blob: a10b4b8e606ba107a4f294067d49ac981633b6a2 [file] [log] [blame]
//==- GREngine.cpp - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GREngine.h"
#include "clang/AST/Expr.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using llvm::cast;
using llvm::isa;
using namespace clang;
namespace {
class VISIBILITY_HIDDEN DFS : public GRWorkList {
llvm::SmallVector<GRWorkListUnit,20> Stack;
public:
virtual bool hasWork() const {
return !Stack.empty();
}
virtual void Enqueue(const GRWorkListUnit& U) {
Stack.push_back(U);
}
virtual GRWorkListUnit Dequeue() {
assert (!Stack.empty());
const GRWorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
};
} // end anonymous namespace
GRWorkList* GRWorkList::MakeDFS() { return new DFS(); }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
bool GREngineImpl::ExecuteWorkList(unsigned Steps) {
if (G->num_roots() == 0) { // Initialize the analysis by constructing
// the root if none exists.
CFGBlock* Entry = &cfg.getEntry();
assert (Entry->empty() &&
"Entry block must be empty.");
assert (Entry->succ_size() == 1 &&
"Entry block must have 1 successor.");
// Get the solitary successor.
CFGBlock* Succ = *(Entry->succ_begin());
// Construct an edge representing the
// starting location in the function.
BlockEdge StartLoc(cfg, Entry, Succ);
// Generate the root.
GenerateNode(StartLoc, getInitialState());
}
while (Steps && WList->hasWork()) {
--Steps;
const GRWorkListUnit& WU = WList->Dequeue();
ExplodedNodeImpl* Node = WU.getNode();
// Dispatch on the location type.
switch (Node->getLocation().getKind()) {
default:
assert (isa<BlockEdge>(Node->getLocation()));
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockEntranceKind:
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockExitKind:
HandleBlockExit(cast<BlockExit>(Node->getLocation()), Node);
break;
case ProgramPoint::PostStmtKind:
HandlePostStmt(cast<PostStmt>(Node->getLocation()), WU.getBlock(),
WU.getIndex(), Node);
break;
}
}
return WList->hasWork();
}
void GREngineImpl::HandleBlockEdge(const BlockEdge& L, ExplodedNodeImpl* Pred) {
CFGBlock* Blk = L.getDst();
// Check if we are entering the EXIT block.
if (Blk == &cfg.getExit()) {
assert (cfg.getExit().size() == 0 && "EXIT block cannot contain Stmts.");
// Process the final state transition.
void* State = ProcessEOP(Blk, Pred->State);
bool IsNew;
ExplodedNodeImpl* Node = G->getNodeImpl(BlockEntrance(Blk), State, &IsNew);
Node->addPredecessor(Pred);
// If the node was freshly created, mark it as an "End-Of-Path" node.
if (IsNew) G->addEndOfPath(Node);
// This path is done. Don't enqueue any more nodes.
return;
}
// FIXME: we will dispatch to a function that
// manipulates the state at the entrance to a block.
if (!Blk->empty())
GenerateNode(BlockEntrance(Blk), Pred->State, Pred);
else
GenerateNode(BlockExit(Blk), Pred->State, Pred);
}
void GREngineImpl::HandleBlockEntrance(const BlockEntrance& L,
ExplodedNodeImpl* Pred) {
if (Stmt* S = L.getFirstStmt()) {
GRNodeBuilderImpl Builder(L.getBlock(), 0, Pred, this);
ProcessStmt(S, Builder);
}
else
GenerateNode(BlockExit(L.getBlock()), Pred->State, Pred);
}
void GREngineImpl::HandleBlockExit(const BlockExit& L, ExplodedNodeImpl* Pred) {
CFGBlock* B = L.getBlock();
if (Stmt* Terminator = B->getTerminator())
ProcessTerminator(Terminator, B, Pred);
else {
assert (B->succ_size() == 1 &&
"Blocks with no terminator should have at most 1 successor.");
GenerateNode(BlockEdge(cfg,B,*(B->succ_begin())), Pred->State, Pred);
}
}
void GREngineImpl::HandlePostStmt(const PostStmt& L, CFGBlock* B,
unsigned StmtIdx, ExplodedNodeImpl* Pred) {
assert (!B->empty());
if (StmtIdx == B->size()) {
// FIXME: This is essentially an epsilon-transition. Do we need it?
// It does simplify the logic, and it is also another point
// were we could introduce a dispatch to the client.
GenerateNode(BlockExit(B), Pred->State, Pred);
}
else {
GRNodeBuilderImpl Builder(B, StmtIdx, Pred, this);
ProcessStmt(L.getStmt(), Builder);
}
}
typedef llvm::DenseMap<Stmt*,Stmt*> ParentMapTy;
/// PopulateParentMap - Recurse the AST starting at 'Parent' and add the
/// mappings between child and parent to ParentMap.
static void PopulateParentMap(Stmt* Parent, ParentMapTy& M) {
for (Stmt::child_iterator I=Parent->child_begin(),
E=Parent->child_end(); I!=E; ++I) {
assert (M.find(*I) == M.end());
M[*I] = Parent;
PopulateParentMap(*I, M);
}
}
/// GenerateNode - Utility method to generate nodes, hook up successors,
/// and add nodes to the worklist.
void GREngineImpl::GenerateNode(const ProgramPoint& Loc, void* State,
ExplodedNodeImpl* Pred) {
bool IsNew;
ExplodedNodeImpl* Node = G->getNodeImpl(Loc, State, &IsNew);
if (Pred)
Node->addPredecessor(Pred); // Link 'Node' with its predecessor.
else {
assert (IsNew);
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
}
// Only add 'Node' to the worklist if it was freshly generated.
if (IsNew) WList->Enqueue(GRWorkListUnit(Node));
}
GRNodeBuilderImpl::GRNodeBuilderImpl(CFGBlock* b, unsigned idx,
ExplodedNodeImpl* N, GREngineImpl* e)
: Eng(*e), B(*b), Idx(idx), LastNode(N), Populated(false) {
Deferred.insert(N);
}
GRNodeBuilderImpl::~GRNodeBuilderImpl() {
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isInfeasible())
GenerateAutoTransition(*I);
}
void GRNodeBuilderImpl::GenerateAutoTransition(ExplodedNodeImpl* N) {
assert (!N->isInfeasible());
PostStmt Loc(getStmt());
if (Loc == N->getLocation()) {
// Note: 'N' should be a fresh node because otherwise it shouldn't be
// a member of Deferred.
Eng.WList->Enqueue(N, B, Idx+1);
return;
}
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(Loc, N->State, &IsNew);
Succ->addPredecessor(N);
if (IsNew)
Eng.WList->Enqueue(Succ, B, Idx+1);
}
ExplodedNodeImpl* GRNodeBuilderImpl::generateNodeImpl(Stmt* S, void* State,
ExplodedNodeImpl* Pred) {
bool IsNew;
ExplodedNodeImpl* N = Eng.G->getNodeImpl(PostStmt(S), State, &IsNew);
N->addPredecessor(Pred);
Deferred.erase(Pred);
HasGeneratedNode = true;
if (IsNew) {
Deferred.insert(N);
LastNode = N;
return N;
}
LastNode = NULL;
return NULL;
}