which case they are not overloads (C++ | 
 |   // 13.1p2). While not part of the definition of the signature, | 
 |   // this check is important to determine whether these functions | 
 |   // can be overloaded. | 
 |   CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); | 
 |   CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); | 
 |   if (OldMethod && NewMethod && | 
 |       !OldMethod->isStatic() && !NewMethod->isStatic() && | 
 |       OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) | 
 |     return true; | 
 |    | 
 |   // The signatures match; this is not an overload. | 
 |   return false; | 
 | } | 
 |  | 
 | /// TryImplicitConversion - Attempt to perform an implicit conversion | 
 | /// from the given expression (Expr) to the given type (ToType). This | 
 | /// function returns an implicit conversion sequence that can be used | 
 | /// to perform the initialization. Given | 
 | /// | 
 | ///   void f(float f); | 
 | ///   void g(int i) { f(i); } | 
 | /// | 
 | /// this routine would produce an implicit conversion sequence to | 
 | /// describe the initialization of f from i, which will be a standard | 
 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ | 
 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). | 
 | // | 
 | /// Note that this routine only determines how the conversion can be | 
 | /// performed; it does not actually perform the conversion. As such, | 
 | /// it will not produce any diagnostics if no conversion is available, | 
 | /// but will instead return an implicit conversion sequence of kind | 
 | /// "BadConversion". | 
 | /// | 
 | /// If @p SuppressUserConversions, then user-defined conversions are | 
 | /// not permitted. | 
 | /// If @p AllowExplicit, then explicit user-defined conversions are | 
 | /// permitted. | 
 | ImplicitConversionSequence | 
 | Sema::TryImplicitConversion(Expr* From, QualType ToType, | 
 |                             bool SuppressUserConversions, | 
 |                             bool AllowExplicit,  | 
 |                             bool InOverloadResolution) { | 
 |   ImplicitConversionSequence ICS; | 
 |   if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) { | 
 |     ICS.setStandard(); | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   if (!getLangOptions().CPlusPlus) { | 
 |     ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   if (SuppressUserConversions) { | 
 |     // C++ [over.ics.user]p4: | 
 |     //   A conversion of an expression of class type to the same class | 
 |     //   type is given Exact Match rank, and a conversion of an | 
 |     //   expression of class type to a base class of that type is | 
 |     //   given Conversion rank, in spite of the fact that a copy/move | 
 |     //   constructor (i.e., a user-defined conversion function) is | 
 |     //   called for those cases. | 
 |     QualType FromType = From->getType(); | 
 |     if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() || | 
 |         !(Context.hasSameUnqualifiedType(FromType, ToType) || | 
 |           IsDerivedFrom(FromType, ToType))) { | 
 |       // We're not in the case above, so there is no conversion that | 
 |       // we can perform. | 
 |       ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
 |       return ICS; | 
 |     } | 
 |  | 
 |     ICS.setStandard(); | 
 |     ICS.Standard.setAsIdentityConversion(); | 
 |     ICS.Standard.setFromType(FromType); | 
 |     ICS.Standard.setAllToTypes(ToType); | 
 |      | 
 |     // We don't actually check at this point whether there is a valid | 
 |     // copy/move constructor, since overloading just assumes that it | 
 |     // exists. When we actually perform initialization, we'll find the | 
 |     // appropriate constructor to copy the returned object, if needed. | 
 |     ICS.Standard.CopyConstructor = 0; | 
 |  | 
 |     // Determine whether this is considered a derived-to-base conversion. | 
 |     if (!Context.hasSameUnqualifiedType(FromType, ToType)) | 
 |       ICS.Standard.Second = ICK_Derived_To_Base; | 
 |  | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   // Attempt user-defined conversion. | 
 |   OverloadCandidateSet Conversions(From->getExprLoc()); | 
 |   OverloadingResult UserDefResult | 
 |     = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions, | 
 |                               AllowExplicit); | 
 |  | 
 |   if (UserDefResult == OR_Success) { | 
 |     ICS.setUserDefined(); | 
 |     // C++ [over.ics.user]p4: | 
 |     //   A conversion of an expression of class type to the same class | 
 |     //   type is given Exact Match rank, and a conversion of an | 
 |     //   expression of class type to a base class of that type is | 
 |     //   given Conversion rank, in spite of the fact that a copy | 
 |     //   constructor (i.e., a user-defined conversion function) is | 
 |     //   called for those cases. | 
 |     if (CXXConstructorDecl *Constructor | 
 |           = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { | 
 |       QualType FromCanon | 
 |         = Context.getCanonicalType(From->getType().getUnqualifiedType()); | 
 |       QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); | 
 |       if (Constructor->isCopyConstructor() && | 
 |           (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) { | 
 |         // Turn this into a "standard" conversion sequence, so that it | 
 |         // gets ranked with standard conversion sequences. | 
 |         ICS.setStandard(); | 
 |         ICS.Standard.setAsIdentityConversion(); | 
 |         ICS.Standard.setFromType(From->getType()); | 
 |         ICS.Standard.setAllToTypes(ToType); | 
 |         ICS.Standard.CopyConstructor = Constructor; | 
 |         if (ToCanon != FromCanon) | 
 |           ICS.Standard.Second = ICK_Derived_To_Base; | 
 |       } | 
 |     } | 
 |  | 
 |     // C++ [over.best.ics]p4: | 
 |     //   However, when considering the argument of a user-defined | 
 |     //   conversion function that is a candidate by 13.3.1.3 when | 
 |     //   invoked for the copying of the temporary in the second step | 
 |     //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or | 
 |     //   13.3.1.6 in all cases, only standard conversion sequences and | 
 |     //   ellipsis conversion sequences are allowed. | 
 |     if (SuppressUserConversions && ICS.isUserDefined()) { | 
 |       ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); | 
 |     } | 
 |   } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { | 
 |     ICS.setAmbiguous(); | 
 |     ICS.Ambiguous.setFromType(From->getType()); | 
 |     ICS.Ambiguous.setToType(ToType); | 
 |     for (OverloadCandidateSet::iterator Cand = Conversions.begin(); | 
 |          Cand != Conversions.end(); ++Cand) | 
 |       if (Cand->Viable) | 
 |         ICS.Ambiguous.addConversion(Cand->Function); | 
 |   } else { | 
 |     ICS.setBad(BadConversionSequence::no_conversion, From, ToType); | 
 |   } | 
 |  | 
 |   return ICS; | 
 | } | 
 |  | 
 | /// PerformImplicitConversion - Perform an implicit conversion of the | 
 | /// expression From to the type ToType. Returns true if there was an | 
 | /// error, false otherwise. The expression From is replaced with the | 
 | /// converted expression. Flavor is the kind of conversion we're | 
 | /// performing, used in the error message. If @p AllowExplicit, | 
 | /// explicit user-defined conversions are permitted. | 
 | bool | 
 | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, | 
 |                                 AssignmentAction Action, bool AllowExplicit) { | 
 |   ImplicitConversionSequence ICS; | 
 |   return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); | 
 | } | 
 |  | 
 | bool | 
 | Sema::PerformImplicitConversion(Expr *&From, QualType ToType, | 
 |                                 AssignmentAction Action, bool AllowExplicit, | 
 |                                 ImplicitConversionSequence& ICS) { | 
 |   ICS = TryImplicitConversion(From, ToType, | 
 |                               /*SuppressUserConversions=*/false, | 
 |                               AllowExplicit, | 
 |                               /*InOverloadResolution=*/false); | 
 |   return PerformImplicitConversion(From, ToType, ICS, Action); | 
 | } | 
 |    | 
 | /// \brief Determine whether the conversion from FromType to ToType is a valid  | 
 | /// conversion that strips "noreturn" off the nested function type. | 
 | static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,  | 
 |                                  QualType ToType, QualType &ResultTy) { | 
 |   if (Context.hasSameUnqualifiedType(FromType, ToType)) | 
 |     return false; | 
 |    | 
 |   // Strip the noreturn off the type we're converting from; noreturn can | 
 |   // safely be removed. | 
 |   FromType = Context.getNoReturnType(FromType, false); | 
 |   if (!Context.hasSameUnqualifiedType(FromType, ToType)) | 
 |     return false; | 
 |  | 
 |   ResultTy = FromType; | 
 |   return true; | 
 | } | 
 |    | 
 | /// IsStandardConversion - Determines whether there is a standard | 
 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the | 
 | /// expression From to the type ToType. Standard conversion sequences | 
 | /// only consider non-class types; for conversions that involve class | 
 | /// types, use TryImplicitConversion. If a conversion exists, SCS will | 
 | /// contain the standard conversion sequence required to perform this | 
 | /// conversion and this routine will return true. Otherwise, this | 
 | /// routine will return false and the value of SCS is unspecified. | 
 | bool | 
 | Sema::IsStandardConversion(Expr* From, QualType ToType, | 
 |                            bool InOverloadResolution, | 
 |                            StandardConversionSequence &SCS) { | 
 |   QualType FromType = From->getType(); | 
 |  | 
 |   // Standard conversions (C++ [conv]) | 
 |   SCS.setAsIdentityConversion(); | 
 |   SCS.DeprecatedStringLiteralToCharPtr = false; | 
 |   SCS.IncompatibleObjC = false; | 
 |   SCS.setFromType(FromType); | 
 |   SCS.CopyConstructor = 0; | 
 |  | 
 |   // There are no standard conversions for class types in C++, so | 
 |   // abort early. When overloading in C, however, we do permit | 
 |   if (FromType->isRecordType() || ToType->isRecordType()) { | 
 |     if (getLangOptions().CPlusPlus) | 
 |       return false; | 
 |  | 
 |     // When we're overloading in C, we allow, as standard conversions, | 
 |   } | 
 |  | 
 |   // The first conversion can be an lvalue-to-rvalue conversion, | 
 |   // array-to-pointer conversion, or function-to-pointer conversion | 
 |   // (C++ 4p1). | 
 |  | 
 |   if (FromType == Context.OverloadTy) { | 
 |     DeclAccessPair AccessPair; | 
 |     if (FunctionDecl *Fn | 
 |           = ResolveAddressOfOverloadedFunction(From, ToType, false,  | 
 |                                                AccessPair)) { | 
 |       // We were able to resolve the address of the overloaded function, | 
 |       // so we can convert to the type of that function. | 
 |       FromType = Fn->getType(); | 
 |       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
 |         if (!Method->isStatic()) { | 
 |           Type *ClassType  | 
 |             = Context.getTypeDeclType(Method->getParent()).getTypePtr(); | 
 |           FromType = Context.getMemberPointerType(FromType, ClassType); | 
 |         } | 
 |       } | 
 |        | 
 |       // If the "from" expression takes the address of the overloaded | 
 |       // function, update the type of the resulting expression accordingly. | 
 |       if (FromType->getAs<FunctionType>()) | 
 |         if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens())) | 
 |           if (UnOp->getOpcode() == UnaryOperator::AddrOf) | 
 |             FromType = Context.getPointerType(FromType); | 
 |   | 
 |       // Check that we've computed the proper type after overload resolution. | 
 |       assert(Context.hasSameType(FromType, | 
 |               FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); | 
 |     } else { | 
 |       return false; | 
 |     } | 
 |   }  | 
 |   // Lvalue-to-rvalue conversion (C++ 4.1): | 
 |   //   An lvalue (3.10) of a non-function, non-array type T can be | 
 |   //   converted to an rvalue. | 
 |   Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); | 
 |   if (argIsLvalue == Expr::LV_Valid && | 
 |       !FromType->isFunctionType() && !FromType->isArrayType() && | 
 |       Context.getCanonicalType(FromType) != Context.OverloadTy) { | 
 |     SCS.First = ICK_Lvalue_To_Rvalue; | 
 |  | 
 |     // If T is a non-class type, the type of the rvalue is the | 
 |     // cv-unqualified version of T. Otherwise, the type of the rvalue | 
 |     // is T (C++ 4.1p1). C++ can't get here with class types; in C, we | 
 |     // just strip the qualifiers because they don't matter. | 
 |     FromType = FromType.getUnqualifiedType(); | 
 |   } else if (FromType->isArrayType()) { | 
 |     // Array-to-pointer conversion (C++ 4.2) | 
 |     SCS.First = ICK_Array_To_Pointer; | 
 |  | 
 |     // An lvalue or rvalue of type "array of N T" or "array of unknown | 
 |     // bound of T" can be converted to an rvalue of type "pointer to | 
 |     // T" (C++ 4.2p1). | 
 |     FromType = Context.getArrayDecayedType(FromType); | 
 |  | 
 |     if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { | 
 |       // This conversion is deprecated. (C++ D.4). | 
 |       SCS.DeprecatedStringLiteralToCharPtr = true; | 
 |  | 
 |       // For the purpose of ranking in overload resolution | 
 |       // (13.3.3.1.1), this conversion is considered an | 
 |       // array-to-pointer conversion followed by a qualification | 
 |       // conversion (4.4). (C++ 4.2p2) | 
 |       SCS.Second = ICK_Identity; | 
 |       SCS.Third = ICK_Qualification; | 
 |       SCS.setAllToTypes(FromType); | 
 |       return true; | 
 |     } | 
 |   } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { | 
 |     // Function-to-pointer conversion (C++ 4.3). | 
 |     SCS.First = ICK_Function_To_Pointer; | 
 |  | 
 |     // An lvalue of function type T can be converted to an rvalue of | 
 |     // type "pointer to T." The result is a pointer to the | 
 |     // function. (C++ 4.3p1). | 
 |     FromType = Context.getPointerType(FromType); | 
 |   } else { | 
 |     // We don't require any conversions for the first step. | 
 |     SCS.First = ICK_Identity; | 
 |   } | 
 |   SCS.setToType(0, FromType); | 
 |  | 
 |   // The second conversion can be an integral promotion, floating | 
 |   // point promotion, integral conversion, floating point conversion, | 
 |   // floating-integral conversion, pointer conversion, | 
 |   // pointer-to-member conversion, or boolean conversion (C++ 4p1). | 
 |   // For overloading in C, this can also be a "compatible-type" | 
 |   // conversion. | 
 |   bool IncompatibleObjC = false; | 
 |   if (Context.hasSameUnqualifiedType(FromType, ToType)) { | 
 |     // The unqualified versions of the types are the same: there's no | 
 |     // conversion to do. | 
 |     SCS.Second = ICK_Identity; | 
 |   } else if (IsIntegralPromotion(From, FromType, ToType)) { | 
 |     // Integral promotion (C++ 4.5). | 
 |     SCS.Second = ICK_Integral_Promotion; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if (IsFloatingPointPromotion(FromType, ToType)) { | 
 |     // Floating point promotion (C++ 4.6). | 
 |     SCS.Second = ICK_Floating_Promotion; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if (IsComplexPromotion(FromType, ToType)) { | 
 |     // Complex promotion (Clang extension) | 
 |     SCS.Second = ICK_Complex_Promotion; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && | 
 |            (ToType->isIntegralType() && !ToType->isEnumeralType())) { | 
 |     // Integral conversions (C++ 4.7). | 
 |     SCS.Second = ICK_Integral_Conversion; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if (FromType->isComplexType() && ToType->isComplexType()) { | 
 |     // Complex conversions (C99 6.3.1.6) | 
 |     SCS.Second = ICK_Complex_Conversion; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || | 
 |              (ToType->isComplexType() && FromType->isArithmeticType())) { | 
 |     // Complex-real conversions (C99 6.3.1.7) | 
 |     SCS.Second = ICK_Complex_Real; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if (FromType->isFloatingType() && ToType->isFloatingType()) { | 
 |     // Floating point conversions (C++ 4.8). | 
 |     SCS.Second = ICK_Floating_Conversion; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if ((FromType->isFloatingType() && | 
 |               ToType->isIntegralType() && (!ToType->isBooleanType() && | 
 |                                            !ToType->isEnumeralType())) || | 
 |              ((FromType->isIntegralType() || FromType->isEnumeralType()) && | 
 |               ToType->isFloatingType())) { | 
 |     // Floating-integral conversions (C++ 4.9). | 
 |     SCS.Second = ICK_Floating_Integral; | 
 |     FromType = ToType.getUnqualifiedType(); | 
 |   } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, | 
 |                                  FromType, IncompatibleObjC)) { | 
 |     // Pointer conversions (C++ 4.10). | 
 |     SCS.Second = ICK_Pointer_Conversion; | 
 |     SCS.IncompatibleObjC = IncompatibleObjC; | 
 |   } else if (IsMemberPointerConversion(From, FromType, ToType,  | 
 |                                        InOverloadResolution, FromType)) { | 
 |     // Pointer to member conversions (4.11). | 
 |     SCS.Second = ICK_Pointer_Member; | 
 |   } else if (ToType->isBooleanType() && | 
 |              (FromType->isArithmeticType() || | 
 |               FromType->isEnumeralType() || | 
 |               FromType->isAnyPointerType() || | 
 |               FromType->isBlockPointerType() || | 
 |               FromType->isMemberPointerType() || | 
 |               FromType->isNullPtrType())) { | 
 |     // Boolean conversions (C++ 4.12). | 
 |     SCS.Second = ICK_Boolean_Conversion; | 
 |     FromType = Context.BoolTy; | 
 |   } else if (!getLangOptions().CPlusPlus && | 
 |              Context.typesAreCompatible(ToType, FromType)) { | 
 |     // Compatible conversions (Clang extension for C function overloading) | 
 |     SCS.Second = ICK_Compatible_Conversion; | 
 |   } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) { | 
 |     // Treat a conversion that strips "noreturn" as an identity conversion. | 
 |     SCS.Second = ICK_NoReturn_Adjustment; | 
 |   } else { | 
 |     // No second conversion required. | 
 |     SCS.Second = ICK_Identity; | 
 |   } | 
 |   SCS.setToType(1, FromType); | 
 |  | 
 |   QualType CanonFrom; | 
 |   QualType CanonTo; | 
 |   // The third conversion can be a qualification conversion (C++ 4p1). | 
 |   if (IsQualificationConversion(FromType, ToType)) { | 
 |     SCS.Third = ICK_Qualification; | 
 |     FromType = ToType; | 
 |     CanonFrom = Context.getCanonicalType(FromType); | 
 |     CanonTo = Context.getCanonicalType(ToType); | 
 |   } else { | 
 |     // No conversion required | 
 |     SCS.Third = ICK_Identity; | 
 |  | 
 |     // C++ [over.best.ics]p6: | 
 |     //   [...] Any difference in top-level cv-qualification is | 
 |     //   subsumed by the initialization itself and does not constitute | 
 |     //   a conversion. [...] | 
 |     CanonFrom = Context.getCanonicalType(FromType); | 
 |     CanonTo = Context.getCanonicalType(ToType); | 
 |     if (CanonFrom.getLocalUnqualifiedType()  | 
 |                                        == CanonTo.getLocalUnqualifiedType() && | 
 |         CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { | 
 |       FromType = ToType; | 
 |       CanonFrom = CanonTo; | 
 |     } | 
 |   } | 
 |   SCS.setToType(2, FromType); | 
 |  | 
 |   // If we have not converted the argument type to the parameter type, | 
 |   // this is a bad conversion sequence. | 
 |   if (CanonFrom != CanonTo) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// IsIntegralPromotion - Determines whether the conversion from the | 
 | /// expression From (whose potentially-adjusted type is FromType) to | 
 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and | 
 | /// sets PromotedType to the promoted type. | 
 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { | 
 |   const BuiltinType *To = ToType->getAs<BuiltinType>(); | 
 |   // All integers are built-in. | 
 |   if (!To) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // An rvalue of type char, signed char, unsigned char, short int, or | 
 |   // unsigned short int can be converted to an rvalue of type int if | 
 |   // int can represent all the values of the source type; otherwise, | 
 |   // the source rvalue can be converted to an rvalue of type unsigned | 
 |   // int (C++ 4.5p1). | 
 |   if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && | 
 |       !FromType->isEnumeralType()) { | 
 |     if (// We can promote any signed, promotable integer type to an int | 
 |         (FromType->isSignedIntegerType() || | 
 |          // We can promote any unsigned integer type whose size is | 
 |          // less than int to an int. | 
 |          (!FromType->isSignedIntegerType() && | 
 |           Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { | 
 |       return To->getKind() == BuiltinType::Int; | 
 |     } | 
 |  | 
 |     return To->getKind() == BuiltinType::UInt; | 
 |   } | 
 |  | 
 |   // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) | 
 |   // can be converted to an rvalue of the first of the following types | 
 |   // that can represent all the values of its underlying type: int, | 
 |   // unsigned int, long, or unsigned long (C++ 4.5p2). | 
 |  | 
 |   // We pre-calculate the promotion type for enum types. | 
 |   if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) | 
 |     if (ToType->isIntegerType()) | 
 |       return Context.hasSameUnqualifiedType(ToType, | 
 |                                 FromEnumType->getDecl()->getPromotionType()); | 
 |  | 
 |   if (FromType->isWideCharType() && ToType->isIntegerType()) { | 
 |     // Determine whether the type we're converting from is signed or | 
 |     // unsigned. | 
 |     bool FromIsSigned; | 
 |     uint64_t FromSize = Context.getTypeSize(FromType); | 
 |      | 
 |     // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. | 
 |     FromIsSigned = true; | 
 |  | 
 |     // The types we'll try to promote to, in the appropriate | 
 |     // order. Try each of these types. | 
 |     QualType PromoteTypes[6] = { | 
 |       Context.IntTy, Context.UnsignedIntTy, | 
 |       Context.LongTy, Context.UnsignedLongTy , | 
 |       Context.LongLongTy, Context.UnsignedLongLongTy | 
 |     }; | 
 |     for (int Idx = 0; Idx < 6; ++Idx) { | 
 |       uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); | 
 |       if (FromSize < ToSize || | 
 |           (FromSize == ToSize && | 
 |            FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { | 
 |         // We found the type that we can promote to. If this is the | 
 |         // type we wanted, we have a promotion. Otherwise, no | 
 |         // promotion. | 
 |         return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // An rvalue for an integral bit-field (9.6) can be converted to an | 
 |   // rvalue of type int if int can represent all the values of the | 
 |   // bit-field; otherwise, it can be converted to unsigned int if | 
 |   // unsigned int can represent all the values of the bit-field. If | 
 |   // the bit-field is larger yet, no integral promotion applies to | 
 |   // it. If the bit-field has an enumerated type, it is treated as any | 
 |   // other value of that type for promotion purposes (C++ 4.5p3). | 
 |   // FIXME: We should delay checking of bit-fields until we actually perform the | 
 |   // conversion. | 
 |   using llvm::APSInt; | 
 |   if (From) | 
 |     if (FieldDecl *MemberDecl = From->getBitField()) { | 
 |       APSInt BitWidth; | 
 |       if (FromType->isIntegralType() && !FromType->isEnumeralType() && | 
 |           MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { | 
 |         APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); | 
 |         ToSize = Context.getTypeSize(ToType); | 
 |  | 
 |         // Are we promoting to an int from a bitfield that fits in an int? | 
 |         if (BitWidth < ToSize || | 
 |             (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { | 
 |           return To->getKind() == BuiltinType::Int; | 
 |         } | 
 |  | 
 |         // Are we promoting to an unsigned int from an unsigned bitfield | 
 |         // that fits into an unsigned int? | 
 |         if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { | 
 |           return To->getKind() == BuiltinType::UInt; | 
 |         } | 
 |  | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |   // An rvalue of type bool can be converted to an rvalue of type int, | 
 |   // with false becoming zero and true becoming one (C++ 4.5p4). | 
 |   if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// IsFloatingPointPromotion - Determines whether the conversion from | 
 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, | 
 | /// returns true and sets PromotedType to the promoted type. | 
 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { | 
 |   /// An rvalue of type float can be converted to an rvalue of type | 
 |   /// double. (C++ 4.6p1). | 
 |   if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) | 
 |     if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { | 
 |       if (FromBuiltin->getKind() == BuiltinType::Float && | 
 |           ToBuiltin->getKind() == BuiltinType::Double) | 
 |         return true; | 
 |  | 
 |       // C99 6.3.1.5p1: | 
 |       //   When a float is promoted to double or long double, or a | 
 |       //   double is promoted to long double [...]. | 
 |       if (!getLangOptions().CPlusPlus && | 
 |           (FromBuiltin->getKind() == BuiltinType::Float || | 
 |            FromBuiltin->getKind() == BuiltinType::Double) && | 
 |           (ToBuiltin->getKind() == BuiltinType::LongDouble)) | 
 |         return true; | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Determine if a conversion is a complex promotion. | 
 | /// | 
 | /// A complex promotion is defined as a complex -> complex conversion | 
 | /// where the conversion between the underlying real types is a | 
 | /// floating-point or integral promotion. | 
 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { | 
 |   const ComplexType *FromComplex = FromType->getAs<ComplexType>(); | 
 |   if (!FromComplex) | 
 |     return false; | 
 |  | 
 |   const ComplexType *ToComplex = ToType->getAs<ComplexType>(); | 
 |   if (!ToComplex) | 
 |     return false; | 
 |  | 
 |   return IsFloatingPointPromotion(FromComplex->getElementType(), | 
 |                                   ToComplex->getElementType()) || | 
 |     IsIntegralPromotion(0, FromComplex->getElementType(), | 
 |                         ToComplex->getElementType()); | 
 | } | 
 |  | 
 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from | 
 | /// the pointer type FromPtr to a pointer to type ToPointee, with the | 
 | /// same type qualifiers as FromPtr has on its pointee type. ToType, | 
 | /// if non-empty, will be a pointer to ToType that may or may not have | 
 | /// the right set of qualifiers on its pointee. | 
 | static QualType | 
 | BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, | 
 |                                    QualType ToPointee, QualType ToType, | 
 |                                    ASTContext &Context) { | 
 |   QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); | 
 |   QualType CanonToPointee = Context.getCanonicalType(ToPointee); | 
 |   Qualifiers Quals = CanonFromPointee.getQualifiers(); | 
 |  | 
 |   // Exact qualifier match -> return the pointer type we're converting to. | 
 |   if (CanonToPointee.getLocalQualifiers() == Quals) { | 
 |     // ToType is exactly what we need. Return it. | 
 |     if (!ToType.isNull()) | 
 |       return ToType; | 
 |  | 
 |     // Build a pointer to ToPointee. It has the right qualifiers | 
 |     // already. | 
 |     return Context.getPointerType(ToPointee); | 
 |   } | 
 |  | 
 |   // Just build a canonical type that has the right qualifiers. | 
 |   return Context.getPointerType( | 
 |          Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),  | 
 |                                   Quals)); | 
 | } | 
 |  | 
 | /// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from | 
 | /// the FromType, which is an objective-c pointer, to ToType, which may or may | 
 | /// not have the right set of qualifiers. | 
 | static QualType | 
 | BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType, | 
 |                                              QualType ToType, | 
 |                                              ASTContext &Context) { | 
 |   QualType CanonFromType = Context.getCanonicalType(FromType); | 
 |   QualType CanonToType = Context.getCanonicalType(ToType); | 
 |   Qualifiers Quals = CanonFromType.getQualifiers(); | 
 |      | 
 |   // Exact qualifier match -> return the pointer type we're converting to. | 
 |   if (CanonToType.getLocalQualifiers() == Quals) | 
 |     return ToType; | 
 |    | 
 |   // Just build a canonical type that has the right qualifiers. | 
 |   return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals); | 
 | } | 
 |    | 
 | static bool isNullPointerConstantForConversion(Expr *Expr, | 
 |                                                bool InOverloadResolution, | 
 |                                                ASTContext &Context) { | 
 |   // Handle value-dependent integral null pointer constants correctly. | 
 |   // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 | 
 |   if (Expr->isValueDependent() && !Expr->isTypeDependent() && | 
 |       Expr->getType()->isIntegralType()) | 
 |     return !InOverloadResolution; | 
 |  | 
 |   return Expr->isNullPointerConstant(Context, | 
 |                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | 
 |                                         : Expr::NPC_ValueDependentIsNull); | 
 | } | 
 |  | 
 | /// IsPointerConversion - Determines whether the conversion of the | 
 | /// expression From, which has the (possibly adjusted) type FromType, | 
 | /// can be converted to the type ToType via a pointer conversion (C++ | 
 | /// 4.10). If so, returns true and places the converted type (that | 
 | /// might differ from ToType in its cv-qualifiers at some level) into | 
 | /// ConvertedType. | 
 | /// | 
 | /// This routine also supports conversions to and from block pointers | 
 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and | 
 | /// pointers to interfaces. FIXME: Once we've determined the | 
 | /// appropriate overloading rules for Objective-C, we may want to | 
 | /// split the Objective-C checks into a different routine; however, | 
 | /// GCC seems to consider all of these conversions to be pointer | 
 | /// conversions, so for now they live here. IncompatibleObjC will be | 
 | /// set if the conversion is an allowed Objective-C conversion that | 
 | /// should result in a warning. | 
 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, | 
 |                                bool InOverloadResolution, | 
 |                                QualType& ConvertedType, | 
 |                                bool &IncompatibleObjC) { | 
 |   IncompatibleObjC = false; | 
 |   if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) | 
 |     return true; | 
 |  | 
 |   // Conversion from a null pointer constant to any Objective-C pointer type. | 
 |   if (ToType->isObjCObjectPointerType() && | 
 |       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Blocks: Block pointers can be converted to void*. | 
 |   if (FromType->isBlockPointerType() && ToType->isPointerType() && | 
 |       ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |   // Blocks: A null pointer constant can be converted to a block | 
 |   // pointer type. | 
 |   if (ToType->isBlockPointerType() && | 
 |       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If the left-hand-side is nullptr_t, the right side can be a null | 
 |   // pointer constant. | 
 |   if (ToType->isNullPtrType() && | 
 |       isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |  | 
 |   const PointerType* ToTypePtr = ToType->getAs<PointerType>(); | 
 |   if (!ToTypePtr) | 
 |     return false; | 
 |  | 
 |   // A null pointer constant can be converted to a pointer type (C++ 4.10p1). | 
 |   if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Beyond this point, both types need to be pointers  | 
 |   // , including objective-c pointers. | 
 |   QualType ToPointeeType = ToTypePtr->getPointeeType(); | 
 |   if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) { | 
 |     ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType, | 
 |                                                        ToType, Context); | 
 |     return true; | 
 |      | 
 |   } | 
 |   const PointerType *FromTypePtr = FromType->getAs<PointerType>(); | 
 |   if (!FromTypePtr) | 
 |     return false; | 
 |  | 
 |   QualType FromPointeeType = FromTypePtr->getPointeeType(); | 
 |  | 
 |   // An rvalue of type "pointer to cv T," where T is an object type, | 
 |   // can be converted to an rvalue of type "pointer to cv void" (C++ | 
 |   // 4.10p2). | 
 |   if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { | 
 |     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
 |                                                        ToPointeeType, | 
 |                                                        ToType, Context); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // When we're overloading in C, we allow a special kind of pointer | 
 |   // conversion for compatible-but-not-identical pointee types. | 
 |   if (!getLangOptions().CPlusPlus && | 
 |       Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { | 
 |     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
 |                                                        ToPointeeType, | 
 |                                                        ToType, Context); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // C++ [conv.ptr]p3: | 
 |   // | 
 |   //   An rvalue of type "pointer to cv D," where D is a class type, | 
 |   //   can be converted to an rvalue of type "pointer to cv B," where | 
 |   //   B is a base class (clause 10) of D. If B is an inaccessible | 
 |   //   (clause 11) or ambiguous (10.2) base class of D, a program that | 
 |   //   necessitates this conversion is ill-formed. The result of the | 
 |   //   conversion is a pointer to the base class sub-object of the | 
 |   //   derived class object. The null pointer value is converted to | 
 |   //   the null pointer value of the destination type. | 
 |   // | 
 |   // Note that we do not check for ambiguity or inaccessibility | 
 |   // here. That is handled by CheckPointerConversion. | 
 |   if (getLangOptions().CPlusPlus && | 
 |       FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | 
 |       !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && | 
 |       !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && | 
 |       IsDerivedFrom(FromPointeeType, ToPointeeType)) { | 
 |     ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, | 
 |                                                        ToPointeeType, | 
 |                                                        ToType, Context); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// isObjCPointerConversion - Determines whether this is an | 
 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, | 
 | /// with the same arguments and return values. | 
 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, | 
 |                                    QualType& ConvertedType, | 
 |                                    bool &IncompatibleObjC) { | 
 |   if (!getLangOptions().ObjC1) | 
 |     return false; | 
 |   | 
 |   // First, we handle all conversions on ObjC object pointer types. | 
 |   const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); | 
 |   const ObjCObjectPointerType *FromObjCPtr = | 
 |     FromType->getAs<ObjCObjectPointerType>(); | 
 |  | 
 |   if (ToObjCPtr && FromObjCPtr) { | 
 |     // Objective C++: We're able to convert between "id" or "Class" and a | 
 |     // pointer to any interface (in both directions). | 
 |     if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { | 
 |       ConvertedType = ToType; | 
 |       return true; | 
 |     } | 
 |     // Conversions with Objective-C's id<...>. | 
 |     if ((FromObjCPtr->isObjCQualifiedIdType() || | 
 |          ToObjCPtr->isObjCQualifiedIdType()) && | 
 |         Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, | 
 |                                                   /*compare=*/false)) { | 
 |       ConvertedType = ToType; | 
 |       return true; | 
 |     } | 
 |     // Objective C++: We're able to convert from a pointer to an | 
 |     // interface to a pointer to a different interface. | 
 |     if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { | 
 |       const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); | 
 |       const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); | 
 |       if (getLangOptions().CPlusPlus && LHS && RHS && | 
 |           !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( | 
 |                                                 FromObjCPtr->getPointeeType())) | 
 |         return false; | 
 |       ConvertedType = ToType; | 
 |       return true; | 
 |     } | 
 |  | 
 |     if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { | 
 |       // Okay: this is some kind of implicit downcast of Objective-C | 
 |       // interfaces, which is permitted. However, we're going to | 
 |       // complain about it. | 
 |       IncompatibleObjC = true; | 
 |       ConvertedType = FromType; | 
 |       return true; | 
 |     } | 
 |   } | 
 |   // Beyond this point, both types need to be C pointers or block pointers. | 
 |   QualType ToPointeeType; | 
 |   if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) | 
 |     ToPointeeType = ToCPtr->getPointeeType(); | 
 |   else if (const BlockPointerType *ToBlockPtr =  | 
 |             ToType->getAs<BlockPointerType>()) { | 
 |     // Objective C++: We're able to convert from a pointer to any object | 
 |     // to a block pointer type. | 
 |     if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { | 
 |       ConvertedType = ToType; | 
 |       return true; | 
 |     } | 
 |     ToPointeeType = ToBlockPtr->getPointeeType(); | 
 |   } | 
 |   else if (FromType->getAs<BlockPointerType>() &&  | 
 |            ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { | 
 |     // Objective C++: We're able to convert from a block pointer type to a  | 
 |     // pointer to any object. | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |   else | 
 |     return false; | 
 |  | 
 |   QualType FromPointeeType; | 
 |   if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) | 
 |     FromPointeeType = FromCPtr->getPointeeType(); | 
 |   else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) | 
 |     FromPointeeType = FromBlockPtr->getPointeeType(); | 
 |   else | 
 |     return false; | 
 |  | 
 |   // If we have pointers to pointers, recursively check whether this | 
 |   // is an Objective-C conversion. | 
 |   if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && | 
 |       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | 
 |                               IncompatibleObjC)) { | 
 |     // We always complain about this conversion. | 
 |     IncompatibleObjC = true; | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |   // Allow conversion of pointee being objective-c pointer to another one; | 
 |   // as in I* to id. | 
 |   if (FromPointeeType->getAs<ObjCObjectPointerType>() && | 
 |       ToPointeeType->getAs<ObjCObjectPointerType>() && | 
 |       isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, | 
 |                               IncompatibleObjC)) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |    | 
 |   // If we have pointers to functions or blocks, check whether the only | 
 |   // differences in the argument and result types are in Objective-C | 
 |   // pointer conversions. If so, we permit the conversion (but | 
 |   // complain about it). | 
 |   const FunctionProtoType *FromFunctionType | 
 |     = FromPointeeType->getAs<FunctionProtoType>(); | 
 |   const FunctionProtoType *ToFunctionType | 
 |     = ToPointeeType->getAs<FunctionProtoType>(); | 
 |   if (FromFunctionType && ToFunctionType) { | 
 |     // If the function types are exactly the same, this isn't an | 
 |     // Objective-C pointer conversion. | 
 |     if (Context.getCanonicalType(FromPointeeType) | 
 |           == Context.getCanonicalType(ToPointeeType)) | 
 |       return false; | 
 |  | 
 |     // Perform the quick checks that will tell us whether these | 
 |     // function types are obviously different. | 
 |     if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || | 
 |         FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || | 
 |         FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) | 
 |       return false; | 
 |  | 
 |     bool HasObjCConversion = false; | 
 |     if (Context.getCanonicalType(FromFunctionType->getResultType()) | 
 |           == Context.getCanonicalType(ToFunctionType->getResultType())) { | 
 |       // Okay, the types match exactly. Nothing to do. | 
 |     } else if (isObjCPointerConversion(FromFunctionType->getResultType(), | 
 |                                        ToFunctionType->getResultType(), | 
 |                                        ConvertedType, IncompatibleObjC)) { | 
 |       // Okay, we have an Objective-C pointer conversion. | 
 |       HasObjCConversion = true; | 
 |     } else { | 
 |       // Function types are too different. Abort. | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Check argument types. | 
 |     for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); | 
 |          ArgIdx != NumArgs; ++ArgIdx) { | 
 |       QualType FromArgType = FromFunctionType->getArgType(ArgIdx); | 
 |       QualType ToArgType = ToFunctionType->getArgType(ArgIdx); | 
 |       if (Context.getCanonicalType(FromArgType) | 
 |             == Context.getCanonicalType(ToArgType)) { | 
 |         // Okay, the types match exactly. Nothing to do. | 
 |       } else if (isObjCPointerConversion(FromArgType, ToArgType, | 
 |                                          ConvertedType, IncompatibleObjC)) { | 
 |         // Okay, we have an Objective-C pointer conversion. | 
 |         HasObjCConversion = true; | 
 |       } else { | 
 |         // Argument types are too different. Abort. | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     if (HasObjCConversion) { | 
 |       // We had an Objective-C conversion. Allow this pointer | 
 |       // conversion, but complain about it. | 
 |       ConvertedType = ToType; | 
 |       IncompatibleObjC = true; | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |   | 
 | /// FunctionArgTypesAreEqual - This routine checks two function proto types | 
 | /// for equlity of their argument types. Caller has already checked that | 
 | /// they have same number of arguments. This routine assumes that Objective-C | 
 | /// pointer types which only differ in their protocol qualifiers are equal. | 
 | bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,  | 
 |                             FunctionProtoType*  NewType){ | 
 |   if (!getLangOptions().ObjC1) | 
 |     return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), | 
 |                       NewType->arg_type_begin()); | 
 |    | 
 |   for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), | 
 |        N = NewType->arg_type_begin(), | 
 |        E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { | 
 |     QualType ToType = (*O); | 
 |     QualType FromType = (*N); | 
 |     if (ToType != FromType) { | 
 |       if (const PointerType *PTTo = ToType->getAs<PointerType>()) { | 
 |         if (const PointerType *PTFr = FromType->getAs<PointerType>()) | 
 |           if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && | 
 |                PTFr->getPointeeType()->isObjCQualifiedIdType()) || | 
 |               (PTTo->getPointeeType()->isObjCQualifiedClassType() && | 
 |                PTFr->getPointeeType()->isObjCQualifiedClassType())) | 
 |             continue; | 
 |       } | 
 |       else if (ToType->isObjCObjectPointerType() && | 
 |                FromType->isObjCObjectPointerType()) { | 
 |         QualType ToInterfaceTy = ToType->getPointeeType(); | 
 |         QualType FromInterfaceTy = FromType->getPointeeType(); | 
 |         if (const ObjCInterfaceType *OITTo = | 
 |             ToInterfaceTy->getAs<ObjCInterfaceType>()) | 
 |           if (const ObjCInterfaceType *OITFr = | 
 |               FromInterfaceTy->getAs<ObjCInterfaceType>()) | 
 |             if (OITTo->getDecl() == OITFr->getDecl()) | 
 |               continue; | 
 |       } | 
 |       return false;   | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// CheckPointerConversion - Check the pointer conversion from the | 
 | /// expression From to the type ToType. This routine checks for | 
 | /// ambiguous or inaccessible derived-to-base pointer | 
 | /// conversions for which IsPointerConversion has already returned | 
 | /// true. It returns true and produces a diagnostic if there was an | 
 | /// error, or returns false otherwise. | 
 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, | 
 |                                   CastExpr::CastKind &Kind, | 
 |                                   CXXBaseSpecifierArray& BasePath, | 
 |                                   bool IgnoreBaseAccess) { | 
 |   QualType FromType = From->getType(); | 
 |  | 
 |   if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) | 
 |     if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { | 
 |       QualType FromPointeeType = FromPtrType->getPointeeType(), | 
 |                ToPointeeType   = ToPtrType->getPointeeType(); | 
 |  | 
 |       if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && | 
 |           !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { | 
 |         // We must have a derived-to-base conversion. Check an | 
 |         // ambiguous or inaccessible conversion. | 
 |         if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, | 
 |                                          From->getExprLoc(), | 
 |                                          From->getSourceRange(), &BasePath, | 
 |                                          IgnoreBaseAccess)) | 
 |           return true; | 
 |          | 
 |         // The conversion was successful. | 
 |         Kind = CastExpr::CK_DerivedToBase; | 
 |       } | 
 |     } | 
 |   if (const ObjCObjectPointerType *FromPtrType = | 
 |         FromType->getAs<ObjCObjectPointerType>()) | 
 |     if (const ObjCObjectPointerType *ToPtrType = | 
 |           ToType->getAs<ObjCObjectPointerType>()) { | 
 |       // Objective-C++ conversions are always okay. | 
 |       // FIXME: We should have a different class of conversions for the | 
 |       // Objective-C++ implicit conversions. | 
 |       if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) | 
 |         return false; | 
 |  | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// IsMemberPointerConversion - Determines whether the conversion of the | 
 | /// expression From, which has the (possibly adjusted) type FromType, can be | 
 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). | 
 | /// If so, returns true and places the converted type (that might differ from | 
 | /// ToType in its cv-qualifiers at some level) into ConvertedType. | 
 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, | 
 |                                      QualType ToType,  | 
 |                                      bool InOverloadResolution, | 
 |                                      QualType &ConvertedType) { | 
 |   const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); | 
 |   if (!ToTypePtr) | 
 |     return false; | 
 |  | 
 |   // A null pointer constant can be converted to a member pointer (C++ 4.11p1) | 
 |   if (From->isNullPointerConstant(Context, | 
 |                     InOverloadResolution? Expr::NPC_ValueDependentIsNotNull | 
 |                                         : Expr::NPC_ValueDependentIsNull)) { | 
 |     ConvertedType = ToType; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Otherwise, both types have to be member pointers. | 
 |   const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); | 
 |   if (!FromTypePtr) | 
 |     return false; | 
 |  | 
 |   // A pointer to member of B can be converted to a pointer to member of D, | 
 |   // where D is derived from B (C++ 4.11p2). | 
 |   QualType FromClass(FromTypePtr->getClass(), 0); | 
 |   QualType ToClass(ToTypePtr->getClass(), 0); | 
 |   // FIXME: What happens when these are dependent? Is this function even called? | 
 |  | 
 |   if (IsDerivedFrom(ToClass, FromClass)) { | 
 |     ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), | 
 |                                                  ToClass.getTypePtr()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |    | 
 | /// CheckMemberPointerConversion - Check the member pointer conversion from the | 
 | /// expression From to the type ToType. This routine checks for ambiguous or | 
 | /// virtual or inaccessible base-to-derived member pointer conversions | 
 | /// for which IsMemberPointerConversion has already returned true. It returns | 
 | /// true and produces a diagnostic if there was an error, or returns false | 
 | /// otherwise. | 
 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, | 
 |                                         CastExpr::CastKind &Kind, | 
 |                                         CXXBaseSpecifierArray &BasePath, | 
 |                                         bool IgnoreBaseAccess) { | 
 |   QualType FromType = From->getType(); | 
 |   const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); | 
 |   if (!FromPtrType) { | 
 |     // This must be a null pointer to member pointer conversion | 
 |     assert(From->isNullPointerConstant(Context,  | 
 |                                        Expr::NPC_ValueDependentIsNull) && | 
 |            "Expr must be null pointer constant!"); | 
 |     Kind = CastExpr::CK_NullToMemberPointer; | 
 |     return false; | 
 |   } | 
 |  | 
 |   const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); | 
 |   assert(ToPtrType && "No member pointer cast has a target type " | 
 |                       "that is not a member pointer."); | 
 |  | 
 |   QualType FromClass = QualType(FromPtrType->getClass(), 0); | 
 |   QualType ToClass   = QualType(ToPtrType->getClass(), 0); | 
 |  | 
 |   // FIXME: What about dependent types? | 
 |   assert(FromClass->isRecordType() && "Pointer into non-class."); | 
 |   assert(ToClass->isRecordType() && "Pointer into non-class."); | 
 |  | 
 |   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
 |                      /*DetectVirtual=*/true); | 
 |   bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); | 
 |   assert(DerivationOkay && | 
 |          "Should not have been called if derivation isn't OK."); | 
 |   (void)DerivationOkay; | 
 |  | 
 |   if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). | 
 |                                   getUnqualifiedType())) { | 
 |     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); | 
 |     Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) | 
 |       << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (const RecordType *VBase = Paths.getDetectedVirtual()) { | 
 |     Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) | 
 |       << FromClass << ToClass << QualType(VBase, 0) | 
 |       << From->getSourceRange(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!IgnoreBaseAccess) | 
 |     CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, | 
 |                          Paths.front(), | 
 |                          diag::err_downcast_from_inaccessible_base); | 
 |  | 
 |   // Must be a base to derived member conversion. | 
 |   BuildBasePathArray(Paths, BasePath); | 
 |   Kind = CastExpr::CK_BaseToDerivedMemberPointer; | 
 |   return false; | 
 | } | 
 |  | 
 | /// IsQualificationConversion - Determines whether the conversion from | 
 | /// an rvalue of type FromType to ToType is a qualification conversion | 
 | /// (C++ 4.4). | 
 | bool | 
 | Sema::IsQualificationConversion(QualType FromType, QualType ToType) { | 
 |   FromType = Context.getCanonicalType(FromType); | 
 |   ToType = Context.getCanonicalType(ToType); | 
 |  | 
 |   // If FromType and ToType are the same type, this is not a | 
 |   // qualification conversion. | 
 |   if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) | 
 |     return false; | 
 |  | 
 |   // (C++ 4.4p4): | 
 |   //   A conversion can add cv-qualifiers at levels other than the first | 
 |   //   in multi-level pointers, subject to the following rules: [...] | 
 |   bool PreviousToQualsIncludeConst = true; | 
 |   bool UnwrappedAnyPointer = false; | 
 |   while (UnwrapSimilarPointerTypes(FromType, ToType)) { | 
 |     // Within each iteration of the loop, we check the qualifiers to | 
 |     // determine if this still looks like a qualification | 
 |     // conversion. Then, if all is well, we unwrap one more level of | 
 |     // pointers or pointers-to-members and do it all again | 
 |     // until there are no more pointers or pointers-to-members left to | 
 |     // unwrap. | 
 |     UnwrappedAnyPointer = true; | 
 |  | 
 |     //   -- for every j > 0, if const is in cv 1,j then const is in cv | 
 |     //      2,j, and similarly for volatile. | 
 |     if (!ToType.isAtLeastAsQualifiedAs(FromType)) | 
 |       return false; | 
 |  | 
 |     //   -- if the cv 1,j and cv 2,j are different, then const is in | 
 |     //      every cv for 0 < k < j. | 
 |     if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() | 
 |         && !PreviousToQualsIncludeConst) | 
 |       return false; | 
 |  | 
 |     // Keep track of whether all prior cv-qualifiers in the "to" type | 
 |     // include const. | 
 |     PreviousToQualsIncludeConst | 
 |       = PreviousToQualsIncludeConst && ToType.isConstQualified(); | 
 |   } | 
 |  | 
 |   // We are left with FromType and ToType being the pointee types | 
 |   // after unwrapping the original FromType and ToType the same number | 
 |   // of types. If we unwrapped any pointers, and if FromType and | 
 |   // ToType have the same unqualified type (since we checked | 
 |   // qualifiers above), then this is a qualification conversion. | 
 |   return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); | 
 | } | 
 |  | 
 | /// Determines whether there is a user-defined conversion sequence | 
 | /// (C++ [over.ics.user]) that converts expression From to the type | 
 | /// ToType. If such a conversion exists, User will contain the | 
 | /// user-defined conversion sequence that performs such a conversion | 
 | /// and this routine will return true. Otherwise, this routine returns | 
 | /// false and User is unspecified. | 
 | /// | 
 | /// \param AllowExplicit  true if the conversion should consider C++0x | 
 | /// "explicit" conversion functions as well as non-explicit conversion | 
 | /// functions (C++0x [class.conv.fct]p2). | 
 | OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType, | 
 |                                           UserDefinedConversionSequence& User, | 
 |                                            OverloadCandidateSet& CandidateSet, | 
 |                                                 bool AllowExplicit) { | 
 |   // Whether we will only visit constructors. | 
 |   bool ConstructorsOnly = false; | 
 |  | 
 |   // If the type we are conversion to is a class type, enumerate its | 
 |   // constructors. | 
 |   if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { | 
 |     // C++ [over.match.ctor]p1: | 
 |     //   When objects of class type are direct-initialized (8.5), or | 
 |     //   copy-initialized from an expression of the same or a | 
 |     //   derived class type (8.5), overload resolution selects the | 
 |     //   constructor. [...] For copy-initialization, the candidate | 
 |     //   functions are all the converting constructors (12.3.1) of | 
 |     //   that class. The argument list is the expression-list within | 
 |     //   the parentheses of the initializer. | 
 |     if (Context.hasSameUnqualifiedType(ToType, From->getType()) || | 
 |         (From->getType()->getAs<RecordType>() && | 
 |          IsDerivedFrom(From->getType(), ToType))) | 
 |       ConstructorsOnly = true; | 
 |  | 
 |     if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { | 
 |       // We're not going to find any constructors. | 
 |     } else if (CXXRecordDecl *ToRecordDecl | 
 |                  = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { | 
 |       DeclarationName ConstructorName | 
 |         = Context.DeclarationNames.getCXXConstructorName( | 
 |                        Context.getCanonicalType(ToType).getUnqualifiedType()); | 
 |       DeclContext::lookup_iterator Con, ConEnd; | 
 |       for (llvm::tie(Con, ConEnd) | 
 |              = ToRecordDecl->lookup(ConstructorName); | 
 |            Con != ConEnd; ++Con) { | 
 |         NamedDecl *D = *Con; | 
 |         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); | 
 |  | 
 |         // Find the constructor (which may be a template). | 
 |         CXXConstructorDecl *Constructor = 0; | 
 |         FunctionTemplateDecl *ConstructorTmpl | 
 |           = dyn_cast<FunctionTemplateDecl>(D); | 
 |         if (ConstructorTmpl) | 
 |           Constructor | 
 |             = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); | 
 |         else | 
 |           Constructor = cast<CXXConstructorDecl>(D); | 
 |          | 
 |         if (!Constructor->isInvalidDecl() && | 
 |             Constructor->isConvertingConstructor(AllowExplicit)) { | 
 |           if (ConstructorTmpl) | 
 |             AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, | 
 |                                          /*ExplicitArgs*/ 0, | 
 |                                          &From, 1, CandidateSet,  | 
 |                                  /*SuppressUserConversions=*/!ConstructorsOnly); | 
 |           else | 
 |             // Allow one user-defined conversion when user specifies a | 
 |             // From->ToType conversion via an static cast (c-style, etc). | 
 |             AddOverloadCandidate(Constructor, FoundDecl, | 
 |                                  &From, 1, CandidateSet, | 
 |                                  /*SuppressUserConversions=*/!ConstructorsOnly); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Enumerate conversion functions, if we're allowed to. | 
 |   if (ConstructorsOnly) { | 
 |   } else if (RequireCompleteType(From->getLocStart(), From->getType(), | 
 |                           PDiag(0) << From->getSourceRange())) { | 
 |     // No conversion functions from incomplete types. | 
 |   } else if (const RecordType *FromRecordType | 
 |                                    = From->getType()->getAs<RecordType>()) { | 
 |     if (CXXRecordDecl *FromRecordDecl | 
 |          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { | 
 |       // Add all of the conversion functions as candidates. | 
 |       const UnresolvedSetImpl *Conversions | 
 |         = FromRecordDecl->getVisibleConversionFunctions(); | 
 |       for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
 |              E = Conversions->end(); I != E; ++I) { | 
 |         DeclAccessPair FoundDecl = I.getPair(); | 
 |         NamedDecl *D = FoundDecl.getDecl(); | 
 |         CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
 |         if (isa<UsingShadowDecl>(D)) | 
 |           D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
 |  | 
 |         CXXConversionDecl *Conv; | 
 |         FunctionTemplateDecl *ConvTemplate; | 
 |         if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) | 
 |           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
 |         else | 
 |           Conv = cast<CXXConversionDecl>(D); | 
 |  | 
 |         if (AllowExplicit || !Conv->isExplicit()) { | 
 |           if (ConvTemplate) | 
 |             AddTemplateConversionCandidate(ConvTemplate, FoundDecl, | 
 |                                            ActingContext, From, ToType, | 
 |                                            CandidateSet); | 
 |           else | 
 |             AddConversionCandidate(Conv, FoundDecl, ActingContext, | 
 |                                    From, ToType, CandidateSet); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { | 
 |     case OR_Success: | 
 |       // Record the standard conversion we used and the conversion function. | 
 |       if (CXXConstructorDecl *Constructor | 
 |             = dyn_cast<CXXConstructorDecl>(Best->Function)) { | 
 |         // C++ [over.ics.user]p1: | 
 |         //   If the user-defined conversion is specified by a | 
 |         //   constructor (12.3.1), the initial standard conversion | 
 |         //   sequence converts the source type to the type required by | 
 |         //   the argument of the constructor. | 
 |         // | 
 |         QualType ThisType = Constructor->getThisType(Context); | 
 |         if (Best->Conversions[0].isEllipsis()) | 
 |           User.EllipsisConversion = true; | 
 |         else { | 
 |           User.Before = Best->Conversions[0].Standard; | 
 |           User.EllipsisConversion = false; | 
 |         } | 
 |         User.ConversionFunction = Constructor; | 
 |         User.After.setAsIdentityConversion(); | 
 |         User.After.setFromType( | 
 |           ThisType->getAs<PointerType>()->getPointeeType()); | 
 |         User.After.setAllToTypes(ToType); | 
 |         return OR_Success; | 
 |       } else if (CXXConversionDecl *Conversion | 
 |                    = dyn_cast<CXXConversionDecl>(Best->Function)) { | 
 |         // C++ [over.ics.user]p1: | 
 |         // | 
 |         //   [...] If the user-defined conversion is specified by a | 
 |         //   conversion function (12.3.2), the initial standard | 
 |         //   conversion sequence converts the source type to the | 
 |         //   implicit object parameter of the conversion function. | 
 |         User.Before = Best->Conversions[0].Standard; | 
 |         User.ConversionFunction = Conversion; | 
 |         User.EllipsisConversion = false; | 
 |  | 
 |         // C++ [over.ics.user]p2: | 
 |         //   The second standard conversion sequence converts the | 
 |         //   result of the user-defined conversion to the target type | 
 |         //   for the sequence. Since an implicit conversion sequence | 
 |         //   is an initialization, the special rules for | 
 |         //   initialization by user-defined conversion apply when | 
 |         //   selecting the best user-defined conversion for a | 
 |         //   user-defined conversion sequence (see 13.3.3 and | 
 |         //   13.3.3.1). | 
 |         User.After = Best->FinalConversion; | 
 |         return OR_Success; | 
 |       } else { | 
 |         assert(false && "Not a constructor or conversion function?"); | 
 |         return OR_No_Viable_Function; | 
 |       } | 
 |  | 
 |     case OR_No_Viable_Function: | 
 |       return OR_No_Viable_Function; | 
 |     case OR_Deleted: | 
 |       // No conversion here! We're done. | 
 |       return OR_Deleted; | 
 |  | 
 |     case OR_Ambiguous: | 
 |       return OR_Ambiguous; | 
 |     } | 
 |  | 
 |   return OR_No_Viable_Function; | 
 | } | 
 |    | 
 | bool | 
 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { | 
 |   ImplicitConversionSequence ICS; | 
 |   OverloadCandidateSet CandidateSet(From->getExprLoc()); | 
 |   OverloadingResult OvResult =  | 
 |     IsUserDefinedConversion(From, ToType, ICS.UserDefined, | 
 |                             CandidateSet, false); | 
 |   if (OvResult == OR_Ambiguous) | 
 |     Diag(From->getSourceRange().getBegin(), | 
 |          diag::err_typecheck_ambiguous_condition) | 
 |           << From->getType() << ToType << From->getSourceRange(); | 
 |   else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) | 
 |     Diag(From->getSourceRange().getBegin(), | 
 |          diag::err_typecheck_nonviable_condition) | 
 |     << From->getType() << ToType << From->getSourceRange(); | 
 |   else | 
 |     return false; | 
 |   PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1); | 
 |   return true;   | 
 | } | 
 |  | 
 | /// CompareImplicitConversionSequences - Compare two implicit | 
 | /// conversion sequences to determine whether one is better than the | 
 | /// other or if they are indistinguishable (C++ 13.3.3.2). | 
 | ImplicitConversionSequence::CompareKind | 
 | Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, | 
 |                                          const ImplicitConversionSequence& ICS2) | 
 | { | 
 |   // (C++ 13.3.3.2p2): When comparing the basic forms of implicit | 
 |   // conversion sequences (as defined in 13.3.3.1) | 
 |   //   -- a standard conversion sequence (13.3.3.1.1) is a better | 
 |   //      conversion sequence than a user-defined conversion sequence or | 
 |   //      an ellipsis conversion sequence, and | 
 |   //   -- a user-defined conversion sequence (13.3.3.1.2) is a better | 
 |   //      conversion sequence than an ellipsis conversion sequence | 
 |   //      (13.3.3.1.3). | 
 |   // | 
 |   // C++0x [over.best.ics]p10: | 
 |   //   For the purpose of ranking implicit conversion sequences as | 
 |   //   described in 13.3.3.2, the ambiguous conversion sequence is | 
 |   //   treated as a user-defined sequence that is indistinguishable | 
 |   //   from any other user-defined conversion sequence. | 
 |   if (ICS1.getKindRank() < ICS2.getKindRank()) | 
 |     return ImplicitConversionSequence::Better; | 
 |   else if (ICS2.getKindRank() < ICS1.getKindRank()) | 
 |     return ImplicitConversionSequence::Worse; | 
 |  | 
 |   // The following checks require both conversion sequences to be of | 
 |   // the same kind. | 
 |   if (ICS1.getKind() != ICS2.getKind()) | 
 |     return ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |   // Two implicit conversion sequences of the same form are | 
 |   // indistinguishable conversion sequences unless one of the | 
 |   // following rules apply: (C++ 13.3.3.2p3): | 
 |   if (ICS1.isStandard()) | 
 |     return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); | 
 |   else if (ICS1.isUserDefined()) { | 
 |     // User-defined conversion sequence U1 is a better conversion | 
 |     // sequence than another user-defined conversion sequence U2 if | 
 |     // they contain the same user-defined conversion function or | 
 |     // constructor and if the second standard conversion sequence of | 
 |     // U1 is better than the second standard conversion sequence of | 
 |     // U2 (C++ 13.3.3.2p3). | 
 |     if (ICS1.UserDefined.ConversionFunction == | 
 |           ICS2.UserDefined.ConversionFunction) | 
 |       return CompareStandardConversionSequences(ICS1.UserDefined.After, | 
 |                                                 ICS2.UserDefined.After); | 
 |   } | 
 |  | 
 |   return ImplicitConversionSequence::Indistinguishable; | 
 | } | 
 |  | 
 | // Per 13.3.3.2p3, compare the given standard conversion sequences to | 
 | // determine if one is a proper subset of the other. | 
 | static ImplicitConversionSequence::CompareKind | 
 | compareStandardConversionSubsets(ASTContext &Context, | 
 |                                  const StandardConversionSequence& SCS1, | 
 |                                  const StandardConversionSequence& SCS2) { | 
 |   ImplicitConversionSequence::CompareKind Result | 
 |     = ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |   if (SCS1.Second != SCS2.Second) { | 
 |     if (SCS1.Second == ICK_Identity) | 
 |       Result = ImplicitConversionSequence::Better; | 
 |     else if (SCS2.Second == ICK_Identity) | 
 |       Result = ImplicitConversionSequence::Worse; | 
 |     else | 
 |       return ImplicitConversionSequence::Indistinguishable; | 
 |   } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1))) | 
 |     return ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |   if (SCS1.Third == SCS2.Third) { | 
 |     return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result | 
 |                              : ImplicitConversionSequence::Indistinguishable; | 
 |   } | 
 |  | 
 |   if (SCS1.Third == ICK_Identity) | 
 |     return Result == ImplicitConversionSequence::Worse | 
 |              ? ImplicitConversionSequence::Indistinguishable | 
 |              : ImplicitConversionSequence::Better; | 
 |  | 
 |   if (SCS2.Third == ICK_Identity) | 
 |     return Result == ImplicitConversionSequence::Better | 
 |              ? ImplicitConversionSequence::Indistinguishable | 
 |              : ImplicitConversionSequence::Worse; | 
 |         | 
 |   return ImplicitConversionSequence::Indistinguishable; | 
 | } | 
 |  | 
 | /// CompareStandardConversionSequences - Compare two standard | 
 | /// conversion sequences to determine whether one is better than the | 
 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). | 
 | ImplicitConversionSequence::CompareKind | 
 | Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, | 
 |                                          const StandardConversionSequence& SCS2) | 
 | { | 
 |   // Standard conversion sequence S1 is a better conversion sequence | 
 |   // than standard conversion sequence S2 if (C++ 13.3.3.2p3): | 
 |  | 
 |   //  -- S1 is a proper subsequence of S2 (comparing the conversion | 
 |   //     sequences in the canonical form defined by 13.3.3.1.1, | 
 |   //     excluding any Lvalue Transformation; the identity conversion | 
 |   //     sequence is considered to be a subsequence of any | 
 |   //     non-identity conversion sequence) or, if not that, | 
 |   if (ImplicitConversionSequence::CompareKind CK | 
 |         = compareStandardConversionSubsets(Context, SCS1, SCS2)) | 
 |     return CK; | 
 |  | 
 |   //  -- the rank of S1 is better than the rank of S2 (by the rules | 
 |   //     defined below), or, if not that, | 
 |   ImplicitConversionRank Rank1 = SCS1.getRank(); | 
 |   ImplicitConversionRank Rank2 = SCS2.getRank(); | 
 |   if (Rank1 < Rank2) | 
 |     return ImplicitConversionSequence::Better; | 
 |   else if (Rank2 < Rank1) | 
 |     return ImplicitConversionSequence::Worse; | 
 |  | 
 |   // (C++ 13.3.3.2p4): Two conversion sequences with the same rank | 
 |   // are indistinguishable unless one of the following rules | 
 |   // applies: | 
 |  | 
 |   //   A conversion that is not a conversion of a pointer, or | 
 |   //   pointer to member, to bool is better than another conversion | 
 |   //   that is such a conversion. | 
 |   if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) | 
 |     return SCS2.isPointerConversionToBool() | 
 |              ? ImplicitConversionSequence::Better | 
 |              : ImplicitConversionSequence::Worse; | 
 |  | 
 |   // C++ [over.ics.rank]p4b2: | 
 |   // | 
 |   //   If class B is derived directly or indirectly from class A, | 
 |   //   conversion of B* to A* is better than conversion of B* to | 
 |   //   void*, and conversion of A* to void* is better than conversion | 
 |   //   of B* to void*. | 
 |   bool SCS1ConvertsToVoid | 
 |     = SCS1.isPointerConversionToVoidPointer(Context); | 
 |   bool SCS2ConvertsToVoid | 
 |     = SCS2.isPointerConversionToVoidPointer(Context); | 
 |   if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { | 
 |     // Exactly one of the conversion sequences is a conversion to | 
 |     // a void pointer; it's the worse conversion. | 
 |     return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better | 
 |                               : ImplicitConversionSequence::Worse; | 
 |   } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { | 
 |     // Neither conversion sequence converts to a void pointer; compare | 
 |     // their derived-to-base conversions. | 
 |     if (ImplicitConversionSequence::CompareKind DerivedCK | 
 |           = CompareDerivedToBaseConversions(SCS1, SCS2)) | 
 |       return DerivedCK; | 
 |   } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { | 
 |     // Both conversion sequences are conversions to void | 
 |     // pointers. Compare the source types to determine if there's an | 
 |     // inheritance relationship in their sources. | 
 |     QualType FromType1 = SCS1.getFromType(); | 
 |     QualType FromType2 = SCS2.getFromType(); | 
 |  | 
 |     // Adjust the types we're converting from via the array-to-pointer | 
 |     // conversion, if we need to. | 
 |     if (SCS1.First == ICK_Array_To_Pointer) | 
 |       FromType1 = Context.getArrayDecayedType(FromType1); | 
 |     if (SCS2.First == ICK_Array_To_Pointer) | 
 |       FromType2 = Context.getArrayDecayedType(FromType2); | 
 |  | 
 |     QualType FromPointee1 | 
 |       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
 |     QualType FromPointee2 | 
 |       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
 |  | 
 |     if (IsDerivedFrom(FromPointee2, FromPointee1)) | 
 |       return ImplicitConversionSequence::Better; | 
 |     else if (IsDerivedFrom(FromPointee1, FromPointee2)) | 
 |       return ImplicitConversionSequence::Worse; | 
 |  | 
 |     // Objective-C++: If one interface is more specific than the | 
 |     // other, it is the better one. | 
 |     const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); | 
 |     const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); | 
 |     if (FromIface1 && FromIface1) { | 
 |       if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |     } | 
 |   } | 
 |  | 
 |   // Compare based on qualification conversions (C++ 13.3.3.2p3, | 
 |   // bullet 3). | 
 |   if (ImplicitConversionSequence::CompareKind QualCK | 
 |         = CompareQualificationConversions(SCS1, SCS2)) | 
 |     return QualCK; | 
 |  | 
 |   if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { | 
 |     // C++0x [over.ics.rank]p3b4: | 
 |     //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an | 
 |     //      implicit object parameter of a non-static member function declared | 
 |     //      without a ref-qualifier, and S1 binds an rvalue reference to an | 
 |     //      rvalue and S2 binds an lvalue reference. | 
 |     // FIXME: We don't know if we're dealing with the implicit object parameter, | 
 |     // or if the member function in this case has a ref qualifier. | 
 |     // (Of course, we don't have ref qualifiers yet.) | 
 |     if (SCS1.RRefBinding != SCS2.RRefBinding) | 
 |       return SCS1.RRefBinding ? ImplicitConversionSequence::Better | 
 |                               : ImplicitConversionSequence::Worse; | 
 |  | 
 |     // C++ [over.ics.rank]p3b4: | 
 |     //   -- S1 and S2 are reference bindings (8.5.3), and the types to | 
 |     //      which the references refer are the same type except for | 
 |     //      top-level cv-qualifiers, and the type to which the reference | 
 |     //      initialized by S2 refers is more cv-qualified than the type | 
 |     //      to which the reference initialized by S1 refers. | 
 |     QualType T1 = SCS1.getToType(2); | 
 |     QualType T2 = SCS2.getToType(2); | 
 |     T1 = Context.getCanonicalType(T1); | 
 |     T2 = Context.getCanonicalType(T2); | 
 |     Qualifiers T1Quals, T2Quals; | 
 |     QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | 
 |     QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | 
 |     if (UnqualT1 == UnqualT2) { | 
 |       // If the type is an array type, promote the element qualifiers to the type | 
 |       // for comparison. | 
 |       if (isa<ArrayType>(T1) && T1Quals) | 
 |         T1 = Context.getQualifiedType(UnqualT1, T1Quals); | 
 |       if (isa<ArrayType>(T2) && T2Quals) | 
 |         T2 = Context.getQualifiedType(UnqualT2, T2Quals); | 
 |       if (T2.isMoreQualifiedThan(T1)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (T1.isMoreQualifiedThan(T2)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |     } | 
 |   } | 
 |  | 
 |   return ImplicitConversionSequence::Indistinguishable; | 
 | } | 
 |  | 
 | /// CompareQualificationConversions - Compares two standard conversion | 
 | /// sequences to determine whether they can be ranked based on their | 
 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). | 
 | ImplicitConversionSequence::CompareKind | 
 | Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, | 
 |                                       const StandardConversionSequence& SCS2) { | 
 |   // C++ 13.3.3.2p3: | 
 |   //  -- S1 and S2 differ only in their qualification conversion and | 
 |   //     yield similar types T1 and T2 (C++ 4.4), respectively, and the | 
 |   //     cv-qualification signature of type T1 is a proper subset of | 
 |   //     the cv-qualification signature of type T2, and S1 is not the | 
 |   //     deprecated string literal array-to-pointer conversion (4.2). | 
 |   if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || | 
 |       SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) | 
 |     return ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |   // FIXME: the example in the standard doesn't use a qualification | 
 |   // conversion (!) | 
 |   QualType T1 = SCS1.getToType(2); | 
 |   QualType T2 = SCS2.getToType(2); | 
 |   T1 = Context.getCanonicalType(T1); | 
 |   T2 = Context.getCanonicalType(T2); | 
 |   Qualifiers T1Quals, T2Quals; | 
 |   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | 
 |   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | 
 |  | 
 |   // If the types are the same, we won't learn anything by unwrapped | 
 |   // them. | 
 |   if (UnqualT1 == UnqualT2) | 
 |     return ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |   // If the type is an array type, promote the element qualifiers to the type | 
 |   // for comparison. | 
 |   if (isa<ArrayType>(T1) && T1Quals) | 
 |     T1 = Context.getQualifiedType(UnqualT1, T1Quals); | 
 |   if (isa<ArrayType>(T2) && T2Quals) | 
 |     T2 = Context.getQualifiedType(UnqualT2, T2Quals); | 
 |  | 
 |   ImplicitConversionSequence::CompareKind Result | 
 |     = ImplicitConversionSequence::Indistinguishable; | 
 |   while (UnwrapSimilarPointerTypes(T1, T2)) { | 
 |     // Within each iteration of the loop, we check the qualifiers to | 
 |     // determine if this still looks like a qualification | 
 |     // conversion. Then, if all is well, we unwrap one more level of | 
 |     // pointers or pointers-to-members and do it all again | 
 |     // until there are no more pointers or pointers-to-members left | 
 |     // to unwrap. This essentially mimics what | 
 |     // IsQualificationConversion does, but here we're checking for a | 
 |     // strict subset of qualifiers. | 
 |     if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) | 
 |       // The qualifiers are the same, so this doesn't tell us anything | 
 |       // about how the sequences rank. | 
 |       ; | 
 |     else if (T2.isMoreQualifiedThan(T1)) { | 
 |       // T1 has fewer qualifiers, so it could be the better sequence. | 
 |       if (Result == ImplicitConversionSequence::Worse) | 
 |         // Neither has qualifiers that are a subset of the other's | 
 |         // qualifiers. | 
 |         return ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |       Result = ImplicitConversionSequence::Better; | 
 |     } else if (T1.isMoreQualifiedThan(T2)) { | 
 |       // T2 has fewer qualifiers, so it could be the better sequence. | 
 |       if (Result == ImplicitConversionSequence::Better) | 
 |         // Neither has qualifiers that are a subset of the other's | 
 |         // qualifiers. | 
 |         return ImplicitConversionSequence::Indistinguishable; | 
 |  | 
 |       Result = ImplicitConversionSequence::Worse; | 
 |     } else { | 
 |       // Qualifiers are disjoint. | 
 |       return ImplicitConversionSequence::Indistinguishable; | 
 |     } | 
 |  | 
 |     // If the types after this point are equivalent, we're done. | 
 |     if (Context.hasSameUnqualifiedType(T1, T2)) | 
 |       break; | 
 |   } | 
 |  | 
 |   // Check that the winning standard conversion sequence isn't using | 
 |   // the deprecated string literal array to pointer conversion. | 
 |   switch (Result) { | 
 |   case ImplicitConversionSequence::Better: | 
 |     if (SCS1.DeprecatedStringLiteralToCharPtr) | 
 |       Result = ImplicitConversionSequence::Indistinguishable; | 
 |     break; | 
 |  | 
 |   case ImplicitConversionSequence::Indistinguishable: | 
 |     break; | 
 |  | 
 |   case ImplicitConversionSequence::Worse: | 
 |     if (SCS2.DeprecatedStringLiteralToCharPtr) | 
 |       Result = ImplicitConversionSequence::Indistinguishable; | 
 |     break; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | /// CompareDerivedToBaseConversions - Compares two standard conversion | 
 | /// sequences to determine whether they can be ranked based on their | 
 | /// various kinds of derived-to-base conversions (C++ | 
 | /// [over.ics.rank]p4b3).  As part of these checks, we also look at | 
 | /// conversions between Objective-C interface types. | 
 | ImplicitConversionSequence::CompareKind | 
 | Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, | 
 |                                       const StandardConversionSequence& SCS2) { | 
 |   QualType FromType1 = SCS1.getFromType(); | 
 |   QualType ToType1 = SCS1.getToType(1); | 
 |   QualType FromType2 = SCS2.getFromType(); | 
 |   QualType ToType2 = SCS2.getToType(1); | 
 |  | 
 |   // Adjust the types we're converting from via the array-to-pointer | 
 |   // conversion, if we need to. | 
 |   if (SCS1.First == ICK_Array_To_Pointer) | 
 |     FromType1 = Context.getArrayDecayedType(FromType1); | 
 |   if (SCS2.First == ICK_Array_To_Pointer) | 
 |     FromType2 = Context.getArrayDecayedType(FromType2); | 
 |  | 
 |   // Canonicalize all of the types. | 
 |   FromType1 = Context.getCanonicalType(FromType1); | 
 |   ToType1 = Context.getCanonicalType(ToType1); | 
 |   FromType2 = Context.getCanonicalType(FromType2); | 
 |   ToType2 = Context.getCanonicalType(ToType2); | 
 |  | 
 |   // C++ [over.ics.rank]p4b3: | 
 |   // | 
 |   //   If class B is derived directly or indirectly from class A and | 
 |   //   class C is derived directly or indirectly from B, | 
 |   // | 
 |   // For Objective-C, we let A, B, and C also be Objective-C | 
 |   // interfaces. | 
 |  | 
 |   // Compare based on pointer conversions. | 
 |   if (SCS1.Second == ICK_Pointer_Conversion && | 
 |       SCS2.Second == ICK_Pointer_Conversion && | 
 |       /*FIXME: Remove if Objective-C id conversions get their own rank*/ | 
 |       FromType1->isPointerType() && FromType2->isPointerType() && | 
 |       ToType1->isPointerType() && ToType2->isPointerType()) { | 
 |     QualType FromPointee1 | 
 |       = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
 |     QualType ToPointee1 | 
 |       = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
 |     QualType FromPointee2 | 
 |       = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
 |     QualType ToPointee2 | 
 |       = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); | 
 |  | 
 |     const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); | 
 |     const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); | 
 |     const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); | 
 |     const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); | 
 |  | 
 |     //   -- conversion of C* to B* is better than conversion of C* to A*, | 
 |     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | 
 |       if (IsDerivedFrom(ToPointee1, ToPointee2)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (IsDerivedFrom(ToPointee2, ToPointee1)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |  | 
 |       if (ToIface1 && ToIface2) { | 
 |         if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) | 
 |           return ImplicitConversionSequence::Better; | 
 |         else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) | 
 |           return ImplicitConversionSequence::Worse; | 
 |       } | 
 |     } | 
 |  | 
 |     //   -- conversion of B* to A* is better than conversion of C* to A*, | 
 |     if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { | 
 |       if (IsDerivedFrom(FromPointee2, FromPointee1)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (IsDerivedFrom(FromPointee1, FromPointee2)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |  | 
 |       if (FromIface1 && FromIface2) { | 
 |         if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) | 
 |           return ImplicitConversionSequence::Better; | 
 |         else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) | 
 |           return ImplicitConversionSequence::Worse; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Ranking of member-pointer types. | 
 |   if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && | 
 |       FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && | 
 |       ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { | 
 |     const MemberPointerType * FromMemPointer1 =  | 
 |                                         FromType1->getAs<MemberPointerType>(); | 
 |     const MemberPointerType * ToMemPointer1 =  | 
 |                                           ToType1->getAs<MemberPointerType>(); | 
 |     const MemberPointerType * FromMemPointer2 =  | 
 |                                           FromType2->getAs<MemberPointerType>(); | 
 |     const MemberPointerType * ToMemPointer2 =  | 
 |                                           ToType2->getAs<MemberPointerType>(); | 
 |     const Type *FromPointeeType1 = FromMemPointer1->getClass(); | 
 |     const Type *ToPointeeType1 = ToMemPointer1->getClass(); | 
 |     const Type *FromPointeeType2 = FromMemPointer2->getClass(); | 
 |     const Type *ToPointeeType2 = ToMemPointer2->getClass(); | 
 |     QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); | 
 |     QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); | 
 |     QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); | 
 |     QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); | 
 |     // conversion of A::* to B::* is better than conversion of A::* to C::*, | 
 |     if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { | 
 |       if (IsDerivedFrom(ToPointee1, ToPointee2)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |       else if (IsDerivedFrom(ToPointee2, ToPointee1)) | 
 |         return ImplicitConversionSequence::Better; | 
 |     } | 
 |     // conversion of B::* to C::* is better than conversion of A::* to C::* | 
 |     if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { | 
 |       if (IsDerivedFrom(FromPointee1, FromPointee2)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (IsDerivedFrom(FromPointee2, FromPointee1)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |     } | 
 |   } | 
 |    | 
 |   if (SCS1.Second == ICK_Derived_To_Base) { | 
 |     //   -- conversion of C to B is better than conversion of C to A, | 
 |     //   -- binding of an expression of type C to a reference of type | 
 |     //      B& is better than binding an expression of type C to a | 
 |     //      reference of type A&, | 
 |     if (Context.hasSameUnqualifiedType(FromType1, FromType2) && | 
 |         !Context.hasSameUnqualifiedType(ToType1, ToType2)) { | 
 |       if (IsDerivedFrom(ToType1, ToType2)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (IsDerivedFrom(ToType2, ToType1)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |     } | 
 |  | 
 |     //   -- conversion of B to A is better than conversion of C to A. | 
 |     //   -- binding of an expression of type B to a reference of type | 
 |     //      A& is better than binding an expression of type C to a | 
 |     //      reference of type A&, | 
 |     if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && | 
 |         Context.hasSameUnqualifiedType(ToType1, ToType2)) { | 
 |       if (IsDerivedFrom(FromType2, FromType1)) | 
 |         return ImplicitConversionSequence::Better; | 
 |       else if (IsDerivedFrom(FromType1, FromType2)) | 
 |         return ImplicitConversionSequence::Worse; | 
 |     } | 
 |   } | 
 |  | 
 |   return ImplicitConversionSequence::Indistinguishable; | 
 | } | 
 |  | 
 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | 
 | /// determine whether they are reference-related, | 
 | /// reference-compatible, reference-compatible with added | 
 | /// qualification, or incompatible, for use in C++ initialization by | 
 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | 
 | /// type, and the first type (T1) is the pointee type of the reference | 
 | /// type being initialized. | 
 | Sema::ReferenceCompareResult | 
 | Sema::CompareReferenceRelationship(SourceLocation Loc, | 
 |                                    QualType OrigT1, QualType OrigT2, | 
 |                                    bool& DerivedToBase) { | 
 |   assert(!OrigT1->isReferenceType() && | 
 |     "T1 must be the pointee type of the reference type"); | 
 |   assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); | 
 |  | 
 |   QualType T1 = Context.getCanonicalType(OrigT1); | 
 |   QualType T2 = Context.getCanonicalType(OrigT2); | 
 |   Qualifiers T1Quals, T2Quals; | 
 |   QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); | 
 |   QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); | 
 |  | 
 |   // C++ [dcl.init.ref]p4: | 
 |   //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is | 
 |   //   reference-related to "cv2 T2" if T1 is the same type as T2, or | 
 |   //   T1 is a base class of T2. | 
 |   if (UnqualT1 == UnqualT2) | 
 |     DerivedToBase = false; | 
 |   else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && | 
 |            IsDerivedFrom(UnqualT2, UnqualT1)) | 
 |     DerivedToBase = true; | 
 |   else | 
 |     return Ref_Incompatible; | 
 |  | 
 |   // At this point, we know that T1 and T2 are reference-related (at | 
 |   // least). | 
 |  | 
 |   // If the type is an array type, promote the element qualifiers to the type | 
 |   // for comparison. | 
 |   if (isa<ArrayType>(T1) && T1Quals) | 
 |     T1 = Context.getQualifiedType(UnqualT1, T1Quals); | 
 |   if (isa<ArrayType>(T2) && T2Quals) | 
 |     T2 = Context.getQualifiedType(UnqualT2, T2Quals); | 
 |  | 
 |   // C++ [dcl.init.ref]p4: | 
 |   //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is | 
 |   //   reference-related to T2 and cv1 is the same cv-qualification | 
 |   //   as, or greater cv-qualification than, cv2. For purposes of | 
 |   //   overload resolution, cases for which cv1 is greater | 
 |   //   cv-qualification than cv2 are identified as | 
 |   //   reference-compatible with added qualification (see 13.3.3.2). | 
 |   if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers()) | 
 |     return Ref_Compatible; | 
 |   else if (T1.isMoreQualifiedThan(T2)) | 
 |     return Ref_Compatible_With_Added_Qualification; | 
 |   else | 
 |     return Ref_Related; | 
 | } | 
 |  | 
 | /// \brief Compute an implicit conversion sequence for reference | 
 | /// initialization. | 
 | static ImplicitConversionSequence | 
 | TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, | 
 |                  SourceLocation DeclLoc, | 
 |                  bool SuppressUserConversions, | 
 |                  bool AllowExplicit) { | 
 |   assert(DeclType->isReferenceType() && "Reference init needs a reference"); | 
 |  | 
 |   // Most paths end in a failed conversion. | 
 |   ImplicitConversionSequence ICS; | 
 |   ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); | 
 |  | 
 |   QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); | 
 |   QualType T2 = Init->getType(); | 
 |  | 
 |   // If the initializer is the address of an overloaded function, try | 
 |   // to resolve the overloaded function. If all goes well, T2 is the | 
 |   // type of the resulting function. | 
 |   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { | 
 |     DeclAccessPair Found; | 
 |     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, | 
 |                                                                 false, Found)) | 
 |       T2 = Fn->getType(); | 
 |   } | 
 |  | 
 |   // Compute some basic properties of the types and the initializer. | 
 |   bool isRValRef = DeclType->isRValueReferenceType(); | 
 |   bool DerivedToBase = false; | 
 |   Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context); | 
 |   Sema::ReferenceCompareResult RefRelationship | 
 |     = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase); | 
 |  | 
 |  | 
 |   // C++ [over.ics.ref]p3: | 
 |   //   Except for an implicit object parameter, for which see 13.3.1, | 
 |   //   a standard conversion sequence cannot be formed if it requires | 
 |   //   binding an lvalue reference to non-const to an rvalue or | 
 |   //   binding an rvalue reference to an lvalue. | 
 |   // | 
 |   // FIXME: DPG doesn't trust this code. It seems far too early to | 
 |   // abort because of a binding of an rvalue reference to an lvalue. | 
 |   if (isRValRef && InitLvalue == Expr::LV_Valid) | 
 |     return ICS; | 
 |  | 
 |   // C++0x [dcl.init.ref]p16: | 
 |   //   A reference to type "cv1 T1" is initialized by an expression | 
 |   //   of type "cv2 T2" as follows: | 
 |  | 
 |   //     -- If the initializer expression | 
 |   //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is | 
 |   //          reference-compatible with "cv2 T2," or | 
 |   // | 
 |   // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. | 
 |   if (InitLvalue == Expr::LV_Valid && | 
 |       RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { | 
 |     // C++ [over.ics.ref]p1: | 
 |     //   When a parameter of reference type binds directly (8.5.3) | 
 |     //   to an argument expression, the implicit conversion sequence | 
 |     //   is the identity conversion, unless the argument expression | 
 |     //   has a type that is a derived class of the parameter type, | 
 |     //   in which case the implicit conversion sequence is a | 
 |     //   derived-to-base Conversion (13.3.3.1). | 
 |     ICS.setStandard(); | 
 |     ICS.Standard.First = ICK_Identity; | 
 |     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
 |     ICS.Standard.Third = ICK_Identity; | 
 |     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
 |     ICS.Standard.setToType(0, T2); | 
 |     ICS.Standard.setToType(1, T1); | 
 |     ICS.Standard.setToType(2, T1); | 
 |     ICS.Standard.ReferenceBinding = true; | 
 |     ICS.Standard.DirectBinding = true; | 
 |     ICS.Standard.RRefBinding = false; | 
 |     ICS.Standard.CopyConstructor = 0; | 
 |  | 
 |     // Nothing more to do: the inaccessibility/ambiguity check for | 
 |     // derived-to-base conversions is suppressed when we're | 
 |     // computing the implicit conversion sequence (C++ | 
 |     // [over.best.ics]p2). | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   //       -- has a class type (i.e., T2 is a class type), where T1 is | 
 |   //          not reference-related to T2, and can be implicitly | 
 |   //          converted to an lvalue of type "cv3 T3," where "cv1 T1" | 
 |   //          is reference-compatible with "cv3 T3" 92) (this | 
 |   //          conversion is selected by enumerating the applicable | 
 |   //          conversion functions (13.3.1.6) and choosing the best | 
 |   //          one through overload resolution (13.3)), | 
 |   if (!isRValRef && !SuppressUserConversions && T2->isRecordType() && | 
 |       !S.RequireCompleteType(DeclLoc, T2, 0) &&  | 
 |       RefRelationship == Sema::Ref_Incompatible) { | 
 |     CXXRecordDecl *T2RecordDecl | 
 |       = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); | 
 |  | 
 |     OverloadCandidateSet CandidateSet(DeclLoc); | 
 |     const UnresolvedSetImpl *Conversions | 
 |       = T2RecordDecl->getVisibleConversionFunctions(); | 
 |     for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
 |            E = Conversions->end(); I != E; ++I) { | 
 |       NamedDecl *D = *I; | 
 |       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); | 
 |       if (isa<UsingShadowDecl>(D)) | 
 |         D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
 |  | 
 |       FunctionTemplateDecl *ConvTemplate | 
 |         = dyn_cast<FunctionTemplateDecl>(D); | 
 |       CXXConversionDecl *Conv; | 
 |       if (ConvTemplate) | 
 |         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); | 
 |       else | 
 |         Conv = cast<CXXConversionDecl>(D); | 
 |        | 
 |       // If the conversion function doesn't return a reference type, | 
 |       // it can't be considered for this conversion. | 
 |       if (Conv->getConversionType()->isLValueReferenceType() && | 
 |           (AllowExplicit || !Conv->isExplicit())) { | 
 |         if (ConvTemplate) | 
 |           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, | 
 |                                          Init, DeclType, CandidateSet); | 
 |         else | 
 |           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, | 
 |                                  DeclType, CandidateSet); | 
 |       } | 
 |     } | 
 |  | 
 |     OverloadCandidateSet::iterator Best; | 
 |     switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) { | 
 |     case OR_Success: | 
 |       // C++ [over.ics.ref]p1: | 
 |       // | 
 |       //   [...] If the parameter binds directly to the result of | 
 |       //   applying a conversion function to the argument | 
 |       //   expression, the implicit conversion sequence is a | 
 |       //   user-defined conversion sequence (13.3.3.1.2), with the | 
 |       //   second standard conversion sequence either an identity | 
 |       //   conversion or, if the conversion function returns an | 
 |       //   entity of a type that is a derived class of the parameter | 
 |       //   type, a derived-to-base Conversion. | 
 |       if (!Best->FinalConversion.DirectBinding) | 
 |         break; | 
 |  | 
 |       ICS.setUserDefined(); | 
 |       ICS.UserDefined.Before = Best->Conversions[0].Standard; | 
 |       ICS.UserDefined.After = Best->FinalConversion; | 
 |       ICS.UserDefined.ConversionFunction = Best->Function; | 
 |       ICS.UserDefined.EllipsisConversion = false; | 
 |       assert(ICS.UserDefined.After.ReferenceBinding && | 
 |              ICS.UserDefined.After.DirectBinding && | 
 |              "Expected a direct reference binding!"); | 
 |       return ICS; | 
 |  | 
 |     case OR_Ambiguous: | 
 |       ICS.setAmbiguous(); | 
 |       for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | 
 |            Cand != CandidateSet.end(); ++Cand) | 
 |         if (Cand->Viable) | 
 |           ICS.Ambiguous.addConversion(Cand->Function); | 
 |       return ICS; | 
 |  | 
 |     case OR_No_Viable_Function: | 
 |     case OR_Deleted: | 
 |       // There was no suitable conversion, or we found a deleted | 
 |       // conversion; continue with other checks. | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   //     -- Otherwise, the reference shall be to a non-volatile const | 
 |   //        type (i.e., cv1 shall be const), or the reference shall be an | 
 |   //        rvalue reference and the initializer expression shall be an rvalue. | 
 |   //  | 
 |   // We actually handle one oddity of C++ [over.ics.ref] at this | 
 |   // point, which is that, due to p2 (which short-circuits reference | 
 |   // binding by only attempting a simple conversion for non-direct | 
 |   // bindings) and p3's strange wording, we allow a const volatile | 
 |   // reference to bind to an rvalue. Hence the check for the presence | 
 |   // of "const" rather than checking for "const" being the only | 
 |   // qualifier. | 
 |   if (!isRValRef && !T1.isConstQualified()) | 
 |     return ICS; | 
 |  | 
 |   //       -- if T2 is a class type and | 
 |   //          -- the initializer expression is an rvalue and "cv1 T1" | 
 |   //             is reference-compatible with "cv2 T2," or | 
 |   // | 
 |   //          -- T1 is not reference-related to T2 and the initializer | 
 |   //             expression can be implicitly converted to an rvalue | 
 |   //             of type "cv3 T3" (this conversion is selected by | 
 |   //             enumerating the applicable conversion functions | 
 |   //             (13.3.1.6) and choosing the best one through overload | 
 |   //             resolution (13.3)), | 
 |   // | 
 |   //          then the reference is bound to the initializer | 
 |   //          expression rvalue in the first case and to the object | 
 |   //          that is the result of the conversion in the second case | 
 |   //          (or, in either case, to the appropriate base class | 
 |   //          subobject of the object). | 
 |   // | 
 |   // We're only checking the first case here, which is a direct | 
 |   // binding in C++0x but not in C++03. | 
 |   if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && | 
 |       RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { | 
 |     ICS.setStandard(); | 
 |     ICS.Standard.First = ICK_Identity; | 
 |     ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
 |     ICS.Standard.Third = ICK_Identity; | 
 |     ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
 |     ICS.Standard.setToType(0, T2); | 
 |     ICS.Standard.setToType(1, T1); | 
 |     ICS.Standard.setToType(2, T1); | 
 |     ICS.Standard.ReferenceBinding = true; | 
 |     ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x; | 
 |     ICS.Standard.RRefBinding = isRValRef; | 
 |     ICS.Standard.CopyConstructor = 0; | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   //       -- Otherwise, a temporary of type "cv1 T1" is created and | 
 |   //          initialized from the initializer expression using the | 
 |   //          rules for a non-reference copy initialization (8.5). The | 
 |   //          reference is then bound to the temporary. If T1 is | 
 |   //          reference-related to T2, cv1 must be the same | 
 |   //          cv-qualification as, or greater cv-qualification than, | 
 |   //          cv2; otherwise, the program is ill-formed. | 
 |   if (RefRelationship == Sema::Ref_Related) { | 
 |     // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | 
 |     // we would be reference-compatible or reference-compatible with | 
 |     // added qualification. But that wasn't the case, so the reference | 
 |     // initialization fails. | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   // If at least one of the types is a class type, the types are not | 
 |   // related, and we aren't allowed any user conversions, the | 
 |   // reference binding fails. This case is important for breaking | 
 |   // recursion, since TryImplicitConversion below will attempt to | 
 |   // create a temporary through the use of a copy constructor. | 
 |   if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && | 
 |       (T1->isRecordType() || T2->isRecordType())) | 
 |     return ICS; | 
 |  | 
 |   // C++ [over.ics.ref]p2: | 
 |   //   When a parameter of reference type is not bound directly to | 
 |   //   an argument expression, the conversion sequence is the one | 
 |   //   required to convert the argument expression to the | 
 |   //   underlying type of the reference according to | 
 |   //   13.3.3.1. Conceptually, this conversion sequence corresponds | 
 |   //   to copy-initializing a temporary of the underlying type with | 
 |   //   the argument expression. Any difference in top-level | 
 |   //   cv-qualification is subsumed by the initialization itself | 
 |   //   and does not constitute a conversion. | 
 |   ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions, | 
 |                                 /*AllowExplicit=*/false, | 
 |                                 /*InOverloadResolution=*/false); | 
 |  | 
 |   // Of course, that's still a reference binding. | 
 |   if (ICS.isStandard()) { | 
 |     ICS.Standard.ReferenceBinding = true; | 
 |     ICS.Standard.RRefBinding = isRValRef; | 
 |   } else if (ICS.isUserDefined()) { | 
 |     ICS.UserDefined.After.ReferenceBinding = true; | 
 |     ICS.UserDefined.After.RRefBinding = isRValRef; | 
 |   } | 
 |   return ICS; | 
 | } | 
 |  | 
 | /// TryCopyInitialization - Try to copy-initialize a value of type | 
 | /// ToType from the expression From. Return the implicit conversion | 
 | /// sequence required to pass this argument, which may be a bad | 
 | /// conversion sequence (meaning that the argument cannot be passed to | 
 | /// a parameter of this type). If @p SuppressUserConversions, then we | 
 | /// do not permit any user-defined conversion sequences. | 
 | static ImplicitConversionSequence | 
 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, | 
 |                       bool SuppressUserConversions,  | 
 |                       bool InOverloadResolution) { | 
 |   if (ToType->isReferenceType()) | 
 |     return TryReferenceInit(S, From, ToType, | 
 |                             /*FIXME:*/From->getLocStart(), | 
 |                             SuppressUserConversions, | 
 |                             /*AllowExplicit=*/false); | 
 |  | 
 |   return S.TryImplicitConversion(From, ToType, | 
 |                                  SuppressUserConversions, | 
 |                                  /*AllowExplicit=*/false, | 
 |                                  InOverloadResolution); | 
 | } | 
 |  | 
 | /// TryObjectArgumentInitialization - Try to initialize the object | 
 | /// parameter of the given member function (@c Method) from the | 
 | /// expression @p From. | 
 | ImplicitConversionSequence | 
 | Sema::TryObjectArgumentInitialization(QualType OrigFromType, | 
 |                                       CXXMethodDecl *Method, | 
 |                                       CXXRecordDecl *ActingContext) { | 
 |   QualType ClassType = Context.getTypeDeclType(ActingContext); | 
 |   // [class.dtor]p2: A destructor can be invoked for a const, volatile or | 
 |   //                 const volatile object. | 
 |   unsigned Quals = isa<CXXDestructorDecl>(Method) ? | 
 |     Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); | 
 |   QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals); | 
 |  | 
 |   // Set up the conversion sequence as a "bad" conversion, to allow us | 
 |   // to exit early. | 
 |   ImplicitConversionSequence ICS; | 
 |  | 
 |   // We need to have an object of class type. | 
 |   QualType FromType = OrigFromType; | 
 |   if (const PointerType *PT = FromType->getAs<PointerType>()) | 
 |     FromType = PT->getPointeeType(); | 
 |  | 
 |   assert(FromType->isRecordType()); | 
 |  | 
 |   // The implicit object parameter is has the type "reference to cv X", | 
 |   // where X is the class of which the function is a member | 
 |   // (C++ [over.match.funcs]p4). However, when finding an implicit | 
 |   // conversion sequence for the argument, we are not allowed to | 
 |   // create temporaries or perform user-defined conversions | 
 |   // (C++ [over.match.funcs]p5). We perform a simplified version of | 
 |   // reference binding here, that allows class rvalues to bind to | 
 |   // non-constant references. | 
 |  | 
 |   // First check the qualifiers. We don't care about lvalue-vs-rvalue | 
 |   // with the implicit object parameter (C++ [over.match.funcs]p5). | 
 |   QualType FromTypeCanon = Context.getCanonicalType(FromType); | 
 |   if (ImplicitParamType.getCVRQualifiers()  | 
 |                                     != FromTypeCanon.getLocalCVRQualifiers() && | 
 |       !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { | 
 |     ICS.setBad(BadConversionSequence::bad_qualifiers, | 
 |                OrigFromType, ImplicitParamType); | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   // Check that we have either the same type or a derived type. It | 
 |   // affects the conversion rank. | 
 |   QualType ClassTypeCanon = Context.getCanonicalType(ClassType); | 
 |   ImplicitConversionKind SecondKind; | 
 |   if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { | 
 |     SecondKind = ICK_Identity; | 
 |   } else if (IsDerivedFrom(FromType, ClassType)) | 
 |     SecondKind = ICK_Derived_To_Base; | 
 |   else { | 
 |     ICS.setBad(BadConversionSequence::unrelated_class, | 
 |                FromType, ImplicitParamType); | 
 |     return ICS; | 
 |   } | 
 |  | 
 |   // Success. Mark this as a reference binding. | 
 |   ICS.setStandard(); | 
 |   ICS.Standard.setAsIdentityConversion(); | 
 |   ICS.Standard.Second = SecondKind; | 
 |   ICS.Standard.setFromType(FromType); | 
 |   ICS.Standard.setAllToTypes(ImplicitParamType); | 
 |   ICS.Standard.ReferenceBinding = true; | 
 |   ICS.Standard.DirectBinding = true; | 
 |   ICS.Standard.RRefBinding = false; | 
 |   return ICS; | 
 | } | 
 |  | 
 | /// PerformObjectArgumentInitialization - Perform initialization of | 
 | /// the implicit object parameter for the given Method with the given | 
 | /// expression. | 
 | bool | 
 | Sema::PerformObjectArgumentInitialization(Expr *&From,  | 
 |                                           NestedNameSpecifier *Qualifier,  | 
 |                                           NamedDecl *FoundDecl, | 
 |                                           CXXMethodDecl *Method) { | 
 |   QualType FromRecordType, DestType; | 
 |   QualType ImplicitParamRecordType  = | 
 |     Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); | 
 |  | 
 |   if (const PointerType *PT = From->getType()->getAs<PointerType>()) { | 
 |     FromRecordType = PT->getPointeeType(); | 
 |     DestType = Method->getThisType(Context); | 
 |   } else { | 
 |     FromRecordType = From->getType(); | 
 |     DestType = ImplicitParamRecordType; | 
 |   } | 
 |  | 
 |   // Note that we always use the true parent context when performing | 
 |   // the actual argument initialization. | 
 |   ImplicitConversionSequence ICS | 
 |     = TryObjectArgumentInitialization(From->getType(), Method, | 
 |                                       Method->getParent()); | 
 |   if (ICS.isBad()) | 
 |     return Diag(From->getSourceRange().getBegin(), | 
 |                 diag::err_implicit_object_parameter_init) | 
 |        << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); | 
 |  | 
 |   if (ICS.Standard.Second == ICK_Derived_To_Base) | 
 |     return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); | 
 |  | 
 |   if (!Context.hasSameType(From->getType(), DestType)) | 
 |     ImpCastExprToType(From, DestType, CastExpr::CK_NoOp, | 
 |                       /*isLvalue=*/!From->getType()->isPointerType()); | 
 |   return false; | 
 | } | 
 |  | 
 | /// TryContextuallyConvertToBool - Attempt to contextually convert the | 
 | /// expression From to bool (C++0x [conv]p3). | 
 | ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { | 
 |   return TryImplicitConversion(From, Context.BoolTy, | 
 |                                // FIXME: Are these flags correct? | 
 |                                /*SuppressUserConversions=*/false, | 
 |                                /*AllowExplicit=*/true, | 
 |                                /*InOverloadResolution=*/false); | 
 | } | 
 |  | 
 | /// PerformContextuallyConvertToBool - Perform a contextual conversion | 
 | /// of the expression From to bool (C++0x [conv]p3). | 
 | bool Sema::PerformContextuallyConvertToBool(Expr *&From) { | 
 |   ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); | 
 |   if (!ICS.isBad()) | 
 |     return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); | 
 |    | 
 |   if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) | 
 |     return  Diag(From->getSourceRange().getBegin(), | 
 |                  diag::err_typecheck_bool_condition) | 
 |                   << From->getType() << From->getSourceRange(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// AddOverloadCandidate - Adds the given function to the set of | 
 | /// candidate functions, using the given function call arguments.  If | 
 | /// @p SuppressUserConversions, then don't allow user-defined | 
 | /// conversions via constructors or conversion operators. | 
 | /// | 
 | /// \para PartialOverloading true if we are performing "partial" overloading | 
 | /// based on an incomplete set of function arguments. This feature is used by | 
 | /// code completion. | 
 | void | 
 | Sema::AddOverloadCandidate(FunctionDecl *Function, | 
 |                            DeclAccessPair FoundDecl, | 
 |                            Expr **Args, unsigned NumArgs, | 
 |                            OverloadCandidateSet& CandidateSet, | 
 |                            bool SuppressUserConversions, | 
 |                            bool PartialOverloading) { | 
 |   const FunctionProtoType* Proto | 
 |     = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); | 
 |   assert(Proto && "Functions without a prototype cannot be overloaded"); | 
 |   assert(!Function->getDescribedFunctionTemplate() && | 
 |          "Use AddTemplateOverloadCandidate for function templates"); | 
 |  | 
 |   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { | 
 |     if (!isa<CXXConstructorDecl>(Method)) { | 
 |       // If we get here, it's because we're calling a member function | 
 |       // that is named without a member access expression (e.g., | 
 |       // "this->f") that was either written explicitly or created | 
 |       // implicitly. This can happen with a qualified call to a member | 
 |       // function, e.g., X::f(). We use an empty type for the implied | 
 |       // object argument (C++ [over.call.func]p3), and the acting context | 
 |       // is irrelevant. | 
 |       AddMethodCandidate(Method, FoundDecl, Method->getParent(), | 
 |                          QualType(), Args, NumArgs, CandidateSet, | 
 |                          SuppressUserConversions); | 
 |       return; | 
 |     } | 
 |     // We treat a constructor like a non-member function, since its object | 
 |     // argument doesn't participate in overload resolution. | 
 |   } | 
 |  | 
 |   if (!CandidateSet.isNewCandidate(Function)) | 
 |     return; | 
 |  | 
 |   // Overload resolution is always an unevaluated context. | 
 |   EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); | 
 |  | 
 |   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ | 
 |     // C++ [class.copy]p3: | 
 |     //   A member function template is never instantiated to perform the copy | 
 |     //   of a class object to an object of its class type. | 
 |     QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); | 
 |     if (NumArgs == 1 &&  | 
 |         Constructor->isCopyConstructorLikeSpecialization() && | 
 |         (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || | 
 |          IsDerivedFrom(Args[0]->getType(), ClassType))) | 
 |       return; | 
 |   } | 
 |    | 
 |   // Add this candidate | 
 |   CandidateSet.push_back(OverloadCandidate()); | 
 |   OverloadCandidate& Candidate = CandidateSet.back(); | 
 |   Candidate.FoundDecl = FoundDecl; | 
 |   Candidate.Function = Function; | 
 |   Candidate.Viable = true; | 
 |   Candidate.IsSurrogate = false; | 
 |   Candidate.IgnoreObjectArgument = false; | 
 |  | 
 |   unsigned NumArgsInProto = Proto->getNumArgs(); | 
 |  | 
 |   // (C++ 13.3.2p2): A candidate function having fewer than m | 
 |   // parameters is viable only if it has an ellipsis in its parameter | 
 |   // list (8.3.5). | 
 |   if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&  | 
 |       !Proto->isVariadic()) { | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_too_many_arguments; | 
 |     return; | 
 |   } | 
 |  | 
 |   // (C++ 13.3.2p2): A candidate function having more than m parameters | 
 |   // is viable only if the (m+1)st parameter has a default argument | 
 |   // (8.3.6). For the purposes of overload resolution, the | 
 |   // parameter list is truncated on the right, so that there are | 
 |   // exactly m parameters. | 
 |   unsigned MinRequiredArgs = Function->getMinRequiredArguments(); | 
 |   if (NumArgs < MinRequiredArgs && !PartialOverloading) { | 
 |     // Not enough arguments. | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_too_few_arguments; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Determine the implicit conversion sequences for each of the | 
 |   // arguments. | 
 |   Candidate.Conversions.resize(NumArgs); | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { | 
 |     if (ArgIdx < NumArgsInProto) { | 
 |       // (C++ 13.3.2p3): for F to be a viable function, there shall | 
 |       // exist for each argument an implicit conversion sequence | 
 |       // (13.3.3.1) that converts that argument to the corresponding | 
 |       // parameter of F. | 
 |       QualType ParamType = Proto->getArgType(ArgIdx); | 
 |       Candidate.Conversions[ArgIdx] | 
 |         = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
 |                                 SuppressUserConversions,  | 
 |                                 /*InOverloadResolution=*/true); | 
 |       if (Candidate.Conversions[ArgIdx].isBad()) { | 
 |         Candidate.Viable = false; | 
 |         Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
 |       // argument for which there is no corresponding parameter is | 
 |       // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
 |       Candidate.Conversions[ArgIdx].setEllipsis(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Add all of the function declarations in the given function set to | 
 | /// the overload canddiate set. | 
 | void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, | 
 |                                  Expr **Args, unsigned NumArgs, | 
 |                                  OverloadCandidateSet& CandidateSet, | 
 |                                  bool SuppressUserConversions) { | 
 |   for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { | 
 |     NamedDecl *D = F.getDecl()->getUnderlyingDecl(); | 
 |     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |       if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) | 
 |         AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), | 
 |                            cast<CXXMethodDecl>(FD)->getParent(), | 
 |                            Args[0]->getType(), Args + 1, NumArgs - 1,  | 
 |                            CandidateSet, SuppressUserConversions); | 
 |       else | 
 |         AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, | 
 |                              SuppressUserConversions); | 
 |     } else { | 
 |       FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); | 
 |       if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && | 
 |           !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) | 
 |         AddMethodTemplateCandidate(FunTmpl, F.getPair(), | 
 |                               cast<CXXRecordDecl>(FunTmpl->getDeclContext()), | 
 |                                    /*FIXME: explicit args */ 0, | 
 |                                    Args[0]->getType(), Args + 1, NumArgs - 1, | 
 |                                    CandidateSet, | 
 |                                    SuppressUserConversions); | 
 |       else | 
 |         AddTemplateOverloadCandidate(FunTmpl, F.getPair(), | 
 |                                      /*FIXME: explicit args */ 0, | 
 |                                      Args, NumArgs, CandidateSet, | 
 |                                      SuppressUserConversions); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// AddMethodCandidate - Adds a named decl (which is some kind of | 
 | /// method) as a method candidate to the given overload set. | 
 | void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, | 
 |                               QualType ObjectType, | 
 |                               Expr **Args, unsigned NumArgs, | 
 |                               OverloadCandidateSet& CandidateSet, | 
 |                               bool SuppressUserConversions) { | 
 |   NamedDecl *Decl = FoundDecl.getDecl(); | 
 |   CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); | 
 |  | 
 |   if (isa<UsingShadowDecl>(Decl)) | 
 |     Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); | 
 |    | 
 |   if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { | 
 |     assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && | 
 |            "Expected a member function template"); | 
 |     AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, | 
 |                                /*ExplicitArgs*/ 0, | 
 |                                ObjectType, Args, NumArgs, | 
 |                                CandidateSet, | 
 |                                SuppressUserConversions); | 
 |   } else { | 
 |     AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, | 
 |                        ObjectType, Args, NumArgs, | 
 |                        CandidateSet, SuppressUserConversions); | 
 |   } | 
 | } | 
 |  | 
 | /// AddMethodCandidate - Adds the given C++ member function to the set | 
 | /// of candidate functions, using the given function call arguments | 
 | /// and the object argument (@c Object). For example, in a call | 
 | /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain | 
 | /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't | 
 | /// allow user-defined conversions via constructors or conversion | 
 | /// operators. | 
 | void | 
 | Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, | 
 |                          CXXRecordDecl *ActingContext, QualType ObjectType, | 
 |                          Expr **Args, unsigned NumArgs, | 
 |                          OverloadCandidateSet& CandidateSet, | 
 |                          bool SuppressUserConversions) { | 
 |   const FunctionProtoType* Proto | 
 |     = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); | 
 |   assert(Proto && "Methods without a prototype cannot be overloaded"); | 
 |   assert(!isa<CXXConstructorDecl>(Method) && | 
 |          "Use AddOverloadCandidate for constructors"); | 
 |  | 
 |   if (!CandidateSet.isNewCandidate(Method)) | 
 |     return; | 
 |  | 
 |   // Overload resolution is always an unevaluated context. | 
 |   EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); | 
 |  | 
 |   // Add this candidate | 
 |   CandidateSet.push_back(OverloadCandidate()); | 
 |   OverloadCandidate& Candidate = CandidateSet.back(); | 
 |   Candidate.FoundDecl = FoundDecl; | 
 |   Candidate.Function = Method; | 
 |   Candidate.IsSurrogate = false; | 
 |   Candidate.IgnoreObjectArgument = false; | 
 |  | 
 |   unsigned NumArgsInProto = Proto->getNumArgs(); | 
 |  | 
 |   // (C++ 13.3.2p2): A candidate function having fewer than m | 
 |   // parameters is viable only if it has an ellipsis in its parameter | 
 |   // list (8.3.5). | 
 |   if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_too_many_arguments; | 
 |     return; | 
 |   } | 
 |  | 
 |   // (C++ 13.3.2p2): A candidate function having more than m parameters | 
 |   // is viable only if the (m+1)st parameter has a default argument | 
 |   // (8.3.6). For the purposes of overload resolution, the | 
 |   // parameter list is truncated on the right, so that there are | 
 |   // exactly m parameters. | 
 |   unsigned MinRequiredArgs = Method->getMinRequiredArguments(); | 
 |   if (NumArgs < MinRequiredArgs) { | 
 |     // Not enough arguments. | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_too_few_arguments; | 
 |     return; | 
 |   } | 
 |  | 
 |   Candidate.Viable = true; | 
 |   Candidate.Conversions.resize(NumArgs + 1); | 
 |  | 
 |   if (Method->isStatic() || ObjectType.isNull()) | 
 |     // The implicit object argument is ignored. | 
 |     Candidate.IgnoreObjectArgument = true; | 
 |   else { | 
 |     // Determine the implicit conversion sequence for the object | 
 |     // parameter. | 
 |     Candidate.Conversions[0] | 
 |       = TryObjectArgumentInitialization(ObjectType, Method, ActingContext); | 
 |     if (Candidate.Conversions[0].isBad()) { | 
 |       Candidate.Viable = false; | 
 |       Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Determine the implicit conversion sequences for each of the | 
 |   // arguments. | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { | 
 |     if (ArgIdx < NumArgsInProto) { | 
 |       // (C++ 13.3.2p3): for F to be a viable function, there shall | 
 |       // exist for each argument an implicit conversion sequence | 
 |       // (13.3.3.1) that converts that argument to the corresponding | 
 |       // parameter of F. | 
 |       QualType ParamType = Proto->getArgType(ArgIdx); | 
 |       Candidate.Conversions[ArgIdx + 1] | 
 |         = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
 |                                 SuppressUserConversions,  | 
 |                                 /*InOverloadResolution=*/true); | 
 |       if (Candidate.Conversions[ArgIdx + 1].isBad()) { | 
 |         Candidate.Viable = false; | 
 |         Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
 |       // argument for which there is no corresponding parameter is | 
 |       // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
 |       Candidate.Conversions[ArgIdx + 1].setEllipsis(); | 
 |     } | 
 |   } | 
 | } | 
 |    | 
 | /// \brief Add a C++ member function template as a candidate to the candidate | 
 | /// set, using template argument deduction to produce an appropriate member | 
 | /// function template specialization. | 
 | void | 
 | Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, | 
 |                                  DeclAccessPair FoundDecl, | 
 |                                  CXXRecordDecl *ActingContext, | 
 |                         const TemplateArgumentListInfo *ExplicitTemplateArgs, | 
 |                                  QualType ObjectType, | 
 |                                  Expr **Args, unsigned NumArgs, | 
 |                                  OverloadCandidateSet& CandidateSet, | 
 |                                  bool SuppressUserConversions) { | 
 |   if (!CandidateSet.isNewCandidate(MethodTmpl)) | 
 |     return; | 
 |  | 
 |   // C++ [over.match.funcs]p7: | 
 |   //   In each case where a candidate is a function template, candidate | 
 |   //   function template specializations are generated using template argument | 
 |   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as | 
 |   //   candidate functions in the usual way.113) A given name can refer to one | 
 |   //   or more function templates and also to a set of overloaded non-template | 
 |   //   functions. In such a case, the candidate functions generated from each | 
 |   //   function template are combined with the set of non-template candidate | 
 |   //   functions. | 
 |   TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); | 
 |   FunctionDecl *Specialization = 0; | 
 |   if (TemplateDeductionResult Result | 
 |       = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, | 
 |                                 Args, NumArgs, Specialization, Info)) { | 
 |         // FIXME: Record what happened with template argument deduction, so | 
 |         // that we can give the user a beautiful diagnostic. | 
 |         (void)Result; | 
 |         return; | 
 |       } | 
 |  | 
 |   // Add the function template specialization produced by template argument | 
 |   // deduction as a candidate. | 
 |   assert(Specialization && "Missing member function template specialization?"); | 
 |   assert(isa<CXXMethodDecl>(Specialization) && | 
 |          "Specialization is not a member function?"); | 
 |   AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, | 
 |                      ActingContext, ObjectType, Args, NumArgs, | 
 |                      CandidateSet, SuppressUserConversions); | 
 | } | 
 |  | 
 | /// \brief Add a C++ function template specialization as a candidate | 
 | /// in the candidate set, using template argument deduction to produce | 
 | /// an appropriate function template specialization. | 
 | void | 
 | Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, | 
 |                                    DeclAccessPair FoundDecl, | 
 |                         const TemplateArgumentListInfo *ExplicitTemplateArgs, | 
 |                                    Expr **Args, unsigned NumArgs, | 
 |                                    OverloadCandidateSet& CandidateSet, | 
 |                                    bool SuppressUserConversions) { | 
 |   if (!CandidateSet.isNewCandidate(FunctionTemplate)) | 
 |     return; | 
 |  | 
 |   // C++ [over.match.funcs]p7: | 
 |   //   In each case where a candidate is a function template, candidate | 
 |   //   function template specializations are generated using template argument | 
 |   //   deduction (14.8.3, 14.8.2). Those candidates are then handled as | 
 |   //   candidate functions in the usual way.113) A given name can refer to one | 
 |   //   or more function templates and also to a set of overloaded non-template | 
 |   //   functions. In such a case, the candidate functions generated from each | 
 |   //   function template are combined with the set of non-template candidate | 
 |   //   functions. | 
 |   TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); | 
 |   FunctionDecl *Specialization = 0; | 
 |   if (TemplateDeductionResult Result | 
 |         = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, | 
 |                                   Args, NumArgs, Specialization, Info)) { | 
 |     CandidateSet.push_back(OverloadCandidate()); | 
 |     OverloadCandidate &Candidate = CandidateSet.back(); | 
 |     Candidate.FoundDecl = FoundDecl; | 
 |     Candidate.Function = FunctionTemplate->getTemplatedDecl(); | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_bad_deduction; | 
 |     Candidate.IsSurrogate = false; | 
 |     Candidate.IgnoreObjectArgument = false; | 
 |     Candidate.DeductionFailure = MakeDeductionFailureInfo(Result, Info); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Add the function template specialization produced by template argument | 
 |   // deduction as a candidate. | 
 |   assert(Specialization && "Missing function template specialization?"); | 
 |   AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, | 
 |                        SuppressUserConversions); | 
 | } | 
 |  | 
 | /// AddConversionCandidate - Add a C++ conversion function as a | 
 | /// candidate in the candidate set (C++ [over.match.conv], | 
 | /// C++ [over.match.copy]). From is the expression we're converting from, | 
 | /// and ToType is the type that we're eventually trying to convert to | 
 | /// (which may or may not be the same type as the type that the | 
 | /// conversion function produces). | 
 | void | 
 | Sema::AddConversionCandidate(CXXConversionDecl *Conversion, | 
 |                              DeclAccessPair FoundDecl, | 
 |                              CXXRecordDecl *ActingContext, | 
 |                              Expr *From, QualType ToType, | 
 |                              OverloadCandidateSet& CandidateSet) { | 
 |   assert(!Conversion->getDescribedFunctionTemplate() && | 
 |          "Conversion function templates use AddTemplateConversionCandidate"); | 
 |   QualType ConvType = Conversion->getConversionType().getNonReferenceType(); | 
 |   if (!CandidateSet.isNewCandidate(Conversion)) | 
 |     return; | 
 |  | 
 |   // Overload resolution is always an unevaluated context. | 
 |   EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); | 
 |  | 
 |   // Add this candidate | 
 |   CandidateSet.push_back(OverloadCandidate()); | 
 |   OverloadCandidate& Candidate = CandidateSet.back(); | 
 |   Candidate.FoundDecl = FoundDecl; | 
 |   Candidate.Function = Conversion; | 
 |   Candidate.IsSurrogate = false; | 
 |   Candidate.IgnoreObjectArgument = false; | 
 |   Candidate.FinalConversion.setAsIdentityConversion(); | 
 |   Candidate.FinalConversion.setFromType(ConvType); | 
 |   Candidate.FinalConversion.setAllToTypes(ToType); | 
 |  | 
 |   // Determine the implicit conversion sequence for the implicit | 
 |   // object parameter. | 
 |   Candidate.Viable = true; | 
 |   Candidate.Conversions.resize(1); | 
 |   Candidate.Conversions[0] | 
 |     = TryObjectArgumentInitialization(From->getType(), Conversion, | 
 |                                       ActingContext); | 
 |   // Conversion functions to a different type in the base class is visible in  | 
 |   // the derived class.  So, a derived to base conversion should not participate | 
 |   // in overload resolution.  | 
 |   if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) | 
 |     Candidate.Conversions[0].Standard.Second = ICK_Identity; | 
 |   if (Candidate.Conversions[0].isBad()) { | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |     return; | 
 |   } | 
 |    | 
 |   // We won't go through a user-define type conversion function to convert a  | 
 |   // derived to base as such conversions are given Conversion Rank. They only | 
 |   // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] | 
 |   QualType FromCanon | 
 |     = Context.getCanonicalType(From->getType().getUnqualifiedType()); | 
 |   QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); | 
 |   if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_trivial_conversion; | 
 |     return; | 
 |   } | 
 |    | 
 |   // To determine what the conversion from the result of calling the | 
 |   // conversion function to the type we're eventually trying to | 
 |   // convert to (ToType), we need to synthesize a call to the | 
 |   // conversion function and attempt copy initialization from it. This | 
 |   // makes sure that we get the right semantics with respect to | 
 |   // lvalues/rvalues and the type. Fortunately, we can allocate this | 
 |   // call on the stack and we don't need its arguments to be | 
 |   // well-formed. | 
 |   DeclRefExpr ConversionRef(Conversion, Conversion->getType(), | 
 |                             From->getLocStart()); | 
 |   ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), | 
 |                                 CastExpr::CK_FunctionToPointerDecay, | 
 |                                 &ConversionRef, CXXBaseSpecifierArray(), false); | 
 |  | 
 |   // Note that it is safe to allocate CallExpr on the stack here because | 
 |   // there are 0 arguments (i.e., nothing is allocated using ASTContext's | 
 |   // allocator). | 
 |   CallExpr Call(Context, &ConversionFn, 0, 0, | 
 |                 Conversion->getConversionType().getNonReferenceType(), | 
 |                 From->getLocStart()); | 
 |   ImplicitConversionSequence ICS = | 
 |     TryCopyInitialization(*this, &Call, ToType, | 
 |                           /*SuppressUserConversions=*/true, | 
 |                           /*InOverloadResolution=*/false); | 
 |  | 
 |   switch (ICS.getKind()) { | 
 |   case ImplicitConversionSequence::StandardConversion: | 
 |     Candidate.FinalConversion = ICS.Standard; | 
 |        | 
 |     // C++ [over.ics.user]p3: | 
 |     //   If the user-defined conversion is specified by a specialization of a | 
 |     //   conversion function template, the second standard conversion sequence  | 
 |     //   shall have exact match rank. | 
 |     if (Conversion->getPrimaryTemplate() && | 
 |         GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { | 
 |       Candidate.Viable = false; | 
 |       Candidate.FailureKind = ovl_fail_final_conversion_not_exact; | 
 |     } | 
 |        | 
 |     break; | 
 |  | 
 |   case ImplicitConversionSequence::BadConversion: | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_bad_final_conversion; | 
 |     break; | 
 |  | 
 |   default: | 
 |     assert(false && | 
 |            "Can only end up with a standard conversion sequence or failure"); | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Adds a conversion function template specialization | 
 | /// candidate to the overload set, using template argument deduction | 
 | /// to deduce the template arguments of the conversion function | 
 | /// template from the type that we are converting to (C++ | 
 | /// [temp.deduct.conv]). | 
 | void | 
 | Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, | 
 |                                      DeclAccessPair FoundDecl, | 
 |                                      CXXRecordDecl *ActingDC, | 
 |                                      Expr *From, QualType ToType, | 
 |                                      OverloadCandidateSet &CandidateSet) { | 
 |   assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && | 
 |          "Only conversion function templates permitted here"); | 
 |  | 
 |   if (!CandidateSet.isNewCandidate(FunctionTemplate)) | 
 |     return; | 
 |  | 
 |   TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); | 
 |   CXXConversionDecl *Specialization = 0; | 
 |   if (TemplateDeductionResult Result | 
 |         = DeduceTemplateArguments(FunctionTemplate, ToType, | 
 |                                   Specialization, Info)) { | 
 |     // FIXME: Record what happened with template argument deduction, so | 
 |     // that we can give the user a beautiful diagnostic. | 
 |     (void)Result; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Add the conversion function template specialization produced by | 
 |   // template argument deduction as a candidate. | 
 |   assert(Specialization && "Missing function template specialization?"); | 
 |   AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, | 
 |                          CandidateSet); | 
 | } | 
 |  | 
 | /// AddSurrogateCandidate - Adds a "surrogate" candidate function that | 
 | /// converts the given @c Object to a function pointer via the | 
 | /// conversion function @c Conversion, and then attempts to call it | 
 | /// with the given arguments (C++ [over.call.object]p2-4). Proto is | 
 | /// the type of function that we'll eventually be calling. | 
 | void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, | 
 |                                  DeclAccessPair FoundDecl, | 
 |                                  CXXRecordDecl *ActingContext, | 
 |                                  const FunctionProtoType *Proto, | 
 |                                  QualType ObjectType, | 
 |                                  Expr **Args, unsigned NumArgs, | 
 |                                  OverloadCandidateSet& CandidateSet) { | 
 |   if (!CandidateSet.isNewCandidate(Conversion)) | 
 |     return; | 
 |  | 
 |   // Overload resolution is always an unevaluated context. | 
 |   EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); | 
 |  | 
 |   CandidateSet.push_back(OverloadCandidate()); | 
 |   OverloadCandidate& Candidate = CandidateSet.back(); | 
 |   Candidate.FoundDecl = FoundDecl; | 
 |   Candidate.Function = 0; | 
 |   Candidate.Surrogate = Conversion; | 
 |   Candidate.Viable = true; | 
 |   Candidate.IsSurrogate = true; | 
 |   Candidate.IgnoreObjectArgument = false; | 
 |   Candidate.Conversions.resize(NumArgs + 1); | 
 |  | 
 |   // Determine the implicit conversion sequence for the implicit | 
 |   // object parameter. | 
 |   ImplicitConversionSequence ObjectInit | 
 |     = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext); | 
 |   if (ObjectInit.isBad()) { | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |     Candidate.Conversions[0] = ObjectInit; | 
 |     return; | 
 |   } | 
 |  | 
 |   // The first conversion is actually a user-defined conversion whose | 
 |   // first conversion is ObjectInit's standard conversion (which is | 
 |   // effectively a reference binding). Record it as such. | 
 |   Candidate.Conversions[0].setUserDefined(); | 
 |   Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; | 
 |   Candidate.Conversions[0].UserDefined.EllipsisConversion = false; | 
 |   Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; | 
 |   Candidate.Conversions[0].UserDefined.After | 
 |     = Candidate.Conversions[0].UserDefined.Before; | 
 |   Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); | 
 |  | 
 |   // Find the | 
 |   unsigned NumArgsInProto = Proto->getNumArgs(); | 
 |  | 
 |   // (C++ 13.3.2p2): A candidate function having fewer than m | 
 |   // parameters is viable only if it has an ellipsis in its parameter | 
 |   // list (8.3.5). | 
 |   if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_too_many_arguments; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Function types don't have any default arguments, so just check if | 
 |   // we have enough arguments. | 
 |   if (NumArgs < NumArgsInProto) { | 
 |     // Not enough arguments. | 
 |     Candidate.Viable = false; | 
 |     Candidate.FailureKind = ovl_fail_too_few_arguments; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Determine the implicit conversion sequences for each of the | 
 |   // arguments. | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { | 
 |     if (ArgIdx < NumArgsInProto) { | 
 |       // (C++ 13.3.2p3): for F to be a viable function, there shall | 
 |       // exist for each argument an implicit conversion sequence | 
 |       // (13.3.3.1) that converts that argument to the corresponding | 
 |       // parameter of F. | 
 |       QualType ParamType = Proto->getArgType(ArgIdx); | 
 |       Candidate.Conversions[ArgIdx + 1] | 
 |         = TryCopyInitialization(*this, Args[ArgIdx], ParamType, | 
 |                                 /*SuppressUserConversions=*/false, | 
 |                                 /*InOverloadResolution=*/false); | 
 |       if (Candidate.Conversions[ArgIdx + 1].isBad()) { | 
 |         Candidate.Viable = false; | 
 |         Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       // (C++ 13.3.2p2): For the purposes of overload resolution, any | 
 |       // argument for which there is no corresponding parameter is | 
 |       // considered to ""match the ellipsis" (C+ 13.3.3.1.3). | 
 |       Candidate.Conversions[ArgIdx + 1].setEllipsis(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Add overload candidates for overloaded operators that are | 
 | /// member functions. | 
 | /// | 
 | /// Add the overloaded operator candidates that are member functions | 
 | /// for the operator Op that was used in an operator expression such | 
 | /// as "x Op y". , Args/NumArgs provides the operator arguments, and | 
 | /// CandidateSet will store the added overload candidates. (C++ | 
 | /// [over.match.oper]). | 
 | void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, | 
 |                                        SourceLocation OpLoc, | 
 |                                        Expr **Args, unsigned NumArgs, | 
 |                                        OverloadCandidateSet& CandidateSet, | 
 |                                        SourceRange OpRange) { | 
 |   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
 |  | 
 |   // C++ [over.match.oper]p3: | 
 |   //   For a unary operator @ with an operand of a type whose | 
 |   //   cv-unqualified version is T1, and for a binary operator @ with | 
 |   //   a left operand of a type whose cv-unqualified version is T1 and | 
 |   //   a right operand of a type whose cv-unqualified version is T2, | 
 |   //   three sets of candidate functions, designated member | 
 |   //   candidates, non-member candidates and built-in candidates, are | 
 |   //   constructed as follows: | 
 |   QualType T1 = Args[0]->getType(); | 
 |   QualType T2; | 
 |   if (NumArgs > 1) | 
 |     T2 = Args[1]->getType(); | 
 |  | 
 |   //     -- If T1 is a class type, the set of member candidates is the | 
 |   //        result of the qualified lookup of T1::operator@ | 
 |   //        (13.3.1.1.1); otherwise, the set of member candidates is | 
 |   //        empty. | 
 |   if (const RecordType *T1Rec = T1->getAs<RecordType>()) { | 
 |     // Complete the type if it can be completed. Otherwise, we're done. | 
 |     if (RequireCompleteType(OpLoc, T1, PDiag())) | 
 |       return; | 
 |  | 
 |     LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); | 
 |     LookupQualifiedName(Operators, T1Rec->getDecl()); | 
 |     Operators.suppressDiagnostics(); | 
 |  | 
 |     for (LookupResult::iterator Oper = Operators.begin(), | 
 |                              OperEnd = Operators.end(); | 
 |          Oper != OperEnd; | 
 |          ++Oper) | 
 |       AddMethodCandidate(Oper.getPair(), Args[0]->getType(), | 
 |                          Args + 1, NumArgs - 1, CandidateSet, | 
 |                          /* SuppressUserConversions = */ false); | 
 |   } | 
 | } | 
 |  | 
 | /// AddBuiltinCandidate - Add a candidate for a built-in | 
 | /// operator. ResultTy and ParamTys are the result and parameter types | 
 | /// of the built-in candidate, respectively. Args and NumArgs are the | 
 | /// arguments being passed to the candidate. IsAssignmentOperator | 
 | /// should be true when this built-in candidate is an assignment | 
 | /// operator. NumContextualBoolArguments is the number of arguments | 
 | /// (at the beginning of the argument list) that will be contextually | 
 | /// converted to bool. | 
 | void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, | 
 |                                Expr **Args, unsigned NumArgs, | 
 |                                OverloadCandidateSet& CandidateSet, | 
 |                                bool IsAssignmentOperator, | 
 |                                unsigned NumContextualBoolArguments) { | 
 |   // Overload resolution is always an unevaluated context. | 
 |   EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated); | 
 |  | 
 |   // Add this candidate | 
 |   CandidateSet.push_back(OverloadCandidate()); | 
 |   OverloadCandidate& Candidate = CandidateSet.back(); | 
 |   Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); | 
 |   Candidate.Function = 0; | 
 |   Candidate.IsSurrogate = false; | 
 |   Candidate.IgnoreObjectArgument = false; | 
 |   Candidate.BuiltinTypes.ResultTy = ResultTy; | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) | 
 |     Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; | 
 |  | 
 |   // Determine the implicit conversion sequences for each of the | 
 |   // arguments. | 
 |   Candidate.Viable = true; | 
 |   Candidate.Conversions.resize(NumArgs); | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { | 
 |     // C++ [over.match.oper]p4: | 
 |     //   For the built-in assignment operators, conversions of the | 
 |     //   left operand are restricted as follows: | 
 |     //     -- no temporaries are introduced to hold the left operand, and | 
 |     //     -- no user-defined conversions are applied to the left | 
 |     //        operand to achieve a type match with the left-most | 
 |     //        parameter of a built-in candidate. | 
 |     // | 
 |     // We block these conversions by turning off user-defined | 
 |     // conversions, since that is the only way that initialization of | 
 |     // a reference to a non-class type can occur from something that | 
 |     // is not of the same type. | 
 |     if (ArgIdx < NumContextualBoolArguments) { | 
 |       assert(ParamTys[ArgIdx] == Context.BoolTy && | 
 |              "Contextual conversion to bool requires bool type"); | 
 |       Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); | 
 |     } else { | 
 |       Candidate.Conversions[ArgIdx] | 
 |         = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], | 
 |                                 ArgIdx == 0 && IsAssignmentOperator, | 
 |                                 /*InOverloadResolution=*/false); | 
 |     } | 
 |     if (Candidate.Conversions[ArgIdx].isBad()) { | 
 |       Candidate.Viable = false; | 
 |       Candidate.FailureKind = ovl_fail_bad_conversion; | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// BuiltinCandidateTypeSet - A set of types that will be used for the | 
 | /// candidate operator functions for built-in operators (C++ | 
 | /// [over.built]). The types are separated into pointer types and | 
 | /// enumeration types. | 
 | class BuiltinCandidateTypeSet  { | 
 |   /// TypeSet - A set of types. | 
 |   typedef llvm::SmallPtrSet<QualType, 8> TypeSet; | 
 |  | 
 |   /// PointerTypes - The set of pointer types that will be used in the | 
 |   /// built-in candidates. | 
 |   TypeSet PointerTypes; | 
 |  | 
 |   /// MemberPointerTypes - The set of member pointer types that will be | 
 |   /// used in the built-in candidates. | 
 |   TypeSet MemberPointerTypes; | 
 |  | 
 |   /// EnumerationTypes - The set of enumeration types that will be | 
 |   /// used in the built-in candidates. | 
 |   TypeSet EnumerationTypes; | 
 |  | 
 |   /// Sema - The semantic analysis instance where we are building the | 
 |   /// candidate type set. | 
 |   Sema &SemaRef; | 
 |  | 
 |   /// Context - The AST context in which we will build the type sets. | 
 |   ASTContext &Context; | 
 |  | 
 |   bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | 
 |                                                const Qualifiers &VisibleQuals); | 
 |   bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); | 
 |  | 
 | public: | 
 |   /// iterator - Iterates through the types that are part of the set. | 
 |   typedef TypeSet::iterator iterator; | 
 |  | 
 |   BuiltinCandidateTypeSet(Sema &SemaRef) | 
 |     : SemaRef(SemaRef), Context(SemaRef.Context) { } | 
 |  | 
 |   void AddTypesConvertedFrom(QualType Ty,  | 
 |                              SourceLocation Loc, | 
 |                              bool AllowUserConversions, | 
 |                              bool AllowExplicitConversions, | 
 |                              const Qualifiers &VisibleTypeConversionsQuals); | 
 |  | 
 |   /// pointer_begin - First pointer type found; | 
 |   iterator pointer_begin() { return PointerTypes.begin(); } | 
 |  | 
 |   /// pointer_end - Past the last pointer type found; | 
 |   iterator pointer_end() { return PointerTypes.end(); } | 
 |  | 
 |   /// member_pointer_begin - First member pointer type found; | 
 |   iterator member_pointer_begin() { return MemberPointerTypes.begin(); } | 
 |  | 
 |   /// member_pointer_end - Past the last member pointer type found; | 
 |   iterator member_pointer_end() { return MemberPointerTypes.end(); } | 
 |  | 
 |   /// enumeration_begin - First enumeration type found; | 
 |   iterator enumeration_begin() { return EnumerationTypes.begin(); } | 
 |  | 
 |   /// enumeration_end - Past the last enumeration type found; | 
 |   iterator enumeration_end() { return EnumerationTypes.end(); } | 
 | }; | 
 |  | 
 | /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to | 
 | /// the set of pointer types along with any more-qualified variants of | 
 | /// that type. For example, if @p Ty is "int const *", this routine | 
 | /// will add "int const *", "int const volatile *", "int const | 
 | /// restrict *", and "int const volatile restrict *" to the set of | 
 | /// pointer types. Returns true if the add of @p Ty itself succeeded, | 
 | /// false otherwise. | 
 | /// | 
 | /// FIXME: what to do about extended qualifiers? | 
 | bool | 
 | BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, | 
 |                                              const Qualifiers &VisibleQuals) { | 
 |  | 
 |   // Insert this type. | 
 |   if (!PointerTypes.insert(Ty)) | 
 |     return false; | 
 |  | 
 |   const PointerType *PointerTy = Ty->getAs<PointerType>(); | 
 |   assert(PointerTy && "type was not a pointer type!"); | 
 |  | 
 |   QualType PointeeTy = PointerTy->getPointeeType(); | 
 |   // Don't add qualified variants of arrays. For one, they're not allowed | 
 |   // (the qualifier would sink to the element type), and for another, the | 
 |   // only overload situation where it matters is subscript or pointer +- int, | 
 |   // and those shouldn't have qualifier variants anyway. | 
 |   if (PointeeTy->isArrayType()) | 
 |     return true; | 
 |   unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | 
 |   if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) | 
 |     BaseCVR = Array->getElementType().getCVRQualifiers(); | 
 |   bool hasVolatile = VisibleQuals.hasVolatile(); | 
 |   bool hasRestrict = VisibleQuals.hasRestrict(); | 
 |    | 
 |   // Iterate through all strict supersets of BaseCVR. | 
 |   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | 
 |     if ((CVR | BaseCVR) != CVR) continue; | 
 |     // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere | 
 |     // in the types. | 
 |     if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; | 
 |     if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; | 
 |     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | 
 |     PointerTypes.insert(Context.getPointerType(QPointeeTy)); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty | 
 | /// to the set of pointer types along with any more-qualified variants of | 
 | /// that type. For example, if @p Ty is "int const *", this routine | 
 | /// will add "int const *", "int const volatile *", "int const | 
 | /// restrict *", and "int const volatile restrict *" to the set of | 
 | /// pointer types. Returns true if the add of @p Ty itself succeeded, | 
 | /// false otherwise. | 
 | /// | 
 | /// FIXME: what to do about extended qualifiers? | 
 | bool | 
 | BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( | 
 |     QualType Ty) { | 
 |   // Insert this type. | 
 |   if (!MemberPointerTypes.insert(Ty)) | 
 |     return false; | 
 |  | 
 |   const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); | 
 |   assert(PointerTy && "type was not a member pointer type!"); | 
 |  | 
 |   QualType PointeeTy = PointerTy->getPointeeType(); | 
 |   // Don't add qualified variants of arrays. For one, they're not allowed | 
 |   // (the qualifier would sink to the element type), and for another, the | 
 |   // only overload situation where it matters is subscript or pointer +- int, | 
 |   // and those shouldn't have qualifier variants anyway. | 
 |   if (PointeeTy->isArrayType()) | 
 |     return true; | 
 |   const Type *ClassTy = PointerTy->getClass(); | 
 |  | 
 |   // Iterate through all strict supersets of the pointee type's CVR | 
 |   // qualifiers. | 
 |   unsigned BaseCVR = PointeeTy.getCVRQualifiers(); | 
 |   for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { | 
 |     if ((CVR | BaseCVR) != CVR) continue; | 
 |      | 
 |     QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); | 
 |     MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// AddTypesConvertedFrom - Add each of the types to which the type @p | 
 | /// Ty can be implicit converted to the given set of @p Types. We're | 
 | /// primarily interested in pointer types and enumeration types. We also | 
 | /// take member pointer types, for the conditional operator. | 
 | /// AllowUserConversions is true if we should look at the conversion | 
 | /// functions of a class type, and AllowExplicitConversions if we | 
 | /// should also include the explicit conversion functions of a class | 
 | /// type. | 
 | void | 
 | BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, | 
 |                                                SourceLocation Loc, | 
 |                                                bool AllowUserConversions, | 
 |                                                bool AllowExplicitConversions, | 
 |                                                const Qualifiers &VisibleQuals) { | 
 |   // Only deal with canonical types. | 
 |   Ty = Context.getCanonicalType(Ty); | 
 |  | 
 |   // Look through reference types; they aren't part of the type of an | 
 |   // expression for the purposes of conversions. | 
 |   if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) | 
 |     Ty = RefTy->getPointeeType(); | 
 |  | 
 |   // We don't care about qualifiers on the type. | 
 |   Ty = Ty.getLocalUnqualifiedType(); | 
 |  | 
 |   // If we're dealing with an array type, decay to the pointer. | 
 |   if (Ty->isArrayType()) | 
 |     Ty = SemaRef.Context.getArrayDecayedType(Ty); | 
 |  | 
 |   if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { | 
 |     QualType PointeeTy = PointerTy->getPointeeType(); | 
 |  | 
 |     // Insert our type, and its more-qualified variants, into the set | 
 |     // of types. | 
 |     if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) | 
 |       return; | 
 |   } else if (Ty->isMemberPointerType()) { | 
 |     // Member pointers are far easier, since the pointee can't be converted. | 
 |     if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) | 
 |       return; | 
 |   } else if (Ty->isEnumeralType()) { | 
 |     EnumerationTypes.insert(Ty); | 
 |   } else if (AllowUserConversions) { | 
 |     if (const RecordType *TyRec = Ty->getAs<RecordType>()) { | 
 |       if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { | 
 |         // No conversion functions in incomplete types. | 
 |         return; | 
 |       } | 
 |  | 
 |       CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | 
 |       const UnresolvedSetImpl *Conversions | 
 |         = ClassDecl->getVisibleConversionFunctions(); | 
 |       for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
 |              E = Conversions->end(); I != E; ++I) { | 
 |         NamedDecl *D = I.getDecl(); | 
 |         if (isa<UsingShadowDecl>(D)) | 
 |           D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
 |  | 
 |         // Skip conversion function templates; they don't tell us anything | 
 |         // about which builtin types we can convert to. | 
 |         if (isa<FunctionTemplateDecl>(D)) | 
 |           continue; | 
 |  | 
 |         CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
 |         if (AllowExplicitConversions || !Conv->isExplicit()) { | 
 |           AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,  | 
 |                                 VisibleQuals); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Helper function for AddBuiltinOperatorCandidates() that adds | 
 | /// the volatile- and non-volatile-qualified assignment operators for the | 
 | /// given type to the candidate set. | 
 | static void AddBuiltinAssignmentOperatorCandidates(Sema &S, | 
 |                                                    QualType T, | 
 |                                                    Expr **Args, | 
 |                                                    unsigned NumArgs, | 
 |                                     OverloadCandidateSet &CandidateSet) { | 
 |   QualType ParamTypes[2]; | 
 |  | 
 |   // T& operator=(T&, T) | 
 |   ParamTypes[0] = S.Context.getLValueReferenceType(T); | 
 |   ParamTypes[1] = T; | 
 |   S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, | 
 |                         /*IsAssignmentOperator=*/true); | 
 |  | 
 |   if (!S.Context.getCanonicalType(T).isVolatileQualified()) { | 
 |     // volatile T& operator=(volatile T&, T) | 
 |     ParamTypes[0] | 
 |       = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); | 
 |     ParamTypes[1] = T; | 
 |     S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, | 
 |                           /*IsAssignmentOperator=*/true); | 
 |   } | 
 | } | 
 |  | 
 | /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, | 
 | /// if any, found in visible type conversion functions found in ArgExpr's type. | 
 | static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { | 
 |     Qualifiers VRQuals; | 
 |     const RecordType *TyRec; | 
 |     if (const MemberPointerType *RHSMPType = | 
 |         ArgExpr->getType()->getAs<MemberPointerType>()) | 
 |       TyRec = RHSMPType->getClass()->getAs<RecordType>(); | 
 |     else | 
 |       TyRec = ArgExpr->getType()->getAs<RecordType>(); | 
 |     if (!TyRec) { | 
 |       // Just to be safe, assume the worst case. | 
 |       VRQuals.addVolatile(); | 
 |       VRQuals.addRestrict(); | 
 |       return VRQuals; | 
 |     } | 
 |      | 
 |     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); | 
 |     if (!ClassDecl->hasDefinition()) | 
 |       return VRQuals; | 
 |  | 
 |     const UnresolvedSetImpl *Conversions = | 
 |       ClassDecl->getVisibleConversionFunctions(); | 
 |      | 
 |     for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
 |            E = Conversions->end(); I != E; ++I) { | 
 |       NamedDecl *D = I.getDecl(); | 
 |       if (isa<UsingShadowDecl>(D)) | 
 |         D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
 |       if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { | 
 |         QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); | 
 |         if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) | 
 |           CanTy = ResTypeRef->getPointeeType(); | 
 |         // Need to go down the pointer/mempointer chain and add qualifiers | 
 |         // as see them. | 
 |         bool done = false; | 
 |         while (!done) { | 
 |           if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) | 
 |             CanTy = ResTypePtr->getPointeeType(); | 
 |           else if (const MemberPointerType *ResTypeMPtr =  | 
 |                 CanTy->getAs<MemberPointerType>()) | 
 |             CanTy = ResTypeMPtr->getPointeeType(); | 
 |           else | 
 |             done = true; | 
 |           if (CanTy.isVolatileQualified()) | 
 |             VRQuals.addVolatile(); | 
 |           if (CanTy.isRestrictQualified()) | 
 |             VRQuals.addRestrict(); | 
 |           if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) | 
 |             return VRQuals; | 
 |         } | 
 |       } | 
 |     } | 
 |     return VRQuals; | 
 | } | 
 |    | 
 | /// AddBuiltinOperatorCandidates - Add the appropriate built-in | 
 | /// operator overloads to the candidate set (C++ [over.built]), based | 
 | /// on the operator @p Op and the arguments given. For example, if the | 
 | /// operator is a binary '+', this routine might add "int | 
 | /// operator+(int, int)" to cover integer addition. | 
 | void | 
 | Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, | 
 |                                    SourceLocation OpLoc, | 
 |                                    Expr **Args, unsigned NumArgs, | 
 |                                    OverloadCandidateSet& CandidateSet) { | 
 |   // The set of "promoted arithmetic types", which are the arithmetic | 
 |   // types are that preserved by promotion (C++ [over.built]p2). Note | 
 |   // that the first few of these types are the promoted integral | 
 |   // types; these types need to be first. | 
 |   // FIXME: What about complex? | 
 |   const unsigned FirstIntegralType = 0; | 
 |   const unsigned LastIntegralType = 13; | 
 |   const unsigned FirstPromotedIntegralType = 7, | 
 |                  LastPromotedIntegralType = 13; | 
 |   const unsigned FirstPromotedArithmeticType = 7, | 
 |                  LastPromotedArithmeticType = 16; | 
 |   const unsigned NumArithmeticTypes = 16; | 
 |   QualType ArithmeticTypes[NumArithmeticTypes] = { | 
 |     Context.BoolTy, Context.CharTy, Context.WCharTy, | 
 | // FIXME:   Context.Char16Ty, Context.Char32Ty, | 
 |     Context.SignedCharTy, Context.ShortTy, | 
 |     Context.UnsignedCharTy, Context.UnsignedShortTy, | 
 |     Context.IntTy, Context.LongTy, Context.LongLongTy, | 
 |     Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, | 
 |     Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy | 
 |   }; | 
 |   assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && | 
 |          "Invalid first promoted integral type"); | 
 |   assert(ArithmeticTypes[LastPromotedIntegralType - 1]  | 
 |            == Context.UnsignedLongLongTy && | 
 |          "Invalid last promoted integral type"); | 
 |   assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && | 
 |          "Invalid first promoted arithmetic type"); | 
 |   assert(ArithmeticTypes[LastPromotedArithmeticType - 1]  | 
 |             == Context.LongDoubleTy && | 
 |          "Invalid last promoted arithmetic type"); | 
 |           | 
 |   // Find all of the types that the arguments can convert to, but only | 
 |   // if the operator we're looking at has built-in operator candidates | 
 |   // that make use of these types. | 
 |   Qualifiers VisibleTypeConversionsQuals; | 
 |   VisibleTypeConversionsQuals.addConst(); | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) | 
 |     VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); | 
 |    | 
 |   BuiltinCandidateTypeSet CandidateTypes(*this); | 
 |   if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || | 
 |       Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || | 
 |       Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || | 
 |       Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || | 
 |       Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || | 
 |       (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { | 
 |     for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) | 
 |       CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), | 
 |                                            OpLoc, | 
 |                                            true, | 
 |                                            (Op == OO_Exclaim || | 
 |                                             Op == OO_AmpAmp || | 
 |                                             Op == OO_PipePipe), | 
 |                                            VisibleTypeConversionsQuals); | 
 |   } | 
 |  | 
 |   bool isComparison = false; | 
 |   switch (Op) { | 
 |   case OO_None: | 
 |   case NUM_OVERLOADED_OPERATORS: | 
 |     assert(false && "Expected an overloaded operator"); | 
 |     break; | 
 |  | 
 |   case OO_Star: // '*' is either unary or binary | 
 |     if (NumArgs == 1) | 
 |       goto UnaryStar; | 
 |     else | 
 |       goto BinaryStar; | 
 |     break; | 
 |  | 
 |   case OO_Plus: // '+' is either unary or binary | 
 |     if (NumArgs == 1) | 
 |       goto UnaryPlus; | 
 |     else | 
 |       goto BinaryPlus; | 
 |     break; | 
 |  | 
 |   case OO_Minus: // '-' is either unary or binary | 
 |     if (NumArgs == 1) | 
 |       goto UnaryMinus; | 
 |     else | 
 |       goto BinaryMinus; | 
 |     break; | 
 |  | 
 |   case OO_Amp: // '&' is either unary or binary | 
 |     if (NumArgs == 1) | 
 |       goto UnaryAmp; | 
 |     else | 
 |       goto BinaryAmp; | 
 |  | 
 |   case OO_PlusPlus: | 
 |   case OO_MinusMinus: | 
 |     // C++ [over.built]p3: | 
 |     // | 
 |     //   For every pair (T, VQ), where T is an arithmetic type, and VQ | 
 |     //   is either volatile or empty, there exist candidate operator | 
 |     //   functions of the form | 
 |     // | 
 |     //       VQ T&      operator++(VQ T&); | 
 |     //       T          operator++(VQ T&, int); | 
 |     // | 
 |     // C++ [over.built]p4: | 
 |     // | 
 |     //   For every pair (T, VQ), where T is an arithmetic type other | 
 |     //   than bool, and VQ is either volatile or empty, there exist | 
 |     //   candidate operator functions of the form | 
 |     // | 
 |     //       VQ T&      operator--(VQ T&); | 
 |     //       T          operator--(VQ T&, int); | 
 |     for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); | 
 |          Arith < NumArithmeticTypes; ++Arith) { | 
 |       QualType ArithTy = ArithmeticTypes[Arith]; | 
 |       QualType ParamTypes[2] | 
 |         = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; | 
 |  | 
 |       // Non-volatile version. | 
 |       if (NumArgs == 1) | 
 |         AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); | 
 |       else | 
 |         AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); | 
 |       // heuristic to reduce number of builtin candidates in the set. | 
 |       // Add volatile version only if there are conversions to a volatile type. | 
 |       if (VisibleTypeConversionsQuals.hasVolatile()) { | 
 |         // Volatile version | 
 |         ParamTypes[0] | 
 |           = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); | 
 |         if (NumArgs == 1) | 
 |           AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); | 
 |         else | 
 |           AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); | 
 |       } | 
 |     } | 
 |  | 
 |     // C++ [over.built]p5: | 
 |     // | 
 |     //   For every pair (T, VQ), where T is a cv-qualified or | 
 |     //   cv-unqualified object type, and VQ is either volatile or | 
 |     //   empty, there exist candidate operator functions of the form | 
 |     // | 
 |     //       T*VQ&      operator++(T*VQ&); | 
 |     //       T*VQ&      operator--(T*VQ&); | 
 |     //       T*         operator++(T*VQ&, int); | 
 |     //       T*         operator--(T*VQ&, int); | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); | 
 |          Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |       // Skip pointer types that aren't pointers to object types. | 
 |       if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) | 
 |         continue; | 
 |  | 
 |       QualType ParamTypes[2] = { | 
 |         Context.getLValueReferenceType(*Ptr), Context.IntTy | 
 |       }; | 
 |  | 
 |       // Without volatile | 
 |       if (NumArgs == 1) | 
 |         AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); | 
 |       else | 
 |         AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); | 
 |  | 
 |       if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && | 
 |           VisibleTypeConversionsQuals.hasVolatile()) { | 
 |         // With volatile | 
 |         ParamTypes[0] | 
 |           = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); | 
 |         if (NumArgs == 1) | 
 |           AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); | 
 |         else | 
 |           AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   UnaryStar: | 
 |     // C++ [over.built]p6: | 
 |     //   For every cv-qualified or cv-unqualified object type T, there | 
 |     //   exist candidate operator functions of the form | 
 |     // | 
 |     //       T&         operator*(T*); | 
 |     // | 
 |     // C++ [over.built]p7: | 
 |     //   For every function type T, there exist candidate operator | 
 |     //   functions of the form | 
 |     //       T&         operator*(T*); | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); | 
 |          Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |       QualType ParamTy = *Ptr; | 
 |       QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); | 
 |       AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), | 
 |                           &ParamTy, Args, 1, CandidateSet); | 
 |     } | 
 |     break; | 
 |  | 
 |   UnaryPlus: | 
 |     // C++ [over.built]p8: | 
 |     //   For every type T, there exist candidate operator functions of | 
 |     //   the form | 
 |     // | 
 |     //       T*         operator+(T*); | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); | 
 |          Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |       QualType ParamTy = *Ptr; | 
 |       AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); | 
 |     } | 
 |  | 
 |     // Fall through | 
 |  | 
 |   UnaryMinus: | 
 |     // C++ [over.built]p9: | 
 |     //  For every promoted arithmetic type T, there exist candidate | 
 |     //  operator functions of the form | 
 |     // | 
 |     //       T         operator+(T); | 
 |     //       T         operator-(T); | 
 |     for (unsigned Arith = FirstPromotedArithmeticType; | 
 |          Arith < LastPromotedArithmeticType; ++Arith) { | 
 |       QualType ArithTy = ArithmeticTypes[Arith]; | 
 |       AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_Tilde: | 
 |     // C++ [over.built]p10: | 
 |     //   For every promoted integral type T, there exist candidate | 
 |     //   operator functions of the form | 
 |     // | 
 |     //        T         operator~(T); | 
 |     for (unsigned Int = FirstPromotedIntegralType; | 
 |          Int < LastPromotedIntegralType; ++Int) { | 
 |       QualType IntTy = ArithmeticTypes[Int]; | 
 |       AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_New: | 
 |   case OO_Delete: | 
 |   case OO_Array_New: | 
 |   case OO_Array_Delete: | 
 |   case OO_Call: | 
 |     assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); | 
 |     break; | 
 |  | 
 |   case OO_Comma: | 
 |   UnaryAmp: | 
 |   case OO_Arrow: | 
 |     // C++ [over.match.oper]p3: | 
 |     //   -- For the operator ',', the unary operator '&', or the | 
 |     //      operator '->', the built-in candidates set is empty. | 
 |     break; | 
 |  | 
 |   case OO_EqualEqual: | 
 |   case OO_ExclaimEqual: | 
 |     // C++ [over.match.oper]p16: | 
 |     //   For every pointer to member type T, there exist candidate operator | 
 |     //   functions of the form | 
 |     // | 
 |     //        bool operator==(T,T); | 
 |     //        bool operator!=(T,T); | 
 |     for (BuiltinCandidateTypeSet::iterator | 
 |            MemPtr = CandidateTypes.member_pointer_begin(), | 
 |            MemPtrEnd = CandidateTypes.member_pointer_end(); | 
 |          MemPtr != MemPtrEnd; | 
 |          ++MemPtr) { | 
 |       QualType ParamTypes[2] = { *MemPtr, *MemPtr }; | 
 |       AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); | 
 |     } | 
 |  | 
 |     // Fall through | 
 |  | 
 |   case OO_Less: | 
 |   case OO_Greater: | 
 |   case OO_LessEqual: | 
 |   case OO_GreaterEqual: | 
 |     // C++ [over.built]p15: | 
 |     // | 
 |     //   For every pointer or enumeration type T, there exist | 
 |     //   candidate operator functions of the form | 
 |     // | 
 |     //        bool       operator<(T, T); | 
 |     //        bool       operator>(T, T); | 
 |     //        bool       operator<=(T, T); | 
 |     //        bool       operator>=(T, T); | 
 |     //        bool       operator==(T, T); | 
 |     //        bool       operator!=(T, T); | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); | 
 |          Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |       QualType ParamTypes[2] = { *Ptr, *Ptr }; | 
 |       AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); | 
 |     } | 
 |     for (BuiltinCandidateTypeSet::iterator Enum | 
 |            = CandidateTypes.enumeration_begin(); | 
 |          Enum != CandidateTypes.enumeration_end(); ++Enum) { | 
 |       QualType ParamTypes[2] = { *Enum, *Enum }; | 
 |       AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); | 
 |     } | 
 |  | 
 |     // Fall through. | 
 |     isComparison = true; | 
 |  | 
 |   BinaryPlus: | 
 |   BinaryMinus: | 
 |     if (!isComparison) { | 
 |       // We didn't fall through, so we must have OO_Plus or OO_Minus. | 
 |  | 
 |       // C++ [over.built]p13: | 
 |       // | 
 |       //   For every cv-qualified or cv-unqualified object type T | 
 |       //   there exist candidate operator functions of the form | 
 |       // | 
 |       //      T*         operator+(T*, ptrdiff_t); | 
 |       //      T&         operator[](T*, ptrdiff_t);    [BELOW] | 
 |       //      T*         operator-(T*, ptrdiff_t); | 
 |       //      T*         operator+(ptrdiff_t, T*); | 
 |       //      T&         operator[](ptrdiff_t, T*);    [BELOW] | 
 |       // | 
 |       // C++ [over.built]p14: | 
 |       // | 
 |       //   For every T, where T is a pointer to object type, there | 
 |       //   exist candidate operator functions of the form | 
 |       // | 
 |       //      ptrdiff_t  operator-(T, T); | 
 |       for (BuiltinCandidateTypeSet::iterator Ptr | 
 |              = CandidateTypes.pointer_begin(); | 
 |            Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |         QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; | 
 |  | 
 |         // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) | 
 |         AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); | 
 |  | 
 |         if (Op == OO_Plus) { | 
 |           // T* operator+(ptrdiff_t, T*); | 
 |           ParamTypes[0] = ParamTypes[1]; | 
 |           ParamTypes[1] = *Ptr; | 
 |           AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); | 
 |         } else { | 
 |           // ptrdiff_t operator-(T, T); | 
 |           ParamTypes[1] = *Ptr; | 
 |           AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, | 
 |                               Args, 2, CandidateSet); | 
 |         } | 
 |       } | 
 |     } | 
 |     // Fall through | 
 |  | 
 |   case OO_Slash: | 
 |   BinaryStar: | 
 |   Conditional: | 
 |     // C++ [over.built]p12: | 
 |     // | 
 |     //   For every pair of promoted arithmetic types L and R, there | 
 |     //   exist candidate operator functions of the form | 
 |     // | 
 |     //        LR         operator*(L, R); | 
 |     //        LR         operator/(L, R); | 
 |     //        LR         operator+(L, R); | 
 |     //        LR         operator-(L, R); | 
 |     //        bool       operator<(L, R); | 
 |     //        bool       operator>(L, R); | 
 |     //        bool       operator<=(L, R); | 
 |     //        bool       operator>=(L, R); | 
 |     //        bool       operator==(L, R); | 
 |     //        bool       operator!=(L, R); | 
 |     // | 
 |     //   where LR is the result of the usual arithmetic conversions | 
 |     //   between types L and R. | 
 |     // | 
 |     // C++ [over.built]p24: | 
 |     // | 
 |     //   For every pair of promoted arithmetic types L and R, there exist | 
 |     //   candidate operator functions of the form | 
 |     // | 
 |     //        LR       operator?(bool, L, R); | 
 |     // | 
 |     //   where LR is the result of the usual arithmetic conversions | 
 |     //   between types L and R. | 
 |     // Our candidates ignore the first parameter. | 
 |     for (unsigned Left = FirstPromotedArithmeticType; | 
 |          Left < LastPromotedArithmeticType; ++Left) { | 
 |       for (unsigned Right = FirstPromotedArithmeticType; | 
 |            Right < LastPromotedArithmeticType; ++Right) { | 
 |         QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; | 
 |         QualType Result | 
 |           = isComparison | 
 |           ? Context.BoolTy | 
 |           : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); | 
 |         AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_Percent: | 
 |   BinaryAmp: | 
 |   case OO_Caret: | 
 |   case OO_Pipe: | 
 |   case OO_LessLess: | 
 |   case OO_GreaterGreater: | 
 |     // C++ [over.built]p17: | 
 |     // | 
 |     //   For every pair of promoted integral types L and R, there | 
 |     //   exist candidate operator functions of the form | 
 |     // | 
 |     //      LR         operator%(L, R); | 
 |     //      LR         operator&(L, R); | 
 |     //      LR         operator^(L, R); | 
 |     //      LR         operator|(L, R); | 
 |     //      L          operator<<(L, R); | 
 |     //      L          operator>>(L, R); | 
 |     // | 
 |     //   where LR is the result of the usual arithmetic conversions | 
 |     //   between types L and R. | 
 |     for (unsigned Left = FirstPromotedIntegralType; | 
 |          Left < LastPromotedIntegralType; ++Left) { | 
 |       for (unsigned Right = FirstPromotedIntegralType; | 
 |            Right < LastPromotedIntegralType; ++Right) { | 
 |         QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; | 
 |         QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) | 
 |             ? LandR[0] | 
 |             : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); | 
 |         AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_Equal: | 
 |     // C++ [over.built]p20: | 
 |     // | 
 |     //   For every pair (T, VQ), where T is an enumeration or | 
 |     //   pointer to member type and VQ is either volatile or | 
 |     //   empty, there exist candidate operator functions of the form | 
 |     // | 
 |     //        VQ T&      operator=(VQ T&, T); | 
 |     for (BuiltinCandidateTypeSet::iterator | 
 |            Enum = CandidateTypes.enumeration_begin(), | 
 |            EnumEnd = CandidateTypes.enumeration_end(); | 
 |          Enum != EnumEnd; ++Enum) | 
 |       AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, | 
 |                                              CandidateSet); | 
 |     for (BuiltinCandidateTypeSet::iterator | 
 |            MemPtr = CandidateTypes.member_pointer_begin(), | 
 |          MemPtrEnd = CandidateTypes.member_pointer_end(); | 
 |          MemPtr != MemPtrEnd; ++MemPtr) | 
 |       AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, | 
 |                                              CandidateSet); | 
 |       // Fall through. | 
 |  | 
 |   case OO_PlusEqual: | 
 |   case OO_MinusEqual: | 
 |     // C++ [over.built]p19: | 
 |     // | 
 |     //   For every pair (T, VQ), where T is any type and VQ is either | 
 |     //   volatile or empty, there exist candidate operator functions | 
 |     //   of the form | 
 |     // | 
 |     //        T*VQ&      operator=(T*VQ&, T*); | 
 |     // | 
 |     // C++ [over.built]p21: | 
 |     // | 
 |     //   For every pair (T, VQ), where T is a cv-qualified or | 
 |     //   cv-unqualified object type and VQ is either volatile or | 
 |     //   empty, there exist candidate operator functions of the form | 
 |     // | 
 |     //        T*VQ&      operator+=(T*VQ&, ptrdiff_t); | 
 |     //        T*VQ&      operator-=(T*VQ&, ptrdiff_t); | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); | 
 |          Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |       QualType ParamTypes[2]; | 
 |       ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); | 
 |  | 
 |       // non-volatile version | 
 |       ParamTypes[0] = Context.getLValueReferenceType(*Ptr); | 
 |       AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, | 
 |                           /*IsAssigmentOperator=*/Op == OO_Equal); | 
 |  | 
 |       if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && | 
 |           VisibleTypeConversionsQuals.hasVolatile()) { | 
 |         // volatile version | 
 |         ParamTypes[0] | 
 |           = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); | 
 |         AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, | 
 |                             /*IsAssigmentOperator=*/Op == OO_Equal); | 
 |       } | 
 |     } | 
 |     // Fall through. | 
 |  | 
 |   case OO_StarEqual: | 
 |   case OO_SlashEqual: | 
 |     // C++ [over.built]p18: | 
 |     // | 
 |     //   For every triple (L, VQ, R), where L is an arithmetic type, | 
 |     //   VQ is either volatile or empty, and R is a promoted | 
 |     //   arithmetic type, there exist candidate operator functions of | 
 |     //   the form | 
 |     // | 
 |     //        VQ L&      operator=(VQ L&, R); | 
 |     //        VQ L&      operator*=(VQ L&, R); | 
 |     //        VQ L&      operator/=(VQ L&, R); | 
 |     //        VQ L&      operator+=(VQ L&, R); | 
 |     //        VQ L&      operator-=(VQ L&, R); | 
 |     for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { | 
 |       for (unsigned Right = FirstPromotedArithmeticType; | 
 |            Right < LastPromotedArithmeticType; ++Right) { | 
 |         QualType ParamTypes[2]; | 
 |         ParamTypes[1] = ArithmeticTypes[Right]; | 
 |  | 
 |         // Add this built-in operator as a candidate (VQ is empty). | 
 |         ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); | 
 |         AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, | 
 |                             /*IsAssigmentOperator=*/Op == OO_Equal); | 
 |  | 
 |         // Add this built-in operator as a candidate (VQ is 'volatile'). | 
 |         if (VisibleTypeConversionsQuals.hasVolatile()) { | 
 |           ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); | 
 |           ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); | 
 |           AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, | 
 |                               /*IsAssigmentOperator=*/Op == OO_Equal); | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_PercentEqual: | 
 |   case OO_LessLessEqual: | 
 |   case OO_GreaterGreaterEqual: | 
 |   case OO_AmpEqual: | 
 |   case OO_CaretEqual: | 
 |   case OO_PipeEqual: | 
 |     // C++ [over.built]p22: | 
 |     // | 
 |     //   For every triple (L, VQ, R), where L is an integral type, VQ | 
 |     //   is either volatile or empty, and R is a promoted integral | 
 |     //   type, there exist candidate operator functions of the form | 
 |     // | 
 |     //        VQ L&       operator%=(VQ L&, R); | 
 |     //        VQ L&       operator<<=(VQ L&, R); | 
 |     //        VQ L&       operator>>=(VQ L&, R); | 
 |     //        VQ L&       operator&=(VQ L&, R); | 
 |     //        VQ L&       operator^=(VQ L&, R); | 
 |     //        VQ L&       operator|=(VQ L&, R); | 
 |     for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { | 
 |       for (unsigned Right = FirstPromotedIntegralType; | 
 |            Right < LastPromotedIntegralType; ++Right) { | 
 |         QualType ParamTypes[2]; | 
 |         ParamTypes[1] = ArithmeticTypes[Right]; | 
 |  | 
 |         // Add this built-in operator as a candidate (VQ is empty). | 
 |         ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); | 
 |         AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); | 
 |         if (VisibleTypeConversionsQuals.hasVolatile()) { | 
 |           // Add this built-in operator as a candidate (VQ is 'volatile'). | 
 |           ParamTypes[0] = ArithmeticTypes[Left]; | 
 |           ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); | 
 |           ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); | 
 |           AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_Exclaim: { | 
 |     // C++ [over.operator]p23: | 
 |     // | 
 |     //   There also exist candidate operator functions of the form | 
 |     // | 
 |     //        bool        operator!(bool); | 
 |     //        bool        operator&&(bool, bool);     [BELOW] | 
 |     //        bool        operator||(bool, bool);     [BELOW] | 
 |     QualType ParamTy = Context.BoolTy; | 
 |     AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, | 
 |                         /*IsAssignmentOperator=*/false, | 
 |                         /*NumContextualBoolArguments=*/1); | 
 |     break; | 
 |   } | 
 |  | 
 |   case OO_AmpAmp: | 
 |   case OO_PipePipe: { | 
 |     // C++ [over.operator]p23: | 
 |     // | 
 |     //   There also exist candidate operator functions of the form | 
 |     // | 
 |     //        bool        operator!(bool);            [ABOVE] | 
 |     //        bool        operator&&(bool, bool); | 
 |     //        bool        operator||(bool, bool); | 
 |     QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; | 
 |     AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, | 
 |                         /*IsAssignmentOperator=*/false, | 
 |                         /*NumContextualBoolArguments=*/2); | 
 |     break; | 
 |   } | 
 |  | 
 |   case OO_Subscript: | 
 |     // C++ [over.built]p13: | 
 |     // | 
 |     //   For every cv-qualified or cv-unqualified object type T there | 
 |     //   exist candidate operator functions of the form | 
 |     // | 
 |     //        T*         operator+(T*, ptrdiff_t);     [ABOVE] | 
 |     //        T&         operator[](T*, ptrdiff_t); | 
 |     //        T*         operator-(T*, ptrdiff_t);     [ABOVE] | 
 |     //        T*         operator+(ptrdiff_t, T*);     [ABOVE] | 
 |     //        T&         operator[](ptrdiff_t, T*); | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); | 
 |          Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |       QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; | 
 |       QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); | 
 |       QualType ResultTy = Context.getLValueReferenceType(PointeeType); | 
 |  | 
 |       // T& operator[](T*, ptrdiff_t) | 
 |       AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); | 
 |  | 
 |       // T& operator[](ptrdiff_t, T*); | 
 |       ParamTypes[0] = ParamTypes[1]; | 
 |       ParamTypes[1] = *Ptr; | 
 |       AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_ArrowStar: | 
 |     // C++ [over.built]p11: | 
 |     //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,  | 
 |     //    C1 is the same type as C2 or is a derived class of C2, T is an object  | 
 |     //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,  | 
 |     //    there exist candidate operator functions of the form  | 
 |     //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);  | 
 |     //    where CV12 is the union of CV1 and CV2. | 
 |     { | 
 |       for (BuiltinCandidateTypeSet::iterator Ptr =  | 
 |              CandidateTypes.pointer_begin(); | 
 |            Ptr != CandidateTypes.pointer_end(); ++Ptr) { | 
 |         QualType C1Ty = (*Ptr); | 
 |         QualType C1; | 
 |         QualifierCollector Q1; | 
 |         if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { | 
 |           C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); | 
 |           if (!isa<RecordType>(C1)) | 
 |             continue; | 
 |           // heuristic to reduce number of builtin candidates in the set. | 
 |           // Add volatile/restrict version only if there are conversions to a | 
 |           // volatile/restrict type. | 
 |           if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) | 
 |             continue; | 
 |           if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) | 
 |             continue; | 
 |         } | 
 |         for (BuiltinCandidateTypeSet::iterator | 
 |              MemPtr = CandidateTypes.member_pointer_begin(), | 
 |              MemPtrEnd = CandidateTypes.member_pointer_end(); | 
 |              MemPtr != MemPtrEnd; ++MemPtr) { | 
 |           const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); | 
 |           QualType C2 = QualType(mptr->getClass(), 0); | 
 |           C2 = C2.getUnqualifiedType(); | 
 |           if (C1 != C2 && !IsDerivedFrom(C1, C2)) | 
 |             break; | 
 |           QualType ParamTypes[2] = { *Ptr, *MemPtr }; | 
 |           // build CV12 T& | 
 |           QualType T = mptr->getPointeeType(); | 
 |           if (!VisibleTypeConversionsQuals.hasVolatile() &&  | 
 |               T.isVolatileQualified()) | 
 |             continue; | 
 |           if (!VisibleTypeConversionsQuals.hasRestrict() &&  | 
 |               T.isRestrictQualified()) | 
 |             continue; | 
 |           T = Q1.apply(T); | 
 |           QualType ResultTy = Context.getLValueReferenceType(T); | 
 |           AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   case OO_Conditional: | 
 |     // Note that we don't consider the first argument, since it has been | 
 |     // contextually converted to bool long ago. The candidates below are | 
 |     // therefore added as binary. | 
 |     // | 
 |     // C++ [over.built]p24: | 
 |     //   For every type T, where T is a pointer or pointer-to-member type, | 
 |     //   there exist candidate operator functions of the form | 
 |     // | 
 |     //        T        operator?(bool, T, T); | 
 |     // | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), | 
 |          E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { | 
 |       QualType ParamTypes[2] = { *Ptr, *Ptr }; | 
 |       AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); | 
 |     } | 
 |     for (BuiltinCandidateTypeSet::iterator Ptr = | 
 |            CandidateTypes.member_pointer_begin(), | 
 |          E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { | 
 |       QualType ParamTypes[2] = { *Ptr, *Ptr }; | 
 |       AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); | 
 |     } | 
 |     goto Conditional; | 
 |   } | 
 | } | 
 |  | 
 | /// \brief Add function candidates found via argument-dependent lookup | 
 | /// to the set of overloading candidates. | 
 | /// | 
 | /// This routine performs argument-dependent name lookup based on the | 
 | /// given function name (which may also be an operator name) and adds | 
 | /// all of the overload candidates found by ADL to the overload | 
 | /// candidate set (C++ [basic.lookup.argdep]). | 
 | void | 
 | Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, | 
 |                                            bool Operator, | 
 |                                            Expr **Args, unsigned NumArgs, | 
 |                        const TemplateArgumentListInfo *ExplicitTemplateArgs, | 
 |                                            OverloadCandidateSet& CandidateSet, | 
 |                                            bool PartialOverloading) { | 
 |   ADLResult Fns; | 
 |  | 
 |   // FIXME: This approach for uniquing ADL results (and removing | 
 |   // redundant candidates from the set) relies on pointer-equality, | 
 |   // which means we need to key off the canonical decl.  However, | 
 |   // always going back to the canonical decl might not get us the | 
 |   // right set of default arguments.  What default arguments are | 
 |   // we supposed to consider on ADL candidates, anyway? | 
 |  | 
 |   // FIXME: Pass in the explicit template arguments? | 
 |   ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns); | 
 |  | 
 |   // Erase all of the candidates we already knew about. | 
 |   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), | 
 |                                    CandEnd = CandidateSet.end(); | 
 |        Cand != CandEnd; ++Cand) | 
 |     if (Cand->Function) { | 
 |       Fns.erase(Cand->Function); | 
 |       if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) | 
 |         Fns.erase(FunTmpl); | 
 |     } | 
 |  | 
 |   // For each of the ADL candidates we found, add it to the overload | 
 |   // set. | 
 |   for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { | 
 |     DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); | 
 |     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { | 
 |       if (ExplicitTemplateArgs) | 
 |         continue; | 
 |        | 
 |       AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, | 
 |                            false, PartialOverloading); | 
 |     } else | 
 |       AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), | 
 |                                    FoundDecl, ExplicitTemplateArgs, | 
 |                                    Args, NumArgs, CandidateSet); | 
 |   } | 
 | } | 
 |  | 
 | /// isBetterOverloadCandidate - Determines whether the first overload | 
 | /// candidate is a better candidate than the second (C++ 13.3.3p1). | 
 | bool | 
 | Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, | 
 |                                 const OverloadCandidate& Cand2, | 
 |                                 SourceLocation Loc) { | 
 |   // Define viable functions to be better candidates than non-viable | 
 |   // functions. | 
 |   if (!Cand2.Viable) | 
 |     return Cand1.Viable; | 
 |   else if (!Cand1.Viable) | 
 |     return false; | 
 |  | 
 |   // C++ [over.match.best]p1: | 
 |   // | 
 |   //   -- if F is a static member function, ICS1(F) is defined such | 
 |   //      that ICS1(F) is neither better nor worse than ICS1(G) for | 
 |   //      any function G, and, symmetrically, ICS1(G) is neither | 
 |   //      better nor worse than ICS1(F). | 
 |   unsigned StartArg = 0; | 
 |   if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) | 
 |     StartArg = 1; | 
 |  | 
 |   // C++ [over.match.best]p1: | 
 |   //   A viable function F1 is defined to be a better function than another | 
 |   //   viable function F2 if for all arguments i, ICSi(F1) is not a worse | 
 |   //   conversion sequence than ICSi(F2), and then... | 
 |   unsigned NumArgs = Cand1.Conversions.size(); | 
 |   assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); | 
 |   bool HasBetterConversion = false; | 
 |   for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { | 
 |     switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], | 
 |                                                Cand2.Conversions[ArgIdx])) { | 
 |     case ImplicitConversionSequence::Better: | 
 |       // Cand1 has a better conversion sequence. | 
 |       HasBetterConversion = true; | 
 |       break; | 
 |  | 
 |     case ImplicitConversionSequence::Worse: | 
 |       // Cand1 can't be better than Cand2. | 
 |       return false; | 
 |  | 
 |     case ImplicitConversionSequence::Indistinguishable: | 
 |       // Do nothing. | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   //    -- for some argument j, ICSj(F1) is a better conversion sequence than | 
 |   //       ICSj(F2), or, if not that, | 
 |   if (HasBetterConversion) | 
 |     return true; | 
 |  | 
 |   //     - F1 is a non-template function and F2 is a function template | 
 |   //       specialization, or, if not that, | 
 |   if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && | 
 |       Cand2.Function && Cand2.Function->getPrimaryTemplate()) | 
 |     return true; | 
 |  | 
 |   //   -- F1 and F2 are function template specializations, and the function | 
 |   //      template for F1 is more specialized than the template for F2 | 
 |   //      according to the partial ordering rules described in 14.5.5.2, or, | 
 |   //      if not that, | 
 |   if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && | 
 |       Cand2.Function && Cand2.Function->getPrimaryTemplate()) | 
 |     if (FunctionTemplateDecl *BetterTemplate | 
 |           = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), | 
 |                                        Cand2.Function->getPrimaryTemplate(), | 
 |                                        Loc, | 
 |                        isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion  | 
 |                                                              : TPOC_Call)) | 
 |       return BetterTemplate == Cand1.Function->getPrimaryTemplate(); | 
 |  | 
 |   //   -- the context is an initialization by user-defined conversion | 
 |   //      (see 8.5, 13.3.1.5) and the standard conversion sequence | 
 |   //      from the return type of F1 to the destination type (i.e., | 
 |   //      the type of the entity being initialized) is a better | 
 |   //      conversion sequence than the standard conversion sequence | 
 |   //      from the return type of F2 to the destination type. | 
 |   if (Cand1.Function && Cand2.Function && | 
 |       isa<CXXConversionDecl>(Cand1.Function) && | 
 |       isa<CXXConversionDecl>(Cand2.Function)) { | 
 |     switch (CompareStandardConversionSequences(Cand1.FinalConversion, | 
 |                                                Cand2.FinalConversion)) { | 
 |     case ImplicitConversionSequence::Better: | 
 |       // Cand1 has a better conversion sequence. | 
 |       return true; | 
 |  | 
 |     case ImplicitConversionSequence::Worse: | 
 |       // Cand1 can't be better than Cand2. | 
 |       return false; | 
 |  | 
 |     case ImplicitConversionSequence::Indistinguishable: | 
 |       // Do nothing | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Computes the best viable function (C++ 13.3.3) | 
 | /// within an overload candidate set. | 
 | /// | 
 | /// \param CandidateSet the set of candidate functions. | 
 | /// | 
 | /// \param Loc the location of the function name (or operator symbol) for | 
 | /// which overload resolution occurs. | 
 | /// | 
 | /// \param Best f overload resolution was successful or found a deleted | 
 | /// function, Best points to the candidate function found. | 
 | /// | 
 | /// \returns The result of overload resolution. | 
 | OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, | 
 |                                            SourceLocation Loc, | 
 |                                         OverloadCandidateSet::iterator& Best) { | 
 |   // Find the best viable function. | 
 |   Best = CandidateSet.end(); | 
 |   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | 
 |        Cand != CandidateSet.end(); ++Cand) { | 
 |     if (Cand->Viable) { | 
 |       if (Best == CandidateSet.end() || | 
 |           isBetterOverloadCandidate(*Cand, *Best, Loc)) | 
 |         Best = Cand; | 
 |     } | 
 |   } | 
 |  | 
 |   // If we didn't find any viable functions, abort. | 
 |   if (Best == CandidateSet.end()) | 
 |     return OR_No_Viable_Function; | 
 |  | 
 |   // Make sure that this function is better than every other viable | 
 |   // function. If not, we have an ambiguity. | 
 |   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); | 
 |        Cand != CandidateSet.end(); ++Cand) { | 
 |     if (Cand->Viable && | 
 |         Cand != Best && | 
 |         !isBetterOverloadCandidate(*Best, *Cand, Loc)) { | 
 |       Best = CandidateSet.end(); | 
 |       return OR_Ambiguous; | 
 |     } | 
 |   } | 
 |  | 
 |   // Best is the best viable function. | 
 |   if (Best->Function && | 
 |       (Best->Function->isDeleted() || | 
 |        Best->Function->getAttr<UnavailableAttr>())) | 
 |     return OR_Deleted; | 
 |  | 
 |   // C++ [basic.def.odr]p2: | 
 |   //   An overloaded function is used if it is selected by overload resolution | 
 |   //   when referred to from a potentially-evaluated expression. [Note: this | 
 |   //   covers calls to named functions (5.2.2), operator overloading | 
 |   //   (clause 13), user-defined conversions (12.3.2), allocation function for | 
 |   //   placement new (5.3.4), as well as non-default initialization (8.5). | 
 |   if (Best->Function) | 
 |     MarkDeclarationReferenced(Loc, Best->Function); | 
 |   return OR_Success; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | enum OverloadCandidateKind { | 
 |   oc_function, | 
 |   oc_method, | 
 |   oc_constructor, | 
 |   oc_function_template, | 
 |   oc_method_template, | 
 |   oc_constructor_template, | 
 |   oc_implicit_default_constructor, | 
 |   oc_implicit_copy_constructor, | 
 |   oc_implicit_copy_assignment | 
 | }; | 
 |  | 
 | OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, | 
 |                                                 FunctionDecl *Fn, | 
 |                                                 std::string &Description) { | 
 |   bool isTemplate = false; | 
 |  | 
 |   if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { | 
 |     isTemplate = true; | 
 |     Description = S.getTemplateArgumentBindingsText( | 
 |       FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); | 
 |   } | 
 |  | 
 |   if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { | 
 |     if (!Ctor->isImplicit()) | 
 |       return isTemplate ? oc_constructor_template : oc_constructor; | 
 |  | 
 |     return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor | 
 |                                      : oc_implicit_default_constructor; | 
 |   } | 
 |  | 
 |   if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { | 
 |     // This actually gets spelled 'candidate function' for now, but | 
 |     // it doesn't hurt to split it out. | 
 |     if (!Meth->isImplicit()) | 
 |       return isTemplate ? oc_method_template : oc_method; | 
 |  | 
 |     assert(Meth->isCopyAssignment() | 
 |            && "implicit method is not copy assignment operator?"); | 
 |     return oc_implicit_copy_assignment; | 
 |   } | 
 |  | 
 |   return isTemplate ? oc_function_template : oc_function; | 
 | } | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | // Notes the location of an overload candidate. | 
 | void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { | 
 |   std::string FnDesc; | 
 |   OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); | 
 |   Diag(Fn->getLocation(), diag::note_ovl_candidate) | 
 |     << (unsigned) K << FnDesc; | 
 | } | 
 |  | 
 | /// Diagnoses an ambiguous conversion.  The partial diagnostic is the | 
 | /// "lead" diagnostic; it will be given two arguments, the source and | 
 | /// target types of the conversion. | 
 | void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS, | 
 |                                        SourceLocation CaretLoc, | 
 |                                        const PartialDiagnostic &PDiag) { | 
 |   Diag(CaretLoc, PDiag) | 
 |     << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType(); | 
 |   for (AmbiguousConversionSequence::const_iterator | 
 |          I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) { | 
 |     NoteOverloadCandidate(*I); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { | 
 |   const ImplicitConversionSequence &Conv = Cand->Conversions[I]; | 
 |   assert(Conv.isBad()); | 
 |   assert(Cand->Function && "for now, candidate must be a function"); | 
 |   FunctionDecl *Fn = Cand->Function; | 
 |  | 
 |   // There's a conversion slot for the object argument if this is a | 
 |   // non-constructor method.  Note that 'I' corresponds the | 
 |   // conversion-slot index. | 
 |   bool isObjectArgument = false; | 
 |   if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { | 
 |     if (I == 0) | 
 |       isObjectArgument = true; | 
 |     else | 
 |       I--; | 
 |   } | 
 |  | 
 |   std::string FnDesc; | 
 |   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); | 
 |  | 
 |   Expr *FromExpr = Conv.Bad.FromExpr; | 
 |   QualType FromTy = Conv.Bad.getFromType(); | 
 |   QualType ToTy = Conv.Bad.getToType(); | 
 |  | 
 |   if (FromTy == S.Context.OverloadTy) { | 
 |     assert(FromExpr && "overload set argument came from implicit argument?"); | 
 |     Expr *E = FromExpr->IgnoreParens(); | 
 |     if (isa<UnaryOperator>(E)) | 
 |       E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); | 
 |     DeclarationName Name = cast<OverloadExpr>(E)->getName(); | 
 |  | 
 |     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) | 
 |       << (unsigned) FnKind << FnDesc | 
 |       << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
 |       << ToTy << Name << I+1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Do some hand-waving analysis to see if the non-viability is due | 
 |   // to a qualifier mismatch. | 
 |   CanQualType CFromTy = S.Context.getCanonicalType(FromTy); | 
 |   CanQualType CToTy = S.Context.getCanonicalType(ToTy); | 
 |   if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) | 
 |     CToTy = RT->getPointeeType(); | 
 |   else { | 
 |     // TODO: detect and diagnose the full richness of const mismatches. | 
 |     if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) | 
 |       if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) | 
 |         CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); | 
 |   } | 
 |  | 
 |   if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && | 
 |       !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { | 
 |     // It is dumb that we have to do this here. | 
 |     while (isa<ArrayType>(CFromTy)) | 
 |       CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); | 
 |     while (isa<ArrayType>(CToTy)) | 
 |       CToTy = CFromTy->getAs<ArrayType>()->getElementType(); | 
 |  | 
 |     Qualifiers FromQs = CFromTy.getQualifiers(); | 
 |     Qualifiers ToQs = CToTy.getQualifiers(); | 
 |  | 
 |     if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { | 
 |       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) | 
 |         << (unsigned) FnKind << FnDesc | 
 |         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
 |         << FromTy | 
 |         << FromQs.getAddressSpace() << ToQs.getAddressSpace() | 
 |         << (unsigned) isObjectArgument << I+1; | 
 |       return; | 
 |     } | 
 |  | 
 |     unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); | 
 |     assert(CVR && "unexpected qualifiers mismatch"); | 
 |  | 
 |     if (isObjectArgument) { | 
 |       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) | 
 |         << (unsigned) FnKind << FnDesc | 
 |         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
 |         << FromTy << (CVR - 1); | 
 |     } else { | 
 |       S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) | 
 |         << (unsigned) FnKind << FnDesc | 
 |         << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
 |         << FromTy << (CVR - 1) << I+1; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Diagnose references or pointers to incomplete types differently, | 
 |   // since it's far from impossible that the incompleteness triggered | 
 |   // the failure. | 
 |   QualType TempFromTy = FromTy.getNonReferenceType(); | 
 |   if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) | 
 |     TempFromTy = PTy->getPointeeType(); | 
 |   if (TempFromTy->isIncompleteType()) { | 
 |     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) | 
 |       << (unsigned) FnKind << FnDesc | 
 |       << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
 |       << FromTy << ToTy << (unsigned) isObjectArgument << I+1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // TODO: specialize more based on the kind of mismatch | 
 |   S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv) | 
 |     << (unsigned) FnKind << FnDesc | 
 |     << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) | 
 |     << FromTy << ToTy << (unsigned) isObjectArgument << I+1; | 
 | } | 
 |  | 
 | void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, | 
 |                            unsigned NumFormalArgs) { | 
 |   // TODO: treat calls to a missing default constructor as a special case | 
 |  | 
 |   FunctionDecl *Fn = Cand->Function; | 
 |   const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   unsigned MinParams = Fn->getMinRequiredArguments(); | 
 |    | 
 |   // at least / at most / exactly | 
 |   // FIXME: variadic templates "at most" should account for parameter packs | 
 |   unsigned mode, modeCount; | 
 |   if (NumFormalArgs < MinParams) { | 
 |     assert((Cand->FailureKind == ovl_fail_too_few_arguments) || | 
 |            (Cand->FailureKind == ovl_fail_bad_deduction && | 
 |             Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); | 
 |     if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic()) | 
 |       mode = 0; // "at least" | 
 |     else | 
 |       mode = 2; // "exactly" | 
 |     modeCount = MinParams; | 
 |   } else { | 
 |     assert((Cand->FailureKind == ovl_fail_too_many_arguments) || | 
 |            (Cand->FailureKind == ovl_fail_bad_deduction && | 
 |             Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); | 
 |     if (MinParams != FnTy->getNumArgs()) | 
 |       mode = 1; // "at most" | 
 |     else | 
 |       mode = 2; // "exactly" | 
 |     modeCount = FnTy->getNumArgs(); | 
 |   } | 
 |  | 
 |   std::string Description; | 
 |   OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); | 
 |  | 
 |   S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) | 
 |     << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode  | 
 |     << modeCount << NumFormalArgs; | 
 | } | 
 |  | 
 | /// Diagnose a failed template-argument deduction. | 
 | void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, | 
 |                           Expr **Args, unsigned NumArgs) { | 
 |   FunctionDecl *Fn = Cand->Function; // pattern | 
 |  | 
 |   TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); | 
 |   NamedDecl *ParamD; | 
 |   (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || | 
 |   (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || | 
 |   (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); | 
 |   switch (Cand->DeductionFailure.Result) { | 
 |   case Sema::TDK_Success: | 
 |     llvm_unreachable("TDK_success while diagnosing bad deduction"); | 
 |  | 
 |   case Sema::TDK_Incomplete: { | 
 |     assert(ParamD && "no parameter found for incomplete deduction result"); | 
 |     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) | 
 |       << ParamD->getDeclName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   case Sema::TDK_Inconsistent: | 
 |   case Sema::TDK_InconsistentQuals: { | 
 |     assert(ParamD && "no parameter found for inconsistent deduction result");     | 
 |     int which = 0; | 
 |     if (isa<TemplateTypeParmDecl>(ParamD)) | 
 |       which = 0; | 
 |     else if (isa<NonTypeTemplateParmDecl>(ParamD)) | 
 |       which = 1; | 
 |     else { | 
 |       which = 2; | 
 |     } | 
 |      | 
 |     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) | 
 |       << which << ParamD->getDeclName()  | 
 |       << *Cand->DeductionFailure.getFirstArg() | 
 |       << *Cand->DeductionFailure.getSecondArg(); | 
 |     return; | 
 |   } | 
 |  | 
 |   case Sema::TDK_InvalidExplicitArguments: | 
 |     assert(ParamD && "no parameter found for invalid explicit arguments");     | 
 |     if (ParamD->getDeclName()) | 
 |       S.Diag(Fn->getLocation(),  | 
 |              diag::note_ovl_candidate_explicit_arg_mismatch_named) | 
 |         << ParamD->getDeclName(); | 
 |     else { | 
 |       int index = 0; | 
 |       if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) | 
 |         index = TTP->getIndex(); | 
 |       else if (NonTypeTemplateParmDecl *NTTP | 
 |                                   = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) | 
 |         index = NTTP->getIndex(); | 
 |       else | 
 |         index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); | 
 |       S.Diag(Fn->getLocation(),  | 
 |              diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) | 
 |         << (index + 1); | 
 |     } | 
 |     return; | 
 |        | 
 |   case Sema::TDK_TooManyArguments: | 
 |   case Sema::TDK_TooFewArguments: | 
 |     DiagnoseArityMismatch(S, Cand, NumArgs); | 
 |     return; | 
 |        | 
 |   // TODO: diagnose these individually, then kill off | 
 |   // note_ovl_candidate_bad_deduction, which is uselessly vague. | 
 |   case Sema::TDK_InstantiationDepth: | 
 |   case Sema::TDK_SubstitutionFailure: | 
 |   case Sema::TDK_NonDeducedMismatch: | 
 |   case Sema::TDK_FailedOverloadResolution: | 
 |     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | /// Generates a 'note' diagnostic for an overload candidate.  We've | 
 | /// already generated a primary error at the call site. | 
 | /// | 
 | /// It really does need to be a single diagnostic with its caret | 
 | /// pointed at the candidate declaration.  Yes, this creates some | 
 | /// major challenges of technical writing.  Yes, this makes pointing | 
 | /// out problems with specific arguments quite awkward.  It's still | 
 | /// better than generating twenty screens of text for every failed | 
 | /// overload. | 
 | /// | 
 | /// It would be great to be able to express per-candidate problems | 
 | /// more richly for those diagnostic clients that cared, but we'd | 
 | /// still have to be just as careful with the default diagnostics. | 
 | void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, | 
 |                            Expr **Args, unsigned NumArgs) { | 
 |   FunctionDecl *Fn = Cand->Function; | 
 |  | 
 |   // Note deleted candidates, but only if they're viable. | 
 |   if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) { | 
 |     std::string FnDesc; | 
 |     OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); | 
 |  | 
 |     S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) | 
 |       << FnKind << FnDesc << Fn->isDeleted(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // We don't really have anything else to say about viable candidates. | 
 |   if (Cand->Viable) { | 
 |     S.NoteOverloadCandidate(Fn); | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (Cand->FailureKind) { | 
 |   case ovl_fail_too_many_arguments: | 
 |   case ovl_fail_too_few_arguments: | 
 |     return DiagnoseArityMismatch(S, Cand, NumArgs); | 
 |  | 
 |   case ovl_fail_bad_deduction: | 
 |     return DiagnoseBadDeduction(S, Cand, Args, NumArgs); | 
 |  | 
 |   case ovl_fail_trivial_conversion: | 
 |   case ovl_fail_bad_final_conversion: | 
 |   case ovl_fail_final_conversion_not_exact: | 
 |     return S.NoteOverloadCandidate(Fn); | 
 |  | 
 |   case ovl_fail_bad_conversion: { | 
 |     unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); | 
 |     for (unsigned N = Cand->Conversions.size(); I != N; ++I) | 
 |       if (Cand->Conversions[I].isBad()) | 
 |         return DiagnoseBadConversion(S, Cand, I); | 
 |      | 
 |     // FIXME: this currently happens when we're called from SemaInit | 
 |     // when user-conversion overload fails.  Figure out how to handle | 
 |     // those conditions and diagnose them well. | 
 |     return S.NoteOverloadCandidate(Fn); | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { | 
 |   // Desugar the type of the surrogate down to a function type, | 
 |   // retaining as many typedefs as possible while still showing | 
 |   // the function type (and, therefore, its parameter types). | 
 |   QualType FnType = Cand->Surrogate->getConversionType(); | 
 |   bool isLValueReference = false; | 
 |   bool isRValueReference = false; | 
 |   bool isPointer = false; | 
 |   if (const LValueReferenceType *FnTypeRef = | 
 |         FnType->getAs<LValueReferenceType>()) { | 
 |     FnType = FnTypeRef->getPointeeType(); | 
 |     isLValueReference = true; | 
 |   } else if (const RValueReferenceType *FnTypeRef = | 
 |                FnType->getAs<RValueReferenceType>()) { | 
 |     FnType = FnTypeRef->getPointeeType(); | 
 |     isRValueReference = true; | 
 |   } | 
 |   if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { | 
 |     FnType = FnTypePtr->getPointeeType(); | 
 |     isPointer = true; | 
 |   } | 
 |   // Desugar down to a function type. | 
 |   FnType = QualType(FnType->getAs<FunctionType>(), 0); | 
 |   // Reconstruct the pointer/reference as appropriate. | 
 |   if (isPointer) FnType = S.Context.getPointerType(FnType); | 
 |   if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); | 
 |   if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); | 
 |  | 
 |   S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) | 
 |     << FnType; | 
 | } | 
 |  | 
 | void NoteBuiltinOperatorCandidate(Sema &S, | 
 |                                   const char *Opc, | 
 |                                   SourceLocation OpLoc, | 
 |                                   OverloadCandidate *Cand) { | 
 |   assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); | 
 |   std::string TypeStr("operator"); | 
 |   TypeStr += Opc; | 
 |   TypeStr += "("; | 
 |   TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); | 
 |   if (Cand->Conversions.size() == 1) { | 
 |     TypeStr += ")"; | 
 |     S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; | 
 |   } else { | 
 |     TypeStr += ", "; | 
 |     TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); | 
 |     TypeStr += ")"; | 
 |     S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; | 
 |   } | 
 | } | 
 |  | 
 | void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, | 
 |                                   OverloadCandidate *Cand) { | 
 |   unsigned NoOperands = Cand->Conversions.size(); | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { | 
 |     const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; | 
 |     if (ICS.isBad()) break; // all meaningless after first invalid | 
 |     if (!ICS.isAmbiguous()) continue; | 
 |  | 
 |     S.DiagnoseAmbiguousConversion(ICS, OpLoc, | 
 |                               S.PDiag(diag::note_ambiguous_type_conversion)); | 
 |   } | 
 | } | 
 |  | 
 | SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { | 
 |   if (Cand->Function) | 
 |     return Cand->Function->getLocation(); | 
 |   if (Cand->IsSurrogate) | 
 |     return Cand->Surrogate->getLocation(); | 
 |   return SourceLocation(); | 
 | } | 
 |  | 
 | struct CompareOverloadCandidatesForDisplay { | 
 |   Sema &S; | 
 |   CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} | 
 |  | 
 |   bool operator()(const OverloadCandidate *L, | 
 |                   const OverloadCandidate *R) { | 
 |     // Fast-path this check. | 
 |     if (L == R) return false; | 
 |  | 
 |     // Order first by viability. | 
 |     if (L->Viable) { | 
 |       if (!R->Viable) return true; | 
 |  | 
 |       // TODO: introduce a tri-valued comparison for overload | 
 |       // candidates.  Would be more worthwhile if we had a sort | 
 |       // that could exploit it. | 
 |       if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true; | 
 |       if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false; | 
 |     } else if (R->Viable) | 
 |       return false; | 
 |  | 
 |     assert(L->Viable == R->Viable); | 
 |  | 
 |     // Criteria by which we can sort non-viable candidates: | 
 |     if (!L->Viable) { | 
 |       // 1. Arity mismatches come after other candidates. | 
 |       if (L->FailureKind == ovl_fail_too_many_arguments || | 
 |           L->FailureKind == ovl_fail_too_few_arguments) | 
 |         return false; | 
 |       if (R->FailureKind == ovl_fail_too_many_arguments || | 
 |           R->FailureKind == ovl_fail_too_few_arguments) | 
 |         return true; | 
 |  | 
 |       // 2. Bad conversions come first and are ordered by the number | 
 |       // of bad conversions and quality of good conversions. | 
 |       if (L->FailureKind == ovl_fail_bad_conversion) { | 
 |         if (R->FailureKind != ovl_fail_bad_conversion) | 
 |           return true; | 
 |  | 
 |         // If there's any ordering between the defined conversions... | 
 |         // FIXME: this might not be transitive. | 
 |         assert(L->Conversions.size() == R->Conversions.size()); | 
 |  | 
 |         int leftBetter = 0; | 
 |         unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); | 
 |         for (unsigned E = L->Conversions.size(); I != E; ++I) { | 
 |           switch (S.CompareImplicitConversionSequences(L->Conversions[I], | 
 |                                                        R->Conversions[I])) { | 
 |           case ImplicitConversionSequence::Better: | 
 |             leftBetter++; | 
 |             break; | 
 |  | 
 |           case ImplicitConversionSequence::Worse: | 
 |             leftBetter--; | 
 |             break; | 
 |  | 
 |           case ImplicitConversionSequence::Indistinguishable: | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (leftBetter > 0) return true; | 
 |         if (leftBetter < 0) return false; | 
 |  | 
 |       } else if (R->FailureKind == ovl_fail_bad_conversion) | 
 |         return false; | 
 |  | 
 |       // TODO: others? | 
 |     } | 
 |  | 
 |     // Sort everything else by location. | 
 |     SourceLocation LLoc = GetLocationForCandidate(L); | 
 |     SourceLocation RLoc = GetLocationForCandidate(R); | 
 |  | 
 |     // Put candidates without locations (e.g. builtins) at the end. | 
 |     if (LLoc.isInvalid()) return false; | 
 |     if (RLoc.isInvalid()) return true; | 
 |  | 
 |     return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); | 
 |   } | 
 | }; | 
 |  | 
 | /// CompleteNonViableCandidate - Normally, overload resolution only | 
 | /// computes up to the first | 
 | void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, | 
 |                                 Expr **Args, unsigned NumArgs) { | 
 |   assert(!Cand->Viable); | 
 |  | 
 |   // Don't do anything on failures other than bad conversion. | 
 |   if (Cand->FailureKind != ovl_fail_bad_conversion) return; | 
 |  | 
 |   // Skip forward to the first bad conversion. | 
 |   unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); | 
 |   unsigned ConvCount = Cand->Conversions.size(); | 
 |   while (true) { | 
 |     assert(ConvIdx != ConvCount && "no bad conversion in candidate"); | 
 |     ConvIdx++; | 
 |     if (Cand->Conversions[ConvIdx - 1].isBad()) | 
 |       break; | 
 |   } | 
 |  | 
 |   if (ConvIdx == ConvCount) | 
 |     return; | 
 |  | 
 |   assert(!Cand->Conversions[ConvIdx].isInitialized() && | 
 |          "remaining conversion is initialized?"); | 
 |  | 
 |   // FIXME: this should probably be preserved from the overload | 
 |   // operation somehow. | 
 |   bool SuppressUserConversions = false; | 
 |  | 
 |   const FunctionProtoType* Proto; | 
 |   unsigned ArgIdx = ConvIdx; | 
 |  | 
 |   if (Cand->IsSurrogate) { | 
 |     QualType ConvType | 
 |       = Cand->Surrogate->getConversionType().getNonReferenceType(); | 
 |     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
 |       ConvType = ConvPtrType->getPointeeType(); | 
 |     Proto = ConvType->getAs<FunctionProtoType>(); | 
 |     ArgIdx--; | 
 |   } else if (Cand->Function) { | 
 |     Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); | 
 |     if (isa<CXXMethodDecl>(Cand->Function) && | 
 |         !isa<CXXConstructorDecl>(Cand->Function)) | 
 |       ArgIdx--; | 
 |   } else { | 
 |     // Builtin binary operator with a bad first conversion. | 
 |     assert(ConvCount <= 3); | 
 |     for (; ConvIdx != ConvCount; ++ConvIdx) | 
 |       Cand->Conversions[ConvIdx] | 
 |         = TryCopyInitialization(S, Args[ConvIdx], | 
 |                                 Cand->BuiltinTypes.ParamTypes[ConvIdx], | 
 |                                 SuppressUserConversions,  | 
 |                                 /*InOverloadResolution*/ true); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Fill in the rest of the conversions. | 
 |   unsigned NumArgsInProto = Proto->getNumArgs(); | 
 |   for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { | 
 |     if (ArgIdx < NumArgsInProto) | 
 |       Cand->Conversions[ConvIdx] | 
 |         = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), | 
 |                                 SuppressUserConversions,  | 
 |                                 /*InOverloadResolution=*/true); | 
 |     else | 
 |       Cand->Conversions[ConvIdx].setEllipsis(); | 
 |   } | 
 | } | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// PrintOverloadCandidates - When overload resolution fails, prints | 
 | /// diagnostic messages containing the candidates in the candidate | 
 | /// set. | 
 | void | 
 | Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, | 
 |                               OverloadCandidateDisplayKind OCD, | 
 |                               Expr **Args, unsigned NumArgs, | 
 |                               const char *Opc, | 
 |                               SourceLocation OpLoc) { | 
 |   // Sort the candidates by viability and position.  Sorting directly would | 
 |   // be prohibitive, so we make a set of pointers and sort those. | 
 |   llvm::SmallVector<OverloadCandidate*, 32> Cands; | 
 |   if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size()); | 
 |   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), | 
 |                                   LastCand = CandidateSet.end(); | 
 |        Cand != LastCand; ++Cand) { | 
 |     if (Cand->Viable) | 
 |       Cands.push_back(Cand); | 
 |     else if (OCD == OCD_AllCandidates) { | 
 |       CompleteNonViableCandidate(*this, Cand, Args, NumArgs); | 
 |       Cands.push_back(Cand); | 
 |     } | 
 |   } | 
 |  | 
 |   std::sort(Cands.begin(), Cands.end(), | 
 |             CompareOverloadCandidatesForDisplay(*this)); | 
 |    | 
 |   bool ReportedAmbiguousConversions = false; | 
 |  | 
 |   llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E; | 
 |   for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { | 
 |     OverloadCandidate *Cand = *I; | 
 |  | 
 |     if (Cand->Function) | 
 |       NoteFunctionCandidate(*this, Cand, Args, NumArgs); | 
 |     else if (Cand->IsSurrogate) | 
 |       NoteSurrogateCandidate(*this, Cand); | 
 |  | 
 |     // This a builtin candidate.  We do not, in general, want to list | 
 |     // every possible builtin candidate. | 
 |     else if (Cand->Viable) { | 
 |       // Generally we only see ambiguities including viable builtin | 
 |       // operators if overload resolution got screwed up by an | 
 |       // ambiguous user-defined conversion. | 
 |       // | 
 |       // FIXME: It's quite possible for different conversions to see | 
 |       // different ambiguities, though. | 
 |       if (!ReportedAmbiguousConversions) { | 
 |         NoteAmbiguousUserConversions(*this, OpLoc, Cand); | 
 |         ReportedAmbiguousConversions = true; | 
 |       } | 
 |  | 
 |       // If this is a viable builtin, print it. | 
 |       NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) { | 
 |   if (isa<UnresolvedLookupExpr>(E)) | 
 |     return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D); | 
 |  | 
 |   return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D); | 
 | } | 
 |  | 
 | /// ResolveAddressOfOverloadedFunction - Try to resolve the address of | 
 | /// an overloaded function (C++ [over.over]), where @p From is an | 
 | /// expression with overloaded function type and @p ToType is the type | 
 | /// we're trying to resolve to. For example: | 
 | /// | 
 | /// @code | 
 | /// int f(double); | 
 | /// int f(int); | 
 | /// | 
 | /// int (*pfd)(double) = f; // selects f(double) | 
 | /// @endcode | 
 | /// | 
 | /// This routine returns the resulting FunctionDecl if it could be | 
 | /// resolved, and NULL otherwise. When @p Complain is true, this | 
 | /// routine will emit diagnostics if there is an error. | 
 | FunctionDecl * | 
 | Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, | 
 |                                          bool Complain, | 
 |                                          DeclAccessPair &FoundResult) { | 
 |   QualType FunctionType = ToType; | 
 |   bool IsMember = false; | 
 |   if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) | 
 |     FunctionType = ToTypePtr->getPointeeType(); | 
 |   else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) | 
 |     FunctionType = ToTypeRef->getPointeeType(); | 
 |   else if (const MemberPointerType *MemTypePtr = | 
 |                     ToType->getAs<MemberPointerType>()) { | 
 |     FunctionType = MemTypePtr->getPointeeType(); | 
 |     IsMember = true; | 
 |   } | 
 |  | 
 |   // C++ [over.over]p1: | 
 |   //   [...] [Note: any redundant set of parentheses surrounding the | 
 |   //   overloaded function name is ignored (5.1). ] | 
 |   // C++ [over.over]p1: | 
 |   //   [...] The overloaded function name can be preceded by the & | 
 |   //   operator. | 
 |   OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); | 
 |   TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0; | 
 |   if (OvlExpr->hasExplicitTemplateArgs()) { | 
 |     OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer); | 
 |     ExplicitTemplateArgs = &ETABuffer; | 
 |   } | 
 |    | 
 |   // We expect a pointer or reference to function, or a function pointer. | 
 |   FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); | 
 |   if (!FunctionType->isFunctionType()) { | 
 |     if (Complain) | 
 |       Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref) | 
 |         << OvlExpr->getName() << ToType; | 
 |      | 
 |     return 0; | 
 |   } | 
 |  | 
 |   assert(From->getType() == Context.OverloadTy); | 
 |  | 
 |   // Look through all of the overloaded functions, searching for one | 
 |   // whose type matches exactly. | 
 |   llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; | 
 |   llvm::SmallVector<FunctionDecl *, 4> NonMatches; | 
 |  | 
 |   bool FoundNonTemplateFunction = false; | 
 |   for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
 |          E = OvlExpr->decls_end(); I != E; ++I) { | 
 |     // Look through any using declarations to find the underlying function. | 
 |     NamedDecl *Fn = (*I)->getUnderlyingDecl(); | 
 |  | 
 |     // C++ [over.over]p3: | 
 |     //   Non-member functions and static member functions match | 
 |     //   targets of type "pointer-to-function" or "reference-to-function." | 
 |     //   Nonstatic member functions match targets of | 
 |     //   type "pointer-to-member-function." | 
 |     // Note that according to DR 247, the containing class does not matter. | 
 |  | 
 |     if (FunctionTemplateDecl *FunctionTemplate | 
 |           = dyn_cast<FunctionTemplateDecl>(Fn)) { | 
 |       if (CXXMethodDecl *Method | 
 |             = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { | 
 |         // Skip non-static function templates when converting to pointer, and | 
 |         // static when converting to member pointer. | 
 |         if (Method->isStatic() == IsMember) | 
 |           continue; | 
 |       } else if (IsMember) | 
 |         continue; | 
 |  | 
 |       // C++ [over.over]p2: | 
 |       //   If the name is a function template, template argument deduction is | 
 |       //   done (14.8.2.2), and if the argument deduction succeeds, the | 
 |       //   resulting template argument list is used to generate a single | 
 |       //   function template specialization, which is added to the set of | 
 |       //   overloaded functions considered. | 
 |       // FIXME: We don't really want to build the specialization here, do we? | 
 |       FunctionDecl *Specialization = 0; | 
 |       TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); | 
 |       if (TemplateDeductionResult Result | 
 |             = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, | 
 |                                       FunctionType, Specialization, Info)) { | 
 |         // FIXME: make a note of the failed deduction for diagnostics. | 
 |         (void)Result; | 
 |       } else { | 
 |         // FIXME: If the match isn't exact, shouldn't we just drop this as | 
 |         // a candidate? Find a testcase before changing the code. | 
 |         assert(FunctionType | 
 |                  == Context.getCanonicalType(Specialization->getType())); | 
 |         Matches.push_back(std::make_pair(I.getPair(), | 
 |                     cast<FunctionDecl>(Specialization->getCanonicalDecl()))); | 
 |       } | 
 |  | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
 |       // Skip non-static functions when converting to pointer, and static | 
 |       // when converting to member pointer. | 
 |       if (Method->isStatic() == IsMember) | 
 |         continue; | 
 |        | 
 |       // If we have explicit template arguments, skip non-templates. | 
 |       if (OvlExpr->hasExplicitTemplateArgs()) | 
 |         continue; | 
 |     } else if (IsMember) | 
 |       continue; | 
 |  | 
 |     if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { | 
 |       QualType ResultTy; | 
 |       if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) || | 
 |           IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,  | 
 |                                ResultTy)) { | 
 |         Matches.push_back(std::make_pair(I.getPair(), | 
 |                            cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); | 
 |         FoundNonTemplateFunction = true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If there were 0 or 1 matches, we're done. | 
 |   if (Matches.empty()) { | 
 |     if (Complain) { | 
 |       Diag(From->getLocStart(), diag::err_addr_ovl_no_viable) | 
 |         << OvlExpr->getName() << FunctionType; | 
 |       for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
 |                                  E = OvlExpr->decls_end();  | 
 |            I != E; ++I) | 
 |         if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) | 
 |           NoteOverloadCandidate(F); | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } else if (Matches.size() == 1) { | 
 |     FunctionDecl *Result = Matches[0].second; | 
 |     FoundResult = Matches[0].first; | 
 |     MarkDeclarationReferenced(From->getLocStart(), Result); | 
 |     if (Complain) | 
 |       CheckAddressOfMemberAccess(OvlExpr, Matches[0].first); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // C++ [over.over]p4: | 
 |   //   If more than one function is selected, [...] | 
 |   if (!FoundNonTemplateFunction) { | 
 |     //   [...] and any given function template specialization F1 is | 
 |     //   eliminated if the set contains a second function template | 
 |     //   specialization whose function template is more specialized | 
 |     //   than the function template of F1 according to the partial | 
 |     //   ordering rules of 14.5.5.2. | 
 |  | 
 |     // The algorithm specified above is quadratic. We instead use a | 
 |     // two-pass algorithm (similar to the one used to identify the | 
 |     // best viable function in an overload set) that identifies the | 
 |     // best function template (if it exists). | 
 |  | 
 |     UnresolvedSet<4> MatchesCopy; // TODO: avoid! | 
 |     for (unsigned I = 0, E = Matches.size(); I != E; ++I) | 
 |       MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); | 
 |      | 
 |     UnresolvedSetIterator Result = | 
 |         getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), | 
 |                            TPOC_Other, From->getLocStart(), | 
 |                            PDiag(), | 
 |                            PDiag(diag::err_addr_ovl_ambiguous) | 
 |                                << Matches[0].second->getDeclName(), | 
 |                            PDiag(diag::note_ovl_candidate) | 
 |                                << (unsigned) oc_function_template); | 
 |     assert(Result != MatchesCopy.end() && "no most-specialized template"); | 
 |     MarkDeclarationReferenced(From->getLocStart(), *Result); | 
 |     FoundResult = Matches[Result - MatchesCopy.begin()].first; | 
 |     if (Complain) { | 
 |       CheckUnresolvedAccess(*this, OvlExpr, FoundResult); | 
 |       DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc()); | 
 |     } | 
 |     return cast<FunctionDecl>(*Result); | 
 |   } | 
 |  | 
 |   //   [...] any function template specializations in the set are | 
 |   //   eliminated if the set also contains a non-template function, [...] | 
 |   for (unsigned I = 0, N = Matches.size(); I != N; ) { | 
 |     if (Matches[I].second->getPrimaryTemplate() == 0) | 
 |       ++I; | 
 |     else { | 
 |       Matches[I] = Matches[--N]; | 
 |       Matches.set_size(N); | 
 |     } | 
 |   } | 
 |    | 
 |   // [...] After such eliminations, if any, there shall remain exactly one | 
 |   // selected function. | 
 |   if (Matches.size() == 1) { | 
 |     MarkDeclarationReferenced(From->getLocStart(), Matches[0].second); | 
 |     FoundResult = Matches[0].first; | 
 |     if (Complain) { | 
 |       CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first); | 
 |       DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc()); | 
 |     } | 
 |     return cast<FunctionDecl>(Matches[0].second); | 
 |   } | 
 |  | 
 |   // FIXME: We should probably return the same thing that BestViableFunction | 
 |   // returns (even if we issue the diagnostics here). | 
 |   Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) | 
 |     << Matches[0].second->getDeclName(); | 
 |   for (unsigned I = 0, E = Matches.size(); I != E; ++I) | 
 |     NoteOverloadCandidate(Matches[I].second); | 
 |   return 0; | 
 | } | 
 |  | 
 | /// \brief Given an expression that refers to an overloaded function, try to  | 
 | /// resolve that overloaded function expression down to a single function. | 
 | /// | 
 | /// This routine can only resolve template-ids that refer to a single function | 
 | /// template, where that template-id refers to a single template whose template | 
 | /// arguments are either provided by the template-id or have defaults,  | 
 | /// as described in C++0x [temp.arg.explicit]p3. | 
 | FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) { | 
 |   // C++ [over.over]p1: | 
 |   //   [...] [Note: any redundant set of parentheses surrounding the | 
 |   //   overloaded function name is ignored (5.1). ] | 
 |   // C++ [over.over]p1: | 
 |   //   [...] The overloaded function name can be preceded by the & | 
 |   //   operator. | 
 |  | 
 |   if (From->getType() != Context.OverloadTy) | 
 |     return 0; | 
 |  | 
 |   OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer(); | 
 |    | 
 |   // If we didn't actually find any template-ids, we're done. | 
 |   if (!OvlExpr->hasExplicitTemplateArgs()) | 
 |     return 0; | 
 |  | 
 |   TemplateArgumentListInfo ExplicitTemplateArgs; | 
 |   OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); | 
 |    | 
 |   // Look through all of the overloaded functions, searching for one | 
 |   // whose type matches exactly. | 
 |   FunctionDecl *Matched = 0; | 
 |   for (UnresolvedSetIterator I = OvlExpr->decls_begin(), | 
 |          E = OvlExpr->decls_end(); I != E; ++I) { | 
 |     // C++0x [temp.arg.explicit]p3: | 
 |     //   [...] In contexts where deduction is done and fails, or in contexts | 
 |     //   where deduction is not done, if a template argument list is  | 
 |     //   specified and it, along with any default template arguments,  | 
 |     //   identifies a single function template specialization, then the  | 
 |     //   template-id is an lvalue for the function template specialization. | 
 |     FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I); | 
 |      | 
 |     // C++ [over.over]p2: | 
 |     //   If the name is a function template, template argument deduction is | 
 |     //   done (14.8.2.2), and if the argument deduction succeeds, the | 
 |     //   resulting template argument list is used to generate a single | 
 |     //   function template specialization, which is added to the set of | 
 |     //   overloaded functions considered. | 
 |     FunctionDecl *Specialization = 0; | 
 |     TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); | 
 |     if (TemplateDeductionResult Result | 
 |           = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, | 
 |                                     Specialization, Info)) { | 
 |       // FIXME: make a note of the failed deduction for diagnostics. | 
 |       (void)Result; | 
 |       continue; | 
 |     }  | 
 |      | 
 |     // Multiple matches; we can't resolve to a single declaration. | 
 |     if (Matched) | 
 |       return 0; | 
 |  | 
 |     Matched = Specialization; | 
 |   } | 
 |  | 
 |   return Matched; | 
 | } | 
 |      | 
 | /// \brief Add a single candidate to the overload set. | 
 | static void AddOverloadedCallCandidate(Sema &S, | 
 |                                        DeclAccessPair FoundDecl, | 
 |                        const TemplateArgumentListInfo *ExplicitTemplateArgs, | 
 |                                        Expr **Args, unsigned NumArgs, | 
 |                                        OverloadCandidateSet &CandidateSet, | 
 |                                        bool PartialOverloading) { | 
 |   NamedDecl *Callee = FoundDecl.getDecl(); | 
 |   if (isa<UsingShadowDecl>(Callee)) | 
 |     Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); | 
 |  | 
 |   if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { | 
 |     assert(!ExplicitTemplateArgs && "Explicit template arguments?"); | 
 |     S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, | 
 |                            false, PartialOverloading); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (FunctionTemplateDecl *FuncTemplate | 
 |       = dyn_cast<FunctionTemplateDecl>(Callee)) { | 
 |     S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, | 
 |                                    ExplicitTemplateArgs, | 
 |                                    Args, NumArgs, CandidateSet); | 
 |     return; | 
 |   } | 
 |  | 
 |   assert(false && "unhandled case in overloaded call candidate"); | 
 |  | 
 |   // do nothing? | 
 | } | 
 |    | 
 | /// \brief Add the overload candidates named by callee and/or found by argument | 
 | /// dependent lookup to the given overload set. | 
 | void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, | 
 |                                        Expr **Args, unsigned NumArgs, | 
 |                                        OverloadCandidateSet &CandidateSet, | 
 |                                        bool PartialOverloading) { | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Verify that ArgumentDependentLookup is consistent with the rules | 
 |   // in C++0x [basic.lookup.argdep]p3: | 
 |   // | 
 |   //   Let X be the lookup set produced by unqualified lookup (3.4.1) | 
 |   //   and let Y be the lookup set produced by argument dependent | 
 |   //   lookup (defined as follows). If X contains | 
 |   // | 
 |   //     -- a declaration of a class member, or | 
 |   // | 
 |   //     -- a block-scope function declaration that is not a | 
 |   //        using-declaration, or | 
 |   // | 
 |   //     -- a declaration that is neither a function or a function | 
 |   //        template | 
 |   // | 
 |   //   then Y is empty. | 
 |  | 
 |   if (ULE->requiresADL()) { | 
 |     for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | 
 |            E = ULE->decls_end(); I != E; ++I) { | 
 |       assert(!(*I)->getDeclContext()->isRecord()); | 
 |       assert(isa<UsingShadowDecl>(*I) || | 
 |              !(*I)->getDeclContext()->isFunctionOrMethod()); | 
 |       assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   // It would be nice to avoid this copy. | 
 |   TemplateArgumentListInfo TABuffer; | 
 |   const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; | 
 |   if (ULE->hasExplicitTemplateArgs()) { | 
 |     ULE->copyTemplateArgumentsInto(TABuffer); | 
 |     ExplicitTemplateArgs = &TABuffer; | 
 |   } | 
 |  | 
 |   for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), | 
 |          E = ULE->decls_end(); I != E; ++I) | 
 |     AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, | 
 |                                Args, NumArgs, CandidateSet,  | 
 |                                PartialOverloading); | 
 |  | 
 |   if (ULE->requiresADL()) | 
 |     AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, | 
 |                                          Args, NumArgs, | 
 |                                          ExplicitTemplateArgs, | 
 |                                          CandidateSet, | 
 |                                          PartialOverloading);   | 
 | } | 
 |  | 
 | static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn, | 
 |                                       Expr **Args, unsigned NumArgs) { | 
 |   Fn->Destroy(SemaRef.Context); | 
 |   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) | 
 |     Args[Arg]->Destroy(SemaRef.Context); | 
 |   return SemaRef.ExprError(); | 
 | } | 
 |  | 
 | /// Attempts to recover from a call where no functions were found. | 
 | /// | 
 | /// Returns true if new candidates were found. | 
 | static Sema::OwningExprResult | 
 | BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, | 
 |                       UnresolvedLookupExpr *ULE, | 
 |                       SourceLocation LParenLoc, | 
 |                       Expr **Args, unsigned NumArgs, | 
 |                       SourceLocation *CommaLocs, | 
 |                       SourceLocation RParenLoc) { | 
 |  | 
 |   CXXScopeSpec SS; | 
 |   if (ULE->getQualifier()) { | 
 |     SS.setScopeRep(ULE->getQualifier()); | 
 |     SS.setRange(ULE->getQualifierRange()); | 
 |   } | 
 |  | 
 |   TemplateArgumentListInfo TABuffer; | 
 |   const TemplateArgumentListInfo *ExplicitTemplateArgs = 0; | 
 |   if (ULE->hasExplicitTemplateArgs()) { | 
 |     ULE->copyTemplateArgumentsInto(TABuffer); | 
 |     ExplicitTemplateArgs = &TABuffer; | 
 |   } | 
 |  | 
 |   LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), | 
 |                  Sema::LookupOrdinaryName); | 
 |   if (SemaRef.DiagnoseEmptyLookup(S, SS, R)) | 
 |     return Destroy(SemaRef, Fn, Args, NumArgs); | 
 |  | 
 |   assert(!R.empty() && "lookup results empty despite recovery"); | 
 |  | 
 |   // Build an implicit member call if appropriate.  Just drop the | 
 |   // casts and such from the call, we don't really care. | 
 |   Sema::OwningExprResult NewFn = SemaRef.ExprError(); | 
 |   if ((*R.begin())->isCXXClassMember()) | 
 |     NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs); | 
 |   else if (ExplicitTemplateArgs) | 
 |     NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); | 
 |   else | 
 |     NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); | 
 |  | 
 |   if (NewFn.isInvalid()) | 
 |     return Destroy(SemaRef, Fn, Args, NumArgs); | 
 |  | 
 |   Fn->Destroy(SemaRef.Context); | 
 |  | 
 |   // This shouldn't cause an infinite loop because we're giving it | 
 |   // an expression with non-empty lookup results, which should never | 
 |   // end up here. | 
 |   return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc, | 
 |                          Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs), | 
 |                                CommaLocs, RParenLoc); | 
 | } | 
 |    | 
 | /// ResolveOverloadedCallFn - Given the call expression that calls Fn | 
 | /// (which eventually refers to the declaration Func) and the call | 
 | /// arguments Args/NumArgs, attempt to resolve the function call down | 
 | /// to a specific function. If overload resolution succeeds, returns | 
 | /// the function declaration produced by overload | 
 | /// resolution. Otherwise, emits diagnostics, deletes all of the | 
 | /// arguments and Fn, and returns NULL. | 
 | Sema::OwningExprResult | 
 | Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, | 
 |                               SourceLocation LParenLoc, | 
 |                               Expr **Args, unsigned NumArgs, | 
 |                               SourceLocation *CommaLocs, | 
 |                               SourceLocation RParenLoc) { | 
 | #ifndef NDEBUG | 
 |   if (ULE->requiresADL()) { | 
 |     // To do ADL, we must have found an unqualified name. | 
 |     assert(!ULE->getQualifier() && "qualified name with ADL"); | 
 |  | 
 |     // We don't perform ADL for implicit declarations of builtins. | 
 |     // Verify that this was correctly set up. | 
 |     FunctionDecl *F; | 
 |     if (ULE->decls_begin() + 1 == ULE->decls_end() && | 
 |         (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && | 
 |         F->getBuiltinID() && F->isImplicit()) | 
 |       assert(0 && "performing ADL for builtin"); | 
 |        | 
 |     // We don't perform ADL in C. | 
 |     assert(getLangOptions().CPlusPlus && "ADL enabled in C"); | 
 |   } | 
 | #endif | 
 |  | 
 |   OverloadCandidateSet CandidateSet(Fn->getExprLoc()); | 
 |  | 
 |   // Add the functions denoted by the callee to the set of candidate | 
 |   // functions, including those from argument-dependent lookup. | 
 |   AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); | 
 |  | 
 |   // If we found nothing, try to recover. | 
 |   // AddRecoveryCallCandidates diagnoses the error itself, so we just | 
 |   // bailout out if it fails. | 
 |   if (CandidateSet.empty()) | 
 |     return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, | 
 |                                  CommaLocs, RParenLoc); | 
 |  | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { | 
 |   case OR_Success: { | 
 |     FunctionDecl *FDecl = Best->Function; | 
 |     CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); | 
 |     DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc()); | 
 |     Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); | 
 |     return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc); | 
 |   } | 
 |  | 
 |   case OR_No_Viable_Function: | 
 |     Diag(Fn->getSourceRange().getBegin(), | 
 |          diag::err_ovl_no_viable_function_in_call) | 
 |       << ULE->getName() << Fn->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |     break; | 
 |  | 
 |   case OR_Ambiguous: | 
 |     Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) | 
 |       << ULE->getName() << Fn->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); | 
 |     break; | 
 |  | 
 |   case OR_Deleted: | 
 |     Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) | 
 |       << Best->Function->isDeleted() | 
 |       << ULE->getName() | 
 |       << Fn->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Overload resolution failed. Destroy all of the subexpressions and | 
 |   // return NULL. | 
 |   Fn->Destroy(Context); | 
 |   for (unsigned Arg = 0; Arg < NumArgs; ++Arg) | 
 |     Args[Arg]->Destroy(Context); | 
 |   return ExprError(); | 
 | } | 
 |  | 
 | static bool IsOverloaded(const UnresolvedSetImpl &Functions) { | 
 |   return Functions.size() > 1 || | 
 |     (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); | 
 | } | 
 |  | 
 | /// \brief Create a unary operation that may resolve to an overloaded | 
 | /// operator. | 
 | /// | 
 | /// \param OpLoc The location of the operator itself (e.g., '*'). | 
 | /// | 
 | /// \param OpcIn The UnaryOperator::Opcode that describes this | 
 | /// operator. | 
 | /// | 
 | /// \param Functions The set of non-member functions that will be | 
 | /// considered by overload resolution. The caller needs to build this | 
 | /// set based on the context using, e.g., | 
 | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | 
 | /// set should not contain any member functions; those will be added | 
 | /// by CreateOverloadedUnaryOp(). | 
 | /// | 
 | /// \param input The input argument. | 
 | Sema::OwningExprResult | 
 | Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, | 
 |                               const UnresolvedSetImpl &Fns, | 
 |                               ExprArg input) { | 
 |   UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); | 
 |   Expr *Input = (Expr *)input.get(); | 
 |  | 
 |   OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); | 
 |   assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); | 
 |   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
 |  | 
 |   Expr *Args[2] = { Input, 0 }; | 
 |   unsigned NumArgs = 1; | 
 |  | 
 |   // For post-increment and post-decrement, add the implicit '0' as | 
 |   // the second argument, so that we know this is a post-increment or | 
 |   // post-decrement. | 
 |   if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { | 
 |     llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); | 
 |     Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, | 
 |                                            SourceLocation()); | 
 |     NumArgs = 2; | 
 |   } | 
 |  | 
 |   if (Input->isTypeDependent()) { | 
 |     CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators | 
 |     UnresolvedLookupExpr *Fn | 
 |       = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, | 
 |                                      0, SourceRange(), OpName, OpLoc, | 
 |                                      /*ADL*/ true, IsOverloaded(Fns)); | 
 |     Fn->addDecls(Fns.begin(), Fns.end()); | 
 |  | 
 |     input.release(); | 
 |     return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, | 
 |                                                    &Args[0], NumArgs, | 
 |                                                    Context.DependentTy, | 
 |                                                    OpLoc)); | 
 |   } | 
 |  | 
 |   // Build an empty overload set. | 
 |   OverloadCandidateSet CandidateSet(OpLoc); | 
 |  | 
 |   // Add the candidates from the given function set. | 
 |   AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); | 
 |  | 
 |   // Add operator candidates that are member functions. | 
 |   AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); | 
 |  | 
 |   // Add candidates from ADL. | 
 |   AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, | 
 |                                        Args, NumArgs, | 
 |                                        /*ExplicitTemplateArgs*/ 0, | 
 |                                        CandidateSet); | 
 |  | 
 |   // Add builtin operator candidates. | 
 |   AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); | 
 |  | 
 |   // Perform overload resolution. | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, OpLoc, Best)) { | 
 |   case OR_Success: { | 
 |     // We found a built-in operator or an overloaded operator. | 
 |     FunctionDecl *FnDecl = Best->Function; | 
 |  | 
 |     if (FnDecl) { | 
 |       // We matched an overloaded operator. Build a call to that | 
 |       // operator. | 
 |  | 
 |       // Convert the arguments. | 
 |       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
 |         CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); | 
 |  | 
 |         if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, | 
 |                                                 Best->FoundDecl, Method)) | 
 |           return ExprError(); | 
 |       } else { | 
 |         // Convert the arguments. | 
 |         OwningExprResult InputInit | 
 |           = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
 |                                                       FnDecl->getParamDecl(0)), | 
 |                                       SourceLocation(),  | 
 |                                       move(input)); | 
 |         if (InputInit.isInvalid()) | 
 |           return ExprError(); | 
 |          | 
 |         input = move(InputInit); | 
 |         Input = (Expr *)input.get(); | 
 |       } | 
 |  | 
 |       DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); | 
 |  | 
 |       // Determine the result type | 
 |       QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); | 
 |  | 
 |       // Build the actual expression node. | 
 |       Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), | 
 |                                                SourceLocation()); | 
 |       UsualUnaryConversions(FnExpr); | 
 |  | 
 |       input.release(); | 
 |       Args[0] = Input; | 
 |       ExprOwningPtr<CallExpr> TheCall(this, | 
 |         new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, | 
 |                                           Args, NumArgs, ResultTy, OpLoc)); | 
 |  | 
 |       if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),  | 
 |                               FnDecl)) | 
 |         return ExprError(); | 
 |  | 
 |       return MaybeBindToTemporary(TheCall.release()); | 
 |     } else { | 
 |       // We matched a built-in operator. Convert the arguments, then | 
 |       // break out so that we will build the appropriate built-in | 
 |       // operator node. | 
 |         if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], | 
 |                                       Best->Conversions[0], AA_Passing)) | 
 |           return ExprError(); | 
 |  | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     case OR_No_Viable_Function: | 
 |       // No viable function; fall through to handling this as a | 
 |       // built-in operator, which will produce an error message for us. | 
 |       break; | 
 |  | 
 |     case OR_Ambiguous: | 
 |       Diag(OpLoc,  diag::err_ovl_ambiguous_oper) | 
 |           << UnaryOperator::getOpcodeStr(Opc) | 
 |           << Input->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs, | 
 |                               UnaryOperator::getOpcodeStr(Opc), OpLoc); | 
 |       return ExprError(); | 
 |  | 
 |     case OR_Deleted: | 
 |       Diag(OpLoc, diag::err_ovl_deleted_oper) | 
 |         << Best->Function->isDeleted() | 
 |         << UnaryOperator::getOpcodeStr(Opc) | 
 |         << Input->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |       return ExprError(); | 
 |     } | 
 |  | 
 |   // Either we found no viable overloaded operator or we matched a | 
 |   // built-in operator. In either case, fall through to trying to | 
 |   // build a built-in operation. | 
 |   input.release(); | 
 |   return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); | 
 | } | 
 |  | 
 | /// \brief Create a binary operation that may resolve to an overloaded | 
 | /// operator. | 
 | /// | 
 | /// \param OpLoc The location of the operator itself (e.g., '+'). | 
 | /// | 
 | /// \param OpcIn The BinaryOperator::Opcode that describes this | 
 | /// operator. | 
 | /// | 
 | /// \param Functions The set of non-member functions that will be | 
 | /// considered by overload resolution. The caller needs to build this | 
 | /// set based on the context using, e.g., | 
 | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This | 
 | /// set should not contain any member functions; those will be added | 
 | /// by CreateOverloadedBinOp(). | 
 | /// | 
 | /// \param LHS Left-hand argument. | 
 | /// \param RHS Right-hand argument. | 
 | Sema::OwningExprResult | 
 | Sema::CreateOverloadedBinOp(SourceLocation OpLoc, | 
 |                             unsigned OpcIn, | 
 |                             const UnresolvedSetImpl &Fns, | 
 |                             Expr *LHS, Expr *RHS) { | 
 |   Expr *Args[2] = { LHS, RHS }; | 
 |   LHS=RHS=0; //Please use only Args instead of LHS/RHS couple | 
 |  | 
 |   BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); | 
 |   OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); | 
 |   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); | 
 |  | 
 |   // If either side is type-dependent, create an appropriate dependent | 
 |   // expression. | 
 |   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | 
 |     if (Fns.empty()) { | 
 |       // If there are no functions to store, just build a dependent  | 
 |       // BinaryOperator or CompoundAssignment. | 
 |       if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) | 
 |         return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, | 
 |                                                   Context.DependentTy, OpLoc)); | 
 |        | 
 |       return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, | 
 |                                                         Context.DependentTy, | 
 |                                                         Context.DependentTy, | 
 |                                                         Context.DependentTy, | 
 |                                                         OpLoc)); | 
 |     } | 
 |  | 
 |     // FIXME: save results of ADL from here? | 
 |     CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators | 
 |     UnresolvedLookupExpr *Fn | 
 |       = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, | 
 |                                      0, SourceRange(), OpName, OpLoc, | 
 |                                      /*ADL*/ true, IsOverloaded(Fns)); | 
 |  | 
 |     Fn->addDecls(Fns.begin(), Fns.end()); | 
 |     return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, | 
 |                                                    Args, 2, | 
 |                                                    Context.DependentTy, | 
 |                                                    OpLoc)); | 
 |   } | 
 |  | 
 |   // If this is the .* operator, which is not overloadable, just | 
 |   // create a built-in binary operator. | 
 |   if (Opc == BinaryOperator::PtrMemD) | 
 |     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
 |  | 
 |   // If this is the assignment operator, we only perform overload resolution | 
 |   // if the left-hand side is a class or enumeration type. This is actually | 
 |   // a hack. The standard requires that we do overload resolution between the | 
 |   // various built-in candidates, but as DR507 points out, this can lead to | 
 |   // problems. So we do it this way, which pretty much follows what GCC does. | 
 |   // Note that we go the traditional code path for compound assignment forms. | 
 |   if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) | 
 |     return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
 |  | 
 |   // Build an empty overload set. | 
 |   OverloadCandidateSet CandidateSet(OpLoc); | 
 |  | 
 |   // Add the candidates from the given function set. | 
 |   AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); | 
 |  | 
 |   // Add operator candidates that are member functions. | 
 |   AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); | 
 |  | 
 |   // Add candidates from ADL. | 
 |   AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, | 
 |                                        Args, 2, | 
 |                                        /*ExplicitTemplateArgs*/ 0, | 
 |                                        CandidateSet); | 
 |  | 
 |   // Add builtin operator candidates. | 
 |   AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); | 
 |  | 
 |   // Perform overload resolution. | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, OpLoc, Best)) { | 
 |     case OR_Success: { | 
 |       // We found a built-in operator or an overloaded operator. | 
 |       FunctionDecl *FnDecl = Best->Function; | 
 |  | 
 |       if (FnDecl) { | 
 |         // We matched an overloaded operator. Build a call to that | 
 |         // operator. | 
 |  | 
 |         // Convert the arguments. | 
 |         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
 |           // Best->Access is only meaningful for class members. | 
 |           CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); | 
 |  | 
 |           OwningExprResult Arg1 | 
 |             = PerformCopyInitialization( | 
 |                                         InitializedEntity::InitializeParameter( | 
 |                                                         FnDecl->getParamDecl(0)), | 
 |                                         SourceLocation(), | 
 |                                         Owned(Args[1])); | 
 |           if (Arg1.isInvalid()) | 
 |             return ExprError(); | 
 |  | 
 |           if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,  | 
 |                                                   Best->FoundDecl, Method)) | 
 |             return ExprError(); | 
 |  | 
 |           Args[1] = RHS = Arg1.takeAs<Expr>(); | 
 |         } else { | 
 |           // Convert the arguments. | 
 |           OwningExprResult Arg0 | 
 |             = PerformCopyInitialization( | 
 |                                         InitializedEntity::InitializeParameter( | 
 |                                                         FnDecl->getParamDecl(0)), | 
 |                                         SourceLocation(), | 
 |                                         Owned(Args[0])); | 
 |           if (Arg0.isInvalid()) | 
 |             return ExprError(); | 
 |  | 
 |           OwningExprResult Arg1 | 
 |             = PerformCopyInitialization( | 
 |                                         InitializedEntity::InitializeParameter( | 
 |                                                         FnDecl->getParamDecl(1)), | 
 |                                         SourceLocation(), | 
 |                                         Owned(Args[1])); | 
 |           if (Arg1.isInvalid()) | 
 |             return ExprError(); | 
 |           Args[0] = LHS = Arg0.takeAs<Expr>(); | 
 |           Args[1] = RHS = Arg1.takeAs<Expr>(); | 
 |         } | 
 |  | 
 |         DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); | 
 |  | 
 |         // Determine the result type | 
 |         QualType ResultTy | 
 |           = FnDecl->getType()->getAs<FunctionType>()->getResultType(); | 
 |         ResultTy = ResultTy.getNonReferenceType(); | 
 |  | 
 |         // Build the actual expression node. | 
 |         Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), | 
 |                                                  OpLoc); | 
 |         UsualUnaryConversions(FnExpr); | 
 |  | 
 |         ExprOwningPtr<CXXOperatorCallExpr>  | 
 |           TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, | 
 |                                                           Args, 2, ResultTy,  | 
 |                                                           OpLoc)); | 
 |          | 
 |         if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),  | 
 |                                 FnDecl)) | 
 |           return ExprError(); | 
 |  | 
 |         return MaybeBindToTemporary(TheCall.release()); | 
 |       } else { | 
 |         // We matched a built-in operator. Convert the arguments, then | 
 |         // break out so that we will build the appropriate built-in | 
 |         // operator node. | 
 |         if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], | 
 |                                       Best->Conversions[0], AA_Passing) || | 
 |             PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], | 
 |                                       Best->Conversions[1], AA_Passing)) | 
 |           return ExprError(); | 
 |  | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     case OR_No_Viable_Function: { | 
 |       // C++ [over.match.oper]p9: | 
 |       //   If the operator is the operator , [...] and there are no | 
 |       //   viable functions, then the operator is assumed to be the | 
 |       //   built-in operator and interpreted according to clause 5. | 
 |       if (Opc == BinaryOperator::Comma) | 
 |         break; | 
 |  | 
 |       // For class as left operand for assignment or compound assigment operator | 
 |       // do not fall through to handling in built-in, but report that no overloaded | 
 |       // assignment operator found | 
 |       OwningExprResult Result = ExprError(); | 
 |       if (Args[0]->getType()->isRecordType() &&  | 
 |           Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { | 
 |         Diag(OpLoc,  diag::err_ovl_no_viable_oper) | 
 |              << BinaryOperator::getOpcodeStr(Opc) | 
 |              << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       } else { | 
 |         // No viable function; try to create a built-in operation, which will | 
 |         // produce an error. Then, show the non-viable candidates. | 
 |         Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
 |       } | 
 |       assert(Result.isInvalid() &&  | 
 |              "C++ binary operator overloading is missing candidates!"); | 
 |       if (Result.isInvalid()) | 
 |         PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, | 
 |                                 BinaryOperator::getOpcodeStr(Opc), OpLoc); | 
 |       return move(Result); | 
 |     } | 
 |  | 
 |     case OR_Ambiguous: | 
 |       Diag(OpLoc,  diag::err_ovl_ambiguous_oper) | 
 |           << BinaryOperator::getOpcodeStr(Opc) | 
 |           << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, | 
 |                               BinaryOperator::getOpcodeStr(Opc), OpLoc); | 
 |       return ExprError(); | 
 |  | 
 |     case OR_Deleted: | 
 |       Diag(OpLoc, diag::err_ovl_deleted_oper) | 
 |         << Best->Function->isDeleted() | 
 |         << BinaryOperator::getOpcodeStr(Opc) | 
 |         << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2); | 
 |       return ExprError(); | 
 |   } | 
 |  | 
 |   // We matched a built-in operator; build it. | 
 |   return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); | 
 | } | 
 |  | 
 | Action::OwningExprResult | 
 | Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, | 
 |                                          SourceLocation RLoc, | 
 |                                          ExprArg Base, ExprArg Idx) { | 
 |   Expr *Args[2] = { static_cast<Expr*>(Base.get()), | 
 |                     static_cast<Expr*>(Idx.get()) }; | 
 |   DeclarationName OpName = | 
 |       Context.DeclarationNames.getCXXOperatorName(OO_Subscript); | 
 |  | 
 |   // If either side is type-dependent, create an appropriate dependent | 
 |   // expression. | 
 |   if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { | 
 |  | 
 |     CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators | 
 |     UnresolvedLookupExpr *Fn | 
 |       = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass, | 
 |                                      0, SourceRange(), OpName, LLoc, | 
 |                                      /*ADL*/ true, /*Overloaded*/ false); | 
 |     // Can't add any actual overloads yet | 
 |  | 
 |     Base.release(); | 
 |     Idx.release(); | 
 |     return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, | 
 |                                                    Args, 2, | 
 |                                                    Context.DependentTy, | 
 |                                                    RLoc)); | 
 |   } | 
 |  | 
 |   // Build an empty overload set. | 
 |   OverloadCandidateSet CandidateSet(LLoc); | 
 |  | 
 |   // Subscript can only be overloaded as a member function. | 
 |  | 
 |   // Add operator candidates that are member functions. | 
 |   AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); | 
 |  | 
 |   // Add builtin operator candidates. | 
 |   AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); | 
 |  | 
 |   // Perform overload resolution. | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, LLoc, Best)) { | 
 |     case OR_Success: { | 
 |       // We found a built-in operator or an overloaded operator. | 
 |       FunctionDecl *FnDecl = Best->Function; | 
 |  | 
 |       if (FnDecl) { | 
 |         // We matched an overloaded operator. Build a call to that | 
 |         // operator. | 
 |  | 
 |         CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); | 
 |         DiagnoseUseOfDecl(Best->FoundDecl, LLoc); | 
 |  | 
 |         // Convert the arguments. | 
 |         CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | 
 |         if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,  | 
 |                                                 Best->FoundDecl, Method)) | 
 |           return ExprError(); | 
 |  | 
 |         // Convert the arguments. | 
 |         OwningExprResult InputInit | 
 |           = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
 |                                                       FnDecl->getParamDecl(0)), | 
 |                                       SourceLocation(),  | 
 |                                       Owned(Args[1])); | 
 |         if (InputInit.isInvalid()) | 
 |           return ExprError(); | 
 |  | 
 |         Args[1] = InputInit.takeAs<Expr>(); | 
 |  | 
 |         // Determine the result type | 
 |         QualType ResultTy | 
 |           = FnDecl->getType()->getAs<FunctionType>()->getResultType(); | 
 |         ResultTy = ResultTy.getNonReferenceType(); | 
 |  | 
 |         // Build the actual expression node. | 
 |         Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), | 
 |                                                  LLoc); | 
 |         UsualUnaryConversions(FnExpr); | 
 |  | 
 |         Base.release(); | 
 |         Idx.release(); | 
 |         ExprOwningPtr<CXXOperatorCallExpr> | 
 |           TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, | 
 |                                                           FnExpr, Args, 2, | 
 |                                                           ResultTy, RLoc)); | 
 |  | 
 |         if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), | 
 |                                 FnDecl)) | 
 |           return ExprError(); | 
 |  | 
 |         return MaybeBindToTemporary(TheCall.release()); | 
 |       } else { | 
 |         // We matched a built-in operator. Convert the arguments, then | 
 |         // break out so that we will build the appropriate built-in | 
 |         // operator node. | 
 |         if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], | 
 |                                       Best->Conversions[0], AA_Passing) || | 
 |             PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], | 
 |                                       Best->Conversions[1], AA_Passing)) | 
 |           return ExprError(); | 
 |  | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     case OR_No_Viable_Function: { | 
 |       if (CandidateSet.empty()) | 
 |         Diag(LLoc, diag::err_ovl_no_oper) | 
 |           << Args[0]->getType() << /*subscript*/ 0 | 
 |           << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       else | 
 |         Diag(LLoc, diag::err_ovl_no_viable_subscript) | 
 |           << Args[0]->getType() | 
 |           << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, | 
 |                               "[]", LLoc); | 
 |       return ExprError(); | 
 |     } | 
 |  | 
 |     case OR_Ambiguous: | 
 |       Diag(LLoc,  diag::err_ovl_ambiguous_oper) | 
 |           << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2, | 
 |                               "[]", LLoc); | 
 |       return ExprError(); | 
 |  | 
 |     case OR_Deleted: | 
 |       Diag(LLoc, diag::err_ovl_deleted_oper) | 
 |         << Best->Function->isDeleted() << "[]" | 
 |         << Args[0]->getSourceRange() << Args[1]->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2, | 
 |                               "[]", LLoc); | 
 |       return ExprError(); | 
 |     } | 
 |  | 
 |   // We matched a built-in operator; build it. | 
 |   Base.release(); | 
 |   Idx.release(); | 
 |   return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, | 
 |                                          Owned(Args[1]), RLoc); | 
 | } | 
 |  | 
 | /// BuildCallToMemberFunction - Build a call to a member | 
 | /// function. MemExpr is the expression that refers to the member | 
 | /// function (and includes the object parameter), Args/NumArgs are the | 
 | /// arguments to the function call (not including the object | 
 | /// parameter). The caller needs to validate that the member | 
 | /// expression refers to a member function or an overloaded member | 
 | /// function. | 
 | Sema::OwningExprResult | 
 | Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, | 
 |                                 SourceLocation LParenLoc, Expr **Args, | 
 |                                 unsigned NumArgs, SourceLocation *CommaLocs, | 
 |                                 SourceLocation RParenLoc) { | 
 |   // Dig out the member expression. This holds both the object | 
 |   // argument and the member function we're referring to. | 
 |   Expr *NakedMemExpr = MemExprE->IgnoreParens(); | 
 |    | 
 |   MemberExpr *MemExpr; | 
 |   CXXMethodDecl *Method = 0; | 
 |   DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); | 
 |   NestedNameSpecifier *Qualifier = 0; | 
 |   if (isa<MemberExpr>(NakedMemExpr)) { | 
 |     MemExpr = cast<MemberExpr>(NakedMemExpr); | 
 |     Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); | 
 |     FoundDecl = MemExpr->getFoundDecl(); | 
 |     Qualifier = MemExpr->getQualifier(); | 
 |   } else { | 
 |     UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); | 
 |     Qualifier = UnresExpr->getQualifier(); | 
 |      | 
 |     QualType ObjectType = UnresExpr->getBaseType(); | 
 |  | 
 |     // Add overload candidates | 
 |     OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); | 
 |  | 
 |     // FIXME: avoid copy. | 
 |     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; | 
 |     if (UnresExpr->hasExplicitTemplateArgs()) { | 
 |       UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
 |       TemplateArgs = &TemplateArgsBuffer; | 
 |     } | 
 |  | 
 |     for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), | 
 |            E = UnresExpr->decls_end(); I != E; ++I) { | 
 |  | 
 |       NamedDecl *Func = *I; | 
 |       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); | 
 |       if (isa<UsingShadowDecl>(Func)) | 
 |         Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); | 
 |  | 
 |       if ((Method = dyn_cast<CXXMethodDecl>(Func))) { | 
 |         // If explicit template arguments were provided, we can't call a | 
 |         // non-template member function. | 
 |         if (TemplateArgs) | 
 |           continue; | 
 |          | 
 |         AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, | 
 |                            Args, NumArgs, | 
 |                            CandidateSet, /*SuppressUserConversions=*/false); | 
 |       } else { | 
 |         AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), | 
 |                                    I.getPair(), ActingDC, TemplateArgs, | 
 |                                    ObjectType, Args, NumArgs, | 
 |                                    CandidateSet, | 
 |                                    /*SuppressUsedConversions=*/false); | 
 |       } | 
 |     } | 
 |  | 
 |     DeclarationName DeclName = UnresExpr->getMemberName(); | 
 |  | 
 |     OverloadCandidateSet::iterator Best; | 
 |     switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) { | 
 |     case OR_Success: | 
 |       Method = cast<CXXMethodDecl>(Best->Function); | 
 |       FoundDecl = Best->FoundDecl; | 
 |       CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); | 
 |       DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); | 
 |       break; | 
 |  | 
 |     case OR_No_Viable_Function: | 
 |       Diag(UnresExpr->getMemberLoc(), | 
 |            diag::err_ovl_no_viable_member_function_in_call) | 
 |         << DeclName << MemExprE->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |       // FIXME: Leaking incoming expressions! | 
 |       return ExprError(); | 
 |  | 
 |     case OR_Ambiguous: | 
 |       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) | 
 |         << DeclName << MemExprE->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |       // FIXME: Leaking incoming expressions! | 
 |       return ExprError(); | 
 |  | 
 |     case OR_Deleted: | 
 |       Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) | 
 |         << Best->Function->isDeleted() | 
 |         << DeclName << MemExprE->getSourceRange(); | 
 |       PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |       // FIXME: Leaking incoming expressions! | 
 |       return ExprError(); | 
 |     } | 
 |  | 
 |     MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); | 
 |  | 
 |     // If overload resolution picked a static member, build a | 
 |     // non-member call based on that function. | 
 |     if (Method->isStatic()) { | 
 |       return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, | 
 |                                    Args, NumArgs, RParenLoc); | 
 |     } | 
 |  | 
 |     MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); | 
 |   } | 
 |  | 
 |   assert(Method && "Member call to something that isn't a method?"); | 
 |   ExprOwningPtr<CXXMemberCallExpr> | 
 |     TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args, | 
 |                                                   NumArgs, | 
 |                                   Method->getResultType().getNonReferenceType(), | 
 |                                   RParenLoc)); | 
 |  | 
 |   // Check for a valid return type. | 
 |   if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),  | 
 |                           TheCall.get(), Method)) | 
 |     return ExprError(); | 
 |    | 
 |   // Convert the object argument (for a non-static member function call). | 
 |   // We only need to do this if there was actually an overload; otherwise | 
 |   // it was done at lookup. | 
 |   Expr *ObjectArg = MemExpr->getBase(); | 
 |   if (!Method->isStatic() && | 
 |       PerformObjectArgumentInitialization(ObjectArg, Qualifier, | 
 |                                           FoundDecl, Method)) | 
 |     return ExprError(); | 
 |   MemExpr->setBase(ObjectArg); | 
 |  | 
 |   // Convert the rest of the arguments | 
 |   const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); | 
 |   if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, | 
 |                               RParenLoc)) | 
 |     return ExprError(); | 
 |  | 
 |   if (CheckFunctionCall(Method, TheCall.get())) | 
 |     return ExprError(); | 
 |  | 
 |   return MaybeBindToTemporary(TheCall.release()); | 
 | } | 
 |  | 
 | /// BuildCallToObjectOfClassType - Build a call to an object of class | 
 | /// type (C++ [over.call.object]), which can end up invoking an | 
 | /// overloaded function call operator (@c operator()) or performing a | 
 | /// user-defined conversion on the object argument. | 
 | Sema::ExprResult | 
 | Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, | 
 |                                    SourceLocation LParenLoc, | 
 |                                    Expr **Args, unsigned NumArgs, | 
 |                                    SourceLocation *CommaLocs, | 
 |                                    SourceLocation RParenLoc) { | 
 |   assert(Object->getType()->isRecordType() && "Requires object type argument"); | 
 |   const RecordType *Record = Object->getType()->getAs<RecordType>(); | 
 |  | 
 |   // C++ [over.call.object]p1: | 
 |   //  If the primary-expression E in the function call syntax | 
 |   //  evaluates to a class object of type "cv T", then the set of | 
 |   //  candidate functions includes at least the function call | 
 |   //  operators of T. The function call operators of T are obtained by | 
 |   //  ordinary lookup of the name operator() in the context of | 
 |   //  (E).operator(). | 
 |   OverloadCandidateSet CandidateSet(LParenLoc); | 
 |   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); | 
 |  | 
 |   if (RequireCompleteType(LParenLoc, Object->getType(),  | 
 |                           PDiag(diag::err_incomplete_object_call) | 
 |                           << Object->getSourceRange())) | 
 |     return true; | 
 |    | 
 |   LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); | 
 |   LookupQualifiedName(R, Record->getDecl()); | 
 |   R.suppressDiagnostics(); | 
 |  | 
 |   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | 
 |        Oper != OperEnd; ++Oper) { | 
 |     AddMethodCandidate(Oper.getPair(), Object->getType(), | 
 |                        Args, NumArgs, CandidateSet, | 
 |                        /*SuppressUserConversions=*/ false); | 
 |   } | 
 |    | 
 |   // C++ [over.call.object]p2: | 
 |   //   In addition, for each conversion function declared in T of the | 
 |   //   form | 
 |   // | 
 |   //        operator conversion-type-id () cv-qualifier; | 
 |   // | 
 |   //   where cv-qualifier is the same cv-qualification as, or a | 
 |   //   greater cv-qualification than, cv, and where conversion-type-id | 
 |   //   denotes the type "pointer to function of (P1,...,Pn) returning | 
 |   //   R", or the type "reference to pointer to function of | 
 |   //   (P1,...,Pn) returning R", or the type "reference to function | 
 |   //   of (P1,...,Pn) returning R", a surrogate call function [...] | 
 |   //   is also considered as a candidate function. Similarly, | 
 |   //   surrogate call functions are added to the set of candidate | 
 |   //   functions for each conversion function declared in an | 
 |   //   accessible base class provided the function is not hidden | 
 |   //   within T by another intervening declaration. | 
 |   const UnresolvedSetImpl *Conversions | 
 |     = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); | 
 |   for (UnresolvedSetImpl::iterator I = Conversions->begin(), | 
 |          E = Conversions->end(); I != E; ++I) { | 
 |     NamedDecl *D = *I; | 
 |     CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); | 
 |     if (isa<UsingShadowDecl>(D)) | 
 |       D = cast<UsingShadowDecl>(D)->getTargetDecl(); | 
 |      | 
 |     // Skip over templated conversion functions; they aren't | 
 |     // surrogates. | 
 |     if (isa<FunctionTemplateDecl>(D)) | 
 |       continue; | 
 |  | 
 |     CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); | 
 |  | 
 |     // Strip the reference type (if any) and then the pointer type (if | 
 |     // any) to get down to what might be a function type. | 
 |     QualType ConvType = Conv->getConversionType().getNonReferenceType(); | 
 |     if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) | 
 |       ConvType = ConvPtrType->getPointeeType(); | 
 |  | 
 |     if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) | 
 |       AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, | 
 |                             Object->getType(), Args, NumArgs, | 
 |                             CandidateSet); | 
 |   } | 
 |  | 
 |   // Perform overload resolution. | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { | 
 |   case OR_Success: | 
 |     // Overload resolution succeeded; we'll build the appropriate call | 
 |     // below. | 
 |     break; | 
 |  | 
 |   case OR_No_Viable_Function: | 
 |     if (CandidateSet.empty()) | 
 |       Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper) | 
 |         << Object->getType() << /*call*/ 1 | 
 |         << Object->getSourceRange(); | 
 |     else | 
 |       Diag(Object->getSourceRange().getBegin(), | 
 |            diag::err_ovl_no_viable_object_call) | 
 |         << Object->getType() << Object->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |     break; | 
 |  | 
 |   case OR_Ambiguous: | 
 |     Diag(Object->getSourceRange().getBegin(), | 
 |          diag::err_ovl_ambiguous_object_call) | 
 |       << Object->getType() << Object->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs); | 
 |     break; | 
 |  | 
 |   case OR_Deleted: | 
 |     Diag(Object->getSourceRange().getBegin(), | 
 |          diag::err_ovl_deleted_object_call) | 
 |       << Best->Function->isDeleted() | 
 |       << Object->getType() << Object->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs); | 
 |     break; | 
 |   } | 
 |  | 
 |   if (Best == CandidateSet.end()) { | 
 |     // We had an error; delete all of the subexpressions and return | 
 |     // the error. | 
 |     Object->Destroy(Context); | 
 |     for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) | 
 |       Args[ArgIdx]->Destroy(Context); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Best->Function == 0) { | 
 |     // Since there is no function declaration, this is one of the | 
 |     // surrogate candidates. Dig out the conversion function. | 
 |     CXXConversionDecl *Conv | 
 |       = cast<CXXConversionDecl>( | 
 |                          Best->Conversions[0].UserDefined.ConversionFunction); | 
 |  | 
 |     CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); | 
 |     DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); | 
 |  | 
 |     // We selected one of the surrogate functions that converts the | 
 |     // object parameter to a function pointer. Perform the conversion | 
 |     // on the object argument, then let ActOnCallExpr finish the job. | 
 |      | 
 |     // Create an implicit member expr to refer to the conversion operator. | 
 |     // and then call it. | 
 |     CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl, | 
 |                                                    Conv); | 
 |        | 
 |     return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, | 
 |                          MultiExprArg(*this, (ExprTy**)Args, NumArgs), | 
 |                          CommaLocs, RParenLoc).result(); | 
 |   } | 
 |  | 
 |   CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl); | 
 |   DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); | 
 |  | 
 |   // We found an overloaded operator(). Build a CXXOperatorCallExpr | 
 |   // that calls this method, using Object for the implicit object | 
 |   // parameter and passing along the remaining arguments. | 
 |   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
 |   const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); | 
 |  | 
 |   unsigned NumArgsInProto = Proto->getNumArgs(); | 
 |   unsigned NumArgsToCheck = NumArgs; | 
 |  | 
 |   // Build the full argument list for the method call (the | 
 |   // implicit object parameter is placed at the beginning of the | 
 |   // list). | 
 |   Expr **MethodArgs; | 
 |   if (NumArgs < NumArgsInProto) { | 
 |     NumArgsToCheck = NumArgsInProto; | 
 |     MethodArgs = new Expr*[NumArgsInProto + 1]; | 
 |   } else { | 
 |     MethodArgs = new Expr*[NumArgs + 1]; | 
 |   } | 
 |   MethodArgs[0] = Object; | 
 |   for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) | 
 |     MethodArgs[ArgIdx + 1] = Args[ArgIdx]; | 
 |  | 
 |   Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), | 
 |                                           SourceLocation()); | 
 |   UsualUnaryConversions(NewFn); | 
 |  | 
 |   // Once we've built TheCall, all of the expressions are properly | 
 |   // owned. | 
 |   QualType ResultTy = Method->getResultType().getNonReferenceType(); | 
 |   ExprOwningPtr<CXXOperatorCallExpr> | 
 |     TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, | 
 |                                                     MethodArgs, NumArgs + 1, | 
 |                                                     ResultTy, RParenLoc)); | 
 |   delete [] MethodArgs; | 
 |  | 
 |   if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),  | 
 |                           Method)) | 
 |     return true; | 
 |    | 
 |   // We may have default arguments. If so, we need to allocate more | 
 |   // slots in the call for them. | 
 |   if (NumArgs < NumArgsInProto) | 
 |     TheCall->setNumArgs(Context, NumArgsInProto + 1); | 
 |   else if (NumArgs > NumArgsInProto) | 
 |     NumArgsToCheck = NumArgsInProto; | 
 |  | 
 |   bool IsError = false; | 
 |  | 
 |   // Initialize the implicit object parameter. | 
 |   IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,  | 
 |                                                  Best->FoundDecl, Method); | 
 |   TheCall->setArg(0, Object); | 
 |  | 
 |  | 
 |   // Check the argument types. | 
 |   for (unsigned i = 0; i != NumArgsToCheck; i++) { | 
 |     Expr *Arg; | 
 |     if (i < NumArgs) { | 
 |       Arg = Args[i]; | 
 |  | 
 |       // Pass the argument. | 
 |  | 
 |       OwningExprResult InputInit | 
 |         = PerformCopyInitialization(InitializedEntity::InitializeParameter( | 
 |                                                     Method->getParamDecl(i)), | 
 |                                     SourceLocation(), Owned(Arg)); | 
 |        | 
 |       IsError |= InputInit.isInvalid(); | 
 |       Arg = InputInit.takeAs<Expr>(); | 
 |     } else { | 
 |       OwningExprResult DefArg | 
 |         = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); | 
 |       if (DefArg.isInvalid()) { | 
 |         IsError = true; | 
 |         break; | 
 |       } | 
 |        | 
 |       Arg = DefArg.takeAs<Expr>(); | 
 |     } | 
 |  | 
 |     TheCall->setArg(i + 1, Arg); | 
 |   } | 
 |  | 
 |   // If this is a variadic call, handle args passed through "...". | 
 |   if (Proto->isVariadic()) { | 
 |     // Promote the arguments (C99 6.5.2.2p7). | 
 |     for (unsigned i = NumArgsInProto; i != NumArgs; i++) { | 
 |       Expr *Arg = Args[i]; | 
 |       IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); | 
 |       TheCall->setArg(i + 1, Arg); | 
 |     } | 
 |   } | 
 |  | 
 |   if (IsError) return true; | 
 |  | 
 |   if (CheckFunctionCall(Method, TheCall.get())) | 
 |     return true; | 
 |  | 
 |   return MaybeBindToTemporary(TheCall.release()).result(); | 
 | } | 
 |  | 
 | /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> | 
 | ///  (if one exists), where @c Base is an expression of class type and | 
 | /// @c Member is the name of the member we're trying to find. | 
 | Sema::OwningExprResult | 
 | Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { | 
 |   Expr *Base = static_cast<Expr *>(BaseIn.get()); | 
 |   assert(Base->getType()->isRecordType() && "left-hand side must have class type"); | 
 |  | 
 |   SourceLocation Loc = Base->getExprLoc(); | 
 |  | 
 |   // C++ [over.ref]p1: | 
 |   // | 
 |   //   [...] An expression x->m is interpreted as (x.operator->())->m | 
 |   //   for a class object x of type T if T::operator->() exists and if | 
 |   //   the operator is selected as the best match function by the | 
 |   //   overload resolution mechanism (13.3). | 
 |   DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); | 
 |   OverloadCandidateSet CandidateSet(Loc); | 
 |   const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); | 
 |  | 
 |   if (RequireCompleteType(Loc, Base->getType(), | 
 |                           PDiag(diag::err_typecheck_incomplete_tag) | 
 |                             << Base->getSourceRange())) | 
 |     return ExprError(); | 
 |  | 
 |   LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); | 
 |   LookupQualifiedName(R, BaseRecord->getDecl()); | 
 |   R.suppressDiagnostics(); | 
 |  | 
 |   for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); | 
 |        Oper != OperEnd; ++Oper) { | 
 |     AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet, | 
 |                        /*SuppressUserConversions=*/false); | 
 |   } | 
 |  | 
 |   // Perform overload resolution. | 
 |   OverloadCandidateSet::iterator Best; | 
 |   switch (BestViableFunction(CandidateSet, OpLoc, Best)) { | 
 |   case OR_Success: | 
 |     // Overload resolution succeeded; we'll build the call below. | 
 |     break; | 
 |  | 
 |   case OR_No_Viable_Function: | 
 |     if (CandidateSet.empty()) | 
 |       Diag(OpLoc, diag::err_typecheck_member_reference_arrow) | 
 |         << Base->getType() << Base->getSourceRange(); | 
 |     else | 
 |       Diag(OpLoc, diag::err_ovl_no_viable_oper) | 
 |         << "operator->" << Base->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); | 
 |     return ExprError(); | 
 |  | 
 |   case OR_Ambiguous: | 
 |     Diag(OpLoc,  diag::err_ovl_ambiguous_oper) | 
 |       << "->" << Base->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1); | 
 |     return ExprError(); | 
 |  | 
 |   case OR_Deleted: | 
 |     Diag(OpLoc,  diag::err_ovl_deleted_oper) | 
 |       << Best->Function->isDeleted() | 
 |       << "->" << Base->getSourceRange(); | 
 |     PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1); | 
 |     return ExprError(); | 
 |   } | 
 |  | 
 |   CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); | 
 |   DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); | 
 |  | 
 |   // Convert the object parameter. | 
 |   CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); | 
 |   if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, | 
 |                                           Best->FoundDecl, Method)) | 
 |     return ExprError(); | 
 |  | 
 |   // No concerns about early exits now. | 
 |   BaseIn.release(); | 
 |  | 
 |   // Build the operator call. | 
 |   Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), | 
 |                                            SourceLocation()); | 
 |   UsualUnaryConversions(FnExpr); | 
 |    | 
 |   QualType ResultTy = Method->getResultType().getNonReferenceType(); | 
 |   ExprOwningPtr<CXXOperatorCallExpr>  | 
 |     TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,  | 
 |                                                     &Base, 1, ResultTy, OpLoc)); | 
 |  | 
 |   if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),  | 
 |                           Method)) | 
 |           return ExprError(); | 
 |   return move(TheCall); | 
 | } | 
 |  | 
 | /// FixOverloadedFunctionReference - E is an expression that refers to | 
 | /// a C++ overloaded function (possibly with some parentheses and | 
 | /// perhaps a '&' around it). We have resolved the overloaded function | 
 | /// to the function declaration Fn, so patch up the expression E to | 
 | /// refer (possibly indirectly) to Fn. Returns the new expr. | 
 | Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, | 
 |                                            FunctionDecl *Fn) { | 
 |   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { | 
 |     Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), | 
 |                                                    Found, Fn); | 
 |     if (SubExpr == PE->getSubExpr()) | 
 |       return PE->Retain(); | 
 |      | 
 |     return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); | 
 |   }  | 
 |    | 
 |   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { | 
 |     Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), | 
 |                                                    Found, Fn); | 
 |     assert(Context.hasSameType(ICE->getSubExpr()->getType(),  | 
 |                                SubExpr->getType()) && | 
 |            "Implicit cast type cannot be determined from overload"); | 
 |     if (SubExpr == ICE->getSubExpr()) | 
 |       return ICE->Retain(); | 
 |      | 
 |     return new (Context) ImplicitCastExpr(ICE->getType(),  | 
 |                                           ICE->getCastKind(), | 
 |                                           SubExpr, CXXBaseSpecifierArray(), | 
 |                                           ICE->isLvalueCast()); | 
 |   }  | 
 |    | 
 |   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { | 
 |     assert(UnOp->getOpcode() == UnaryOperator::AddrOf && | 
 |            "Can only take the address of an overloaded function"); | 
 |     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { | 
 |       if (Method->isStatic()) { | 
 |         // Do nothing: static member functions aren't any different | 
 |         // from non-member functions. | 
 |       } else { | 
 |         // Fix the sub expression, which really has to be an | 
 |         // UnresolvedLookupExpr holding an overloaded member function | 
 |         // or template. | 
 |         Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), | 
 |                                                        Found, Fn); | 
 |         if (SubExpr == UnOp->getSubExpr()) | 
 |           return UnOp->Retain(); | 
 |  | 
 |         assert(isa<DeclRefExpr>(SubExpr) | 
 |                && "fixed to something other than a decl ref"); | 
 |         assert(cast<DeclRefExpr>(SubExpr)->getQualifier() | 
 |                && "fixed to a member ref with no nested name qualifier"); | 
 |  | 
 |         // We have taken the address of a pointer to member | 
 |         // function. Perform the computation here so that we get the | 
 |         // appropriate pointer to member type. | 
 |         QualType ClassType | 
 |           = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
 |         QualType MemPtrType | 
 |           = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); | 
 |  | 
 |         return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, | 
 |                                            MemPtrType, UnOp->getOperatorLoc()); | 
 |       } | 
 |     } | 
 |     Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), | 
 |                                                    Found, Fn); | 
 |     if (SubExpr == UnOp->getSubExpr()) | 
 |       return UnOp->Retain(); | 
 |      | 
 |     return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, | 
 |                                      Context.getPointerType(SubExpr->getType()), | 
 |                                        UnOp->getOperatorLoc()); | 
 |   }  | 
 |  | 
 |   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
 |     // FIXME: avoid copy. | 
 |     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; | 
 |     if (ULE->hasExplicitTemplateArgs()) { | 
 |       ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
 |       TemplateArgs = &TemplateArgsBuffer; | 
 |     } | 
 |  | 
 |     return DeclRefExpr::Create(Context, | 
 |                                ULE->getQualifier(), | 
 |                                ULE->getQualifierRange(), | 
 |                                Fn, | 
 |                                ULE->getNameLoc(), | 
 |                                Fn->getType(), | 
 |                                TemplateArgs); | 
 |   } | 
 |  | 
 |   if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { | 
 |     // FIXME: avoid copy. | 
 |     TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; | 
 |     if (MemExpr->hasExplicitTemplateArgs()) { | 
 |       MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); | 
 |       TemplateArgs = &TemplateArgsBuffer; | 
 |     } | 
 |  | 
 |     Expr *Base; | 
 |  | 
 |     // If we're filling in  | 
 |     if (MemExpr->isImplicitAccess()) { | 
 |       if (cast<CXXMethodDecl>(Fn)->isStatic()) { | 
 |         return DeclRefExpr::Create(Context, | 
 |                                    MemExpr->getQualifier(), | 
 |                                    MemExpr->getQualifierRange(), | 
 |                                    Fn, | 
 |                                    MemExpr->getMemberLoc(), | 
 |                                    Fn->getType(), | 
 |                                    TemplateArgs); | 
 |       } else { | 
 |         SourceLocation Loc = MemExpr->getMemberLoc(); | 
 |         if (MemExpr->getQualifier()) | 
 |           Loc = MemExpr->getQualifierRange().getBegin(); | 
 |         Base = new (Context) CXXThisExpr(Loc, | 
 |                                          MemExpr->getBaseType(), | 
 |                                          /*isImplicit=*/true); | 
 |       } | 
 |     } else | 
 |       Base = MemExpr->getBase()->Retain(); | 
 |  | 
 |     return MemberExpr::Create(Context, Base, | 
 |                               MemExpr->isArrow(),  | 
 |                               MemExpr->getQualifier(),  | 
 |                               MemExpr->getQualifierRange(), | 
 |                               Fn,  | 
 |                               Found, | 
 |                               MemExpr->getMemberLoc(), | 
 |                               TemplateArgs, | 
 |                               Fn->getType()); | 
 |   } | 
 |    | 
 |   assert(false && "Invalid reference to overloaded function"); | 
 |   return E->Retain(); | 
 | } | 
 |  | 
 | Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,  | 
 |                                                           DeclAccessPair Found, | 
 |                                                             FunctionDecl *Fn) { | 
 |   return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); | 
 | } | 
 |  | 
 | } // end namespace clang |