blob: d409fdb60281fabaea6152b4a50e74680263c59a [file] [log] [blame]
//===--- Decl.h - Classes for representing declarations ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_DECL_H
#define LLVM_CLANG_AST_DECL_H
#include "clang/AST/APValue.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/Redeclarable.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/Linkage.h"
namespace clang {
class CXXTemporary;
class Expr;
class FunctionTemplateDecl;
class Stmt;
class CompoundStmt;
class StringLiteral;
class TemplateArgumentList;
class MemberSpecializationInfo;
class FunctionTemplateSpecializationInfo;
class DependentFunctionTemplateSpecializationInfo;
class TypeLoc;
class UnresolvedSetImpl;
/// \brief A container of type source information.
///
/// A client can read the relevant info using TypeLoc wrappers, e.g:
/// @code
/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
/// if (PointerLoc *PL = dyn_cast<PointerLoc>(&TL))
/// PL->getStarLoc().print(OS, SrcMgr);
/// @endcode
///
class TypeSourceInfo {
QualType Ty;
// Contains a memory block after the class, used for type source information,
// allocated by ASTContext.
friend class ASTContext;
TypeSourceInfo(QualType ty) : Ty(ty) { }
public:
/// \brief Return the type wrapped by this type source info.
QualType getType() const { return Ty; }
/// \brief Return the TypeLoc wrapper for the type source info.
TypeLoc getTypeLoc() const;
};
/// TranslationUnitDecl - The top declaration context.
class TranslationUnitDecl : public Decl, public DeclContext {
ASTContext &Ctx;
/// The (most recently entered) anonymous namespace for this
/// translation unit, if one has been created.
NamespaceDecl *AnonymousNamespace;
explicit TranslationUnitDecl(ASTContext &ctx)
: Decl(TranslationUnit, 0, SourceLocation()),
DeclContext(TranslationUnit),
Ctx(ctx), AnonymousNamespace(0) {}
public:
ASTContext &getASTContext() const { return Ctx; }
NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
static TranslationUnitDecl *Create(ASTContext &C);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const TranslationUnitDecl *D) { return true; }
static bool classofKind(Kind K) { return K == TranslationUnit; }
static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
}
static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
}
};
/// NamedDecl - This represents a decl with a name. Many decls have names such
/// as ObjCMethodDecl, but not @class, etc.
class NamedDecl : public Decl {
/// Name - The name of this declaration, which is typically a normal
/// identifier but may also be a special kind of name (C++
/// constructor, Objective-C selector, etc.)
DeclarationName Name;
protected:
NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
: Decl(DK, DC, L), Name(N) { }
public:
/// getIdentifier - Get the identifier that names this declaration,
/// if there is one. This will return NULL if this declaration has
/// no name (e.g., for an unnamed class) or if the name is a special
/// name (C++ constructor, Objective-C selector, etc.).
IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
/// getName - Get the name of identifier for this declaration as a StringRef.
/// This requires that the declaration have a name and that it be a simple
/// identifier.
llvm::StringRef getName() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getName() : "";
}
/// getNameAsCString - Get the name of identifier for this declaration as a
/// C string (const char*). This requires that the declaration have a name
/// and that it be a simple identifier.
//
// FIXME: Deprecated, move clients to getName().
const char *getNameAsCString() const {
assert(Name.isIdentifier() && "Name is not a simple identifier");
return getIdentifier() ? getIdentifier()->getNameStart() : "";
}
/// getNameAsString - Get a human-readable name for the declaration, even if
/// it is one of the special kinds of names (C++ constructor, Objective-C
/// selector, etc). Creating this name requires expensive string
/// manipulation, so it should be called only when performance doesn't matter.
/// For simple declarations, getNameAsCString() should suffice.
//
// FIXME: This function should be renamed to indicate that it is not just an
// alternate form of getName(), and clients should move as appropriate.
//
// FIXME: Deprecated, move clients to getName().
std::string getNameAsString() const { return Name.getAsString(); }
/// getDeclName - Get the actual, stored name of the declaration,
/// which may be a special name.
DeclarationName getDeclName() const { return Name; }
/// \brief Set the name of this declaration.
void setDeclName(DeclarationName N) { Name = N; }
/// getQualifiedNameAsString - Returns human-readable qualified name for
/// declaration, like A::B::i, for i being member of namespace A::B.
/// If declaration is not member of context which can be named (record,
/// namespace), it will return same result as getNameAsString().
/// Creating this name is expensive, so it should be called only when
/// performance doesn't matter.
std::string getQualifiedNameAsString() const;
std::string getQualifiedNameAsString(const PrintingPolicy &Policy) const;
/// getNameForDiagnostic - Appends a human-readable name for this
/// declaration into the given string.
///
/// This is the method invoked by Sema when displaying a NamedDecl
/// in a diagnostic. It does not necessarily produce the same
/// result as getNameAsString(); for example, class template
/// specializations are printed with their template arguments.
///
/// TODO: use an API that doesn't require so many temporary strings
virtual void getNameForDiagnostic(std::string &S,
const PrintingPolicy &Policy,
bool Qualified) const {
if (Qualified)
S += getQualifiedNameAsString(Policy);
else
S += getNameAsString();
}
/// declarationReplaces - Determine whether this declaration, if
/// known to be well-formed within its context, will replace the
/// declaration OldD if introduced into scope. A declaration will
/// replace another declaration if, for example, it is a
/// redeclaration of the same variable or function, but not if it is
/// a declaration of a different kind (function vs. class) or an
/// overloaded function.
bool declarationReplaces(NamedDecl *OldD) const;
/// \brief Determine whether this declaration has linkage.
bool hasLinkage() const;
/// \brief Determine whether this declaration is a C++ class member.
bool isCXXClassMember() const {
const DeclContext *DC = getDeclContext();
// C++0x [class.mem]p1:
// The enumerators of an unscoped enumeration defined in
// the class are members of the class.
// FIXME: support C++0x scoped enumerations.
if (isa<EnumDecl>(DC))
DC = DC->getParent();
return DC->isRecord();
}
/// \brief Given that this declaration is a C++ class member,
/// determine whether it's an instance member of its class.
bool isCXXInstanceMember() const;
/// \brief Determine what kind of linkage this entity has.
Linkage getLinkage() const;
/// \brief Looks through UsingDecls and ObjCCompatibleAliasDecls for
/// the underlying named decl.
NamedDecl *getUnderlyingDecl();
const NamedDecl *getUnderlyingDecl() const {
return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
}
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const NamedDecl *D) { return true; }
static bool classofKind(Kind K) { return K >= NamedFirst && K <= NamedLast; }
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const NamedDecl *ND) {
ND->getDeclName().printName(OS);
return OS;
}
/// NamespaceDecl - Represent a C++ namespace.
class NamespaceDecl : public NamedDecl, public DeclContext {
SourceLocation LBracLoc, RBracLoc;
// For extended namespace definitions:
//
// namespace A { int x; }
// namespace A { int y; }
//
// there will be one NamespaceDecl for each declaration.
// NextNamespace points to the next extended declaration.
// OrigNamespace points to the original namespace declaration.
// OrigNamespace of the first namespace decl points to itself.
NamespaceDecl *NextNamespace;
/// \brief A pointer to either the original namespace definition for
/// this namespace (if the boolean value is false) or the anonymous
/// namespace that lives just inside this namespace (if the boolean
/// value is true).
///
/// We can combine these two notions because the anonymous namespace
/// must only be stored in one of the namespace declarations (so all
/// of the namespace declarations can find it). We therefore choose
/// the original namespace declaration, since all of the namespace
/// declarations have a link directly to it; the original namespace
/// declaration itself only needs to know that it is the original
/// namespace declaration (which the boolean indicates).
llvm::PointerIntPair<NamespaceDecl *, 1, bool> OrigOrAnonNamespace;
NamespaceDecl(DeclContext *DC, SourceLocation L, IdentifierInfo *Id)
: NamedDecl(Namespace, DC, L, Id), DeclContext(Namespace),
NextNamespace(0), OrigOrAnonNamespace(0, true) { }
public:
static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id);
virtual void Destroy(ASTContext& C);
// \brief Returns true if this is an anonymous namespace declaration.
//
// For example:
// namespace {
// ...
// };
// q.v. C++ [namespace.unnamed]
bool isAnonymousNamespace() const {
return !getIdentifier();
}
NamespaceDecl *getNextNamespace() { return NextNamespace; }
const NamespaceDecl *getNextNamespace() const { return NextNamespace; }
void setNextNamespace(NamespaceDecl *ND) { NextNamespace = ND; }
NamespaceDecl *getOriginalNamespace() const {
if (OrigOrAnonNamespace.getInt())
return const_cast<NamespaceDecl *>(this);
return OrigOrAnonNamespace.getPointer();
}
void setOriginalNamespace(NamespaceDecl *ND) {
if (ND != this) {
OrigOrAnonNamespace.setPointer(ND);
OrigOrAnonNamespace.setInt(false);
}
}
NamespaceDecl *getAnonymousNamespace() const {
return getOriginalNamespace()->OrigOrAnonNamespace.getPointer();
}
void setAnonymousNamespace(NamespaceDecl *D) {
assert(!D || D->isAnonymousNamespace());
assert(!D || D->getParent() == this);
getOriginalNamespace()->OrigOrAnonNamespace.setPointer(D);
}
virtual NamespaceDecl *getCanonicalDecl() { return getOriginalNamespace(); }
const NamespaceDecl *getCanonicalDecl() const {
return getOriginalNamespace();
}
virtual SourceRange getSourceRange() const {
return SourceRange(getLocation(), RBracLoc);
}
SourceLocation getLBracLoc() const { return LBracLoc; }
SourceLocation getRBracLoc() const { return RBracLoc; }
void setLBracLoc(SourceLocation LBrace) { LBracLoc = LBrace; }
void setRBracLoc(SourceLocation RBrace) { RBracLoc = RBrace; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const NamespaceDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Namespace; }
static DeclContext *castToDeclContext(const NamespaceDecl *D) {
return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
}
static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
}
};
/// ValueDecl - Represent the declaration of a variable (in which case it is
/// an lvalue) a function (in which case it is a function designator) or
/// an enum constant.
class ValueDecl : public NamedDecl {
QualType DeclType;
protected:
ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T)
: NamedDecl(DK, DC, L, N), DeclType(T) {}
public:
QualType getType() const { return DeclType; }
void setType(QualType newType) { DeclType = newType; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const ValueDecl *D) { return true; }
static bool classofKind(Kind K) { return K >= ValueFirst && K <= ValueLast; }
};
/// \brief Represents a ValueDecl that came out of a declarator.
/// Contains type source information through TypeSourceInfo.
class DeclaratorDecl : public ValueDecl {
// A struct representing both a TInfo and a syntactic qualifier,
// to be used for the (uncommon) case of out-of-line declarations.
struct ExtInfo {
TypeSourceInfo *TInfo;
NestedNameSpecifier *NNS;
SourceRange NNSRange;
};
llvm::PointerUnion<TypeSourceInfo*, ExtInfo*> DeclInfo;
bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
protected:
DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo)
: ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo) {}
public:
virtual ~DeclaratorDecl();
virtual void Destroy(ASTContext &C);
TypeSourceInfo *getTypeSourceInfo() const {
return hasExtInfo()
? DeclInfo.get<ExtInfo*>()->TInfo
: DeclInfo.get<TypeSourceInfo*>();
}
void setTypeSourceInfo(TypeSourceInfo *TI) {
if (hasExtInfo())
DeclInfo.get<ExtInfo*>()->TInfo = TI;
else
DeclInfo = TI;
}
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? DeclInfo.get<ExtInfo*>()->NNS : 0;
}
SourceRange getQualifierRange() const {
return hasExtInfo() ? DeclInfo.get<ExtInfo*>()->NNSRange : SourceRange();
}
void setQualifierInfo(NestedNameSpecifier *Qualifier,
SourceRange QualifierRange);
SourceLocation getTypeSpecStartLoc() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const DeclaratorDecl *D) { return true; }
static bool classofKind(Kind K) {
return K >= DeclaratorFirst && K <= DeclaratorLast;
}
};
/// \brief Structure used to store a statement, the constant value to
/// which it was evaluated (if any), and whether or not the statement
/// is an integral constant expression (if known).
struct EvaluatedStmt {
EvaluatedStmt() : WasEvaluated(false), IsEvaluating(false), CheckedICE(false),
CheckingICE(false), IsICE(false) { }
/// \brief Whether this statement was already evaluated.
bool WasEvaluated : 1;
/// \brief Whether this statement is being evaluated.
bool IsEvaluating : 1;
/// \brief Whether we already checked whether this statement was an
/// integral constant expression.
bool CheckedICE : 1;
/// \brief Whether we are checking whether this statement is an
/// integral constant expression.
bool CheckingICE : 1;
/// \brief Whether this statement is an integral constant
/// expression. Only valid if CheckedICE is true.
bool IsICE : 1;
Stmt *Value;
APValue Evaluated;
};
// \brief Describes the kind of template specialization that a
// particular template specialization declaration represents.
enum TemplateSpecializationKind {
/// This template specialization was formed from a template-id but
/// has not yet been declared, defined, or instantiated.
TSK_Undeclared = 0,
/// This template specialization was implicitly instantiated from a
/// template. (C++ [temp.inst]).
TSK_ImplicitInstantiation,
/// This template specialization was declared or defined by an
/// explicit specialization (C++ [temp.expl.spec]) or partial
/// specialization (C++ [temp.class.spec]).
TSK_ExplicitSpecialization,
/// This template specialization was instantiated from a template
/// due to an explicit instantiation declaration request
/// (C++0x [temp.explicit]).
TSK_ExplicitInstantiationDeclaration,
/// This template specialization was instantiated from a template
/// due to an explicit instantiation definition request
/// (C++ [temp.explicit]).
TSK_ExplicitInstantiationDefinition
};
/// VarDecl - An instance of this class is created to represent a variable
/// declaration or definition.
class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
public:
enum StorageClass {
None, Auto, Register, Extern, Static, PrivateExtern
};
/// getStorageClassSpecifierString - Return the string used to
/// specify the storage class \arg SC.
///
/// It is illegal to call this function with SC == None.
static const char *getStorageClassSpecifierString(StorageClass SC);
protected:
/// \brief Placeholder type used in Init to denote an unparsed C++ default
/// argument.
struct UnparsedDefaultArgument;
/// \brief Placeholder type used in Init to denote an uninstantiated C++
/// default argument.
struct UninstantiatedDefaultArgument;
typedef llvm::PointerUnion4<Stmt *, EvaluatedStmt *,
UnparsedDefaultArgument *,
UninstantiatedDefaultArgument *> InitType;
/// \brief The initializer for this variable or, for a ParmVarDecl, the
/// C++ default argument.
mutable InitType Init;
private:
// FIXME: This can be packed into the bitfields in Decl.
unsigned SClass : 3;
bool ThreadSpecified : 1;
bool HasCXXDirectInit : 1;
/// DeclaredInCondition - Whether this variable was declared in a
/// condition, e.g., if (int x = foo()) { ... }.
bool DeclaredInCondition : 1;
friend class StmtIteratorBase;
protected:
VarDecl(Kind DK, DeclContext *DC, SourceLocation L, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, StorageClass SC)
: DeclaratorDecl(DK, DC, L, Id, T, TInfo), Init(),
ThreadSpecified(false), HasCXXDirectInit(false),
DeclaredInCondition(false) {
SClass = SC;
}
typedef Redeclarable<VarDecl> redeclarable_base;
virtual VarDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
redecl_iterator redecls_begin() const {
return redeclarable_base::redecls_begin();
}
redecl_iterator redecls_end() const {
return redeclarable_base::redecls_end();
}
static VarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo, StorageClass S);
virtual void Destroy(ASTContext& C);
virtual ~VarDecl();
virtual SourceRange getSourceRange() const;
StorageClass getStorageClass() const { return (StorageClass)SClass; }
void setStorageClass(StorageClass SC) { SClass = SC; }
void setThreadSpecified(bool T) { ThreadSpecified = T; }
bool isThreadSpecified() const {
return ThreadSpecified;
}
/// hasLocalStorage - Returns true if a variable with function scope
/// is a non-static local variable.
bool hasLocalStorage() const {
if (getStorageClass() == None)
return !isFileVarDecl();
// Return true for: Auto, Register.
// Return false for: Extern, Static, PrivateExtern.
return getStorageClass() <= Register;
}
/// hasExternStorage - Returns true if a variable has extern or
/// __private_extern__ storage.
bool hasExternalStorage() const {
return getStorageClass() == Extern || getStorageClass() == PrivateExtern;
}
/// hasGlobalStorage - Returns true for all variables that do not
/// have local storage. This includs all global variables as well
/// as static variables declared within a function.
bool hasGlobalStorage() const { return !hasLocalStorage(); }
/// \brief Determines whether this variable is a variable with
/// external, C linkage.
bool isExternC() const;
/// isBlockVarDecl - Returns true for local variable declarations. Note that
/// this includes static variables inside of functions. It also includes
/// variables inside blocks.
///
/// void foo() { int x; static int y; extern int z; }
///
bool isBlockVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (const DeclContext *DC = getDeclContext())
return DC->getLookupContext()->isFunctionOrMethod();
return false;
}
/// isFunctionOrMethodVarDecl - Similar to isBlockVarDecl, but excludes
/// variables declared in blocks.
bool isFunctionOrMethodVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (const DeclContext *DC = getDeclContext())
return DC->getLookupContext()->isFunctionOrMethod() &&
DC->getLookupContext()->getDeclKind() != Decl::Block;
return false;
}
/// \brief Determines whether this is a static data member.
///
/// This will only be true in C++, and applies to, e.g., the
/// variable 'x' in:
/// \code
/// struct S {
/// static int x;
/// };
/// \endcode
bool isStaticDataMember() const {
// If it wasn't static, it would be a FieldDecl.
return getDeclContext()->isRecord();
}
virtual VarDecl *getCanonicalDecl();
const VarDecl *getCanonicalDecl() const {
return const_cast<VarDecl*>(this)->getCanonicalDecl();
}
enum DefinitionKind {
DeclarationOnly, ///< This declaration is only a declaration.
TentativeDefinition, ///< This declaration is a tentative definition.
Definition ///< This declaration is definitely a definition.
};
/// \brief Check whether this declaration is a definition. If this could be
/// a tentative definition (in C), don't check whether there's an overriding
/// definition.
DefinitionKind isThisDeclarationADefinition() const;
/// \brief Get the tentative definition that acts as the real definition in
/// a TU. Returns null if there is a proper definition available.
VarDecl *getActingDefinition();
const VarDecl *getActingDefinition() const {
return const_cast<VarDecl*>(this)->getActingDefinition();
}
/// \brief Determine whether this is a tentative definition of a
/// variable in C.
bool isTentativeDefinitionNow() const;
/// \brief Get the real (not just tentative) definition for this declaration.
VarDecl *getDefinition();
const VarDecl *getDefinition() const {
return const_cast<VarDecl*>(this)->getDefinition();
}
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a static data member.
virtual bool isOutOfLine() const;
/// \brief If this is a static data member, find its out-of-line definition.
VarDecl *getOutOfLineDefinition();
/// isFileVarDecl - Returns true for file scoped variable declaration.
bool isFileVarDecl() const {
if (getKind() != Decl::Var)
return false;
if (const DeclContext *Ctx = getDeclContext()) {
Ctx = Ctx->getLookupContext();
if (isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx) )
return true;
}
if (isStaticDataMember())
return true;
return false;
}
/// getAnyInitializer - Get the initializer for this variable, no matter which
/// declaration it is attached to.
const Expr *getAnyInitializer() const {
const VarDecl *D;
return getAnyInitializer(D);
}
/// getAnyInitializer - Get the initializer for this variable, no matter which
/// declaration it is attached to. Also get that declaration.
const Expr *getAnyInitializer(const VarDecl *&D) const;
bool hasInit() const {
return !Init.isNull();
}
const Expr *getInit() const {
if (Init.isNull())
return 0;
const Stmt *S = Init.dyn_cast<Stmt *>();
if (!S) {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
S = ES->Value;
}
return (const Expr*) S;
}
Expr *getInit() {
if (Init.isNull())
return 0;
Stmt *S = Init.dyn_cast<Stmt *>();
if (!S) {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
S = ES->Value;
}
return (Expr*) S;
}
/// \brief Retrieve the address of the initializer expression.
Stmt **getInitAddress() {
if (EvaluatedStmt *ES = Init.dyn_cast<EvaluatedStmt*>())
return &ES->Value;
// This union hack tip-toes around strict-aliasing rules.
union {
InitType *InitPtr;
Stmt **StmtPtr;
};
InitPtr = &Init;
return StmtPtr;
}
void setInit(Expr *I);
EvaluatedStmt *EnsureEvaluatedStmt() const {
EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
if (!Eval) {
Stmt *S = Init.get<Stmt *>();
Eval = new (getASTContext()) EvaluatedStmt;
Eval->Value = S;
Init = Eval;
}
return Eval;
}
/// \brief Check whether we are in the process of checking whether the
/// initializer can be evaluated.
bool isEvaluatingValue() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->IsEvaluating;
return false;
}
/// \brief Note that we now are checking whether the initializer can be
/// evaluated.
void setEvaluatingValue() const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->IsEvaluating = true;
}
/// \brief Note that constant evaluation has computed the given
/// value for this variable's initializer.
void setEvaluatedValue(const APValue &Value) const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->IsEvaluating = false;
Eval->WasEvaluated = true;
Eval->Evaluated = Value;
}
/// \brief Return the already-evaluated value of this variable's
/// initializer, or NULL if the value is not yet known. Returns pointer
/// to untyped APValue if the value could not be evaluated.
APValue *getEvaluatedValue() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
if (Eval->WasEvaluated)
return &Eval->Evaluated;
return 0;
}
/// \brief Determines whether it is already known whether the
/// initializer is an integral constant expression or not.
bool isInitKnownICE() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->CheckedICE;
return false;
}
/// \brief Determines whether the initializer is an integral
/// constant expression.
///
/// \pre isInitKnownICE()
bool isInitICE() const {
assert(isInitKnownICE() &&
"Check whether we already know that the initializer is an ICE");
return Init.get<EvaluatedStmt *>()->IsICE;
}
/// \brief Check whether we are in the process of checking the initializer
/// is an integral constant expression.
bool isCheckingICE() const {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
return Eval->CheckingICE;
return false;
}
/// \brief Note that we now are checking whether the initializer is an
/// integral constant expression.
void setCheckingICE() const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->CheckingICE = true;
}
/// \brief Note that we now know whether the initializer is an
/// integral constant expression.
void setInitKnownICE(bool IsICE) const {
EvaluatedStmt *Eval = EnsureEvaluatedStmt();
Eval->CheckingICE = false;
Eval->CheckedICE = true;
Eval->IsICE = IsICE;
}
void setCXXDirectInitializer(bool T) { HasCXXDirectInit = T; }
/// hasCXXDirectInitializer - If true, the initializer was a direct
/// initializer, e.g: "int x(1);". The Init expression will be the expression
/// inside the parens or a "ClassType(a,b,c)" class constructor expression for
/// class types. Clients can distinguish between "int x(1);" and "int x=1;"
/// by checking hasCXXDirectInitializer.
///
bool hasCXXDirectInitializer() const {
return HasCXXDirectInit;
}
/// isDeclaredInCondition - Whether this variable was declared as
/// part of a condition in an if/switch/while statement, e.g.,
/// @code
/// if (int x = foo()) { ... }
/// @endcode
bool isDeclaredInCondition() const {
return DeclaredInCondition;
}
void setDeclaredInCondition(bool InCondition) {
DeclaredInCondition = InCondition;
}
/// \brief If this variable is an instantiated static data member of a
/// class template specialization, returns the templated static data member
/// from which it was instantiated.
VarDecl *getInstantiatedFromStaticDataMember() const;
/// \brief If this variable is a static data member, determine what kind of
/// template specialization or instantiation this is.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief If this variable is an instantiation of a static data member of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief For a static data member that was instantiated from a static
/// data member of a class template, set the template specialiation kind.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const VarDecl *D) { return true; }
static bool classofKind(Kind K) { return K >= VarFirst && K <= VarLast; }
};
class ImplicitParamDecl : public VarDecl {
protected:
ImplicitParamDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType Tw)
: VarDecl(DK, DC, L, Id, Tw, /*TInfo=*/0, VarDecl::None) {}
public:
static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T);
// Implement isa/cast/dyncast/etc.
static bool classof(const ImplicitParamDecl *D) { return true; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classofKind(Kind K) { return K == ImplicitParam; }
};
/// ParmVarDecl - Represent a parameter to a function.
class ParmVarDecl : public VarDecl {
// NOTE: VC++ treats enums as signed, avoid using the ObjCDeclQualifier enum
/// FIXME: Also can be paced into the bitfields in Decl.
/// in, inout, etc.
unsigned objcDeclQualifier : 6;
bool HasInheritedDefaultArg : 1;
protected:
ParmVarDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg)
: VarDecl(DK, DC, L, Id, T, TInfo, S),
objcDeclQualifier(OBJC_TQ_None), HasInheritedDefaultArg(false) {
setDefaultArg(DefArg);
}
public:
static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L,IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg);
ObjCDeclQualifier getObjCDeclQualifier() const {
return ObjCDeclQualifier(objcDeclQualifier);
}
void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
objcDeclQualifier = QTVal;
}
Expr *getDefaultArg();
const Expr *getDefaultArg() const {
return const_cast<ParmVarDecl *>(this)->getDefaultArg();
}
void setDefaultArg(Expr *defarg) {
Init = reinterpret_cast<Stmt *>(defarg);
}
unsigned getNumDefaultArgTemporaries() const;
CXXTemporary *getDefaultArgTemporary(unsigned i);
const CXXTemporary *getDefaultArgTemporary(unsigned i) const {
return const_cast<ParmVarDecl *>(this)->getDefaultArgTemporary(i);
}
/// \brief Retrieve the source range that covers the entire default
/// argument.
SourceRange getDefaultArgRange() const;
void setUninstantiatedDefaultArg(Expr *arg) {
Init = reinterpret_cast<UninstantiatedDefaultArgument *>(arg);
}
Expr *getUninstantiatedDefaultArg() {
return (Expr *)Init.get<UninstantiatedDefaultArgument *>();
}
const Expr *getUninstantiatedDefaultArg() const {
return (const Expr *)Init.get<UninstantiatedDefaultArgument *>();
}
/// hasDefaultArg - Determines whether this parameter has a default argument,
/// either parsed or not.
bool hasDefaultArg() const {
return getInit() || hasUnparsedDefaultArg() ||
hasUninstantiatedDefaultArg();
}
/// hasUnparsedDefaultArg - Determines whether this parameter has a
/// default argument that has not yet been parsed. This will occur
/// during the processing of a C++ class whose member functions have
/// default arguments, e.g.,
/// @code
/// class X {
/// public:
/// void f(int x = 17); // x has an unparsed default argument now
/// }; // x has a regular default argument now
/// @endcode
bool hasUnparsedDefaultArg() const {
return Init.is<UnparsedDefaultArgument*>();
}
bool hasUninstantiatedDefaultArg() const {
return Init.is<UninstantiatedDefaultArgument*>();
}
/// setUnparsedDefaultArg - Specify that this parameter has an
/// unparsed default argument. The argument will be replaced with a
/// real default argument via setDefaultArg when the class
/// definition enclosing the function declaration that owns this
/// default argument is completed.
void setUnparsedDefaultArg() {
Init = (UnparsedDefaultArgument *)0;
}
bool hasInheritedDefaultArg() const {
return HasInheritedDefaultArg;
}
void setHasInheritedDefaultArg(bool I = true) {
HasInheritedDefaultArg = I;
}
QualType getOriginalType() const {
if (getTypeSourceInfo())
return getTypeSourceInfo()->getType();
return getType();
}
/// setOwningFunction - Sets the function declaration that owns this
/// ParmVarDecl. Since ParmVarDecls are often created before the
/// FunctionDecls that own them, this routine is required to update
/// the DeclContext appropriately.
void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const ParmVarDecl *D) { return true; }
static bool classofKind(Kind K) { return K == ParmVar; }
};
/// FunctionDecl - An instance of this class is created to represent a
/// function declaration or definition.
///
/// Since a given function can be declared several times in a program,
/// there may be several FunctionDecls that correspond to that
/// function. Only one of those FunctionDecls will be found when
/// traversing the list of declarations in the context of the
/// FunctionDecl (e.g., the translation unit); this FunctionDecl
/// contains all of the information known about the function. Other,
/// previous declarations of the function are available via the
/// getPreviousDeclaration() chain.
class FunctionDecl : public DeclaratorDecl, public DeclContext,
public Redeclarable<FunctionDecl> {
public:
enum StorageClass {
None, Extern, Static, PrivateExtern
};
private:
/// ParamInfo - new[]'d array of pointers to VarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
LazyDeclStmtPtr Body;
// FIXME: This can be packed into the bitfields in Decl.
// NOTE: VC++ treats enums as signed, avoid using the StorageClass enum
unsigned SClass : 2;
bool IsInline : 1;
bool IsVirtualAsWritten : 1;
bool IsPure : 1;
bool HasInheritedPrototype : 1;
bool HasWrittenPrototype : 1;
bool IsDeleted : 1;
bool IsTrivial : 1; // sunk from CXXMethodDecl
bool IsCopyAssignment : 1; // sunk from CXXMethodDecl
bool HasImplicitReturnZero : 1;
/// \brief End part of this FunctionDecl's source range.
///
/// We could compute the full range in getSourceRange(). However, when we're
/// dealing with a function definition deserialized from a PCH/AST file,
/// we can only compute the full range once the function body has been
/// de-serialized, so it's far better to have the (sometimes-redundant)
/// EndRangeLoc.
SourceLocation EndRangeLoc;
/// \brief The template or declaration that this declaration
/// describes or was instantiated from, respectively.
///
/// For non-templates, this value will be NULL. For function
/// declarations that describe a function template, this will be a
/// pointer to a FunctionTemplateDecl. For member functions
/// of class template specializations, this will be a MemberSpecializationInfo
/// pointer containing information about the specialization.
/// For function template specializations, this will be a
/// FunctionTemplateSpecializationInfo, which contains information about
/// the template being specialized and the template arguments involved in
/// that specialization.
llvm::PointerUnion4<FunctionTemplateDecl *,
MemberSpecializationInfo *,
FunctionTemplateSpecializationInfo *,
DependentFunctionTemplateSpecializationInfo *>
TemplateOrSpecialization;
protected:
FunctionDecl(Kind DK, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T, TypeSourceInfo *TInfo,
StorageClass S, bool isInline)
: DeclaratorDecl(DK, DC, L, N, T, TInfo),
DeclContext(DK),
ParamInfo(0), Body(),
SClass(S), IsInline(isInline),
IsVirtualAsWritten(false), IsPure(false), HasInheritedPrototype(false),
HasWrittenPrototype(true), IsDeleted(false), IsTrivial(false),
IsCopyAssignment(false),
HasImplicitReturnZero(false),
EndRangeLoc(L), TemplateOrSpecialization() {}
virtual ~FunctionDecl() {}
virtual void Destroy(ASTContext& C);
typedef Redeclarable<FunctionDecl> redeclarable_base;
virtual FunctionDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
public:
typedef redeclarable_base::redecl_iterator redecl_iterator;
redecl_iterator redecls_begin() const {
return redeclarable_base::redecls_begin();
}
redecl_iterator redecls_end() const {
return redeclarable_base::redecls_end();
}
static FunctionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
DeclarationName N, QualType T,
TypeSourceInfo *TInfo,
StorageClass S = None, bool isInline = false,
bool hasWrittenPrototype = true);
virtual void getNameForDiagnostic(std::string &S,
const PrintingPolicy &Policy,
bool Qualified) const;
virtual SourceRange getSourceRange() const {
return SourceRange(getLocation(), EndRangeLoc);
}
void setLocEnd(SourceLocation E) {
EndRangeLoc = E;
}
/// getBody - Retrieve the body (definition) of the function. The
/// function body might be in any of the (re-)declarations of this
/// function. The variant that accepts a FunctionDecl pointer will
/// set that function declaration to the actual declaration
/// containing the body (if there is one).
Stmt *getBody(const FunctionDecl *&Definition) const;
virtual Stmt *getBody() const {
const FunctionDecl* Definition;
return getBody(Definition);
}
/// isThisDeclarationADefinition - Returns whether this specific
/// declaration of the function is also a definition. This does not
/// determine whether the function has been defined (e.g., in a
/// previous definition); for that information, use getBody.
/// FIXME: Should return true if function is deleted or defaulted. However,
/// CodeGenModule.cpp uses it, and I don't know if this would break it.
bool isThisDeclarationADefinition() const { return Body; }
void setBody(Stmt *B);
void setLazyBody(uint64_t Offset) { Body = Offset; }
/// Whether this function is marked as virtual explicitly.
bool isVirtualAsWritten() const { return IsVirtualAsWritten; }
void setVirtualAsWritten(bool V) { IsVirtualAsWritten = V; }
/// Whether this virtual function is pure, i.e. makes the containing class
/// abstract.
bool isPure() const { return IsPure; }
void setPure(bool P = true) { IsPure = P; }
/// Whether this function is "trivial" in some specialized C++ senses.
/// Can only be true for default constructors, copy constructors,
/// copy assignment operators, and destructors. Not meaningful until
/// the class has been fully built by Sema.
bool isTrivial() const { return IsTrivial; }
void setTrivial(bool IT) { IsTrivial = IT; }
bool isCopyAssignment() const { return IsCopyAssignment; }
void setCopyAssignment(bool CA) { IsCopyAssignment = CA; }
/// Whether falling off this function implicitly returns null/zero.
/// If a more specific implicit return value is required, front-ends
/// should synthesize the appropriate return statements.
bool hasImplicitReturnZero() const { return HasImplicitReturnZero; }
void setHasImplicitReturnZero(bool IRZ) { HasImplicitReturnZero = IRZ; }
/// \brief Whether this function has a prototype, either because one
/// was explicitly written or because it was "inherited" by merging
/// a declaration without a prototype with a declaration that has a
/// prototype.
bool hasPrototype() const {
return HasWrittenPrototype || HasInheritedPrototype;
}
bool hasWrittenPrototype() const { return HasWrittenPrototype; }
void setHasWrittenPrototype(bool P) { HasWrittenPrototype = P; }
/// \brief Whether this function inherited its prototype from a
/// previous declaration.
bool hasInheritedPrototype() const { return HasInheritedPrototype; }
void setHasInheritedPrototype(bool P = true) { HasInheritedPrototype = P; }
/// \brief Whether this function has been deleted.
///
/// A function that is "deleted" (via the C++0x "= delete" syntax)
/// acts like a normal function, except that it cannot actually be
/// called or have its address taken. Deleted functions are
/// typically used in C++ overload resolution to attract arguments
/// whose type or lvalue/rvalue-ness would permit the use of a
/// different overload that would behave incorrectly. For example,
/// one might use deleted functions to ban implicit conversion from
/// a floating-point number to an Integer type:
///
/// @code
/// struct Integer {
/// Integer(long); // construct from a long
/// Integer(double) = delete; // no construction from float or double
/// Integer(long double) = delete; // no construction from long double
/// };
/// @endcode
bool isDeleted() const { return IsDeleted; }
void setDeleted(bool D = true) { IsDeleted = D; }
/// \brief Determines whether this is a function "main", which is
/// the entry point into an executable program.
bool isMain() const;
/// \brief Determines whether this function is a function with
/// external, C linkage.
bool isExternC() const;
/// \brief Determines whether this is a global function.
bool isGlobal() const;
void setPreviousDeclaration(FunctionDecl * PrevDecl);
virtual const FunctionDecl *getCanonicalDecl() const;
virtual FunctionDecl *getCanonicalDecl();
unsigned getBuiltinID() const;
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;
typedef ParmVarDecl * const *param_const_iterator;
param_iterator param_begin() { return ParamInfo; }
param_iterator param_end() { return ParamInfo+param_size(); }
param_const_iterator param_begin() const { return ParamInfo; }
param_const_iterator param_end() const { return ParamInfo+param_size(); }
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the ParamInfo array
/// after it has been created.
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams);
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++).
unsigned getMinRequiredArguments() const;
QualType getResultType() const {
return getType()->getAs<FunctionType>()->getResultType();
}
StorageClass getStorageClass() const { return StorageClass(SClass); }
void setStorageClass(StorageClass SC) { SClass = SC; }
/// \brief Determine whether the "inline" keyword was specified for this
/// function.
bool isInlineSpecified() const { return IsInline; }
/// Set whether the "inline" keyword was specified for this function.
void setInlineSpecified(bool I) { IsInline = I; }
/// \brief Determine whether this function should be inlined, because it is
/// either marked "inline" or is a member function of a C++ class that
/// was defined in the class body.
bool isInlined() const;
bool isInlineDefinitionExternallyVisible() const;
/// isOverloadedOperator - Whether this function declaration
/// represents an C++ overloaded operator, e.g., "operator+".
bool isOverloadedOperator() const {
return getOverloadedOperator() != OO_None;
}
OverloadedOperatorKind getOverloadedOperator() const;
const IdentifierInfo *getLiteralIdentifier() const;
/// \brief If this function is an instantiation of a member function
/// of a class template specialization, retrieves the function from
/// which it was instantiated.
///
/// This routine will return non-NULL for (non-templated) member
/// functions of class templates and for instantiations of function
/// templates. For example, given:
///
/// \code
/// template<typename T>
/// struct X {
/// void f(T);
/// };
/// \endcode
///
/// The declaration for X<int>::f is a (non-templated) FunctionDecl
/// whose parent is the class template specialization X<int>. For
/// this declaration, getInstantiatedFromFunction() will return
/// the FunctionDecl X<T>::A. When a complete definition of
/// X<int>::A is required, it will be instantiated from the
/// declaration returned by getInstantiatedFromMemberFunction().
FunctionDecl *getInstantiatedFromMemberFunction() const;
/// \brief If this function is an instantiation of a member function of a
/// class template specialization, retrieves the member specialization
/// information.
MemberSpecializationInfo *getMemberSpecializationInfo() const;
/// \brief Specify that this record is an instantiation of the
/// member function FD.
void setInstantiationOfMemberFunction(FunctionDecl *FD,
TemplateSpecializationKind TSK);
/// \brief Retrieves the function template that is described by this
/// function declaration.
///
/// Every function template is represented as a FunctionTemplateDecl
/// and a FunctionDecl (or something derived from FunctionDecl). The
/// former contains template properties (such as the template
/// parameter lists) while the latter contains the actual
/// description of the template's
/// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
/// FunctionDecl that describes the function template,
/// getDescribedFunctionTemplate() retrieves the
/// FunctionTemplateDecl from a FunctionDecl.
FunctionTemplateDecl *getDescribedFunctionTemplate() const {
return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl*>();
}
void setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
TemplateOrSpecialization = Template;
}
/// \brief Determine whether this function is a function template
/// specialization.
bool isFunctionTemplateSpecialization() const {
return getPrimaryTemplate() != 0;
}
/// \brief If this function is actually a function template specialization,
/// retrieve information about this function template specialization.
/// Otherwise, returns NULL.
FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const {
return TemplateOrSpecialization.
dyn_cast<FunctionTemplateSpecializationInfo*>();
}
/// \brief Determines whether this function is a function template
/// specialization or a member of a class template specialization that can
/// be implicitly instantiated.
bool isImplicitlyInstantiable() const;
/// \brief Retrieve the function declaration from which this function could
/// be instantiated, if it is an instantiation (rather than a non-template
/// or a specialization, for example).
FunctionDecl *getTemplateInstantiationPattern() const;
/// \brief Retrieve the primary template that this function template
/// specialization either specializes or was instantiated from.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
FunctionTemplateDecl *getPrimaryTemplate() const;
/// \brief Retrieve the template arguments used to produce this function
/// template specialization from the primary template.
///
/// If this function declaration is not a function template specialization,
/// returns NULL.
const TemplateArgumentList *getTemplateSpecializationArgs() const;
/// \brief Specify that this function declaration is actually a function
/// template specialization.
///
/// \param Context the AST context in which this function resides.
///
/// \param Template the function template that this function template
/// specialization specializes.
///
/// \param TemplateArgs the template arguments that produced this
/// function template specialization from the template.
///
/// \param InsertPos If non-NULL, the position in the function template
/// specialization set where the function template specialization data will
/// be inserted.
///
/// \param TSK the kind of template specialization this is.
void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK = TSK_ImplicitInstantiation);
/// \brief Specifies that this function declaration is actually a
/// dependent function template specialization.
void setDependentTemplateSpecialization(ASTContext &Context,
const UnresolvedSetImpl &Templates,
const TemplateArgumentListInfo &TemplateArgs);
DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const {
return TemplateOrSpecialization.
dyn_cast<DependentFunctionTemplateSpecializationInfo*>();
}
/// \brief Determine what kind of template instantiation this function
/// represents.
TemplateSpecializationKind getTemplateSpecializationKind() const;
/// \brief Determine what kind of template instantiation this function
/// represents.
void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation = SourceLocation());
/// \brief Retrieve the (first) point of instantiation of a function template
/// specialization or a member of a class template specialization.
///
/// \returns the first point of instantiation, if this function was
/// instantiated from a template; otherwie, returns an invalid source
/// location.
SourceLocation getPointOfInstantiation() const;
/// \brief Determine whether this is or was instantiated from an out-of-line
/// definition of a member function.
virtual bool isOutOfLine() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const FunctionDecl *D) { return true; }
static bool classofKind(Kind K) {
return K >= FunctionFirst && K <= FunctionLast;
}
static DeclContext *castToDeclContext(const FunctionDecl *D) {
return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
}
static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
}
};
/// FieldDecl - An instance of this class is created by Sema::ActOnField to
/// represent a member of a struct/union/class.
class FieldDecl : public DeclaratorDecl {
// FIXME: This can be packed into the bitfields in Decl.
bool Mutable : 1;
Expr *BitWidth;
protected:
FieldDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
Expr *BW, bool Mutable)
: DeclaratorDecl(DK, DC, L, Id, T, TInfo), Mutable(Mutable), BitWidth(BW) {
}
public:
static FieldDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable);
/// isMutable - Determines whether this field is mutable (C++ only).
bool isMutable() const { return Mutable; }
/// \brief Set whether this field is mutable (C++ only).
void setMutable(bool M) { Mutable = M; }
/// isBitfield - Determines whether this field is a bitfield.
bool isBitField() const { return BitWidth != NULL; }
/// @brief Determines whether this is an unnamed bitfield.
bool isUnnamedBitfield() const { return BitWidth != NULL && !getDeclName(); }
/// isAnonymousStructOrUnion - Determines whether this field is a
/// representative for an anonymous struct or union. Such fields are
/// unnamed and are implicitly generated by the implementation to
/// store the data for the anonymous union or struct.
bool isAnonymousStructOrUnion() const;
Expr *getBitWidth() const { return BitWidth; }
void setBitWidth(Expr *BW) { BitWidth = BW; }
/// getParent - Returns the parent of this field declaration, which
/// is the struct in which this method is defined.
const RecordDecl *getParent() const {
return cast<RecordDecl>(getDeclContext());
}
RecordDecl *getParent() {
return cast<RecordDecl>(getDeclContext());
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const FieldDecl *D) { return true; }
static bool classofKind(Kind K) { return K >= FieldFirst && K <= FieldLast; }
};
/// EnumConstantDecl - An instance of this object exists for each enum constant
/// that is defined. For example, in "enum X {a,b}", each of a/b are
/// EnumConstantDecl's, X is an instance of EnumDecl, and the type of a/b is a
/// TagType for the X EnumDecl.
class EnumConstantDecl : public ValueDecl {
Stmt *Init; // an integer constant expression
llvm::APSInt Val; // The value.
protected:
EnumConstantDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, Expr *E,
const llvm::APSInt &V)
: ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt*)E), Val(V) {}
virtual ~EnumConstantDecl() {}
public:
static EnumConstantDecl *Create(ASTContext &C, EnumDecl *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, Expr *E,
const llvm::APSInt &V);
virtual void Destroy(ASTContext& C);
const Expr *getInitExpr() const { return (const Expr*) Init; }
Expr *getInitExpr() { return (Expr*) Init; }
const llvm::APSInt &getInitVal() const { return Val; }
void setInitExpr(Expr *E) { Init = (Stmt*) E; }
void setInitVal(const llvm::APSInt &V) { Val = V; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const EnumConstantDecl *D) { return true; }
static bool classofKind(Kind K) { return K == EnumConstant; }
friend class StmtIteratorBase;
};
/// TypeDecl - Represents a declaration of a type.
///
class TypeDecl : public NamedDecl {
/// TypeForDecl - This indicates the Type object that represents
/// this TypeDecl. It is a cache maintained by
/// ASTContext::getTypedefType, ASTContext::getTagDeclType, and
/// ASTContext::getTemplateTypeParmType, and TemplateTypeParmDecl.
mutable Type *TypeForDecl;
friend class ASTContext;
friend class DeclContext;
friend class TagDecl;
friend class TemplateTypeParmDecl;
friend class TagType;
protected:
TypeDecl(Kind DK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id)
: NamedDecl(DK, DC, L, Id), TypeForDecl(0) {}
public:
// Low-level accessor
Type *getTypeForDecl() const { return TypeForDecl; }
void setTypeForDecl(Type *TD) { TypeForDecl = TD; }
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const TypeDecl *D) { return true; }
static bool classofKind(Kind K) { return K >= TypeFirst && K <= TypeLast; }
};
class TypedefDecl : public TypeDecl, public Redeclarable<TypedefDecl> {
/// UnderlyingType - This is the type the typedef is set to.
TypeSourceInfo *TInfo;
TypedefDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, TypeSourceInfo *TInfo)
: TypeDecl(Typedef, DC, L, Id), TInfo(TInfo) {}
virtual ~TypedefDecl();
public:
static TypedefDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
TypeSourceInfo *TInfo);
TypeSourceInfo *getTypeSourceInfo() const {
return TInfo;
}
/// Retrieves the canonical declaration of this typedef.
TypedefDecl *getCanonicalDecl() {
return getFirstDeclaration();
}
const TypedefDecl *getCanonicalDecl() const {
return getFirstDeclaration();
}
QualType getUnderlyingType() const {
return TInfo->getType();
}
void setTypeSourceInfo(TypeSourceInfo *newType) {
TInfo = newType;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const TypedefDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Typedef; }
};
class TypedefDecl;
/// TagDecl - Represents the declaration of a struct/union/class/enum.
class TagDecl
: public TypeDecl, public DeclContext, public Redeclarable<TagDecl> {
public:
// This is really ugly.
typedef ElaboratedType::TagKind TagKind;
static const TagKind TK_struct = ElaboratedType::TK_struct;
static const TagKind TK_union = ElaboratedType::TK_union;
static const TagKind TK_class = ElaboratedType::TK_class;
static const TagKind TK_enum = ElaboratedType::TK_enum;
private:
// FIXME: This can be packed into the bitfields in Decl.
/// TagDeclKind - The TagKind enum.
unsigned TagDeclKind : 2;
/// IsDefinition - True if this is a definition ("struct foo {};"), false if
/// it is a declaration ("struct foo;").
bool IsDefinition : 1;
/// IsEmbeddedInDeclarator - True if this tag declaration is
/// "embedded" (i.e., defined or declared for the very first time)
/// in the syntax of a declarator.
bool IsEmbeddedInDeclarator : 1;
SourceLocation TagKeywordLoc;
SourceLocation RBraceLoc;
// A struct representing syntactic qualifier info,
// to be used for the (uncommon) case of out-of-line declarations.
struct ExtInfo {
NestedNameSpecifier *NNS;
SourceRange NNSRange;
};
/// TypedefDeclOrQualifier - If the (out-of-line) tag declaration name
/// is qualified, it points to the qualifier info (nns and range);
/// otherwise, if the tag declaration is anonymous and it is part of
/// a typedef, it points to the TypedefDecl (used for mangling);
/// otherwise, it is a null (TypedefDecl) pointer.
llvm::PointerUnion<TypedefDecl*, ExtInfo*> TypedefDeclOrQualifier;
bool hasExtInfo() const { return TypedefDeclOrQualifier.is<ExtInfo*>(); }
ExtInfo *getExtInfo() { return TypedefDeclOrQualifier.get<ExtInfo*>(); }
const ExtInfo *getExtInfo() const {
return TypedefDeclOrQualifier.get<ExtInfo*>();
}
protected:
TagDecl(Kind DK, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
TagDecl *PrevDecl, SourceLocation TKL = SourceLocation())
: TypeDecl(DK, DC, L, Id), DeclContext(DK), TagKeywordLoc(TKL),
TypedefDeclOrQualifier((TypedefDecl*) 0) {
assert((DK != Enum || TK == TK_enum) &&"EnumDecl not matched with TK_enum");
TagDeclKind = TK;
IsDefinition = false;
IsEmbeddedInDeclarator = false;
setPreviousDeclaration(PrevDecl);
}
typedef Redeclarable<TagDecl> redeclarable_base;
virtual TagDecl *getNextRedeclaration() { return RedeclLink.getNext(); }
public:
void Destroy(ASTContext &C);
typedef redeclarable_base::redecl_iterator redecl_iterator;
redecl_iterator redecls_begin() const {
return redeclarable_base::redecls_begin();
}
redecl_iterator redecls_end() const {
return redeclarable_base::redecls_end();
}
SourceLocation getRBraceLoc() const { return RBraceLoc; }
void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
SourceLocation getTagKeywordLoc() const { return TagKeywordLoc; }
void setTagKeywordLoc(SourceLocation TKL) { TagKeywordLoc = TKL; }
virtual SourceRange getSourceRange() const;
virtual TagDecl* getCanonicalDecl();
const TagDecl* getCanonicalDecl() const {
return const_cast<TagDecl*>(this)->getCanonicalDecl();
}
/// isDefinition - Return true if this decl has its body specified.
bool isDefinition() const {
return IsDefinition;
}
bool isEmbeddedInDeclarator() const {
return IsEmbeddedInDeclarator;
}
void setEmbeddedInDeclarator(bool isInDeclarator) {
IsEmbeddedInDeclarator = isInDeclarator;
}
/// \brief Whether this declaration declares a type that is
/// dependent, i.e., a type that somehow depends on template
/// parameters.
bool isDependentType() const { return isDependentContext(); }
/// @brief Starts the definition of this tag declaration.
///
/// This method should be invoked at the beginning of the definition
/// of this tag declaration. It will set the tag type into a state
/// where it is in the process of being defined.
void startDefinition();
/// @brief Completes the definition of this tag declaration.
void completeDefinition();
/// getDefinition - Returns the TagDecl that actually defines this
/// struct/union/class/enum. When determining whether or not a
/// struct/union/class/enum is completely defined, one should use this method
/// as opposed to 'isDefinition'. 'isDefinition' indicates whether or not a
/// specific TagDecl is defining declaration, not whether or not the
/// struct/union/class/enum type is defined. This method returns NULL if
/// there is no TagDecl that defines the struct/union/class/enum.
TagDecl* getDefinition() const;
void setDefinition(bool V) { IsDefinition = V; }
const char *getKindName() const {
return ElaboratedType::getNameForTagKind(getTagKind());
}
/// getTagKindForTypeSpec - Converts a type specifier (DeclSpec::TST)
/// into a tag kind. It is an error to provide a type specifier
/// which *isn't* a tag kind here.
static TagKind getTagKindForTypeSpec(unsigned TypeSpec);
TagKind getTagKind() const {
return TagKind(TagDeclKind);
}
void setTagKind(TagKind TK) { TagDeclKind = TK; }
bool isStruct() const { return getTagKind() == TK_struct; }
bool isClass() const { return getTagKind() == TK_class; }
bool isUnion() const { return getTagKind() == TK_union; }
bool isEnum() const { return getTagKind() == TK_enum; }
TypedefDecl *getTypedefForAnonDecl() const {
return hasExtInfo() ? 0 : TypedefDeclOrQualifier.get<TypedefDecl*>();
}
void setTypedefForAnonDecl(TypedefDecl *TDD) { TypedefDeclOrQualifier = TDD; }
NestedNameSpecifier *getQualifier() const {
return hasExtInfo() ? TypedefDeclOrQualifier.get<ExtInfo*>()->NNS : 0;
}
SourceRange getQualifierRange() const {
return hasExtInfo()
? TypedefDeclOrQualifier.get<ExtInfo*>()->NNSRange
: SourceRange();
}
void setQualifierInfo(NestedNameSpecifier *Qualifier,
SourceRange QualifierRange);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const TagDecl *D) { return true; }
static bool classofKind(Kind K) { return K >= TagFirst && K <= TagLast; }
static DeclContext *castToDeclContext(const TagDecl *D) {
return static_cast<DeclContext *>(const_cast<TagDecl*>(D));
}
static TagDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<TagDecl *>(const_cast<DeclContext*>(DC));
}
};
/// EnumDecl - Represents an enum. As an extension, we allow forward-declared
/// enums.
class EnumDecl : public TagDecl {
/// IntegerType - This represent the integer type that the enum corresponds
/// to for code generation purposes. Note that the enumerator constants may
/// have a different type than this does.
QualType IntegerType;
/// PromotionType - The integer type that values of this type should
/// promote to. In C, enumerators are generally of an integer type
/// directly, but gcc-style large enumerators (and all enumerators
/// in C++) are of the enum type instead.
QualType PromotionType;
/// \brief If the enumeration was instantiated from an enumeration
/// within a class or function template, this pointer refers to the
/// enumeration declared within the template.
EnumDecl *InstantiatedFrom;
EnumDecl(DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, EnumDecl *PrevDecl, SourceLocation TKL)
: TagDecl(Enum, TK_enum, DC, L, Id, PrevDecl, TKL), InstantiatedFrom(0) {
IntegerType = QualType();
}
public:
EnumDecl *getCanonicalDecl() {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
const EnumDecl *getCanonicalDecl() const {
return cast<EnumDecl>(TagDecl::getCanonicalDecl());
}
static EnumDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL, EnumDecl *PrevDecl);
virtual void Destroy(ASTContext& C);
/// completeDefinition - When created, the EnumDecl corresponds to a
/// forward-declared enum. This method is used to mark the
/// declaration as being defined; it's enumerators have already been
/// added (via DeclContext::addDecl). NewType is the new underlying
/// type of the enumeration type.
void completeDefinition(QualType NewType,
QualType PromotionType);
// enumerator_iterator - Iterates through the enumerators of this
// enumeration.
typedef specific_decl_iterator<EnumConstantDecl> enumerator_iterator;
enumerator_iterator enumerator_begin() const {
return enumerator_iterator(this->decls_begin());
}
enumerator_iterator enumerator_end() const {
return enumerator_iterator(this->decls_end());
}
/// getPromotionType - Return the integer type that enumerators
/// should promote to.
QualType getPromotionType() const { return PromotionType; }
/// \brief Set the promotion type.
void setPromotionType(QualType T) { PromotionType = T; }
/// getIntegerType - Return the integer type this enum decl corresponds to.
/// This returns a null qualtype for an enum forward definition.
QualType getIntegerType() const { return IntegerType; }
/// \brief Set the underlying integer type.
void setIntegerType(QualType T) { IntegerType = T; }
/// \brief Returns the enumeration (declared within the template)
/// from which this enumeration type was instantiated, or NULL if
/// this enumeration was not instantiated from any template.
EnumDecl *getInstantiatedFromMemberEnum() const {
return InstantiatedFrom;
}
void setInstantiationOfMemberEnum(EnumDecl *IF) { InstantiatedFrom = IF; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const EnumDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Enum; }
};
/// RecordDecl - Represents a struct/union/class. For example:
/// struct X; // Forward declaration, no "body".
/// union Y { int A, B; }; // Has body with members A and B (FieldDecls).
/// This decl will be marked invalid if *any* members are invalid.
///
class RecordDecl : public TagDecl {
// FIXME: This can be packed into the bitfields in Decl.
/// HasFlexibleArrayMember - This is true if this struct ends with a flexible
/// array member (e.g. int X[]) or if this union contains a struct that does.
/// If so, this cannot be contained in arrays or other structs as a member.
bool HasFlexibleArrayMember : 1;
/// AnonymousStructOrUnion - Whether this is the type of an anonymous struct
/// or union.
bool AnonymousStructOrUnion : 1;
/// HasObjectMember - This is true if this struct has at least one member
/// containing an object.
bool HasObjectMember : 1;
protected:
RecordDecl(Kind DK, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
RecordDecl *PrevDecl, SourceLocation TKL);
virtual ~RecordDecl();
public:
static RecordDecl *Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL = SourceLocation(),
RecordDecl* PrevDecl = 0);
virtual void Destroy(ASTContext& C);
bool hasFlexibleArrayMember() const { return HasFlexibleArrayMember; }
void setHasFlexibleArrayMember(bool V) { HasFlexibleArrayMember = V; }
/// isAnonymousStructOrUnion - Whether this is an anonymous struct
/// or union. To be an anonymous struct or union, it must have been
/// declared without a name and there must be no objects of this
/// type declared, e.g.,
/// @code
/// union { int i; float f; };
/// @endcode
/// is an anonymous union but neither of the following are:
/// @code
/// union X { int i; float f; };
/// union { int i; float f; } obj;
/// @endcode
bool isAnonymousStructOrUnion() const { return AnonymousStructOrUnion; }
void setAnonymousStructOrUnion(bool Anon) {
AnonymousStructOrUnion = Anon;
}
bool hasObjectMember() const { return HasObjectMember; }
void setHasObjectMember (bool val) { HasObjectMember = val; }
/// \brief Determines whether this declaration represents the
/// injected class name.
///
/// The injected class name in C++ is the name of the class that
/// appears inside the class itself. For example:
///
/// \code
/// struct C {
/// // C is implicitly declared here as a synonym for the class name.
/// };
///
/// C::C c; // same as "C c;"
/// \endcode
bool isInjectedClassName() const;
/// getDefinition - Returns the RecordDecl that actually defines this
/// struct/union/class. When determining whether or not a struct/union/class
/// is completely defined, one should use this method as opposed to
/// 'isDefinition'. 'isDefinition' indicates whether or not a specific
/// RecordDecl is defining declaration, not whether or not the record
/// type is defined. This method returns NULL if there is no RecordDecl
/// that defines the struct/union/tag.
RecordDecl* getDefinition() const {
return cast_or_null<RecordDecl>(TagDecl::getDefinition());
}
// Iterator access to field members. The field iterator only visits
// the non-static data members of this class, ignoring any static
// data members, functions, constructors, destructors, etc.
typedef specific_decl_iterator<FieldDecl> field_iterator;
field_iterator field_begin() const {
return field_iterator(decls_begin());
}
field_iterator field_end() const {
return field_iterator(decls_end());
}
// field_empty - Whether there are any fields (non-static data
// members) in this record.
bool field_empty() const {
return field_begin() == field_end();
}
/// completeDefinition - Notes that the definition of this type is
/// now complete.
void completeDefinition();
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const RecordDecl *D) { return true; }
static bool classofKind(Kind K) {
return K >= RecordFirst && K <= RecordLast;
}
};
class FileScopeAsmDecl : public Decl {
StringLiteral *AsmString;
FileScopeAsmDecl(DeclContext *DC, SourceLocation L, StringLiteral *asmstring)
: Decl(FileScopeAsm, DC, L), AsmString(asmstring) {}
public:
static FileScopeAsmDecl *Create(ASTContext &C, DeclContext *DC,
SourceLocation L, StringLiteral *Str);
const StringLiteral *getAsmString() const { return AsmString; }
StringLiteral *getAsmString() { return AsmString; }
void setAsmString(StringLiteral *Asm) { AsmString = Asm; }
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const FileScopeAsmDecl *D) { return true; }
static bool classofKind(Kind K) { return K == FileScopeAsm; }
};
/// BlockDecl - This represents a block literal declaration, which is like an
/// unnamed FunctionDecl. For example:
/// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
///
class BlockDecl : public Decl, public DeclContext {
// FIXME: This can be packed into the bitfields in Decl.
bool isVariadic : 1;
/// ParamInfo - new[]'d array of pointers to ParmVarDecls for the formal
/// parameters of this function. This is null if a prototype or if there are
/// no formals.
ParmVarDecl **ParamInfo;
unsigned NumParams;
Stmt *Body;
protected:
BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
: Decl(Block, DC, CaretLoc), DeclContext(Block),
isVariadic(false), ParamInfo(0), NumParams(0), Body(0) {}
virtual ~BlockDecl();
virtual void Destroy(ASTContext& C);
public:
static BlockDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L);
SourceLocation getCaretLocation() const { return getLocation(); }
bool IsVariadic() const { return isVariadic; }
void setIsVariadic(bool value) { isVariadic = value; }
CompoundStmt *getCompoundBody() const { return (CompoundStmt*) Body; }
Stmt *getBody() const { return (Stmt*) Body; }
void setBody(CompoundStmt *B) { Body = (Stmt*) B; }
// Iterator access to formal parameters.
unsigned param_size() const { return getNumParams(); }
typedef ParmVarDecl **param_iterator;
typedef ParmVarDecl * const *param_const_iterator;
bool param_empty() const { return NumParams == 0; }
param_iterator param_begin() { return ParamInfo; }
param_iterator param_end() { return ParamInfo+param_size(); }
param_const_iterator param_begin() const { return ParamInfo; }
param_const_iterator param_end() const { return ParamInfo+param_size(); }
unsigned getNumParams() const;
const ParmVarDecl *getParamDecl(unsigned i) const {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
ParmVarDecl *getParamDecl(unsigned i) {
assert(i < getNumParams() && "Illegal param #");
return ParamInfo[i];
}
void setParams(ParmVarDecl **NewParamInfo, unsigned NumParams);
// Implement isa/cast/dyncast/etc.
static bool classof(const Decl *D) { return classofKind(D->getKind()); }
static bool classof(const BlockDecl *D) { return true; }
static bool classofKind(Kind K) { return K == Block; }
static DeclContext *castToDeclContext(const BlockDecl *D) {
return static_cast<DeclContext *>(const_cast<BlockDecl*>(D));
}
static BlockDecl *castFromDeclContext(const DeclContext *DC) {
return static_cast<BlockDecl *>(const_cast<DeclContext*>(DC));
}
};
/// Insertion operator for diagnostics. This allows sending NamedDecl's
/// into a diagnostic with <<.
inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
NamedDecl* ND) {
DB.AddTaggedVal(reinterpret_cast<intptr_t>(ND), Diagnostic::ak_nameddecl);
return DB;
}
} // end namespace clang
#endif