| /*===-- clang-c/Index.h - Indexing Public C Interface -------------*- C -*-===*\ |
| |* *| |
| |* The LLVM Compiler Infrastructure *| |
| |* *| |
| |* This file is distributed under the University of Illinois Open Source *| |
| |* License. See LICENSE.TXT for details. *| |
| |* *| |
| |*===----------------------------------------------------------------------===*| |
| |* *| |
| |* This header provides a public inferface to a Clang library for extracting *| |
| |* high-level symbol information from source files without exposing the full *| |
| |* Clang C++ API. *| |
| |* *| |
| \*===----------------------------------------------------------------------===*/ |
| |
| #ifndef CLANG_C_INDEX_H |
| #define CLANG_C_INDEX_H |
| |
| #include <sys/stat.h> |
| #include <time.h> |
| #include <stdio.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /* MSVC DLL import/export. */ |
| #ifdef _MSC_VER |
| #ifdef _CINDEX_LIB_ |
| #define CINDEX_LINKAGE __declspec(dllexport) |
| #else |
| #define CINDEX_LINKAGE __declspec(dllimport) |
| #endif |
| #else |
| #define CINDEX_LINKAGE |
| #endif |
| |
| /** \defgroup CINDEX libclang: C Interface to Clang |
| * |
| * The C Interface to Clang provides a relatively small API that exposes |
| * facilities for parsing source code into an abstract syntax tree (AST), |
| * loading already-parsed ASTs, traversing the AST, associating |
| * physical source locations with elements within the AST, and other |
| * facilities that support Clang-based development tools. |
| * |
| * This C interface to Clang will never provide all of the information |
| * representation stored in Clang's C++ AST, nor should it: the intent is to |
| * maintain an API that is relatively stable from one release to the next, |
| * providing only the basic functionality needed to support development tools. |
| * |
| * To avoid namespace pollution, data types are prefixed with "CX" and |
| * functions are prefixed with "clang_". |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief An "index" that consists of a set of translation units that would |
| * typically be linked together into an executable or library. |
| */ |
| typedef void *CXIndex; |
| |
| /** |
| * \brief A single translation unit, which resides in an index. |
| */ |
| typedef struct CXTranslationUnitImpl *CXTranslationUnit; |
| |
| /** |
| * \brief Opaque pointer representing client data that will be passed through |
| * to various callbacks and visitors. |
| */ |
| typedef void *CXClientData; |
| |
| /** |
| * \brief Provides the contents of a file that has not yet been saved to disk. |
| * |
| * Each CXUnsavedFile instance provides the name of a file on the |
| * system along with the current contents of that file that have not |
| * yet been saved to disk. |
| */ |
| struct CXUnsavedFile { |
| /** |
| * \brief The file whose contents have not yet been saved. |
| * |
| * This file must already exist in the file system. |
| */ |
| const char *Filename; |
| |
| /** |
| * \brief A buffer containing the unsaved contents of this file. |
| */ |
| const char *Contents; |
| |
| /** |
| * \brief The length of the unsaved contents of this buffer. |
| */ |
| unsigned long Length; |
| }; |
| |
| /** |
| * \brief Describes the availability of a particular entity, which indicates |
| * whether the use of this entity will result in a warning or error due to |
| * it being deprecated or unavailable. |
| */ |
| enum CXAvailabilityKind { |
| /** |
| * \brief The entity is available. |
| */ |
| CXAvailability_Available, |
| /** |
| * \brief The entity is available, but has been deprecated (and its use is |
| * not recommended). |
| */ |
| CXAvailability_Deprecated, |
| /** |
| * \brief The entity is not available; any use of it will be an error. |
| */ |
| CXAvailability_NotAvailable |
| }; |
| |
| /** |
| * \defgroup CINDEX_STRING String manipulation routines |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief A character string. |
| * |
| * The \c CXString type is used to return strings from the interface when |
| * the ownership of that string might different from one call to the next. |
| * Use \c clang_getCString() to retrieve the string data and, once finished |
| * with the string data, call \c clang_disposeString() to free the string. |
| */ |
| typedef struct { |
| void *data; |
| unsigned private_flags; |
| } CXString; |
| |
| /** |
| * \brief Retrieve the character data associated with the given string. |
| */ |
| CINDEX_LINKAGE const char *clang_getCString(CXString string); |
| |
| /** |
| * \brief Free the given string, |
| */ |
| CINDEX_LINKAGE void clang_disposeString(CXString string); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \brief clang_createIndex() provides a shared context for creating |
| * translation units. It provides two options: |
| * |
| * - excludeDeclarationsFromPCH: When non-zero, allows enumeration of "local" |
| * declarations (when loading any new translation units). A "local" declaration |
| * is one that belongs in the translation unit itself and not in a precompiled |
| * header that was used by the translation unit. If zero, all declarations |
| * will be enumerated. |
| * |
| * Here is an example: |
| * |
| * // excludeDeclsFromPCH = 1, displayDiagnostics=1 |
| * Idx = clang_createIndex(1, 1); |
| * |
| * // IndexTest.pch was produced with the following command: |
| * // "clang -x c IndexTest.h -emit-ast -o IndexTest.pch" |
| * TU = clang_createTranslationUnit(Idx, "IndexTest.pch"); |
| * |
| * // This will load all the symbols from 'IndexTest.pch' |
| * clang_visitChildren(clang_getTranslationUnitCursor(TU), |
| * TranslationUnitVisitor, 0); |
| * clang_disposeTranslationUnit(TU); |
| * |
| * // This will load all the symbols from 'IndexTest.c', excluding symbols |
| * // from 'IndexTest.pch'. |
| * char *args[] = { "-Xclang", "-include-pch=IndexTest.pch" }; |
| * TU = clang_createTranslationUnitFromSourceFile(Idx, "IndexTest.c", 2, args, |
| * 0, 0); |
| * clang_visitChildren(clang_getTranslationUnitCursor(TU), |
| * TranslationUnitVisitor, 0); |
| * clang_disposeTranslationUnit(TU); |
| * |
| * This process of creating the 'pch', loading it separately, and using it (via |
| * -include-pch) allows 'excludeDeclsFromPCH' to remove redundant callbacks |
| * (which gives the indexer the same performance benefit as the compiler). |
| */ |
| CINDEX_LINKAGE CXIndex clang_createIndex(int excludeDeclarationsFromPCH, |
| int displayDiagnostics); |
| |
| /** |
| * \brief Destroy the given index. |
| * |
| * The index must not be destroyed until all of the translation units created |
| * within that index have been destroyed. |
| */ |
| CINDEX_LINKAGE void clang_disposeIndex(CXIndex index); |
| |
| /** |
| * \defgroup CINDEX_FILES File manipulation routines |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief A particular source file that is part of a translation unit. |
| */ |
| typedef void *CXFile; |
| |
| |
| /** |
| * \brief Retrieve the complete file and path name of the given file. |
| */ |
| CINDEX_LINKAGE CXString clang_getFileName(CXFile SFile); |
| |
| /** |
| * \brief Retrieve the last modification time of the given file. |
| */ |
| CINDEX_LINKAGE time_t clang_getFileTime(CXFile SFile); |
| |
| /** |
| * \brief Retrieve a file handle within the given translation unit. |
| * |
| * \param tu the translation unit |
| * |
| * \param file_name the name of the file. |
| * |
| * \returns the file handle for the named file in the translation unit \p tu, |
| * or a NULL file handle if the file was not a part of this translation unit. |
| */ |
| CINDEX_LINKAGE CXFile clang_getFile(CXTranslationUnit tu, |
| const char *file_name); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_LOCATIONS Physical source locations |
| * |
| * Clang represents physical source locations in its abstract syntax tree in |
| * great detail, with file, line, and column information for the majority of |
| * the tokens parsed in the source code. These data types and functions are |
| * used to represent source location information, either for a particular |
| * point in the program or for a range of points in the program, and extract |
| * specific location information from those data types. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Identifies a specific source location within a translation |
| * unit. |
| * |
| * Use clang_getInstantiationLocation() or clang_getSpellingLocation() |
| * to map a source location to a particular file, line, and column. |
| */ |
| typedef struct { |
| void *ptr_data[2]; |
| unsigned int_data; |
| } CXSourceLocation; |
| |
| /** |
| * \brief Identifies a half-open character range in the source code. |
| * |
| * Use clang_getRangeStart() and clang_getRangeEnd() to retrieve the |
| * starting and end locations from a source range, respectively. |
| */ |
| typedef struct { |
| void *ptr_data[2]; |
| unsigned begin_int_data; |
| unsigned end_int_data; |
| } CXSourceRange; |
| |
| /** |
| * \brief Retrieve a NULL (invalid) source location. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getNullLocation(); |
| |
| /** |
| * \determine Determine whether two source locations, which must refer into |
| * the same translation unit, refer to exactly the same point in the source |
| * code. |
| * |
| * \returns non-zero if the source locations refer to the same location, zero |
| * if they refer to different locations. |
| */ |
| CINDEX_LINKAGE unsigned clang_equalLocations(CXSourceLocation loc1, |
| CXSourceLocation loc2); |
| |
| /** |
| * \brief Retrieves the source location associated with a given file/line/column |
| * in a particular translation unit. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getLocation(CXTranslationUnit tu, |
| CXFile file, |
| unsigned line, |
| unsigned column); |
| /** |
| * \brief Retrieves the source location associated with a given character offset |
| * in a particular translation unit. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getLocationForOffset(CXTranslationUnit tu, |
| CXFile file, |
| unsigned offset); |
| |
| /** |
| * \brief Retrieve a NULL (invalid) source range. |
| */ |
| CINDEX_LINKAGE CXSourceRange clang_getNullRange(); |
| |
| /** |
| * \brief Retrieve a source range given the beginning and ending source |
| * locations. |
| */ |
| CINDEX_LINKAGE CXSourceRange clang_getRange(CXSourceLocation begin, |
| CXSourceLocation end); |
| |
| /** |
| * \brief Retrieve the file, line, column, and offset represented by |
| * the given source location. |
| * |
| * If the location refers into a macro instantiation, retrieves the |
| * location of the macro instantiation. |
| * |
| * \param location the location within a source file that will be decomposed |
| * into its parts. |
| * |
| * \param file [out] if non-NULL, will be set to the file to which the given |
| * source location points. |
| * |
| * \param line [out] if non-NULL, will be set to the line to which the given |
| * source location points. |
| * |
| * \param column [out] if non-NULL, will be set to the column to which the given |
| * source location points. |
| * |
| * \param offset [out] if non-NULL, will be set to the offset into the |
| * buffer to which the given source location points. |
| */ |
| CINDEX_LINKAGE void clang_getInstantiationLocation(CXSourceLocation location, |
| CXFile *file, |
| unsigned *line, |
| unsigned *column, |
| unsigned *offset); |
| |
| /** |
| * \brief Retrieve the file, line, column, and offset represented by |
| * the given source location. |
| * |
| * If the location refers into a macro instantiation, return where the |
| * location was originally spelled in the source file. |
| * |
| * \param location the location within a source file that will be decomposed |
| * into its parts. |
| * |
| * \param file [out] if non-NULL, will be set to the file to which the given |
| * source location points. |
| * |
| * \param line [out] if non-NULL, will be set to the line to which the given |
| * source location points. |
| * |
| * \param column [out] if non-NULL, will be set to the column to which the given |
| * source location points. |
| * |
| * \param offset [out] if non-NULL, will be set to the offset into the |
| * buffer to which the given source location points. |
| */ |
| CINDEX_LINKAGE void clang_getSpellingLocation(CXSourceLocation location, |
| CXFile *file, |
| unsigned *line, |
| unsigned *column, |
| unsigned *offset); |
| |
| /** |
| * \brief Retrieve a source location representing the first character within a |
| * source range. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getRangeStart(CXSourceRange range); |
| |
| /** |
| * \brief Retrieve a source location representing the last character within a |
| * source range. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getRangeEnd(CXSourceRange range); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_DIAG Diagnostic reporting |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Describes the severity of a particular diagnostic. |
| */ |
| enum CXDiagnosticSeverity { |
| /** |
| * \brief A diagnostic that has been suppressed, e.g., by a command-line |
| * option. |
| */ |
| CXDiagnostic_Ignored = 0, |
| |
| /** |
| * \brief This diagnostic is a note that should be attached to the |
| * previous (non-note) diagnostic. |
| */ |
| CXDiagnostic_Note = 1, |
| |
| /** |
| * \brief This diagnostic indicates suspicious code that may not be |
| * wrong. |
| */ |
| CXDiagnostic_Warning = 2, |
| |
| /** |
| * \brief This diagnostic indicates that the code is ill-formed. |
| */ |
| CXDiagnostic_Error = 3, |
| |
| /** |
| * \brief This diagnostic indicates that the code is ill-formed such |
| * that future parser recovery is unlikely to produce useful |
| * results. |
| */ |
| CXDiagnostic_Fatal = 4 |
| }; |
| |
| /** |
| * \brief A single diagnostic, containing the diagnostic's severity, |
| * location, text, source ranges, and fix-it hints. |
| */ |
| typedef void *CXDiagnostic; |
| |
| /** |
| * \brief Determine the number of diagnostics produced for the given |
| * translation unit. |
| */ |
| CINDEX_LINKAGE unsigned clang_getNumDiagnostics(CXTranslationUnit Unit); |
| |
| /** |
| * \brief Retrieve a diagnostic associated with the given translation unit. |
| * |
| * \param Unit the translation unit to query. |
| * \param Index the zero-based diagnostic number to retrieve. |
| * |
| * \returns the requested diagnostic. This diagnostic must be freed |
| * via a call to \c clang_disposeDiagnostic(). |
| */ |
| CINDEX_LINKAGE CXDiagnostic clang_getDiagnostic(CXTranslationUnit Unit, |
| unsigned Index); |
| |
| /** |
| * \brief Destroy a diagnostic. |
| */ |
| CINDEX_LINKAGE void clang_disposeDiagnostic(CXDiagnostic Diagnostic); |
| |
| /** |
| * \brief Options to control the display of diagnostics. |
| * |
| * The values in this enum are meant to be combined to customize the |
| * behavior of \c clang_displayDiagnostic(). |
| */ |
| enum CXDiagnosticDisplayOptions { |
| /** |
| * \brief Display the source-location information where the |
| * diagnostic was located. |
| * |
| * When set, diagnostics will be prefixed by the file, line, and |
| * (optionally) column to which the diagnostic refers. For example, |
| * |
| * \code |
| * test.c:28: warning: extra tokens at end of #endif directive |
| * \endcode |
| * |
| * This option corresponds to the clang flag \c -fshow-source-location. |
| */ |
| CXDiagnostic_DisplaySourceLocation = 0x01, |
| |
| /** |
| * \brief If displaying the source-location information of the |
| * diagnostic, also include the column number. |
| * |
| * This option corresponds to the clang flag \c -fshow-column. |
| */ |
| CXDiagnostic_DisplayColumn = 0x02, |
| |
| /** |
| * \brief If displaying the source-location information of the |
| * diagnostic, also include information about source ranges in a |
| * machine-parsable format. |
| * |
| * This option corresponds to the clang flag |
| * \c -fdiagnostics-print-source-range-info. |
| */ |
| CXDiagnostic_DisplaySourceRanges = 0x04, |
| |
| /** |
| * \brief Display the option name associated with this diagnostic, if any. |
| * |
| * The option name displayed (e.g., -Wconversion) will be placed in brackets |
| * after the diagnostic text. This option corresponds to the clang flag |
| * \c -fdiagnostics-show-option. |
| */ |
| CXDiagnostic_DisplayOption = 0x08, |
| |
| /** |
| * \brief Display the category number associated with this diagnostic, if any. |
| * |
| * The category number is displayed within brackets after the diagnostic text. |
| * This option corresponds to the clang flag |
| * \c -fdiagnostics-show-category=id. |
| */ |
| CXDiagnostic_DisplayCategoryId = 0x10, |
| |
| /** |
| * \brief Display the category name associated with this diagnostic, if any. |
| * |
| * The category name is displayed within brackets after the diagnostic text. |
| * This option corresponds to the clang flag |
| * \c -fdiagnostics-show-category=name. |
| */ |
| CXDiagnostic_DisplayCategoryName = 0x20 |
| }; |
| |
| /** |
| * \brief Format the given diagnostic in a manner that is suitable for display. |
| * |
| * This routine will format the given diagnostic to a string, rendering |
| * the diagnostic according to the various options given. The |
| * \c clang_defaultDiagnosticDisplayOptions() function returns the set of |
| * options that most closely mimics the behavior of the clang compiler. |
| * |
| * \param Diagnostic The diagnostic to print. |
| * |
| * \param Options A set of options that control the diagnostic display, |
| * created by combining \c CXDiagnosticDisplayOptions values. |
| * |
| * \returns A new string containing for formatted diagnostic. |
| */ |
| CINDEX_LINKAGE CXString clang_formatDiagnostic(CXDiagnostic Diagnostic, |
| unsigned Options); |
| |
| /** |
| * \brief Retrieve the set of display options most similar to the |
| * default behavior of the clang compiler. |
| * |
| * \returns A set of display options suitable for use with \c |
| * clang_displayDiagnostic(). |
| */ |
| CINDEX_LINKAGE unsigned clang_defaultDiagnosticDisplayOptions(void); |
| |
| /** |
| * \brief Determine the severity of the given diagnostic. |
| */ |
| CINDEX_LINKAGE enum CXDiagnosticSeverity |
| clang_getDiagnosticSeverity(CXDiagnostic); |
| |
| /** |
| * \brief Retrieve the source location of the given diagnostic. |
| * |
| * This location is where Clang would print the caret ('^') when |
| * displaying the diagnostic on the command line. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getDiagnosticLocation(CXDiagnostic); |
| |
| /** |
| * \brief Retrieve the text of the given diagnostic. |
| */ |
| CINDEX_LINKAGE CXString clang_getDiagnosticSpelling(CXDiagnostic); |
| |
| /** |
| * \brief Retrieve the name of the command-line option that enabled this |
| * diagnostic. |
| * |
| * \param Diag The diagnostic to be queried. |
| * |
| * \param Disable If non-NULL, will be set to the option that disables this |
| * diagnostic (if any). |
| * |
| * \returns A string that contains the command-line option used to enable this |
| * warning, such as "-Wconversion" or "-pedantic". |
| */ |
| CINDEX_LINKAGE CXString clang_getDiagnosticOption(CXDiagnostic Diag, |
| CXString *Disable); |
| |
| /** |
| * \brief Retrieve the category number for this diagnostic. |
| * |
| * Diagnostics can be categorized into groups along with other, related |
| * diagnostics (e.g., diagnostics under the same warning flag). This routine |
| * retrieves the category number for the given diagnostic. |
| * |
| * \returns The number of the category that contains this diagnostic, or zero |
| * if this diagnostic is uncategorized. |
| */ |
| CINDEX_LINKAGE unsigned clang_getDiagnosticCategory(CXDiagnostic); |
| |
| /** |
| * \brief Retrieve the name of a particular diagnostic category. |
| * |
| * \param Category A diagnostic category number, as returned by |
| * \c clang_getDiagnosticCategory(). |
| * |
| * \returns The name of the given diagnostic category. |
| */ |
| CINDEX_LINKAGE CXString clang_getDiagnosticCategoryName(unsigned Category); |
| |
| /** |
| * \brief Determine the number of source ranges associated with the given |
| * diagnostic. |
| */ |
| CINDEX_LINKAGE unsigned clang_getDiagnosticNumRanges(CXDiagnostic); |
| |
| /** |
| * \brief Retrieve a source range associated with the diagnostic. |
| * |
| * A diagnostic's source ranges highlight important elements in the source |
| * code. On the command line, Clang displays source ranges by |
| * underlining them with '~' characters. |
| * |
| * \param Diagnostic the diagnostic whose range is being extracted. |
| * |
| * \param Range the zero-based index specifying which range to |
| * |
| * \returns the requested source range. |
| */ |
| CINDEX_LINKAGE CXSourceRange clang_getDiagnosticRange(CXDiagnostic Diagnostic, |
| unsigned Range); |
| |
| /** |
| * \brief Determine the number of fix-it hints associated with the |
| * given diagnostic. |
| */ |
| CINDEX_LINKAGE unsigned clang_getDiagnosticNumFixIts(CXDiagnostic Diagnostic); |
| |
| /** |
| * \brief Retrieve the replacement information for a given fix-it. |
| * |
| * Fix-its are described in terms of a source range whose contents |
| * should be replaced by a string. This approach generalizes over |
| * three kinds of operations: removal of source code (the range covers |
| * the code to be removed and the replacement string is empty), |
| * replacement of source code (the range covers the code to be |
| * replaced and the replacement string provides the new code), and |
| * insertion (both the start and end of the range point at the |
| * insertion location, and the replacement string provides the text to |
| * insert). |
| * |
| * \param Diagnostic The diagnostic whose fix-its are being queried. |
| * |
| * \param FixIt The zero-based index of the fix-it. |
| * |
| * \param ReplacementRange The source range whose contents will be |
| * replaced with the returned replacement string. Note that source |
| * ranges are half-open ranges [a, b), so the source code should be |
| * replaced from a and up to (but not including) b. |
| * |
| * \returns A string containing text that should be replace the source |
| * code indicated by the \c ReplacementRange. |
| */ |
| CINDEX_LINKAGE CXString clang_getDiagnosticFixIt(CXDiagnostic Diagnostic, |
| unsigned FixIt, |
| CXSourceRange *ReplacementRange); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_TRANSLATION_UNIT Translation unit manipulation |
| * |
| * The routines in this group provide the ability to create and destroy |
| * translation units from files, either by parsing the contents of the files or |
| * by reading in a serialized representation of a translation unit. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Get the original translation unit source file name. |
| */ |
| CINDEX_LINKAGE CXString |
| clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit); |
| |
| /** |
| * \brief Return the CXTranslationUnit for a given source file and the provided |
| * command line arguments one would pass to the compiler. |
| * |
| * Note: The 'source_filename' argument is optional. If the caller provides a |
| * NULL pointer, the name of the source file is expected to reside in the |
| * specified command line arguments. |
| * |
| * Note: When encountered in 'clang_command_line_args', the following options |
| * are ignored: |
| * |
| * '-c' |
| * '-emit-ast' |
| * '-fsyntax-only' |
| * '-o <output file>' (both '-o' and '<output file>' are ignored) |
| * |
| * \param CIdx The index object with which the translation unit will be |
| * associated. |
| * |
| * \param source_filename - The name of the source file to load, or NULL if the |
| * source file is included in \p clang_command_line_args. |
| * |
| * \param num_clang_command_line_args The number of command-line arguments in |
| * \p clang_command_line_args. |
| * |
| * \param clang_command_line_args The command-line arguments that would be |
| * passed to the \c clang executable if it were being invoked out-of-process. |
| * These command-line options will be parsed and will affect how the translation |
| * unit is parsed. Note that the following options are ignored: '-c', |
| * '-emit-ast', '-fsyntex-only' (which is the default), and '-o <output file>'. |
| * |
| * \param num_unsaved_files the number of unsaved file entries in \p |
| * unsaved_files. |
| * |
| * \param unsaved_files the files that have not yet been saved to disk |
| * but may be required for code completion, including the contents of |
| * those files. The contents and name of these files (as specified by |
| * CXUnsavedFile) are copied when necessary, so the client only needs to |
| * guarantee their validity until the call to this function returns. |
| */ |
| CINDEX_LINKAGE CXTranslationUnit clang_createTranslationUnitFromSourceFile( |
| CXIndex CIdx, |
| const char *source_filename, |
| int num_clang_command_line_args, |
| const char * const *clang_command_line_args, |
| unsigned num_unsaved_files, |
| struct CXUnsavedFile *unsaved_files); |
| |
| /** |
| * \brief Create a translation unit from an AST file (-emit-ast). |
| */ |
| CINDEX_LINKAGE CXTranslationUnit clang_createTranslationUnit(CXIndex, |
| const char *ast_filename); |
| |
| /** |
| * \brief Flags that control the creation of translation units. |
| * |
| * The enumerators in this enumeration type are meant to be bitwise |
| * ORed together to specify which options should be used when |
| * constructing the translation unit. |
| */ |
| enum CXTranslationUnit_Flags { |
| /** |
| * \brief Used to indicate that no special translation-unit options are |
| * needed. |
| */ |
| CXTranslationUnit_None = 0x0, |
| |
| /** |
| * \brief Used to indicate that the parser should construct a "detailed" |
| * preprocessing record, including all macro definitions and instantiations. |
| * |
| * Constructing a detailed preprocessing record requires more memory |
| * and time to parse, since the information contained in the record |
| * is usually not retained. However, it can be useful for |
| * applications that require more detailed information about the |
| * behavior of the preprocessor. |
| */ |
| CXTranslationUnit_DetailedPreprocessingRecord = 0x01, |
| |
| /** |
| * \brief Used to indicate that the translation unit is incomplete. |
| * |
| * When a translation unit is considered "incomplete", semantic |
| * analysis that is typically performed at the end of the |
| * translation unit will be suppressed. For example, this suppresses |
| * the completion of tentative declarations in C and of |
| * instantiation of implicitly-instantiation function templates in |
| * C++. This option is typically used when parsing a header with the |
| * intent of producing a precompiled header. |
| */ |
| CXTranslationUnit_Incomplete = 0x02, |
| |
| /** |
| * \brief Used to indicate that the translation unit should be built with an |
| * implicit precompiled header for the preamble. |
| * |
| * An implicit precompiled header is used as an optimization when a |
| * particular translation unit is likely to be reparsed many times |
| * when the sources aren't changing that often. In this case, an |
| * implicit precompiled header will be built containing all of the |
| * initial includes at the top of the main file (what we refer to as |
| * the "preamble" of the file). In subsequent parses, if the |
| * preamble or the files in it have not changed, \c |
| * clang_reparseTranslationUnit() will re-use the implicit |
| * precompiled header to improve parsing performance. |
| */ |
| CXTranslationUnit_PrecompiledPreamble = 0x04, |
| |
| /** |
| * \brief Used to indicate that the translation unit should cache some |
| * code-completion results with each reparse of the source file. |
| * |
| * Caching of code-completion results is a performance optimization that |
| * introduces some overhead to reparsing but improves the performance of |
| * code-completion operations. |
| */ |
| CXTranslationUnit_CacheCompletionResults = 0x08, |
| /** |
| * \brief Enable precompiled preambles in C++. |
| * |
| * Note: this is a *temporary* option that is available only while |
| * we are testing C++ precompiled preamble support. |
| */ |
| CXTranslationUnit_CXXPrecompiledPreamble = 0x10, |
| |
| /** |
| * \brief Enabled chained precompiled preambles in C++. |
| * |
| * Note: this is a *temporary* option that is available only while |
| * we are testing C++ precompiled preamble support. |
| */ |
| CXTranslationUnit_CXXChainedPCH = 0x20 |
| }; |
| |
| /** |
| * \brief Returns the set of flags that is suitable for parsing a translation |
| * unit that is being edited. |
| * |
| * The set of flags returned provide options for \c clang_parseTranslationUnit() |
| * to indicate that the translation unit is likely to be reparsed many times, |
| * either explicitly (via \c clang_reparseTranslationUnit()) or implicitly |
| * (e.g., by code completion (\c clang_codeCompletionAt())). The returned flag |
| * set contains an unspecified set of optimizations (e.g., the precompiled |
| * preamble) geared toward improving the performance of these routines. The |
| * set of optimizations enabled may change from one version to the next. |
| */ |
| CINDEX_LINKAGE unsigned clang_defaultEditingTranslationUnitOptions(void); |
| |
| /** |
| * \brief Parse the given source file and the translation unit corresponding |
| * to that file. |
| * |
| * This routine is the main entry point for the Clang C API, providing the |
| * ability to parse a source file into a translation unit that can then be |
| * queried by other functions in the API. This routine accepts a set of |
| * command-line arguments so that the compilation can be configured in the same |
| * way that the compiler is configured on the command line. |
| * |
| * \param CIdx The index object with which the translation unit will be |
| * associated. |
| * |
| * \param source_filename The name of the source file to load, or NULL if the |
| * source file is included in \p command_line_args. |
| * |
| * \param command_line_args The command-line arguments that would be |
| * passed to the \c clang executable if it were being invoked out-of-process. |
| * These command-line options will be parsed and will affect how the translation |
| * unit is parsed. Note that the following options are ignored: '-c', |
| * '-emit-ast', '-fsyntex-only' (which is the default), and '-o <output file>'. |
| * |
| * \param num_command_line_args The number of command-line arguments in |
| * \p command_line_args. |
| * |
| * \param unsaved_files the files that have not yet been saved to disk |
| * but may be required for parsing, including the contents of |
| * those files. The contents and name of these files (as specified by |
| * CXUnsavedFile) are copied when necessary, so the client only needs to |
| * guarantee their validity until the call to this function returns. |
| * |
| * \param num_unsaved_files the number of unsaved file entries in \p |
| * unsaved_files. |
| * |
| * \param options A bitmask of options that affects how the translation unit |
| * is managed but not its compilation. This should be a bitwise OR of the |
| * CXTranslationUnit_XXX flags. |
| * |
| * \returns A new translation unit describing the parsed code and containing |
| * any diagnostics produced by the compiler. If there is a failure from which |
| * the compiler cannot recover, returns NULL. |
| */ |
| CINDEX_LINKAGE CXTranslationUnit clang_parseTranslationUnit(CXIndex CIdx, |
| const char *source_filename, |
| const char * const *command_line_args, |
| int num_command_line_args, |
| struct CXUnsavedFile *unsaved_files, |
| unsigned num_unsaved_files, |
| unsigned options); |
| |
| /** |
| * \brief Flags that control how translation units are saved. |
| * |
| * The enumerators in this enumeration type are meant to be bitwise |
| * ORed together to specify which options should be used when |
| * saving the translation unit. |
| */ |
| enum CXSaveTranslationUnit_Flags { |
| /** |
| * \brief Used to indicate that no special saving options are needed. |
| */ |
| CXSaveTranslationUnit_None = 0x0 |
| }; |
| |
| /** |
| * \brief Returns the set of flags that is suitable for saving a translation |
| * unit. |
| * |
| * The set of flags returned provide options for |
| * \c clang_saveTranslationUnit() by default. The returned flag |
| * set contains an unspecified set of options that save translation units with |
| * the most commonly-requested data. |
| */ |
| CINDEX_LINKAGE unsigned clang_defaultSaveOptions(CXTranslationUnit TU); |
| |
| /** |
| * \brief Saves a translation unit into a serialized representation of |
| * that translation unit on disk. |
| * |
| * Any translation unit that was parsed without error can be saved |
| * into a file. The translation unit can then be deserialized into a |
| * new \c CXTranslationUnit with \c clang_createTranslationUnit() or, |
| * if it is an incomplete translation unit that corresponds to a |
| * header, used as a precompiled header when parsing other translation |
| * units. |
| * |
| * \param TU The translation unit to save. |
| * |
| * \param FileName The file to which the translation unit will be saved. |
| * |
| * \param options A bitmask of options that affects how the translation unit |
| * is saved. This should be a bitwise OR of the |
| * CXSaveTranslationUnit_XXX flags. |
| * |
| * \returns Zero if the translation unit was saved successfully, a |
| * non-zero value otherwise. |
| */ |
| CINDEX_LINKAGE int clang_saveTranslationUnit(CXTranslationUnit TU, |
| const char *FileName, |
| unsigned options); |
| |
| /** |
| * \brief Destroy the specified CXTranslationUnit object. |
| */ |
| CINDEX_LINKAGE void clang_disposeTranslationUnit(CXTranslationUnit); |
| |
| /** |
| * \brief Flags that control the reparsing of translation units. |
| * |
| * The enumerators in this enumeration type are meant to be bitwise |
| * ORed together to specify which options should be used when |
| * reparsing the translation unit. |
| */ |
| enum CXReparse_Flags { |
| /** |
| * \brief Used to indicate that no special reparsing options are needed. |
| */ |
| CXReparse_None = 0x0 |
| }; |
| |
| /** |
| * \brief Returns the set of flags that is suitable for reparsing a translation |
| * unit. |
| * |
| * The set of flags returned provide options for |
| * \c clang_reparseTranslationUnit() by default. The returned flag |
| * set contains an unspecified set of optimizations geared toward common uses |
| * of reparsing. The set of optimizations enabled may change from one version |
| * to the next. |
| */ |
| CINDEX_LINKAGE unsigned clang_defaultReparseOptions(CXTranslationUnit TU); |
| |
| /** |
| * \brief Reparse the source files that produced this translation unit. |
| * |
| * This routine can be used to re-parse the source files that originally |
| * created the given translation unit, for example because those source files |
| * have changed (either on disk or as passed via \p unsaved_files). The |
| * source code will be reparsed with the same command-line options as it |
| * was originally parsed. |
| * |
| * Reparsing a translation unit invalidates all cursors and source locations |
| * that refer into that translation unit. This makes reparsing a translation |
| * unit semantically equivalent to destroying the translation unit and then |
| * creating a new translation unit with the same command-line arguments. |
| * However, it may be more efficient to reparse a translation |
| * unit using this routine. |
| * |
| * \param TU The translation unit whose contents will be re-parsed. The |
| * translation unit must originally have been built with |
| * \c clang_createTranslationUnitFromSourceFile(). |
| * |
| * \param num_unsaved_files The number of unsaved file entries in \p |
| * unsaved_files. |
| * |
| * \param unsaved_files The files that have not yet been saved to disk |
| * but may be required for parsing, including the contents of |
| * those files. The contents and name of these files (as specified by |
| * CXUnsavedFile) are copied when necessary, so the client only needs to |
| * guarantee their validity until the call to this function returns. |
| * |
| * \param options A bitset of options composed of the flags in CXReparse_Flags. |
| * The function \c clang_defaultReparseOptions() produces a default set of |
| * options recommended for most uses, based on the translation unit. |
| * |
| * \returns 0 if the sources could be reparsed. A non-zero value will be |
| * returned if reparsing was impossible, such that the translation unit is |
| * invalid. In such cases, the only valid call for \p TU is |
| * \c clang_disposeTranslationUnit(TU). |
| */ |
| CINDEX_LINKAGE int clang_reparseTranslationUnit(CXTranslationUnit TU, |
| unsigned num_unsaved_files, |
| struct CXUnsavedFile *unsaved_files, |
| unsigned options); |
| |
| /** |
| * \brief Categorizes how memory is being used by a translation unit. |
| */ |
| enum CXTUResourceUsageKind { |
| CXTUResourceUsage_AST = 1, |
| CXTUResourceUsage_Identifiers = 2, |
| CXTUResourceUsage_Selectors = 3, |
| CXTUResourceUsage_GlobalCompletionResults = 4, |
| CXTUResourceUsage_SourceManagerContentCache = 5, |
| CXTUResourceUsage_AST_SideTables = 6, |
| CXTUResourceUsage_SourceManager_Membuffer_Malloc = 7, |
| CXTUResourceUsage_SourceManager_Membuffer_MMap = 8, |
| |
| CXTUResourceUsage_MEMORY_IN_BYTES_BEGIN = CXTUResourceUsage_AST, |
| CXTUResourceUsage_MEMORY_IN_BYTES_END = |
| CXTUResourceUsage_SourceManager_Membuffer_MMap, |
| |
| CXTUResourceUsage_First = CXTUResourceUsage_AST, |
| CXTUResourceUsage_Last = CXTUResourceUsage_SourceManager_Membuffer_MMap |
| }; |
| |
| /** |
| * \brief Returns the human-readable null-terminated C string that represents |
| * the name of the memory category. This string should never be freed. |
| */ |
| CINDEX_LINKAGE |
| const char *clang_getTUResourceUsageName(enum CXTUResourceUsageKind kind); |
| |
| typedef struct CXTUResourceUsageEntry { |
| /* \brief The memory usage category. */ |
| enum CXTUResourceUsageKind kind; |
| /* \brief Amount of resources used. |
| The units will depend on the resource kind. */ |
| unsigned long amount; |
| } CXTUResourceUsageEntry; |
| |
| /** |
| * \brief The memory usage of a CXTranslationUnit, broken into categories. |
| */ |
| typedef struct CXTUResourceUsage { |
| /* \brief Private data member, used for queries. */ |
| void *data; |
| |
| /* \brief The number of entries in the 'entries' array. */ |
| unsigned numEntries; |
| |
| /* \brief An array of key-value pairs, representing the breakdown of memory |
| usage. */ |
| CXTUResourceUsageEntry *entries; |
| |
| } CXTUResourceUsage; |
| |
| /** |
| * \brief Return the memory usage of a translation unit. This object |
| * should be released with clang_disposeCXTUResourceUsage(). |
| */ |
| CINDEX_LINKAGE CXTUResourceUsage clang_getCXTUResourceUsage(CXTranslationUnit TU); |
| |
| CINDEX_LINKAGE void clang_disposeCXTUResourceUsage(CXTUResourceUsage usage); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \brief Describes the kind of entity that a cursor refers to. |
| */ |
| enum CXCursorKind { |
| /* Declarations */ |
| /** |
| * \brief A declaration whose specific kind is not exposed via this |
| * interface. |
| * |
| * Unexposed declarations have the same operations as any other kind |
| * of declaration; one can extract their location information, |
| * spelling, find their definitions, etc. However, the specific kind |
| * of the declaration is not reported. |
| */ |
| CXCursor_UnexposedDecl = 1, |
| /** \brief A C or C++ struct. */ |
| CXCursor_StructDecl = 2, |
| /** \brief A C or C++ union. */ |
| CXCursor_UnionDecl = 3, |
| /** \brief A C++ class. */ |
| CXCursor_ClassDecl = 4, |
| /** \brief An enumeration. */ |
| CXCursor_EnumDecl = 5, |
| /** |
| * \brief A field (in C) or non-static data member (in C++) in a |
| * struct, union, or C++ class. |
| */ |
| CXCursor_FieldDecl = 6, |
| /** \brief An enumerator constant. */ |
| CXCursor_EnumConstantDecl = 7, |
| /** \brief A function. */ |
| CXCursor_FunctionDecl = 8, |
| /** \brief A variable. */ |
| CXCursor_VarDecl = 9, |
| /** \brief A function or method parameter. */ |
| CXCursor_ParmDecl = 10, |
| /** \brief An Objective-C @interface. */ |
| CXCursor_ObjCInterfaceDecl = 11, |
| /** \brief An Objective-C @interface for a category. */ |
| CXCursor_ObjCCategoryDecl = 12, |
| /** \brief An Objective-C @protocol declaration. */ |
| CXCursor_ObjCProtocolDecl = 13, |
| /** \brief An Objective-C @property declaration. */ |
| CXCursor_ObjCPropertyDecl = 14, |
| /** \brief An Objective-C instance variable. */ |
| CXCursor_ObjCIvarDecl = 15, |
| /** \brief An Objective-C instance method. */ |
| CXCursor_ObjCInstanceMethodDecl = 16, |
| /** \brief An Objective-C class method. */ |
| CXCursor_ObjCClassMethodDecl = 17, |
| /** \brief An Objective-C @implementation. */ |
| CXCursor_ObjCImplementationDecl = 18, |
| /** \brief An Objective-C @implementation for a category. */ |
| CXCursor_ObjCCategoryImplDecl = 19, |
| /** \brief A typedef */ |
| CXCursor_TypedefDecl = 20, |
| /** \brief A C++ class method. */ |
| CXCursor_CXXMethod = 21, |
| /** \brief A C++ namespace. */ |
| CXCursor_Namespace = 22, |
| /** \brief A linkage specification, e.g. 'extern "C"'. */ |
| CXCursor_LinkageSpec = 23, |
| /** \brief A C++ constructor. */ |
| CXCursor_Constructor = 24, |
| /** \brief A C++ destructor. */ |
| CXCursor_Destructor = 25, |
| /** \brief A C++ conversion function. */ |
| CXCursor_ConversionFunction = 26, |
| /** \brief A C++ template type parameter. */ |
| CXCursor_TemplateTypeParameter = 27, |
| /** \brief A C++ non-type template parameter. */ |
| CXCursor_NonTypeTemplateParameter = 28, |
| /** \brief A C++ template template parameter. */ |
| CXCursor_TemplateTemplateParameter = 29, |
| /** \brief A C++ function template. */ |
| CXCursor_FunctionTemplate = 30, |
| /** \brief A C++ class template. */ |
| CXCursor_ClassTemplate = 31, |
| /** \brief A C++ class template partial specialization. */ |
| CXCursor_ClassTemplatePartialSpecialization = 32, |
| /** \brief A C++ namespace alias declaration. */ |
| CXCursor_NamespaceAlias = 33, |
| /** \brief A C++ using directive. */ |
| CXCursor_UsingDirective = 34, |
| /** \brief A C++ using declaration. */ |
| CXCursor_UsingDeclaration = 35, |
| /** \brief A C++ alias declaration */ |
| CXCursor_TypeAliasDecl = 36, |
| CXCursor_FirstDecl = CXCursor_UnexposedDecl, |
| CXCursor_LastDecl = CXCursor_TypeAliasDecl, |
| |
| /* References */ |
| CXCursor_FirstRef = 40, /* Decl references */ |
| CXCursor_ObjCSuperClassRef = 40, |
| CXCursor_ObjCProtocolRef = 41, |
| CXCursor_ObjCClassRef = 42, |
| /** |
| * \brief A reference to a type declaration. |
| * |
| * A type reference occurs anywhere where a type is named but not |
| * declared. For example, given: |
| * |
| * \code |
| * typedef unsigned size_type; |
| * size_type size; |
| * \endcode |
| * |
| * The typedef is a declaration of size_type (CXCursor_TypedefDecl), |
| * while the type of the variable "size" is referenced. The cursor |
| * referenced by the type of size is the typedef for size_type. |
| */ |
| CXCursor_TypeRef = 43, |
| CXCursor_CXXBaseSpecifier = 44, |
| /** |
| * \brief A reference to a class template, function template, template |
| * template parameter, or class template partial specialization. |
| */ |
| CXCursor_TemplateRef = 45, |
| /** |
| * \brief A reference to a namespace or namespace alias. |
| */ |
| CXCursor_NamespaceRef = 46, |
| /** |
| * \brief A reference to a member of a struct, union, or class that occurs in |
| * some non-expression context, e.g., a designated initializer. |
| */ |
| CXCursor_MemberRef = 47, |
| /** |
| * \brief A reference to a labeled statement. |
| * |
| * This cursor kind is used to describe the jump to "start_over" in the |
| * goto statement in the following example: |
| * |
| * \code |
| * start_over: |
| * ++counter; |
| * |
| * goto start_over; |
| * \endcode |
| * |
| * A label reference cursor refers to a label statement. |
| */ |
| CXCursor_LabelRef = 48, |
| |
| /** |
| * \brief A reference to a set of overloaded functions or function templates |
| * that has not yet been resolved to a specific function or function template. |
| * |
| * An overloaded declaration reference cursor occurs in C++ templates where |
| * a dependent name refers to a function. For example: |
| * |
| * \code |
| * template<typename T> void swap(T&, T&); |
| * |
| * struct X { ... }; |
| * void swap(X&, X&); |
| * |
| * template<typename T> |
| * void reverse(T* first, T* last) { |
| * while (first < last - 1) { |
| * swap(*first, *--last); |
| * ++first; |
| * } |
| * } |
| * |
| * struct Y { }; |
| * void swap(Y&, Y&); |
| * \endcode |
| * |
| * Here, the identifier "swap" is associated with an overloaded declaration |
| * reference. In the template definition, "swap" refers to either of the two |
| * "swap" functions declared above, so both results will be available. At |
| * instantiation time, "swap" may also refer to other functions found via |
| * argument-dependent lookup (e.g., the "swap" function at the end of the |
| * example). |
| * |
| * The functions \c clang_getNumOverloadedDecls() and |
| * \c clang_getOverloadedDecl() can be used to retrieve the definitions |
| * referenced by this cursor. |
| */ |
| CXCursor_OverloadedDeclRef = 49, |
| |
| CXCursor_LastRef = CXCursor_OverloadedDeclRef, |
| |
| /* Error conditions */ |
| CXCursor_FirstInvalid = 70, |
| CXCursor_InvalidFile = 70, |
| CXCursor_NoDeclFound = 71, |
| CXCursor_NotImplemented = 72, |
| CXCursor_InvalidCode = 73, |
| CXCursor_LastInvalid = CXCursor_InvalidCode, |
| |
| /* Expressions */ |
| CXCursor_FirstExpr = 100, |
| |
| /** |
| * \brief An expression whose specific kind is not exposed via this |
| * interface. |
| * |
| * Unexposed expressions have the same operations as any other kind |
| * of expression; one can extract their location information, |
| * spelling, children, etc. However, the specific kind of the |
| * expression is not reported. |
| */ |
| CXCursor_UnexposedExpr = 100, |
| |
| /** |
| * \brief An expression that refers to some value declaration, such |
| * as a function, varible, or enumerator. |
| */ |
| CXCursor_DeclRefExpr = 101, |
| |
| /** |
| * \brief An expression that refers to a member of a struct, union, |
| * class, Objective-C class, etc. |
| */ |
| CXCursor_MemberRefExpr = 102, |
| |
| /** \brief An expression that calls a function. */ |
| CXCursor_CallExpr = 103, |
| |
| /** \brief An expression that sends a message to an Objective-C |
| object or class. */ |
| CXCursor_ObjCMessageExpr = 104, |
| |
| /** \brief An expression that represents a block literal. */ |
| CXCursor_BlockExpr = 105, |
| |
| CXCursor_LastExpr = 105, |
| |
| /* Statements */ |
| CXCursor_FirstStmt = 200, |
| /** |
| * \brief A statement whose specific kind is not exposed via this |
| * interface. |
| * |
| * Unexposed statements have the same operations as any other kind of |
| * statement; one can extract their location information, spelling, |
| * children, etc. However, the specific kind of the statement is not |
| * reported. |
| */ |
| CXCursor_UnexposedStmt = 200, |
| |
| /** \brief A labelled statement in a function. |
| * |
| * This cursor kind is used to describe the "start_over:" label statement in |
| * the following example: |
| * |
| * \code |
| * start_over: |
| * ++counter; |
| * \endcode |
| * |
| */ |
| CXCursor_LabelStmt = 201, |
| |
| CXCursor_LastStmt = CXCursor_LabelStmt, |
| |
| /** |
| * \brief Cursor that represents the translation unit itself. |
| * |
| * The translation unit cursor exists primarily to act as the root |
| * cursor for traversing the contents of a translation unit. |
| */ |
| CXCursor_TranslationUnit = 300, |
| |
| /* Attributes */ |
| CXCursor_FirstAttr = 400, |
| /** |
| * \brief An attribute whose specific kind is not exposed via this |
| * interface. |
| */ |
| CXCursor_UnexposedAttr = 400, |
| |
| CXCursor_IBActionAttr = 401, |
| CXCursor_IBOutletAttr = 402, |
| CXCursor_IBOutletCollectionAttr = 403, |
| CXCursor_LastAttr = CXCursor_IBOutletCollectionAttr, |
| |
| /* Preprocessing */ |
| CXCursor_PreprocessingDirective = 500, |
| CXCursor_MacroDefinition = 501, |
| CXCursor_MacroInstantiation = 502, |
| CXCursor_InclusionDirective = 503, |
| CXCursor_FirstPreprocessing = CXCursor_PreprocessingDirective, |
| CXCursor_LastPreprocessing = CXCursor_InclusionDirective |
| }; |
| |
| /** |
| * \brief A cursor representing some element in the abstract syntax tree for |
| * a translation unit. |
| * |
| * The cursor abstraction unifies the different kinds of entities in a |
| * program--declaration, statements, expressions, references to declarations, |
| * etc.--under a single "cursor" abstraction with a common set of operations. |
| * Common operation for a cursor include: getting the physical location in |
| * a source file where the cursor points, getting the name associated with a |
| * cursor, and retrieving cursors for any child nodes of a particular cursor. |
| * |
| * Cursors can be produced in two specific ways. |
| * clang_getTranslationUnitCursor() produces a cursor for a translation unit, |
| * from which one can use clang_visitChildren() to explore the rest of the |
| * translation unit. clang_getCursor() maps from a physical source location |
| * to the entity that resides at that location, allowing one to map from the |
| * source code into the AST. |
| */ |
| typedef struct { |
| enum CXCursorKind kind; |
| void *data[3]; |
| } CXCursor; |
| |
| /** |
| * \defgroup CINDEX_CURSOR_MANIP Cursor manipulations |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Retrieve the NULL cursor, which represents no entity. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getNullCursor(void); |
| |
| /** |
| * \brief Retrieve the cursor that represents the given translation unit. |
| * |
| * The translation unit cursor can be used to start traversing the |
| * various declarations within the given translation unit. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getTranslationUnitCursor(CXTranslationUnit); |
| |
| /** |
| * \brief Determine whether two cursors are equivalent. |
| */ |
| CINDEX_LINKAGE unsigned clang_equalCursors(CXCursor, CXCursor); |
| |
| /** |
| * \brief Compute a hash value for the given cursor. |
| */ |
| CINDEX_LINKAGE unsigned clang_hashCursor(CXCursor); |
| |
| /** |
| * \brief Retrieve the kind of the given cursor. |
| */ |
| CINDEX_LINKAGE enum CXCursorKind clang_getCursorKind(CXCursor); |
| |
| /** |
| * \brief Determine whether the given cursor kind represents a declaration. |
| */ |
| CINDEX_LINKAGE unsigned clang_isDeclaration(enum CXCursorKind); |
| |
| /** |
| * \brief Determine whether the given cursor kind represents a simple |
| * reference. |
| * |
| * Note that other kinds of cursors (such as expressions) can also refer to |
| * other cursors. Use clang_getCursorReferenced() to determine whether a |
| * particular cursor refers to another entity. |
| */ |
| CINDEX_LINKAGE unsigned clang_isReference(enum CXCursorKind); |
| |
| /** |
| * \brief Determine whether the given cursor kind represents an expression. |
| */ |
| CINDEX_LINKAGE unsigned clang_isExpression(enum CXCursorKind); |
| |
| /** |
| * \brief Determine whether the given cursor kind represents a statement. |
| */ |
| CINDEX_LINKAGE unsigned clang_isStatement(enum CXCursorKind); |
| |
| /** |
| * \brief Determine whether the given cursor kind represents an invalid |
| * cursor. |
| */ |
| CINDEX_LINKAGE unsigned clang_isInvalid(enum CXCursorKind); |
| |
| /** |
| * \brief Determine whether the given cursor kind represents a translation |
| * unit. |
| */ |
| CINDEX_LINKAGE unsigned clang_isTranslationUnit(enum CXCursorKind); |
| |
| /*** |
| * \brief Determine whether the given cursor represents a preprocessing |
| * element, such as a preprocessor directive or macro instantiation. |
| */ |
| CINDEX_LINKAGE unsigned clang_isPreprocessing(enum CXCursorKind); |
| |
| /*** |
| * \brief Determine whether the given cursor represents a currently |
| * unexposed piece of the AST (e.g., CXCursor_UnexposedStmt). |
| */ |
| CINDEX_LINKAGE unsigned clang_isUnexposed(enum CXCursorKind); |
| |
| /** |
| * \brief Describe the linkage of the entity referred to by a cursor. |
| */ |
| enum CXLinkageKind { |
| /** \brief This value indicates that no linkage information is available |
| * for a provided CXCursor. */ |
| CXLinkage_Invalid, |
| /** |
| * \brief This is the linkage for variables, parameters, and so on that |
| * have automatic storage. This covers normal (non-extern) local variables. |
| */ |
| CXLinkage_NoLinkage, |
| /** \brief This is the linkage for static variables and static functions. */ |
| CXLinkage_Internal, |
| /** \brief This is the linkage for entities with external linkage that live |
| * in C++ anonymous namespaces.*/ |
| CXLinkage_UniqueExternal, |
| /** \brief This is the linkage for entities with true, external linkage. */ |
| CXLinkage_External |
| }; |
| |
| /** |
| * \brief Determine the linkage of the entity referred to by a given cursor. |
| */ |
| CINDEX_LINKAGE enum CXLinkageKind clang_getCursorLinkage(CXCursor cursor); |
| |
| /** |
| * \brief Determine the availability of the entity that this cursor refers to. |
| * |
| * \param cursor The cursor to query. |
| * |
| * \returns The availability of the cursor. |
| */ |
| CINDEX_LINKAGE enum CXAvailabilityKind |
| clang_getCursorAvailability(CXCursor cursor); |
| |
| /** |
| * \brief Describe the "language" of the entity referred to by a cursor. |
| */ |
| CINDEX_LINKAGE enum CXLanguageKind { |
| CXLanguage_Invalid = 0, |
| CXLanguage_C, |
| CXLanguage_ObjC, |
| CXLanguage_CPlusPlus |
| }; |
| |
| /** |
| * \brief Determine the "language" of the entity referred to by a given cursor. |
| */ |
| CINDEX_LINKAGE enum CXLanguageKind clang_getCursorLanguage(CXCursor cursor); |
| |
| |
| /** |
| * \brief A fast container representing a set of CXCursors. |
| */ |
| typedef struct CXCursorSetImpl *CXCursorSet; |
| |
| /** |
| * \brief Creates an empty CXCursorSet. |
| */ |
| CINDEX_LINKAGE CXCursorSet clang_createCXCursorSet(); |
| |
| /** |
| * \brief Disposes a CXCursorSet and releases its associated memory. |
| */ |
| CINDEX_LINKAGE void clang_disposeCXCursorSet(CXCursorSet cset); |
| |
| /** |
| * \brief Queries a CXCursorSet to see if it contains a specific CXCursor. |
| * |
| * \returns non-zero if the set contains the specified cursor. |
| */ |
| CINDEX_LINKAGE unsigned clang_CXCursorSet_contains(CXCursorSet cset, |
| CXCursor cursor); |
| |
| /** |
| * \brief Inserts a CXCursor into a CXCursorSet. |
| * |
| * \returns zero if the CXCursor was already in the set, and non-zero otherwise. |
| */ |
| CINDEX_LINKAGE unsigned clang_CXCursorSet_insert(CXCursorSet cset, |
| CXCursor cursor); |
| |
| /** |
| * \brief Determine the semantic parent of the given cursor. |
| * |
| * The semantic parent of a cursor is the cursor that semantically contains |
| * the given \p cursor. For many declarations, the lexical and semantic parents |
| * are equivalent (the lexical parent is returned by |
| * \c clang_getCursorLexicalParent()). They diverge when declarations or |
| * definitions are provided out-of-line. For example: |
| * |
| * \code |
| * class C { |
| * void f(); |
| * }; |
| * |
| * void C::f() { } |
| * \endcode |
| * |
| * In the out-of-line definition of \c C::f, the semantic parent is the |
| * the class \c C, of which this function is a member. The lexical parent is |
| * the place where the declaration actually occurs in the source code; in this |
| * case, the definition occurs in the translation unit. In general, the |
| * lexical parent for a given entity can change without affecting the semantics |
| * of the program, and the lexical parent of different declarations of the |
| * same entity may be different. Changing the semantic parent of a declaration, |
| * on the other hand, can have a major impact on semantics, and redeclarations |
| * of a particular entity should all have the same semantic context. |
| * |
| * In the example above, both declarations of \c C::f have \c C as their |
| * semantic context, while the lexical context of the first \c C::f is \c C |
| * and the lexical context of the second \c C::f is the translation unit. |
| * |
| * For global declarations, the semantic parent is the translation unit. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getCursorSemanticParent(CXCursor cursor); |
| |
| /** |
| * \brief Determine the lexical parent of the given cursor. |
| * |
| * The lexical parent of a cursor is the cursor in which the given \p cursor |
| * was actually written. For many declarations, the lexical and semantic parents |
| * are equivalent (the semantic parent is returned by |
| * \c clang_getCursorSemanticParent()). They diverge when declarations or |
| * definitions are provided out-of-line. For example: |
| * |
| * \code |
| * class C { |
| * void f(); |
| * }; |
| * |
| * void C::f() { } |
| * \endcode |
| * |
| * In the out-of-line definition of \c C::f, the semantic parent is the |
| * the class \c C, of which this function is a member. The lexical parent is |
| * the place where the declaration actually occurs in the source code; in this |
| * case, the definition occurs in the translation unit. In general, the |
| * lexical parent for a given entity can change without affecting the semantics |
| * of the program, and the lexical parent of different declarations of the |
| * same entity may be different. Changing the semantic parent of a declaration, |
| * on the other hand, can have a major impact on semantics, and redeclarations |
| * of a particular entity should all have the same semantic context. |
| * |
| * In the example above, both declarations of \c C::f have \c C as their |
| * semantic context, while the lexical context of the first \c C::f is \c C |
| * and the lexical context of the second \c C::f is the translation unit. |
| * |
| * For declarations written in the global scope, the lexical parent is |
| * the translation unit. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getCursorLexicalParent(CXCursor cursor); |
| |
| /** |
| * \brief Determine the set of methods that are overridden by the given |
| * method. |
| * |
| * In both Objective-C and C++, a method (aka virtual member function, |
| * in C++) can override a virtual method in a base class. For |
| * Objective-C, a method is said to override any method in the class's |
| * interface (if we're coming from an implementation), its protocols, |
| * or its categories, that has the same selector and is of the same |
| * kind (class or instance). If no such method exists, the search |
| * continues to the class's superclass, its protocols, and its |
| * categories, and so on. |
| * |
| * For C++, a virtual member function overrides any virtual member |
| * function with the same signature that occurs in its base |
| * classes. With multiple inheritance, a virtual member function can |
| * override several virtual member functions coming from different |
| * base classes. |
| * |
| * In all cases, this function determines the immediate overridden |
| * method, rather than all of the overridden methods. For example, if |
| * a method is originally declared in a class A, then overridden in B |
| * (which in inherits from A) and also in C (which inherited from B), |
| * then the only overridden method returned from this function when |
| * invoked on C's method will be B's method. The client may then |
| * invoke this function again, given the previously-found overridden |
| * methods, to map out the complete method-override set. |
| * |
| * \param cursor A cursor representing an Objective-C or C++ |
| * method. This routine will compute the set of methods that this |
| * method overrides. |
| * |
| * \param overridden A pointer whose pointee will be replaced with a |
| * pointer to an array of cursors, representing the set of overridden |
| * methods. If there are no overridden methods, the pointee will be |
| * set to NULL. The pointee must be freed via a call to |
| * \c clang_disposeOverriddenCursors(). |
| * |
| * \param num_overridden A pointer to the number of overridden |
| * functions, will be set to the number of overridden functions in the |
| * array pointed to by \p overridden. |
| */ |
| CINDEX_LINKAGE void clang_getOverriddenCursors(CXCursor cursor, |
| CXCursor **overridden, |
| unsigned *num_overridden); |
| |
| /** |
| * \brief Free the set of overridden cursors returned by \c |
| * clang_getOverriddenCursors(). |
| */ |
| CINDEX_LINKAGE void clang_disposeOverriddenCursors(CXCursor *overridden); |
| |
| /** |
| * \brief Retrieve the file that is included by the given inclusion directive |
| * cursor. |
| */ |
| CINDEX_LINKAGE CXFile clang_getIncludedFile(CXCursor cursor); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_CURSOR_SOURCE Mapping between cursors and source code |
| * |
| * Cursors represent a location within the Abstract Syntax Tree (AST). These |
| * routines help map between cursors and the physical locations where the |
| * described entities occur in the source code. The mapping is provided in |
| * both directions, so one can map from source code to the AST and back. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Map a source location to the cursor that describes the entity at that |
| * location in the source code. |
| * |
| * clang_getCursor() maps an arbitrary source location within a translation |
| * unit down to the most specific cursor that describes the entity at that |
| * location. For example, given an expression \c x + y, invoking |
| * clang_getCursor() with a source location pointing to "x" will return the |
| * cursor for "x"; similarly for "y". If the cursor points anywhere between |
| * "x" or "y" (e.g., on the + or the whitespace around it), clang_getCursor() |
| * will return a cursor referring to the "+" expression. |
| * |
| * \returns a cursor representing the entity at the given source location, or |
| * a NULL cursor if no such entity can be found. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getCursor(CXTranslationUnit, CXSourceLocation); |
| |
| /** |
| * \brief Retrieve the physical location of the source constructor referenced |
| * by the given cursor. |
| * |
| * The location of a declaration is typically the location of the name of that |
| * declaration, where the name of that declaration would occur if it is |
| * unnamed, or some keyword that introduces that particular declaration. |
| * The location of a reference is where that reference occurs within the |
| * source code. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getCursorLocation(CXCursor); |
| |
| /** |
| * \brief Retrieve the physical extent of the source construct referenced by |
| * the given cursor. |
| * |
| * The extent of a cursor starts with the file/line/column pointing at the |
| * first character within the source construct that the cursor refers to and |
| * ends with the last character withinin that source construct. For a |
| * declaration, the extent covers the declaration itself. For a reference, |
| * the extent covers the location of the reference (e.g., where the referenced |
| * entity was actually used). |
| */ |
| CINDEX_LINKAGE CXSourceRange clang_getCursorExtent(CXCursor); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_TYPES Type information for CXCursors |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Describes the kind of type |
| */ |
| enum CXTypeKind { |
| /** |
| * \brief Reprents an invalid type (e.g., where no type is available). |
| */ |
| CXType_Invalid = 0, |
| |
| /** |
| * \brief A type whose specific kind is not exposed via this |
| * interface. |
| */ |
| CXType_Unexposed = 1, |
| |
| /* Builtin types */ |
| CXType_Void = 2, |
| CXType_Bool = 3, |
| CXType_Char_U = 4, |
| CXType_UChar = 5, |
| CXType_Char16 = 6, |
| CXType_Char32 = 7, |
| CXType_UShort = 8, |
| CXType_UInt = 9, |
| CXType_ULong = 10, |
| CXType_ULongLong = 11, |
| CXType_UInt128 = 12, |
| CXType_Char_S = 13, |
| CXType_SChar = 14, |
| CXType_WChar = 15, |
| CXType_Short = 16, |
| CXType_Int = 17, |
| CXType_Long = 18, |
| CXType_LongLong = 19, |
| CXType_Int128 = 20, |
| CXType_Float = 21, |
| CXType_Double = 22, |
| CXType_LongDouble = 23, |
| CXType_NullPtr = 24, |
| CXType_Overload = 25, |
| CXType_Dependent = 26, |
| CXType_ObjCId = 27, |
| CXType_ObjCClass = 28, |
| CXType_ObjCSel = 29, |
| CXType_FirstBuiltin = CXType_Void, |
| CXType_LastBuiltin = CXType_ObjCSel, |
| |
| CXType_Complex = 100, |
| CXType_Pointer = 101, |
| CXType_BlockPointer = 102, |
| CXType_LValueReference = 103, |
| CXType_RValueReference = 104, |
| CXType_Record = 105, |
| CXType_Enum = 106, |
| CXType_Typedef = 107, |
| CXType_ObjCInterface = 108, |
| CXType_ObjCObjectPointer = 109, |
| CXType_FunctionNoProto = 110, |
| CXType_FunctionProto = 111 |
| }; |
| |
| /** |
| * \brief The type of an element in the abstract syntax tree. |
| * |
| */ |
| typedef struct { |
| enum CXTypeKind kind; |
| void *data[2]; |
| } CXType; |
| |
| /** |
| * \brief Retrieve the type of a CXCursor (if any). |
| */ |
| CINDEX_LINKAGE CXType clang_getCursorType(CXCursor C); |
| |
| /** |
| * \determine Determine whether two CXTypes represent the same type. |
| * |
| * \returns non-zero if the CXTypes represent the same type and |
| zero otherwise. |
| */ |
| CINDEX_LINKAGE unsigned clang_equalTypes(CXType A, CXType B); |
| |
| /** |
| * \brief Return the canonical type for a CXType. |
| * |
| * Clang's type system explicitly models typedefs and all the ways |
| * a specific type can be represented. The canonical type is the underlying |
| * type with all the "sugar" removed. For example, if 'T' is a typedef |
| * for 'int', the canonical type for 'T' would be 'int'. |
| */ |
| CINDEX_LINKAGE CXType clang_getCanonicalType(CXType T); |
| |
| /** |
| * \determine Determine whether a CXType has the "const" qualifier set, |
| * without looking through typedefs that may have added "const" at a different level. |
| */ |
| CINDEX_LINKAGE unsigned clang_isConstQualifiedType(CXType T); |
| |
| /** |
| * \determine Determine whether a CXType has the "volatile" qualifier set, |
| * without looking through typedefs that may have added "volatile" at a different level. |
| */ |
| CINDEX_LINKAGE unsigned clang_isVolatileQualifiedType(CXType T); |
| |
| /** |
| * \determine Determine whether a CXType has the "restrict" qualifier set, |
| * without looking through typedefs that may have added "restrict" at a different level. |
| */ |
| CINDEX_LINKAGE unsigned clang_isRestrictQualifiedType(CXType T); |
| |
| /** |
| * \brief For pointer types, returns the type of the pointee. |
| * |
| */ |
| CINDEX_LINKAGE CXType clang_getPointeeType(CXType T); |
| |
| /** |
| * \brief Return the cursor for the declaration of the given type. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getTypeDeclaration(CXType T); |
| |
| /** |
| * Returns the Objective-C type encoding for the specified declaration. |
| */ |
| CINDEX_LINKAGE CXString clang_getDeclObjCTypeEncoding(CXCursor C); |
| |
| /** |
| * \brief Retrieve the spelling of a given CXTypeKind. |
| */ |
| CINDEX_LINKAGE CXString clang_getTypeKindSpelling(enum CXTypeKind K); |
| |
| /** |
| * \brief Retrieve the result type associated with a function type. |
| */ |
| CINDEX_LINKAGE CXType clang_getResultType(CXType T); |
| |
| /** |
| * \brief Retrieve the result type associated with a given cursor. This only |
| * returns a valid type of the cursor refers to a function or method. |
| */ |
| CINDEX_LINKAGE CXType clang_getCursorResultType(CXCursor C); |
| |
| /** |
| * \brief Return 1 if the CXType is a POD (plain old data) type, and 0 |
| * otherwise. |
| */ |
| CINDEX_LINKAGE unsigned clang_isPODType(CXType T); |
| |
| /** |
| * \brief Returns 1 if the base class specified by the cursor with kind |
| * CX_CXXBaseSpecifier is virtual. |
| */ |
| CINDEX_LINKAGE unsigned clang_isVirtualBase(CXCursor); |
| |
| /** |
| * \brief Represents the C++ access control level to a base class for a |
| * cursor with kind CX_CXXBaseSpecifier. |
| */ |
| enum CX_CXXAccessSpecifier { |
| CX_CXXInvalidAccessSpecifier, |
| CX_CXXPublic, |
| CX_CXXProtected, |
| CX_CXXPrivate |
| }; |
| |
| /** |
| * \brief Returns the access control level for the C++ base specifier |
| * represented by a cursor with kind CX_CXXBaseSpecifier. |
| */ |
| CINDEX_LINKAGE enum CX_CXXAccessSpecifier clang_getCXXAccessSpecifier(CXCursor); |
| |
| /** |
| * \brief Determine the number of overloaded declarations referenced by a |
| * \c CXCursor_OverloadedDeclRef cursor. |
| * |
| * \param cursor The cursor whose overloaded declarations are being queried. |
| * |
| * \returns The number of overloaded declarations referenced by \c cursor. If it |
| * is not a \c CXCursor_OverloadedDeclRef cursor, returns 0. |
| */ |
| CINDEX_LINKAGE unsigned clang_getNumOverloadedDecls(CXCursor cursor); |
| |
| /** |
| * \brief Retrieve a cursor for one of the overloaded declarations referenced |
| * by a \c CXCursor_OverloadedDeclRef cursor. |
| * |
| * \param cursor The cursor whose overloaded declarations are being queried. |
| * |
| * \param index The zero-based index into the set of overloaded declarations in |
| * the cursor. |
| * |
| * \returns A cursor representing the declaration referenced by the given |
| * \c cursor at the specified \c index. If the cursor does not have an |
| * associated set of overloaded declarations, or if the index is out of bounds, |
| * returns \c clang_getNullCursor(); |
| */ |
| CINDEX_LINKAGE CXCursor clang_getOverloadedDecl(CXCursor cursor, |
| unsigned index); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_ATTRIBUTES Information for attributes |
| * |
| * @{ |
| */ |
| |
| |
| /** |
| * \brief For cursors representing an iboutletcollection attribute, |
| * this function returns the collection element type. |
| * |
| */ |
| CINDEX_LINKAGE CXType clang_getIBOutletCollectionType(CXCursor); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_CURSOR_TRAVERSAL Traversing the AST with cursors |
| * |
| * These routines provide the ability to traverse the abstract syntax tree |
| * using cursors. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Describes how the traversal of the children of a particular |
| * cursor should proceed after visiting a particular child cursor. |
| * |
| * A value of this enumeration type should be returned by each |
| * \c CXCursorVisitor to indicate how clang_visitChildren() proceed. |
| */ |
| enum CXChildVisitResult { |
| /** |
| * \brief Terminates the cursor traversal. |
| */ |
| CXChildVisit_Break, |
| /** |
| * \brief Continues the cursor traversal with the next sibling of |
| * the cursor just visited, without visiting its children. |
| */ |
| CXChildVisit_Continue, |
| /** |
| * \brief Recursively traverse the children of this cursor, using |
| * the same visitor and client data. |
| */ |
| CXChildVisit_Recurse |
| }; |
| |
| /** |
| * \brief Visitor invoked for each cursor found by a traversal. |
| * |
| * This visitor function will be invoked for each cursor found by |
| * clang_visitCursorChildren(). Its first argument is the cursor being |
| * visited, its second argument is the parent visitor for that cursor, |
| * and its third argument is the client data provided to |
| * clang_visitCursorChildren(). |
| * |
| * The visitor should return one of the \c CXChildVisitResult values |
| * to direct clang_visitCursorChildren(). |
| */ |
| typedef enum CXChildVisitResult (*CXCursorVisitor)(CXCursor cursor, |
| CXCursor parent, |
| CXClientData client_data); |
| |
| /** |
| * \brief Visit the children of a particular cursor. |
| * |
| * This function visits all the direct children of the given cursor, |
| * invoking the given \p visitor function with the cursors of each |
| * visited child. The traversal may be recursive, if the visitor returns |
| * \c CXChildVisit_Recurse. The traversal may also be ended prematurely, if |
| * the visitor returns \c CXChildVisit_Break. |
| * |
| * \param parent the cursor whose child may be visited. All kinds of |
| * cursors can be visited, including invalid cursors (which, by |
| * definition, have no children). |
| * |
| * \param visitor the visitor function that will be invoked for each |
| * child of \p parent. |
| * |
| * \param client_data pointer data supplied by the client, which will |
| * be passed to the visitor each time it is invoked. |
| * |
| * \returns a non-zero value if the traversal was terminated |
| * prematurely by the visitor returning \c CXChildVisit_Break. |
| */ |
| CINDEX_LINKAGE unsigned clang_visitChildren(CXCursor parent, |
| CXCursorVisitor visitor, |
| CXClientData client_data); |
| #ifdef __has_feature |
| # if __has_feature(blocks) |
| /** |
| * \brief Visitor invoked for each cursor found by a traversal. |
| * |
| * This visitor block will be invoked for each cursor found by |
| * clang_visitChildrenWithBlock(). Its first argument is the cursor being |
| * visited, its second argument is the parent visitor for that cursor. |
| * |
| * The visitor should return one of the \c CXChildVisitResult values |
| * to direct clang_visitChildrenWithBlock(). |
| */ |
| typedef enum CXChildVisitResult |
| (^CXCursorVisitorBlock)(CXCursor cursor, CXCursor parent); |
| |
| /** |
| * Visits the children of a cursor using the specified block. Behaves |
| * identically to clang_visitChildren() in all other respects. |
| */ |
| unsigned clang_visitChildrenWithBlock(CXCursor parent, |
| CXCursorVisitorBlock block); |
| # endif |
| #endif |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_CURSOR_XREF Cross-referencing in the AST |
| * |
| * These routines provide the ability to determine references within and |
| * across translation units, by providing the names of the entities referenced |
| * by cursors, follow reference cursors to the declarations they reference, |
| * and associate declarations with their definitions. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Retrieve a Unified Symbol Resolution (USR) for the entity referenced |
| * by the given cursor. |
| * |
| * A Unified Symbol Resolution (USR) is a string that identifies a particular |
| * entity (function, class, variable, etc.) within a program. USRs can be |
| * compared across translation units to determine, e.g., when references in |
| * one translation refer to an entity defined in another translation unit. |
| */ |
| CINDEX_LINKAGE CXString clang_getCursorUSR(CXCursor); |
| |
| /** |
| * \brief Construct a USR for a specified Objective-C class. |
| */ |
| CINDEX_LINKAGE CXString clang_constructUSR_ObjCClass(const char *class_name); |
| |
| /** |
| * \brief Construct a USR for a specified Objective-C category. |
| */ |
| CINDEX_LINKAGE CXString |
| clang_constructUSR_ObjCCategory(const char *class_name, |
| const char *category_name); |
| |
| /** |
| * \brief Construct a USR for a specified Objective-C protocol. |
| */ |
| CINDEX_LINKAGE CXString |
| clang_constructUSR_ObjCProtocol(const char *protocol_name); |
| |
| |
| /** |
| * \brief Construct a USR for a specified Objective-C instance variable and |
| * the USR for its containing class. |
| */ |
| CINDEX_LINKAGE CXString clang_constructUSR_ObjCIvar(const char *name, |
| CXString classUSR); |
| |
| /** |
| * \brief Construct a USR for a specified Objective-C method and |
| * the USR for its containing class. |
| */ |
| CINDEX_LINKAGE CXString clang_constructUSR_ObjCMethod(const char *name, |
| unsigned isInstanceMethod, |
| CXString classUSR); |
| |
| /** |
| * \brief Construct a USR for a specified Objective-C property and the USR |
| * for its containing class. |
| */ |
| CINDEX_LINKAGE CXString clang_constructUSR_ObjCProperty(const char *property, |
| CXString classUSR); |
| |
| /** |
| * \brief Retrieve a name for the entity referenced by this cursor. |
| */ |
| CINDEX_LINKAGE CXString clang_getCursorSpelling(CXCursor); |
| |
| /** |
| * \brief Retrieve the display name for the entity referenced by this cursor. |
| * |
| * The display name contains extra information that helps identify the cursor, |
| * such as the parameters of a function or template or the arguments of a |
| * class template specialization. |
| */ |
| CINDEX_LINKAGE CXString clang_getCursorDisplayName(CXCursor); |
| |
| /** \brief For a cursor that is a reference, retrieve a cursor representing the |
| * entity that it references. |
| * |
| * Reference cursors refer to other entities in the AST. For example, an |
| * Objective-C superclass reference cursor refers to an Objective-C class. |
| * This function produces the cursor for the Objective-C class from the |
| * cursor for the superclass reference. If the input cursor is a declaration or |
| * definition, it returns that declaration or definition unchanged. |
| * Otherwise, returns the NULL cursor. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getCursorReferenced(CXCursor); |
| |
| /** |
| * \brief For a cursor that is either a reference to or a declaration |
| * of some entity, retrieve a cursor that describes the definition of |
| * that entity. |
| * |
| * Some entities can be declared multiple times within a translation |
| * unit, but only one of those declarations can also be a |
| * definition. For example, given: |
| * |
| * \code |
| * int f(int, int); |
| * int g(int x, int y) { return f(x, y); } |
| * int f(int a, int b) { return a + b; } |
| * int f(int, int); |
| * \endcode |
| * |
| * there are three declarations of the function "f", but only the |
| * second one is a definition. The clang_getCursorDefinition() |
| * function will take any cursor pointing to a declaration of "f" |
| * (the first or fourth lines of the example) or a cursor referenced |
| * that uses "f" (the call to "f' inside "g") and will return a |
| * declaration cursor pointing to the definition (the second "f" |
| * declaration). |
| * |
| * If given a cursor for which there is no corresponding definition, |
| * e.g., because there is no definition of that entity within this |
| * translation unit, returns a NULL cursor. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getCursorDefinition(CXCursor); |
| |
| /** |
| * \brief Determine whether the declaration pointed to by this cursor |
| * is also a definition of that entity. |
| */ |
| CINDEX_LINKAGE unsigned clang_isCursorDefinition(CXCursor); |
| |
| /** |
| * \brief Retrieve the canonical cursor corresponding to the given cursor. |
| * |
| * In the C family of languages, many kinds of entities can be declared several |
| * times within a single translation unit. For example, a structure type can |
| * be forward-declared (possibly multiple times) and later defined: |
| * |
| * \code |
| * struct X; |
| * struct X; |
| * struct X { |
| * int member; |
| * }; |
| * \endcode |
| * |
| * The declarations and the definition of \c X are represented by three |
| * different cursors, all of which are declarations of the same underlying |
| * entity. One of these cursor is considered the "canonical" cursor, which |
| * is effectively the representative for the underlying entity. One can |
| * determine if two cursors are declarations of the same underlying entity by |
| * comparing their canonical cursors. |
| * |
| * \returns The canonical cursor for the entity referred to by the given cursor. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getCanonicalCursor(CXCursor); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_CPP C++ AST introspection |
| * |
| * The routines in this group provide access information in the ASTs specific |
| * to C++ language features. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Determine if a C++ member function or member function template is |
| * declared 'static'. |
| */ |
| CINDEX_LINKAGE unsigned clang_CXXMethod_isStatic(CXCursor C); |
| |
| /** |
| * \brief Given a cursor that represents a template, determine |
| * the cursor kind of the specializations would be generated by instantiating |
| * the template. |
| * |
| * This routine can be used to determine what flavor of function template, |
| * class template, or class template partial specialization is stored in the |
| * cursor. For example, it can describe whether a class template cursor is |
| * declared with "struct", "class" or "union". |
| * |
| * \param C The cursor to query. This cursor should represent a template |
| * declaration. |
| * |
| * \returns The cursor kind of the specializations that would be generated |
| * by instantiating the template \p C. If \p C is not a template, returns |
| * \c CXCursor_NoDeclFound. |
| */ |
| CINDEX_LINKAGE enum CXCursorKind clang_getTemplateCursorKind(CXCursor C); |
| |
| /** |
| * \brief Given a cursor that may represent a specialization or instantiation |
| * of a template, retrieve the cursor that represents the template that it |
| * specializes or from which it was instantiated. |
| * |
| * This routine determines the template involved both for explicit |
| * specializations of templates and for implicit instantiations of the template, |
| * both of which are referred to as "specializations". For a class template |
| * specialization (e.g., \c std::vector<bool>), this routine will return |
| * either the primary template (\c std::vector) or, if the specialization was |
| * instantiated from a class template partial specialization, the class template |
| * partial specialization. For a class template partial specialization and a |
| * function template specialization (including instantiations), this |
| * this routine will return the specialized template. |
| * |
| * For members of a class template (e.g., member functions, member classes, or |
| * static data members), returns the specialized or instantiated member. |
| * Although not strictly "templates" in the C++ language, members of class |
| * templates have the same notions of specializations and instantiations that |
| * templates do, so this routine treats them similarly. |
| * |
| * \param C A cursor that may be a specialization of a template or a member |
| * of a template. |
| * |
| * \returns If the given cursor is a specialization or instantiation of a |
| * template or a member thereof, the template or member that it specializes or |
| * from which it was instantiated. Otherwise, returns a NULL cursor. |
| */ |
| CINDEX_LINKAGE CXCursor clang_getSpecializedCursorTemplate(CXCursor C); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_LEX Token extraction and manipulation |
| * |
| * The routines in this group provide access to the tokens within a |
| * translation unit, along with a semantic mapping of those tokens to |
| * their corresponding cursors. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Describes a kind of token. |
| */ |
| typedef enum CXTokenKind { |
| /** |
| * \brief A token that contains some kind of punctuation. |
| */ |
| CXToken_Punctuation, |
| |
| /** |
| * \brief A language keyword. |
| */ |
| CXToken_Keyword, |
| |
| /** |
| * \brief An identifier (that is not a keyword). |
| */ |
| CXToken_Identifier, |
| |
| /** |
| * \brief A numeric, string, or character literal. |
| */ |
| CXToken_Literal, |
| |
| /** |
| * \brief A comment. |
| */ |
| CXToken_Comment |
| } CXTokenKind; |
| |
| /** |
| * \brief Describes a single preprocessing token. |
| */ |
| typedef struct { |
| unsigned int_data[4]; |
| void *ptr_data; |
| } CXToken; |
| |
| /** |
| * \brief Determine the kind of the given token. |
| */ |
| CINDEX_LINKAGE CXTokenKind clang_getTokenKind(CXToken); |
| |
| /** |
| * \brief Determine the spelling of the given token. |
| * |
| * The spelling of a token is the textual representation of that token, e.g., |
| * the text of an identifier or keyword. |
| */ |
| CINDEX_LINKAGE CXString clang_getTokenSpelling(CXTranslationUnit, CXToken); |
| |
| /** |
| * \brief Retrieve the source location of the given token. |
| */ |
| CINDEX_LINKAGE CXSourceLocation clang_getTokenLocation(CXTranslationUnit, |
| CXToken); |
| |
| /** |
| * \brief Retrieve a source range that covers the given token. |
| */ |
| CINDEX_LINKAGE CXSourceRange clang_getTokenExtent(CXTranslationUnit, CXToken); |
| |
| /** |
| * \brief Tokenize the source code described by the given range into raw |
| * lexical tokens. |
| * |
| * \param TU the translation unit whose text is being tokenized. |
| * |
| * \param Range the source range in which text should be tokenized. All of the |
| * tokens produced by tokenization will fall within this source range, |
| * |
| * \param Tokens this pointer will be set to point to the array of tokens |
| * that occur within the given source range. The returned pointer must be |
| * freed with clang_disposeTokens() before the translation unit is destroyed. |
| * |
| * \param NumTokens will be set to the number of tokens in the \c *Tokens |
| * array. |
| * |
| */ |
| CINDEX_LINKAGE void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range, |
| CXToken **Tokens, unsigned *NumTokens); |
| |
| /** |
| * \brief Annotate the given set of tokens by providing cursors for each token |
| * that can be mapped to a specific entity within the abstract syntax tree. |
| * |
| * This token-annotation routine is equivalent to invoking |
| * clang_getCursor() for the source locations of each of the |
| * tokens. The cursors provided are filtered, so that only those |
| * cursors that have a direct correspondence to the token are |
| * accepted. For example, given a function call \c f(x), |
| * clang_getCursor() would provide the following cursors: |
| * |
| * * when the cursor is over the 'f', a DeclRefExpr cursor referring to 'f'. |
| * * when the cursor is over the '(' or the ')', a CallExpr referring to 'f'. |
| * * when the cursor is over the 'x', a DeclRefExpr cursor referring to 'x'. |
| * |
| * Only the first and last of these cursors will occur within the |
| * annotate, since the tokens "f" and "x' directly refer to a function |
| * and a variable, respectively, but the parentheses are just a small |
| * part of the full syntax of the function call expression, which is |
| * not provided as an annotation. |
| * |
| * \param TU the translation unit that owns the given tokens. |
| * |
| * \param Tokens the set of tokens to annotate. |
| * |
| * \param NumTokens the number of tokens in \p Tokens. |
| * |
| * \param Cursors an array of \p NumTokens cursors, whose contents will be |
| * replaced with the cursors corresponding to each token. |
| */ |
| CINDEX_LINKAGE void clang_annotateTokens(CXTranslationUnit TU, |
| CXToken *Tokens, unsigned NumTokens, |
| CXCursor *Cursors); |
| |
| /** |
| * \brief Free the given set of tokens. |
| */ |
| CINDEX_LINKAGE void clang_disposeTokens(CXTranslationUnit TU, |
| CXToken *Tokens, unsigned NumTokens); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_DEBUG Debugging facilities |
| * |
| * These routines are used for testing and debugging, only, and should not |
| * be relied upon. |
| * |
| * @{ |
| */ |
| |
| /* for debug/testing */ |
| CINDEX_LINKAGE CXString clang_getCursorKindSpelling(enum CXCursorKind Kind); |
| CINDEX_LINKAGE void clang_getDefinitionSpellingAndExtent(CXCursor, |
| const char **startBuf, |
| const char **endBuf, |
| unsigned *startLine, |
| unsigned *startColumn, |
| unsigned *endLine, |
| unsigned *endColumn); |
| CINDEX_LINKAGE void clang_enableStackTraces(void); |
| CINDEX_LINKAGE void clang_executeOnThread(void (*fn)(void*), void *user_data, |
| unsigned stack_size); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * \defgroup CINDEX_CODE_COMPLET Code completion |
| * |
| * Code completion involves taking an (incomplete) source file, along with |
| * knowledge of where the user is actively editing that file, and suggesting |
| * syntactically- and semantically-valid constructs that the user might want to |
| * use at that particular point in the source code. These data structures and |
| * routines provide support for code completion. |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief A semantic string that describes a code-completion result. |
| * |
| * A semantic string that describes the formatting of a code-completion |
| * result as a single "template" of text that should be inserted into the |
| * source buffer when a particular code-completion result is selected. |
| * Each semantic string is made up of some number of "chunks", each of which |
| * contains some text along with a description of what that text means, e.g., |
| * the name of the entity being referenced, whether the text chunk is part of |
| * the template, or whether it is a "placeholder" that the user should replace |
| * with actual code,of a specific kind. See \c CXCompletionChunkKind for a |
| * description of the different kinds of chunks. |
| */ |
| typedef void *CXCompletionString; |
| |
| /** |
| * \brief A single result of code completion. |
| */ |
| typedef struct { |
| /** |
| * \brief The kind of entity that this completion refers to. |
| * |
| * The cursor kind will be a macro, keyword, or a declaration (one of the |
| * *Decl cursor kinds), describing the entity that the completion is |
| * referring to. |
| * |
| * \todo In the future, we would like to provide a full cursor, to allow |
| * the client to extract additional information from declaration. |
| */ |
| enum CXCursorKind CursorKind; |
| |
| /** |
| * \brief The code-completion string that describes how to insert this |
| * code-completion result into the editing buffer. |
| */ |
| CXCompletionString CompletionString; |
| } CXCompletionResult; |
| |
| /** |
| * \brief Describes a single piece of text within a code-completion string. |
| * |
| * Each "chunk" within a code-completion string (\c CXCompletionString) is |
| * either a piece of text with a specific "kind" that describes how that text |
| * should be interpreted by the client or is another completion string. |
| */ |
| enum CXCompletionChunkKind { |
| /** |
| * \brief A code-completion string that describes "optional" text that |
| * could be a part of the template (but is not required). |
| * |
| * The Optional chunk is the only kind of chunk that has a code-completion |
| * string for its representation, which is accessible via |
| * \c clang_getCompletionChunkCompletionString(). The code-completion string |
| * describes an additional part of the template that is completely optional. |
| * For example, optional chunks can be used to describe the placeholders for |
| * arguments that match up with defaulted function parameters, e.g. given: |
| * |
| * \code |
| * void f(int x, float y = 3.14, double z = 2.71828); |
| * \endcode |
| * |
| * The code-completion string for this function would contain: |
| * - a TypedText chunk for "f". |
| * - a LeftParen chunk for "(". |
| * - a Placeholder chunk for "int x" |
| * - an Optional chunk containing the remaining defaulted arguments, e.g., |
| * - a Comma chunk for "," |
| * - a Placeholder chunk for "float y" |
| * - an Optional chunk containing the last defaulted argument: |
| * - a Comma chunk for "," |
| * - a Placeholder chunk for "double z" |
| * - a RightParen chunk for ")" |
| * |
| * There are many ways to handle Optional chunks. Two simple approaches are: |
| * - Completely ignore optional chunks, in which case the template for the |
| * function "f" would only include the first parameter ("int x"). |
| * - Fully expand all optional chunks, in which case the template for the |
| * function "f" would have all of the parameters. |
| */ |
| CXCompletionChunk_Optional, |
| /** |
| * \brief Text that a user would be expected to type to get this |
| * code-completion result. |
| * |
| * There will be exactly one "typed text" chunk in a semantic string, which |
| * will typically provide the spelling of a keyword or the name of a |
| * declaration that could be used at the current code point. Clients are |
| * expected to filter the code-completion results based on the text in this |
| * chunk. |
| */ |
| CXCompletionChunk_TypedText, |
| /** |
| * \brief Text that should be inserted as part of a code-completion result. |
| * |
| * A "text" chunk represents text that is part of the template to be |
| * inserted into user code should this particular code-completion result |
| * be selected. |
| */ |
| CXCompletionChunk_Text, |
| /** |
| * \brief Placeholder text that should be replaced by the user. |
| * |
| * A "placeholder" chunk marks a place where the user should insert text |
| * into the code-completion template. For example, placeholders might mark |
| * the function parameters for a function declaration, to indicate that the |
| * user should provide arguments for each of those parameters. The actual |
| * text in a placeholder is a suggestion for the text to display before |
| * the user replaces the placeholder with real code. |
| */ |
| CXCompletionChunk_Placeholder, |
| /** |
| * \brief Informative text that should be displayed but never inserted as |
| * part of the template. |
| * |
| * An "informative" chunk contains annotations that can be displayed to |
| * help the user decide whether a particular code-completion result is the |
| * right option, but which is not part of the actual template to be inserted |
| * by code completion. |
| */ |
| CXCompletionChunk_Informative, |
| /** |
| * \brief Text that describes the current parameter when code-completion is |
| * referring to function call, message send, or template specialization. |
| * |
| * A "current parameter" chunk occurs when code-completion is providing |
| * information about a parameter corresponding to the argument at the |
| * code-completion point. For example, given a function |
| * |
| * \code |
| * int add(int x, int y); |
| * \endcode |
| * |
| * and the source code \c add(, where the code-completion point is after the |
| * "(", the code-completion string will contain a "current parameter" chunk |
| * for "int x", indicating that the current argument will initialize that |
| * parameter. After typing further, to \c add(17, (where the code-completion |
| * point is after the ","), the code-completion string will contain a |
| * "current paremeter" chunk to "int y". |
| */ |
| CXCompletionChunk_CurrentParameter, |
| /** |
| * \brief A left parenthesis ('('), used to initiate a function call or |
| * signal the beginning of a function parameter list. |
| */ |
| CXCompletionChunk_LeftParen, |
| /** |
| * \brief A right parenthesis (')'), used to finish a function call or |
| * signal the end of a function parameter list. |
| */ |
| CXCompletionChunk_RightParen, |
| /** |
| * \brief A left bracket ('['). |
| */ |
| CXCompletionChunk_LeftBracket, |
| /** |
| * \brief A right bracket (']'). |
| */ |
| CXCompletionChunk_RightBracket, |
| /** |
| * \brief A left brace ('{'). |
| */ |
| CXCompletionChunk_LeftBrace, |
| /** |
| * \brief A right brace ('}'). |
| */ |
| CXCompletionChunk_RightBrace, |
| /** |
| * \brief A left angle bracket ('<'). |
| */ |
| CXCompletionChunk_LeftAngle, |
| /** |
| * \brief A right angle bracket ('>'). |
| */ |
| CXCompletionChunk_RightAngle, |
| /** |
| * \brief A comma separator (','). |
| */ |
| CXCompletionChunk_Comma, |
| /** |
| * \brief Text that specifies the result type of a given result. |
| * |
| * This special kind of informative chunk is not meant to be inserted into |
| * the text buffer. Rather, it is meant to illustrate the type that an |
| * expression using the given completion string would have. |
| */ |
| CXCompletionChunk_ResultType, |
| /** |
| * \brief A colon (':'). |
| */ |
| CXCompletionChunk_Colon, |
| /** |
| * \brief A semicolon (';'). |
| */ |
| CXCompletionChunk_SemiColon, |
| /** |
| * \brief An '=' sign. |
| */ |
| CXCompletionChunk_Equal, |
| /** |
| * Horizontal space (' '). |
| */ |
| CXCompletionChunk_HorizontalSpace, |
| /** |
| * Vertical space ('\n'), after which it is generally a good idea to |
| * perform indentation. |
| */ |
| CXCompletionChunk_VerticalSpace |
| }; |
| |
| /** |
| * \brief Determine the kind of a particular chunk within a completion string. |
| * |
| * \param completion_string the completion string to query. |
| * |
| * \param chunk_number the 0-based index of the chunk in the completion string. |
| * |
| * \returns the kind of the chunk at the index \c chunk_number. |
| */ |
| CINDEX_LINKAGE enum CXCompletionChunkKind |
| clang_getCompletionChunkKind(CXCompletionString completion_string, |
| unsigned chunk_number); |
| |
| /** |
| * \brief Retrieve the text associated with a particular chunk within a |
| * completion string. |
| * |
| * \param completion_string the completion string to query. |
| * |
| * \param chunk_number the 0-based index of the chunk in the completion string. |
| * |
| * \returns the text associated with the chunk at index \c chunk_number. |
| */ |
| CINDEX_LINKAGE CXString |
| clang_getCompletionChunkText(CXCompletionString completion_string, |
| unsigned chunk_number); |
| |
| /** |
| * \brief Retrieve the completion string associated with a particular chunk |
| * within a completion string. |
| * |
| * \param completion_string the completion string to query. |
| * |
| * \param chunk_number the 0-based index of the chunk in the completion string. |
| * |
| * \returns the completion string associated with the chunk at index |
| * \c chunk_number, or NULL if that chunk is not represented by a completion |
| * string. |
| */ |
| CINDEX_LINKAGE CXCompletionString |
| clang_getCompletionChunkCompletionString(CXCompletionString completion_string, |
| unsigned chunk_number); |
| |
| /** |
| * \brief Retrieve the number of chunks in the given code-completion string. |
| */ |
| CINDEX_LINKAGE unsigned |
| clang_getNumCompletionChunks(CXCompletionString completion_string); |
| |
| /** |
| * \brief Determine the priority of this code completion. |
| * |
| * The priority of a code completion indicates how likely it is that this |
| * particular completion is the completion that the user will select. The |
| * priority is selected by various internal heuristics. |
| * |
| * \param completion_string The completion string to query. |
| * |
| * \returns The priority of this completion string. Smaller values indicate |
| * higher-priority (more likely) completions. |
| */ |
| CINDEX_LINKAGE unsigned |
| clang_getCompletionPriority(CXCompletionString completion_string); |
| |
| /** |
| * \brief Determine the availability of the entity that this code-completion |
| * string refers to. |
| * |
| * \param completion_string The completion string to query. |
| * |
| * \returns The availability of the completion string. |
| */ |
| CINDEX_LINKAGE enum CXAvailabilityKind |
| clang_getCompletionAvailability(CXCompletionString completion_string); |
| |
| /** |
| * \brief Contains the results of code-completion. |
| * |
| * This data structure contains the results of code completion, as |
| * produced by \c clang_codeCompleteAt(). Its contents must be freed by |
| * \c clang_disposeCodeCompleteResults. |
| */ |
| typedef struct { |
| /** |
| * \brief The code-completion results. |
| */ |
| CXCompletionResult *Results; |
| |
| /** |
| * \brief The number of code-completion results stored in the |
| * \c Results array. |
| */ |
| unsigned NumResults; |
| } CXCodeCompleteResults; |
| |
| /** |
| * \brief Flags that can be passed to \c clang_codeCompleteAt() to |
| * modify its behavior. |
| * |
| * The enumerators in this enumeration can be bitwise-OR'd together to |
| * provide multiple options to \c clang_codeCompleteAt(). |
| */ |
| enum CXCodeComplete_Flags { |
| /** |
| * \brief Whether to include macros within the set of code |
| * completions returned. |
| */ |
| CXCodeComplete_IncludeMacros = 0x01, |
| |
| /** |
| * \brief Whether to include code patterns for language constructs |
| * within the set of code completions, e.g., for loops. |
| */ |
| CXCodeComplete_IncludeCodePatterns = 0x02 |
| }; |
| |
| /** |
| * \brief Returns a default set of code-completion options that can be |
| * passed to\c clang_codeCompleteAt(). |
| */ |
| CINDEX_LINKAGE unsigned clang_defaultCodeCompleteOptions(void); |
| |
| /** |
| * \brief Perform code completion at a given location in a translation unit. |
| * |
| * This function performs code completion at a particular file, line, and |
| * column within source code, providing results that suggest potential |
| * code snippets based on the context of the completion. The basic model |
| * for code completion is that Clang will parse a complete source file, |
| * performing syntax checking up to the location where code-completion has |
| * been requested. At that point, a special code-completion token is passed |
| * to the parser, which recognizes this token and determines, based on the |
| * current location in the C/Objective-C/C++ grammar and the state of |
| * semantic analysis, what completions to provide. These completions are |
| * returned via a new \c CXCodeCompleteResults structure. |
| * |
| * Code completion itself is meant to be triggered by the client when the |
| * user types punctuation characters or whitespace, at which point the |
| * code-completion location will coincide with the cursor. For example, if \c p |
| * is a pointer, code-completion might be triggered after the "-" and then |
| * after the ">" in \c p->. When the code-completion location is afer the ">", |
| * the completion results will provide, e.g., the members of the struct that |
| * "p" points to. The client is responsible for placing the cursor at the |
| * beginning of the token currently being typed, then filtering the results |
| * based on the contents of the token. For example, when code-completing for |
| * the expression \c p->get, the client should provide the location just after |
| * the ">" (e.g., pointing at the "g") to this code-completion hook. Then, the |
| * client can filter the results based on the current token text ("get"), only |
| * showing those results that start with "get". The intent of this interface |
| * is to separate the relatively high-latency acquisition of code-completion |
| * results from the filtering of results on a per-character basis, which must |
| * have a lower latency. |
| * |
| * \param TU The translation unit in which code-completion should |
| * occur. The source files for this translation unit need not be |
| * completely up-to-date (and the contents of those source files may |
| * be overridden via \p unsaved_files). Cursors referring into the |
| * translation unit may be invalidated by this invocation. |
| * |
| * \param complete_filename The name of the source file where code |
| * completion should be performed. This filename may be any file |
| * included in the translation unit. |
| * |
| * \param complete_line The line at which code-completion should occur. |
| * |
| * \param complete_column The column at which code-completion should occur. |
| * Note that the column should point just after the syntactic construct that |
| * initiated code completion, and not in the middle of a lexical token. |
| * |
| * \param unsaved_files the Tiles that have not yet been saved to disk |
| * but may be required for parsing or code completion, including the |
| * contents of those files. The contents and name of these files (as |
| * specified by CXUnsavedFile) are copied when necessary, so the |
| * client only needs to guarantee their validity until the call to |
| * this function returns. |
| * |
| * \param num_unsaved_files The number of unsaved file entries in \p |
| * unsaved_files. |
| * |
| * \param options Extra options that control the behavior of code |
| * completion, expressed as a bitwise OR of the enumerators of the |
| * CXCodeComplete_Flags enumeration. The |
| * \c clang_defaultCodeCompleteOptions() function returns a default set |
| * of code-completion options. |
| * |
| * \returns If successful, a new \c CXCodeCompleteResults structure |
| * containing code-completion results, which should eventually be |
| * freed with \c clang_disposeCodeCompleteResults(). If code |
| * completion fails, returns NULL. |
| */ |
| CINDEX_LINKAGE |
| CXCodeCompleteResults *clang_codeCompleteAt(CXTranslationUnit TU, |
| const char *complete_filename, |
| unsigned complete_line, |
| unsigned complete_column, |
| struct CXUnsavedFile *unsaved_files, |
| unsigned num_unsaved_files, |
| unsigned options); |
| |
| /** |
| * \brief Sort the code-completion results in case-insensitive alphabetical |
| * order. |
| * |
| * \param Results The set of results to sort. |
| * \param NumResults The number of results in \p Results. |
| */ |
| CINDEX_LINKAGE |
| void clang_sortCodeCompletionResults(CXCompletionResult *Results, |
| unsigned NumResults); |
| |
| /** |
| * \brief Free the given set of code-completion results. |
| */ |
| CINDEX_LINKAGE |
| void clang_disposeCodeCompleteResults(CXCodeCompleteResults *Results); |
| |
| /** |
| * \brief Determine the number of diagnostics produced prior to the |
| * location where code completion was performed. |
| */ |
| CINDEX_LINKAGE |
| unsigned clang_codeCompleteGetNumDiagnostics(CXCodeCompleteResults *Results); |
| |
| /** |
| * \brief Retrieve a diagnostic associated with the given code completion. |
| * |
| * \param Result the code completion results to query. |
| * \param Index the zero-based diagnostic number to retrieve. |
| * |
| * \returns the requested diagnostic. This diagnostic must be freed |
| * via a call to \c clang_disposeDiagnostic(). |
| */ |
| CINDEX_LINKAGE |
| CXDiagnostic clang_codeCompleteGetDiagnostic(CXCodeCompleteResults *Results, |
| unsigned Index); |
| |
| /** |
| * @} |
| */ |
| |
| |
| /** |
| * \defgroup CINDEX_MISC Miscellaneous utility functions |
| * |
| * @{ |
| */ |
| |
| /** |
| * \brief Return a version string, suitable for showing to a user, but not |
| * intended to be parsed (the format is not guaranteed to be stable). |
| */ |
| CINDEX_LINKAGE CXString clang_getClangVersion(); |
| |
| |
| /** |
| * \brief Enable/disable crash recovery. |
| * |
| * \param Flag to indicate if crash recovery is enabled. A non-zero value |
| * enables crash recovery, while 0 disables it. |
| */ |
| CINDEX_LINKAGE void clang_toggleCrashRecovery(unsigned isEnabled); |
| |
| /** |
| * \brief Visitor invoked for each file in a translation unit |
| * (used with clang_getInclusions()). |
| * |
| * This visitor function will be invoked by clang_getInclusions() for each |
| * file included (either at the top-level or by #include directives) within |
| * a translation unit. The first argument is the file being included, and |
| * the second and third arguments provide the inclusion stack. The |
| * array is sorted in order of immediate inclusion. For example, |
| * the first element refers to the location that included 'included_file'. |
| */ |
| typedef void (*CXInclusionVisitor)(CXFile included_file, |
| CXSourceLocation* inclusion_stack, |
| unsigned include_len, |
| CXClientData client_data); |
| |
| /** |
| * \brief Visit the set of preprocessor inclusions in a translation unit. |
| * The visitor function is called with the provided data for every included |
| * file. This does not include headers included by the PCH file (unless one |
| * is inspecting the inclusions in the PCH file itself). |
| */ |
| CINDEX_LINKAGE void clang_getInclusions(CXTranslationUnit tu, |
| CXInclusionVisitor visitor, |
| CXClientData client_data); |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| #endif |
| |