blob: bb162e42c875740c9e2ef13afcadd40f8557651f [file] [log] [blame]
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for expressions.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Designator.h"
#include "clang/Parse/Scope.h"
using namespace clang;
/// \brief Determine whether the use of this declaration is valid, and
/// emit any corresponding diagnostics.
///
/// This routine diagnoses various problems with referencing
/// declarations that can occur when using a declaration. For example,
/// it might warn if a deprecated or unavailable declaration is being
/// used, or produce an error (and return true) if a C++0x deleted
/// function is being used.
///
/// \returns true if there was an error (this declaration cannot be
/// referenced), false otherwise.
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc) {
// See if the decl is deprecated.
if (D->getAttr<DeprecatedAttr>()) {
// Implementing deprecated stuff requires referencing deprecated
// stuff. Don't warn if we are implementing a deprecated
// construct.
bool isSilenced = false;
if (NamedDecl *ND = getCurFunctionOrMethodDecl()) {
// If this reference happens *in* a deprecated function or method, don't
// warn.
isSilenced = ND->getAttr<DeprecatedAttr>();
// If this is an Objective-C method implementation, check to see if the
// method was deprecated on the declaration, not the definition.
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(ND)) {
// The semantic decl context of a ObjCMethodDecl is the
// ObjCImplementationDecl.
if (ObjCImplementationDecl *Impl
= dyn_cast<ObjCImplementationDecl>(MD->getParent())) {
MD = Impl->getClassInterface()->getMethod(MD->getSelector(),
MD->isInstanceMethod());
isSilenced |= MD && MD->getAttr<DeprecatedAttr>();
}
}
}
if (!isSilenced)
Diag(Loc, diag::warn_deprecated) << D->getDeclName();
}
// See if this is a deleted function.
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isDeleted()) {
Diag(Loc, diag::err_deleted_function_use);
Diag(D->getLocation(), diag::note_unavailable_here) << true;
return true;
}
}
// See if the decl is unavailable
if (D->getAttr<UnavailableAttr>()) {
Diag(Loc, diag::warn_unavailable) << D->getDeclName();
Diag(D->getLocation(), diag::note_unavailable_here) << 0;
}
return false;
}
/// DiagnoseSentinelCalls - This routine checks on method dispatch calls
/// (and other functions in future), which have been declared with sentinel
/// attribute. It warns if call does not have the sentinel argument.
///
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
Expr **Args, unsigned NumArgs)
{
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
if (!attr)
return;
int sentinelPos = attr->getSentinel();
int nullPos = attr->getNullPos();
// FIXME. ObjCMethodDecl and FunctionDecl need be derived from the same common
// base class. Then we won't be needing two versions of the same code.
unsigned int i = 0;
bool warnNotEnoughArgs = false;
int isMethod = 0;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = MD->param_end();
for (P = MD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
isMethod = 1;
}
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
// skip over named parameters.
ObjCMethodDecl::param_iterator P, E = FD->param_end();
for (P = FD->param_begin(); (P != E && i < NumArgs); ++P) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (P != E || i >= NumArgs);
}
else if (VarDecl *V = dyn_cast<VarDecl>(D)) {
// block or function pointer call.
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? Ty->getAsPointerType()->getPointeeType()->getAsFunctionType()
: Ty->getAsBlockPointerType()->getPointeeType()->getAsFunctionType();
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) {
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned k;
for (k = 0; (k != NumArgsInProto && i < NumArgs); k++) {
if (nullPos)
--nullPos;
else
++i;
}
warnNotEnoughArgs = (k != NumArgsInProto || i >= NumArgs);
}
if (Ty->isBlockPointerType())
isMethod = 2;
}
else
return;
}
else
return;
if (warnNotEnoughArgs) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
int sentinel = i;
while (sentinelPos > 0 && i < NumArgs-1) {
--sentinelPos;
++i;
}
if (sentinelPos > 0) {
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
return;
}
while (i < NumArgs-1) {
++i;
++sentinel;
}
Expr *sentinelExpr = Args[sentinel];
if (sentinelExpr && (!sentinelExpr->getType()->isPointerType() ||
!sentinelExpr->isNullPointerConstant(Context))) {
Diag(Loc, diag::warn_missing_sentinel) << isMethod;
Diag(D->getLocation(), diag::note_sentinel_here) << isMethod;
}
return;
}
SourceRange Sema::getExprRange(ExprTy *E) const {
Expr *Ex = (Expr *)E;
return Ex? Ex->getSourceRange() : SourceRange();
}
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
QualType Ty = E->getType();
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
if (Ty->isFunctionType())
ImpCastExprToType(E, Context.getPointerType(Ty));
else if (Ty->isArrayType()) {
// In C90 mode, arrays only promote to pointers if the array expression is
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
// type 'array of type' is converted to an expression that has type 'pointer
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
// that has type 'array of type' ...". The relevant change is "an lvalue"
// (C90) to "an expression" (C99).
//
// C++ 4.2p1:
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
// T" can be converted to an rvalue of type "pointer to T".
//
if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
E->isLvalue(Context) == Expr::LV_Valid)
ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
}
}
/// \brief Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2.
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
static QualType isPromotableBitField(Expr *E, ASTContext &Context) {
FieldDecl *Field = E->getBitField();
if (!Field)
return QualType();
const BuiltinType *BT = Field->getType()->getAsBuiltinType();
if (!BT)
return QualType();
if (BT->getKind() != BuiltinType::Bool &&
BT->getKind() != BuiltinType::Int &&
BT->getKind() != BuiltinType::UInt)
return QualType();
llvm::APSInt BitWidthAP;
if (!Field->getBitWidth()->isIntegerConstantExpr(BitWidthAP, Context))
return QualType();
uint64_t BitWidth = BitWidthAP.getZExtValue();
uint64_t IntSize = Context.getTypeSize(Context.IntTy);
if (BitWidth < IntSize ||
(Field->getType()->isSignedIntegerType() && BitWidth == IntSize))
return Context.IntTy;
if (BitWidth == IntSize && Field->getType()->isUnsignedIntegerType())
return Context.UnsignedIntTy;
return QualType();
}
/// UsualUnaryConversions - Performs various conversions that are common to most
/// operators (C99 6.3). The conversions of array and function types are
/// sometimes surpressed. For example, the array->pointer conversion doesn't
/// apply if the array is an argument to the sizeof or address (&) operators.
/// In these instances, this routine should *not* be called.
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
// C99 6.3.1.1p2:
//
// The following may be used in an expression wherever an int or
// unsigned int may be used:
// - an object or expression with an integer type whose integer
// conversion rank is less than or equal to the rank of int
// and unsigned int.
// - A bit-field of type _Bool, int, signed int, or unsigned int.
//
// If an int can represent all values of the original type, the
// value is converted to an int; otherwise, it is converted to an
// unsigned int. These are called the integer promotions. All
// other types are unchanged by the integer promotions.
if (Ty->isPromotableIntegerType()) {
ImpCastExprToType(Expr, Context.IntTy);
return Expr;
} else {
QualType T = isPromotableBitField(Expr, Context);
if (!T.isNull()) {
ImpCastExprToType(Expr, T);
return Expr;
}
}
DefaultFunctionArrayConversion(Expr);
return Expr;
}
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
/// do not have a prototype. Arguments that have type float are promoted to
/// double. All other argument types are converted by UsualUnaryConversions().
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
QualType Ty = Expr->getType();
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
// If this is a 'float' (CVR qualified or typedef) promote to double.
if (const BuiltinType *BT = Ty->getAsBuiltinType())
if (BT->getKind() == BuiltinType::Float)
return ImpCastExprToType(Expr, Context.DoubleTy);
UsualUnaryConversions(Expr);
}
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
/// will warn if the resulting type is not a POD type, and rejects ObjC
/// interfaces passed by value. This returns true if the argument type is
/// completely illegal.
bool Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
DefaultArgumentPromotion(Expr);
if (Expr->getType()->isObjCInterfaceType()) {
Diag(Expr->getLocStart(),
diag::err_cannot_pass_objc_interface_to_vararg)
<< Expr->getType() << CT;
return true;
}
if (!Expr->getType()->isPODType())
Diag(Expr->getLocStart(), diag::warn_cannot_pass_non_pod_arg_to_vararg)
<< Expr->getType() << CT;
return false;
}
/// UsualArithmeticConversions - Performs various conversions that are common to
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
/// routine returns the first non-arithmetic type found. The client is
/// responsible for emitting appropriate error diagnostics.
/// FIXME: verify the conversion rules for "complex int" are consistent with
/// GCC.
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
bool isCompAssign) {
if (!isCompAssign)
UsualUnaryConversions(lhsExpr);
UsualUnaryConversions(rhsExpr);
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhs =
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
QualType rhs =
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// Perform bitfield promotions.
QualType LHSBitfieldPromoteTy = isPromotableBitField(lhsExpr, Context);
if (!LHSBitfieldPromoteTy.isNull())
lhs = LHSBitfieldPromoteTy;
QualType RHSBitfieldPromoteTy = isPromotableBitField(rhsExpr, Context);
if (!RHSBitfieldPromoteTy.isNull())
rhs = RHSBitfieldPromoteTy;
QualType destType = UsualArithmeticConversionsType(lhs, rhs);
if (!isCompAssign)
ImpCastExprToType(lhsExpr, destType);
ImpCastExprToType(rhsExpr, destType);
return destType;
}
QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
// Perform the usual unary conversions. We do this early so that
// integral promotions to "int" can allow us to exit early, in the
// lhs == rhs check. Also, for conversion purposes, we ignore any
// qualifiers. For example, "const float" and "float" are
// equivalent.
if (lhs->isPromotableIntegerType())
lhs = Context.IntTy;
else
lhs = lhs.getUnqualifiedType();
if (rhs->isPromotableIntegerType())
rhs = Context.IntTy;
else
rhs = rhs.getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
return lhs;
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
// The caller can deal with this (e.g. pointer + int).
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
return lhs;
// At this point, we have two different arithmetic types.
// Handle complex types first (C99 6.3.1.8p1).
if (lhs->isComplexType() || rhs->isComplexType()) {
// if we have an integer operand, the result is the complex type.
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
// convert the rhs to the lhs complex type.
return lhs;
}
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
// convert the lhs to the rhs complex type.
return rhs;
}
// This handles complex/complex, complex/float, or float/complex.
// When both operands are complex, the shorter operand is converted to the
// type of the longer, and that is the type of the result. This corresponds
// to what is done when combining two real floating-point operands.
// The fun begins when size promotion occur across type domains.
// From H&S 6.3.4: When one operand is complex and the other is a real
// floating-point type, the less precise type is converted, within it's
// real or complex domain, to the precision of the other type. For example,
// when combining a "long double" with a "double _Complex", the
// "double _Complex" is promoted to "long double _Complex".
int result = Context.getFloatingTypeOrder(lhs, rhs);
if (result > 0) { // The left side is bigger, convert rhs.
rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
} else if (result < 0) { // The right side is bigger, convert lhs.
lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
}
// At this point, lhs and rhs have the same rank/size. Now, make sure the
// domains match. This is a requirement for our implementation, C99
// does not require this promotion.
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
return rhs;
} else { // handle "_Complex double, double".
return lhs;
}
}
return lhs; // The domain/size match exactly.
}
// Now handle "real" floating types (i.e. float, double, long double).
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
// if we have an integer operand, the result is the real floating type.
if (rhs->isIntegerType()) {
// convert rhs to the lhs floating point type.
return lhs;
}
if (rhs->isComplexIntegerType()) {
// convert rhs to the complex floating point type.
return Context.getComplexType(lhs);
}
if (lhs->isIntegerType()) {
// convert lhs to the rhs floating point type.
return rhs;
}
if (lhs->isComplexIntegerType()) {
// convert lhs to the complex floating point type.
return Context.getComplexType(rhs);
}
// We have two real floating types, float/complex combos were handled above.
// Convert the smaller operand to the bigger result.
int result = Context.getFloatingTypeOrder(lhs, rhs);
if (result > 0) // convert the rhs
return lhs;
assert(result < 0 && "illegal float comparison");
return rhs; // convert the lhs
}
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
// Handle GCC complex int extension.
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
if (lhsComplexInt && rhsComplexInt) {
if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
rhsComplexInt->getElementType()) >= 0)
return lhs; // convert the rhs
return rhs;
} else if (lhsComplexInt && rhs->isIntegerType()) {
// convert the rhs to the lhs complex type.
return lhs;
} else if (rhsComplexInt && lhs->isIntegerType()) {
// convert the lhs to the rhs complex type.
return rhs;
}
}
// Finally, we have two differing integer types.
// The rules for this case are in C99 6.3.1.8
int compare = Context.getIntegerTypeOrder(lhs, rhs);
bool lhsSigned = lhs->isSignedIntegerType(),
rhsSigned = rhs->isSignedIntegerType();
QualType destType;
if (lhsSigned == rhsSigned) {
// Same signedness; use the higher-ranked type
destType = compare >= 0 ? lhs : rhs;
} else if (compare != (lhsSigned ? 1 : -1)) {
// The unsigned type has greater than or equal rank to the
// signed type, so use the unsigned type
destType = lhsSigned ? rhs : lhs;
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
// The two types are different widths; if we are here, that
// means the signed type is larger than the unsigned type, so
// use the signed type.
destType = lhsSigned ? lhs : rhs;
} else {
// The signed type is higher-ranked than the unsigned type,
// but isn't actually any bigger (like unsigned int and long
// on most 32-bit systems). Use the unsigned type corresponding
// to the signed type.
destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
}
return destType;
}
//===----------------------------------------------------------------------===//
// Semantic Analysis for various Expression Types
//===----------------------------------------------------------------------===//
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
/// multiple tokens. However, the common case is that StringToks points to one
/// string.
///
Action::OwningExprResult
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
assert(NumStringToks && "Must have at least one string!");
StringLiteralParser Literal(StringToks, NumStringToks, PP);
if (Literal.hadError)
return ExprError();
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
for (unsigned i = 0; i != NumStringToks; ++i)
StringTokLocs.push_back(StringToks[i].getLocation());
QualType StrTy = Context.CharTy;
if (Literal.AnyWide) StrTy = Context.getWCharType();
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOptions().CPlusPlus)
StrTy.addConst();
// Get an array type for the string, according to C99 6.4.5. This includes
// the nul terminator character as well as the string length for pascal
// strings.
StrTy = Context.getConstantArrayType(StrTy,
llvm::APInt(32, Literal.GetNumStringChars()+1),
ArrayType::Normal, 0);
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
return Owned(StringLiteral::Create(Context, Literal.GetString(),
Literal.GetStringLength(),
Literal.AnyWide, StrTy,
&StringTokLocs[0],
StringTokLocs.size()));
}
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
/// variables defined outside the block) or false if this is not needed (e.g.
/// for values inside the block or for globals).
///
/// This also keeps the 'hasBlockDeclRefExprs' in the BlockSemaInfo records
/// up-to-date.
///
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
ValueDecl *VD) {
// If the value is defined inside the block, we couldn't snapshot it even if
// we wanted to.
if (CurBlock->TheDecl == VD->getDeclContext())
return false;
// If this is an enum constant or function, it is constant, don't snapshot.
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
return false;
// If this is a reference to an extern, static, or global variable, no need to
// snapshot it.
// FIXME: What about 'const' variables in C++?
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
if (!Var->hasLocalStorage())
return false;
// Blocks that have these can't be constant.
CurBlock->hasBlockDeclRefExprs = true;
// If we have nested blocks, the decl may be declared in an outer block (in
// which case that outer block doesn't get "hasBlockDeclRefExprs") or it may
// be defined outside all of the current blocks (in which case the blocks do
// all get the bit). Walk the nesting chain.
for (BlockSemaInfo *NextBlock = CurBlock->PrevBlockInfo; NextBlock;
NextBlock = NextBlock->PrevBlockInfo) {
// If we found the defining block for the variable, don't mark the block as
// having a reference outside it.
if (NextBlock->TheDecl == VD->getDeclContext())
break;
// Otherwise, the DeclRef from the inner block causes the outer one to need
// a snapshot as well.
NextBlock->hasBlockDeclRefExprs = true;
}
return true;
}
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
/// identifier is used in a function call context.
/// SS is only used for a C++ qualified-id (foo::bar) to indicate the
/// class or namespace that the identifier must be a member of.
Sema::OwningExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
IdentifierInfo &II,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand) {
return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS,
isAddressOfOperand);
}
/// BuildDeclRefExpr - Build either a DeclRefExpr or a
/// QualifiedDeclRefExpr based on whether or not SS is a
/// nested-name-specifier.
Sema::OwningExprResult
Sema::BuildDeclRefExpr(NamedDecl *D, QualType Ty, SourceLocation Loc,
bool TypeDependent, bool ValueDependent,
const CXXScopeSpec *SS) {
if (Context.getCanonicalType(Ty) == Context.UndeducedAutoTy) {
Diag(Loc,
diag::err_auto_variable_cannot_appear_in_own_initializer)
<< D->getDeclName();
return ExprError();
}
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (const FunctionDecl *FD = MD->getParent()->isLocalClass()) {
if (VD->hasLocalStorage() && VD->getDeclContext() != CurContext) {
Diag(Loc, diag::err_reference_to_local_var_in_enclosing_function)
<< D->getIdentifier() << FD->getDeclName();
Diag(D->getLocation(), diag::note_local_variable_declared_here)
<< D->getIdentifier();
return ExprError();
}
}
}
}
MarkDeclarationReferenced(Loc, D);
Expr *E;
if (SS && !SS->isEmpty()) {
E = new (Context) QualifiedDeclRefExpr(D, Ty, Loc, TypeDependent,
ValueDependent, SS->getRange(),
static_cast<NestedNameSpecifier *>(SS->getScopeRep()));
} else
E = new (Context) DeclRefExpr(D, Ty, Loc, TypeDependent, ValueDependent);
return Owned(E);
}
/// getObjectForAnonymousRecordDecl - Retrieve the (unnamed) field or
/// variable corresponding to the anonymous union or struct whose type
/// is Record.
static Decl *getObjectForAnonymousRecordDecl(ASTContext &Context,
RecordDecl *Record) {
assert(Record->isAnonymousStructOrUnion() &&
"Record must be an anonymous struct or union!");
// FIXME: Once Decls are directly linked together, this will be an O(1)
// operation rather than a slow walk through DeclContext's vector (which
// itself will be eliminated). DeclGroups might make this even better.
DeclContext *Ctx = Record->getDeclContext();
for (DeclContext::decl_iterator D = Ctx->decls_begin(),
DEnd = Ctx->decls_end();
D != DEnd; ++D) {
if (*D == Record) {
// The object for the anonymous struct/union directly
// follows its type in the list of declarations.
++D;
assert(D != DEnd && "Missing object for anonymous record");
assert(!cast<NamedDecl>(*D)->getDeclName() && "Decl should be unnamed");
return *D;
}
}
assert(false && "Missing object for anonymous record");
return 0;
}
/// \brief Given a field that represents a member of an anonymous
/// struct/union, build the path from that field's context to the
/// actual member.
///
/// Construct the sequence of field member references we'll have to
/// perform to get to the field in the anonymous union/struct. The
/// list of members is built from the field outward, so traverse it
/// backwards to go from an object in the current context to the field
/// we found.
///
/// \returns The variable from which the field access should begin,
/// for an anonymous struct/union that is not a member of another
/// class. Otherwise, returns NULL.
VarDecl *Sema::BuildAnonymousStructUnionMemberPath(FieldDecl *Field,
llvm::SmallVectorImpl<FieldDecl *> &Path) {
assert(Field->getDeclContext()->isRecord() &&
cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()
&& "Field must be stored inside an anonymous struct or union");
Path.push_back(Field);
VarDecl *BaseObject = 0;
DeclContext *Ctx = Field->getDeclContext();
do {
RecordDecl *Record = cast<RecordDecl>(Ctx);
Decl *AnonObject = getObjectForAnonymousRecordDecl(Context, Record);
if (FieldDecl *AnonField = dyn_cast<FieldDecl>(AnonObject))
Path.push_back(AnonField);
else {
BaseObject = cast<VarDecl>(AnonObject);
break;
}
Ctx = Ctx->getParent();
} while (Ctx->isRecord() &&
cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion());
return BaseObject;
}
Sema::OwningExprResult
Sema::BuildAnonymousStructUnionMemberReference(SourceLocation Loc,
FieldDecl *Field,
Expr *BaseObjectExpr,
SourceLocation OpLoc) {
llvm::SmallVector<FieldDecl *, 4> AnonFields;
VarDecl *BaseObject = BuildAnonymousStructUnionMemberPath(Field,
AnonFields);
// Build the expression that refers to the base object, from
// which we will build a sequence of member references to each
// of the anonymous union objects and, eventually, the field we
// found via name lookup.
bool BaseObjectIsPointer = false;
unsigned ExtraQuals = 0;
if (BaseObject) {
// BaseObject is an anonymous struct/union variable (and is,
// therefore, not part of another non-anonymous record).
if (BaseObjectExpr) BaseObjectExpr->Destroy(Context);
MarkDeclarationReferenced(Loc, BaseObject);
BaseObjectExpr = new (Context) DeclRefExpr(BaseObject,BaseObject->getType(),
SourceLocation());
ExtraQuals
= Context.getCanonicalType(BaseObject->getType()).getCVRQualifiers();
} else if (BaseObjectExpr) {
// The caller provided the base object expression. Determine
// whether its a pointer and whether it adds any qualifiers to the
// anonymous struct/union fields we're looking into.
QualType ObjectType = BaseObjectExpr->getType();
if (const PointerType *ObjectPtr = ObjectType->getAsPointerType()) {
BaseObjectIsPointer = true;
ObjectType = ObjectPtr->getPointeeType();
}
ExtraQuals = Context.getCanonicalType(ObjectType).getCVRQualifiers();
} else {
// We've found a member of an anonymous struct/union that is
// inside a non-anonymous struct/union, so in a well-formed
// program our base object expression is "this".
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (!MD->isStatic()) {
QualType AnonFieldType
= Context.getTagDeclType(
cast<RecordDecl>(AnonFields.back()->getDeclContext()));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(AnonFieldType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, AnonFieldType)) {
// Our base object expression is "this".
BaseObjectExpr = new (Context) CXXThisExpr(SourceLocation(),
MD->getThisType(Context));
BaseObjectIsPointer = true;
}
} else {
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
<< Field->getDeclName());
}
ExtraQuals = MD->getTypeQualifiers();
}
if (!BaseObjectExpr)
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
<< Field->getDeclName());
}
// Build the implicit member references to the field of the
// anonymous struct/union.
Expr *Result = BaseObjectExpr;
for (llvm::SmallVector<FieldDecl *, 4>::reverse_iterator
FI = AnonFields.rbegin(), FIEnd = AnonFields.rend();
FI != FIEnd; ++FI) {
QualType MemberType = (*FI)->getType();
if (!(*FI)->isMutable()) {
unsigned combinedQualifiers
= MemberType.getCVRQualifiers() | ExtraQuals;
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
MarkDeclarationReferenced(Loc, *FI);
Result = new (Context) MemberExpr(Result, BaseObjectIsPointer, *FI,
OpLoc, MemberType);
BaseObjectIsPointer = false;
ExtraQuals = Context.getCanonicalType(MemberType).getCVRQualifiers();
}
return Owned(Result);
}
/// ActOnDeclarationNameExpr - The parser has read some kind of name
/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
/// performs lookup on that name and returns an expression that refers
/// to that name. This routine isn't directly called from the parser,
/// because the parser doesn't know about DeclarationName. Rather,
/// this routine is called by ActOnIdentifierExpr,
/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
/// which form the DeclarationName from the corresponding syntactic
/// forms.
///
/// HasTrailingLParen indicates whether this identifier is used in a
/// function call context. LookupCtx is only used for a C++
/// qualified-id (foo::bar) to indicate the class or namespace that
/// the identifier must be a member of.
///
/// isAddressOfOperand means that this expression is the direct operand
/// of an address-of operator. This matters because this is the only
/// situation where a qualified name referencing a non-static member may
/// appear outside a member function of this class.
Sema::OwningExprResult
Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
DeclarationName Name, bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand) {
// Could be enum-constant, value decl, instance variable, etc.
if (SS && SS->isInvalid())
return ExprError();
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// -- a nested-name-specifier that contains a class-name that
// names a dependent type.
// FIXME: Member of the current instantiation.
if (SS && isDependentScopeSpecifier(*SS)) {
return Owned(new (Context) UnresolvedDeclRefExpr(Name, Context.DependentTy,
Loc, SS->getRange(),
static_cast<NestedNameSpecifier *>(SS->getScopeRep()),
isAddressOfOperand));
}
LookupResult Lookup = LookupParsedName(S, SS, Name, LookupOrdinaryName,
false, true, Loc);
if (Lookup.isAmbiguous()) {
DiagnoseAmbiguousLookup(Lookup, Name, Loc,
SS && SS->isSet() ? SS->getRange()
: SourceRange());
return ExprError();
}
NamedDecl *D = Lookup.getAsDecl();
// If this reference is in an Objective-C method, then ivar lookup happens as
// well.
IdentifierInfo *II = Name.getAsIdentifierInfo();
if (II && getCurMethodDecl()) {
// There are two cases to handle here. 1) scoped lookup could have failed,
// in which case we should look for an ivar. 2) scoped lookup could have
// found a decl, but that decl is outside the current instance method (i.e.
// a global variable). In these two cases, we do a lookup for an ivar with
// this name, if the lookup sucedes, we replace it our current decl.
if (D == 0 || D->isDefinedOutsideFunctionOrMethod()) {
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
// Check if referencing a field with __attribute__((deprecated)).
if (DiagnoseUseOfDecl(IV, Loc))
return ExprError();
// If we're referencing an invalid decl, just return this as a silent
// error node. The error diagnostic was already emitted on the decl.
if (IV->isInvalidDecl())
return ExprError();
bool IsClsMethod = getCurMethodDecl()->isClassMethod();
// If a class method attemps to use a free standing ivar, this is
// an error.
if (IsClsMethod && D && !D->isDefinedOutsideFunctionOrMethod())
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
<< IV->getDeclName());
// If a class method uses a global variable, even if an ivar with
// same name exists, use the global.
if (!IsClsMethod) {
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
ClassDeclared != IFace)
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
// FIXME: This should use a new expr for a direct reference, don't
// turn this into Self->ivar, just return a BareIVarExpr or something.
IdentifierInfo &II = Context.Idents.get("self");
OwningExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
MarkDeclarationReferenced(Loc, IV);
return Owned(new (Context)
ObjCIvarRefExpr(IV, IV->getType(), Loc,
SelfExpr.takeAs<Expr>(), true, true));
}
}
}
else if (getCurMethodDecl()->isInstanceMethod()) {
// We should warn if a local variable hides an ivar.
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
IFace == ClassDeclared)
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
}
}
// Needed to implement property "super.method" notation.
if (D == 0 && II->isStr("super")) {
QualType T;
if (getCurMethodDecl()->isInstanceMethod())
T = Context.getObjCObjectPointerType(Context.getObjCInterfaceType(
getCurMethodDecl()->getClassInterface()));
else
T = Context.getObjCClassType();
return Owned(new (Context) ObjCSuperExpr(Loc, T));
}
}
// Determine whether this name might be a candidate for
// argument-dependent lookup.
bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
HasTrailingLParen;
if (ADL && D == 0) {
// We've seen something of the form
//
// identifier(
//
// and we did not find any entity by the name
// "identifier". However, this identifier is still subject to
// argument-dependent lookup, so keep track of the name.
return Owned(new (Context) UnresolvedFunctionNameExpr(Name,
Context.OverloadTy,
Loc));
}
if (D == 0) {
// Otherwise, this could be an implicitly declared function reference (legal
// in C90, extension in C99).
if (HasTrailingLParen && II &&
!getLangOptions().CPlusPlus) // Not in C++.
D = ImplicitlyDefineFunction(Loc, *II, S);
else {
// If this name wasn't predeclared and if this is not a function call,
// diagnose the problem.
if (SS && !SS->isEmpty())
return ExprError(Diag(Loc, diag::err_typecheck_no_member)
<< Name << SS->getRange());
else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
return ExprError(Diag(Loc, diag::err_undeclared_use)
<< Name.getAsString());
else
return ExprError(Diag(Loc, diag::err_undeclared_var_use) << Name);
}
}
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Warn about constructs like:
// if (void *X = foo()) { ... } else { X }.
// In the else block, the pointer is always false.
// FIXME: In a template instantiation, we don't have scope
// information to check this property.
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
Scope *CheckS = S;
while (CheckS) {
if (CheckS->isWithinElse() &&
CheckS->getControlParent()->isDeclScope(DeclPtrTy::make(Var))) {
if (Var->getType()->isBooleanType())
ExprError(Diag(Loc, diag::warn_value_always_false)
<< Var->getDeclName());
else
ExprError(Diag(Loc, diag::warn_value_always_zero)
<< Var->getDeclName());
break;
}
// Move up one more control parent to check again.
CheckS = CheckS->getControlParent();
if (CheckS)
CheckS = CheckS->getParent();
}
}
} else if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D)) {
if (!getLangOptions().CPlusPlus && !Func->hasPrototype()) {
// C99 DR 316 says that, if a function type comes from a
// function definition (without a prototype), that type is only
// used for checking compatibility. Therefore, when referencing
// the function, we pretend that we don't have the full function
// type.
if (DiagnoseUseOfDecl(Func, Loc))
return ExprError();
QualType T = Func->getType();
QualType NoProtoType = T;
if (const FunctionProtoType *Proto = T->getAsFunctionProtoType())
NoProtoType = Context.getFunctionNoProtoType(Proto->getResultType());
return BuildDeclRefExpr(Func, NoProtoType, Loc, false, false, SS);
}
}
return BuildDeclarationNameExpr(Loc, D, HasTrailingLParen, SS, isAddressOfOperand);
}
/// \brief Complete semantic analysis for a reference to the given declaration.
Sema::OwningExprResult
Sema::BuildDeclarationNameExpr(SourceLocation Loc, NamedDecl *D,
bool HasTrailingLParen,
const CXXScopeSpec *SS,
bool isAddressOfOperand) {
assert(D && "Cannot refer to a NULL declaration");
DeclarationName Name = D->getDeclName();
// If this is an expression of the form &Class::member, don't build an
// implicit member ref, because we want a pointer to the member in general,
// not any specific instance's member.
if (isAddressOfOperand && SS && !SS->isEmpty() && !HasTrailingLParen) {
DeclContext *DC = computeDeclContext(*SS);
if (D && isa<CXXRecordDecl>(DC)) {
QualType DType;
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
DType = FD->getType().getNonReferenceType();
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
DType = Method->getType();
} else if (isa<OverloadedFunctionDecl>(D)) {
DType = Context.OverloadTy;
}
// Could be an inner type. That's diagnosed below, so ignore it here.
if (!DType.isNull()) {
// The pointer is type- and value-dependent if it points into something
// dependent.
bool Dependent = DC->isDependentContext();
return BuildDeclRefExpr(D, DType, Loc, Dependent, Dependent, SS);
}
}
}
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
if (FieldDecl *FD = dyn_cast<FieldDecl>(D))
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(Loc, FD);
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (!MD->isStatic()) {
// C++ [class.mfct.nonstatic]p2:
// [...] if name lookup (3.4.1) resolves the name in the
// id-expression to a nonstatic nontype member of class X or of
// a base class of X, the id-expression is transformed into a
// class member access expression (5.2.5) using (*this) (9.3.2)
// as the postfix-expression to the left of the '.' operator.
DeclContext *Ctx = 0;
QualType MemberType;
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
Ctx = FD->getDeclContext();
MemberType = FD->getType();
if (const ReferenceType *RefType = MemberType->getAsReferenceType())
MemberType = RefType->getPointeeType();
else if (!FD->isMutable()) {
unsigned combinedQualifiers
= MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
if (!Method->isStatic()) {
Ctx = Method->getParent();
MemberType = Method->getType();
}
} else if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(D)) {
for (OverloadedFunctionDecl::function_iterator
Func = Ovl->function_begin(),
FuncEnd = Ovl->function_end();
Func != FuncEnd; ++Func) {
if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
if (!DMethod->isStatic()) {
Ctx = Ovl->getDeclContext();
MemberType = Context.OverloadTy;
break;
}
}
}
if (Ctx && Ctx->isRecord()) {
QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
QualType ThisType = Context.getTagDeclType(MD->getParent());
if ((Context.getCanonicalType(CtxType)
== Context.getCanonicalType(ThisType)) ||
IsDerivedFrom(ThisType, CtxType)) {
// Build the implicit member access expression.
Expr *This = new (Context) CXXThisExpr(SourceLocation(),
MD->getThisType(Context));
MarkDeclarationReferenced(Loc, D);
return Owned(new (Context) MemberExpr(This, true, D,
Loc, MemberType));
}
}
}
}
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
if (MD->isStatic())
// "invalid use of member 'x' in static member function"
return ExprError(Diag(Loc,diag::err_invalid_member_use_in_static_method)
<< FD->getDeclName());
}
// Any other ways we could have found the field in a well-formed
// program would have been turned into implicit member expressions
// above.
return ExprError(Diag(Loc, diag::err_invalid_non_static_member_use)
<< FD->getDeclName());
}
if (isa<TypedefDecl>(D))
return ExprError(Diag(Loc, diag::err_unexpected_typedef) << Name);
if (isa<ObjCInterfaceDecl>(D))
return ExprError(Diag(Loc, diag::err_unexpected_interface) << Name);
if (isa<NamespaceDecl>(D))
return ExprError(Diag(Loc, diag::err_unexpected_namespace) << Name);
// Make the DeclRefExpr or BlockDeclRefExpr for the decl.
if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
return BuildDeclRefExpr(Ovl, Context.OverloadTy, Loc,
false, false, SS);
else if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
return BuildDeclRefExpr(Template, Context.OverloadTy, Loc,
false, false, SS);
ValueDecl *VD = cast<ValueDecl>(D);
// Check whether this declaration can be used. Note that we suppress
// this check when we're going to perform argument-dependent lookup
// on this function name, because this might not be the function
// that overload resolution actually selects.
bool ADL = getLangOptions().CPlusPlus && (!SS || !SS->isSet()) &&
HasTrailingLParen;
if (!(ADL && isa<FunctionDecl>(VD)) && DiagnoseUseOfDecl(VD, Loc))
return ExprError();
// Only create DeclRefExpr's for valid Decl's.
if (VD->isInvalidDecl())
return ExprError();
// If the identifier reference is inside a block, and it refers to a value
// that is outside the block, create a BlockDeclRefExpr instead of a
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
// the block is formed.
//
// We do not do this for things like enum constants, global variables, etc,
// as they do not get snapshotted.
//
if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
MarkDeclarationReferenced(Loc, VD);
QualType ExprTy = VD->getType().getNonReferenceType();
// The BlocksAttr indicates the variable is bound by-reference.
if (VD->getAttr<BlocksAttr>())
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, true));
// This is to record that a 'const' was actually synthesize and added.
bool constAdded = !ExprTy.isConstQualified();
// Variable will be bound by-copy, make it const within the closure.
ExprTy.addConst();
return Owned(new (Context) BlockDeclRefExpr(VD, ExprTy, Loc, false,
constAdded));
}
// If this reference is not in a block or if the referenced variable is
// within the block, create a normal DeclRefExpr.
bool TypeDependent = false;
bool ValueDependent = false;
if (getLangOptions().CPlusPlus) {
// C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
// - an identifier that was declared with a dependent type,
if (VD->getType()->isDependentType())
TypeDependent = true;
// - FIXME: a template-id that is dependent,
// - a conversion-function-id that specifies a dependent type,
else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
Name.getCXXNameType()->isDependentType())
TypeDependent = true;
// - a nested-name-specifier that contains a class-name that
// names a dependent type.
else if (SS && !SS->isEmpty()) {
for (DeclContext *DC = computeDeclContext(*SS);
DC; DC = DC->getParent()) {
// FIXME: could stop early at namespace scope.
if (DC->isRecord()) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
if (Context.getTypeDeclType(Record)->isDependentType()) {
TypeDependent = true;
break;
}
}
}
}
// C++ [temp.dep.constexpr]p2:
//
// An identifier is value-dependent if it is:
// - a name declared with a dependent type,
if (TypeDependent)
ValueDependent = true;
// - the name of a non-type template parameter,
else if (isa<NonTypeTemplateParmDecl>(VD))
ValueDependent = true;
// - a constant with integral or enumeration type and is
// initialized with an expression that is value-dependent
else if (const VarDecl *Dcl = dyn_cast<VarDecl>(VD)) {
if (Dcl->getType().getCVRQualifiers() == QualType::Const &&
Dcl->getInit()) {
ValueDependent = Dcl->getInit()->isValueDependent();
}
}
}
return BuildDeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
TypeDependent, ValueDependent, SS);
}
Sema::OwningExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind) {
PredefinedExpr::IdentType IT;
switch (Kind) {
default: assert(0 && "Unknown simple primary expr!");
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
}
// Pre-defined identifiers are of type char[x], where x is the length of the
// string.
unsigned Length;
if (FunctionDecl *FD = getCurFunctionDecl())
Length = FD->getIdentifier()->getLength();
else if (ObjCMethodDecl *MD = getCurMethodDecl())
Length = MD->getSynthesizedMethodSize();
else {
Diag(Loc, diag::ext_predef_outside_function);
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
}
llvm::APInt LengthI(32, Length + 1);
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
}
Sema::OwningExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
llvm::SmallString<16> CharBuffer;
CharBuffer.resize(Tok.getLength());
const char *ThisTokBegin = &CharBuffer[0];
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError())
return ExprError();
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
return Owned(new (Context) CharacterLiteral(Literal.getValue(),
Literal.isWide(),
type, Tok.getLocation()));
}
Action::OwningExprResult Sema::ActOnNumericConstant(const Token &Tok) {
// Fast path for a single digit (which is quite common). A single digit
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
if (Tok.getLength() == 1) {
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
unsigned IntSize = Context.Target.getIntWidth();
return Owned(new (Context) IntegerLiteral(llvm::APInt(IntSize, Val-'0'),
Context.IntTy, Tok.getLocation()));
}
llvm::SmallString<512> IntegerBuffer;
// Add padding so that NumericLiteralParser can overread by one character.
IntegerBuffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &IntegerBuffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
Tok.getLocation(), PP);
if (Literal.hadError)
return ExprError();
Expr *Res;
if (Literal.isFloatingLiteral()) {
QualType Ty;
if (Literal.isFloat)
Ty = Context.FloatTy;
else if (!Literal.isLong)
Ty = Context.DoubleTy;
else
Ty = Context.LongDoubleTy;
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
// isExact will be set by GetFloatValue().
bool isExact = false;
llvm::APFloat Val = Literal.GetFloatValue(Format, &isExact);
Res = new (Context) FloatingLiteral(Val, isExact, Ty, Tok.getLocation());
} else if (!Literal.isIntegerLiteral()) {
return ExprError();
} else {
QualType Ty;
// long long is a C99 feature.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
Literal.isLongLong)
Diag(Tok.getLocation(), diag::ext_longlong);
// Get the value in the widest-possible width.
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
if (Literal.GetIntegerValue(ResultVal)) {
// If this value didn't fit into uintmax_t, warn and force to ull.
Diag(Tok.getLocation(), diag::warn_integer_too_large);
Ty = Context.UnsignedLongLongTy;
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?");
} else {
// If this value fits into a ULL, try to figure out what else it fits into
// according to the rules of C99 6.4.4.1p5.
// Octal, Hexadecimal, and integers with a U suffix are allowed to
// be an unsigned int.
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
// Check from smallest to largest, picking the smallest type we can.
unsigned Width = 0;
if (!Literal.isLong && !Literal.isLongLong) {
// Are int/unsigned possibilities?
unsigned IntSize = Context.Target.getIntWidth();
// Does it fit in a unsigned int?
if (ResultVal.isIntN(IntSize)) {
// Does it fit in a signed int?
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
Ty = Context.IntTy;
else if (AllowUnsigned)
Ty = Context.UnsignedIntTy;
Width = IntSize;
}
}
// Are long/unsigned long possibilities?
if (Ty.isNull() && !Literal.isLongLong) {
unsigned LongSize = Context.Target.getLongWidth();
// Does it fit in a unsigned long?
if (ResultVal.isIntN(LongSize)) {
// Does it fit in a signed long?
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
Ty = Context.LongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongTy;
Width = LongSize;
}
}
// Finally, check long long if needed.
if (Ty.isNull()) {
unsigned LongLongSize = Context.Target.getLongLongWidth();
// Does it fit in a unsigned long long?
if (ResultVal.isIntN(LongLongSize)) {
// Does it fit in a signed long long?
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
Ty = Context.LongLongTy;
else if (AllowUnsigned)
Ty = Context.UnsignedLongLongTy;
Width = LongLongSize;
}
}
// If we still couldn't decide a type, we probably have something that
// does not fit in a signed long long, but has no U suffix.
if (Ty.isNull()) {
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
Ty = Context.UnsignedLongLongTy;
Width = Context.Target.getLongLongWidth();
}
if (ResultVal.getBitWidth() != Width)
ResultVal.trunc(Width);
}
Res = new (Context) IntegerLiteral(ResultVal, Ty, Tok.getLocation());
}
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
if (Literal.isImaginary)
Res = new (Context) ImaginaryLiteral(Res,
Context.getComplexType(Res->getType()));
return Owned(Res);
}
Action::OwningExprResult Sema::ActOnParenExpr(SourceLocation L,
SourceLocation R, ExprArg Val) {
Expr *E = Val.takeAs<Expr>();
assert((E != 0) && "ActOnParenExpr() missing expr");
return Owned(new (Context) ParenExpr(L, R, E));
}
/// The UsualUnaryConversions() function is *not* called by this routine.
/// See C99 6.3.2.1p[2-4] for more details.
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
SourceLocation OpLoc,
const SourceRange &ExprRange,
bool isSizeof) {
if (exprType->isDependentType())
return false;
// C99 6.5.3.4p1:
if (isa<FunctionType>(exprType)) {
// alignof(function) is allowed as an extension.
if (isSizeof)
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
return false;
}
// Allow sizeof(void)/alignof(void) as an extension.
if (exprType->isVoidType()) {
Diag(OpLoc, diag::ext_sizeof_void_type)
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
return false;
}
if (RequireCompleteType(OpLoc, exprType,
isSizeof ? diag::err_sizeof_incomplete_type :
diag::err_alignof_incomplete_type,
ExprRange))
return true;
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
if (LangOpts.ObjCNonFragileABI && exprType->isObjCInterfaceType()) {
Diag(OpLoc, diag::err_sizeof_nonfragile_interface)
<< exprType << isSizeof << ExprRange;
return true;
}
return false;
}
bool Sema::CheckAlignOfExpr(Expr *E, SourceLocation OpLoc,
const SourceRange &ExprRange) {
E = E->IgnoreParens();
// alignof decl is always ok.
if (isa<DeclRefExpr>(E))
return false;
// Cannot know anything else if the expression is dependent.
if (E->isTypeDependent())
return false;
if (E->getBitField()) {
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 1 << ExprRange;
return true;
}
// Alignment of a field access is always okay, so long as it isn't a
// bit-field.
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
if (dyn_cast<FieldDecl>(ME->getMemberDecl()))
return false;
return CheckSizeOfAlignOfOperand(E->getType(), OpLoc, ExprRange, false);
}
/// \brief Build a sizeof or alignof expression given a type operand.
Action::OwningExprResult
Sema::CreateSizeOfAlignOfExpr(QualType T, SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
if (T.isNull())
return ExprError();
if (!T->isDependentType() &&
CheckSizeOfAlignOfOperand(T, OpLoc, R, isSizeOf))
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, T,
Context.getSizeType(), OpLoc,
R.getEnd()));
}
/// \brief Build a sizeof or alignof expression given an expression
/// operand.
Action::OwningExprResult
Sema::CreateSizeOfAlignOfExpr(Expr *E, SourceLocation OpLoc,
bool isSizeOf, SourceRange R) {
// Verify that the operand is valid.
bool isInvalid = false;
if (E->isTypeDependent()) {
// Delay type-checking for type-dependent expressions.
} else if (!isSizeOf) {
isInvalid = CheckAlignOfExpr(E, OpLoc, R);
} else if (E->getBitField()) { // C99 6.5.3.4p1.
Diag(OpLoc, diag::err_sizeof_alignof_bitfield) << 0;
isInvalid = true;
} else {
isInvalid = CheckSizeOfAlignOfOperand(E->getType(), OpLoc, R, true);
}
if (isInvalid)
return ExprError();
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
return Owned(new (Context) SizeOfAlignOfExpr(isSizeOf, E,
Context.getSizeType(), OpLoc,
R.getEnd()));
}
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
/// the same for @c alignof and @c __alignof
/// Note that the ArgRange is invalid if isType is false.
Action::OwningExprResult
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
// If error parsing type, ignore.
if (TyOrEx == 0) return ExprError();
if (isType) {
QualType ArgTy = QualType::getFromOpaquePtr(TyOrEx);
return CreateSizeOfAlignOfExpr(ArgTy, OpLoc, isSizeof, ArgRange);
}
// Get the end location.
Expr *ArgEx = (Expr *)TyOrEx;
Action::OwningExprResult Result
= CreateSizeOfAlignOfExpr(ArgEx, OpLoc, isSizeof, ArgEx->getSourceRange());
if (Result.isInvalid())
DeleteExpr(ArgEx);
return move(Result);
}
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc, bool isReal) {
if (V->isTypeDependent())
return Context.DependentTy;
// These operators return the element type of a complex type.
if (const ComplexType *CT = V->getType()->getAsComplexType())
return CT->getElementType();
// Otherwise they pass through real integer and floating point types here.
if (V->getType()->isArithmeticType())
return V->getType();
// Reject anything else.
Diag(Loc, diag::err_realimag_invalid_type) << V->getType()
<< (isReal ? "__real" : "__imag");
return QualType();
}
Action::OwningExprResult
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind, ExprArg Input) {
Expr *Arg = (Expr *)Input.get();
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
}
if (getLangOptions().CPlusPlus &&
(Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
// Which overloaded operator?
OverloadedOperatorKind OverOp =
(Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
// C++ [over.inc]p1:
//
// [...] If the function is a member function with one
// parameter (which shall be of type int) or a non-member
// function with two parameters (the second of which shall be
// of type int), it defines the postfix increment operator ++
// for objects of that type. When the postfix increment is
// called as a result of using the ++ operator, the int
// argument will have value zero.
Expr *Args[2] = {
Arg,
new (Context) IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
/*isSigned=*/true), Context.IntTy, SourceLocation())
};
// Build the candidate set for overloading
OverloadCandidateSet CandidateSet;
AddOperatorCandidates(OverOp, S, OpLoc, Args, 2, CandidateSet);
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(Arg, Method))
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(Arg,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return ExprError();
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
Input.release();
Args[0] = Arg;
return Owned(new (Context) CXXOperatorCallExpr(Context, OverOp, FnExpr,
Args, 2, ResultTy,
OpLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
"passing"))
return ExprError();
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
<< UnaryOperator::getOpcodeStr(Opc)
<< Arg->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
case OR_Deleted:
Diag(OpLoc, diag::err_ovl_deleted_oper)
<< Best->Function->isDeleted()
<< UnaryOperator::getOpcodeStr(Opc)
<< Arg->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
Opc == UnaryOperator::PostInc);
if (result.isNull())
return ExprError();
Input.release();
return Owned(new (Context) UnaryOperator(Arg, Opc, result, OpLoc));
}
Action::OwningExprResult
Sema::ActOnArraySubscriptExpr(Scope *S, ExprArg Base, SourceLocation LLoc,
ExprArg Idx, SourceLocation RLoc) {
Expr *LHSExp = static_cast<Expr*>(Base.get()),
*RHSExp = static_cast<Expr*>(Idx.get());
if (getLangOptions().CPlusPlus &&
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
Base.release();
Idx.release();
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
Context.DependentTy, RLoc));
}
if (getLangOptions().CPlusPlus &&
(LHSExp->getType()->isRecordType() ||
LHSExp->getType()->isEnumeralType() ||
RHSExp->getType()->isRecordType() ||
RHSExp->getType()->isEnumeralType())) {
// Add the appropriate overloaded operators (C++ [over.match.oper])
// to the candidate set.
OverloadCandidateSet CandidateSet;
Expr *Args[2] = { LHSExp, RHSExp };
AddOperatorCandidates(OO_Subscript, S, LLoc, Args, 2, CandidateSet,
SourceRange(LLoc, RLoc));
// Perform overload resolution.
OverloadCandidateSet::iterator Best;
switch (BestViableFunction(CandidateSet, LLoc, Best)) {
case OR_Success: {
// We found a built-in operator or an overloaded operator.
FunctionDecl *FnDecl = Best->Function;
if (FnDecl) {
// We matched an overloaded operator. Build a call to that
// operator.
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (PerformObjectArgumentInitialization(LHSExp, Method) ||
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing"))
return ExprError();
} else {
// Convert the arguments.
if (PerformCopyInitialization(LHSExp,
FnDecl->getParamDecl(0)->getType(),
"passing") ||
PerformCopyInitialization(RHSExp,
FnDecl->getParamDecl(1)->getType(),
"passing"))
return ExprError();
}
// Determine the result type
QualType ResultTy
= FnDecl->getType()->getAsFunctionType()->getResultType();
ResultTy = ResultTy.getNonReferenceType();
// Build the actual expression node.
Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
SourceLocation());
UsualUnaryConversions(FnExpr);
Base.release();
Idx.release();
Args[0] = LHSExp;
Args[1] = RHSExp;
return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
FnExpr, Args, 2,
ResultTy, LLoc));
} else {
// We matched a built-in operator. Convert the arguments, then
// break out so that we will build the appropriate built-in
// operator node.
if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
"passing") ||
PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
"passing"))
return ExprError();
break;
}
}
case OR_No_Viable_Function:
// No viable function; fall through to handling this as a
// built-in operator, which will produce an error message for us.
break;
case OR_Ambiguous:
Diag(LLoc, diag::err_ovl_ambiguous_oper)
<< "[]"
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
case OR_Deleted:
Diag(LLoc, diag::err_ovl_deleted_oper)
<< Best->Function->isDeleted()
<< "[]"
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
return ExprError();
}
// Either we found no viable overloaded operator or we matched a
// built-in operator. In either case, fall through to trying to
// build a built-in operation.
}
// Perform default conversions.
DefaultFunctionArrayConversion(LHSExp);
DefaultFunctionArrayConversion(RHSExp);
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
// in the subscript position. As a result, we need to derive the array base
// and index from the expression types.
Expr *BaseExpr, *IndexExpr;
QualType ResultType;
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = Context.DependentTy;
} else if (const PointerType *PTy = LHSTy->getAsPointerType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
LHSTy->getAsObjCObjectPointerType()) {
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = PTy->getPointeeType();
} else if (const ObjCObjectPointerType *PTy =
RHSTy->getAsObjCObjectPointerType()) {
// Handle the uncommon case of "123[Ptr]".
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = PTy->getPointeeType();
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
BaseExpr = LHSExp; // vectors: V[123]
IndexExpr = RHSExp;
// FIXME: need to deal with const...
ResultType = VTy->getElementType();
} else if (LHSTy->isArrayType()) {
// If we see an array that wasn't promoted by
// DefaultFunctionArrayConversion, it must be an array that
// wasn't promoted because of the C90 rule that doesn't
// allow promoting non-lvalue arrays. Warn, then
// force the promotion here.
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
LHSExp->getSourceRange();
ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy));
LHSTy = LHSExp->getType();
BaseExpr = LHSExp;
IndexExpr = RHSExp;
ResultType = LHSTy->getAsPointerType()->getPointeeType();
} else if (RHSTy->isArrayType()) {
// Same as previous, except for 123[f().a] case
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
RHSExp->getSourceRange();
ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy));
RHSTy = RHSExp->getType();
BaseExpr = RHSExp;
IndexExpr = LHSExp;
ResultType = RHSTy->getAsPointerType()->getPointeeType();
} else {
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
}
// C99 6.5.2.1p1
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
<< IndexExpr->getSourceRange());
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
// type. Note that Functions are not objects, and that (in C99 parlance)
// incomplete types are not object types.
if (ResultType->isFunctionType()) {
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
if (!ResultType->isDependentType() &&
RequireCompleteType(LLoc, ResultType, diag::err_subscript_incomplete_type,
BaseExpr->getSourceRange()))
return ExprError();
// Diagnose bad cases where we step over interface counts.
if (ResultType->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
Diag(LLoc, diag::err_subscript_nonfragile_interface)
<< ResultType << BaseExpr->getSourceRange();
return ExprError();
}
Base.release();
Idx.release();
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
ResultType, RLoc));
}
QualType Sema::
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
IdentifierInfo &CompName, SourceLocation CompLoc) {
const ExtVectorType *vecType = baseType->getAsExtVectorType();
// The vector accessor can't exceed the number of elements.
const char *compStr = CompName.getName();
// This flag determines whether or not the component is one of the four
// special names that indicate a subset of exactly half the elements are
// to be selected.
bool HalvingSwizzle = false;
// This flag determines whether or not CompName has an 's' char prefix,
// indicating that it is a string of hex values to be used as vector indices.
bool HexSwizzle = *compStr == 's' || *compStr == 'S';
// Check that we've found one of the special components, or that the component
// names must come from the same set.
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
!strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
HalvingSwizzle = true;
} else if (vecType->getPointAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
} else if (HexSwizzle || vecType->getNumericAccessorIdx(*compStr) != -1) {
do
compStr++;
while (*compStr && vecType->getNumericAccessorIdx(*compStr) != -1);
}
if (!HalvingSwizzle && *compStr) {
// We didn't get to the end of the string. This means the component names
// didn't come from the same set *or* we encountered an illegal name.
Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
<< std::string(compStr,compStr+1) << SourceRange(CompLoc);
return QualType();
}
// Ensure no component accessor exceeds the width of the vector type it
// operates on.
if (!HalvingSwizzle) {
compStr = CompName.getName();
if (HexSwizzle)
compStr++;
while (*compStr) {
if (!vecType->isAccessorWithinNumElements(*compStr++)) {
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
<< baseType << SourceRange(CompLoc);
return QualType();
}
}
}
// If this is a halving swizzle, verify that the base type has an even
// number of elements.
if (HalvingSwizzle && (vecType->getNumElements() & 1U)) {
Diag(OpLoc, diag::err_ext_vector_component_requires_even)
<< baseType << SourceRange(CompLoc);
return QualType();
}
// The component accessor looks fine - now we need to compute the actual type.
// The vector type is implied by the component accessor. For example,
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
// vec4.s0 is a float, vec4.s23 is a vec3, etc.
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
unsigned CompSize = HalvingSwizzle ? vecType->getNumElements() / 2
: CompName.getLength();
if (HexSwizzle)
CompSize--;
if (CompSize == 1)
return vecType->getElementType();
QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
// Now look up the TypeDefDecl from the vector type. Without this,
// diagostics look bad. We want extended vector types to appear built-in.
for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
if (ExtVectorDecls[i]->getUnderlyingType() == VT)
return Context.getTypedefType(ExtVectorDecls[i]);
}
return VT; // should never get here (a typedef type should always be found).
}
static Decl *FindGetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
IdentifierInfo &Member,
const Selector &Sel,
ASTContext &Context) {
if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(&Member))
return PD;
if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
return OMD;
for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
E = PDecl->protocol_end(); I != E; ++I) {
if (Decl *D = FindGetterNameDeclFromProtocolList(*I, Member, Sel,
Context))
return D;
}
return 0;
}
static Decl *FindGetterNameDecl(const ObjCObjectPointerType *QIdTy,
IdentifierInfo &Member,
const Selector &Sel,
ASTContext &Context) {
// Check protocols on qualified interfaces.
Decl *GDecl = 0;
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
GDecl = PD;
break;
}
// Also must look for a getter name which uses property syntax.
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
GDecl = OMD;
break;
}
}
if (!GDecl) {
for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
E = QIdTy->qual_end(); I != E; ++I) {
// Search in the protocol-qualifier list of current protocol.
GDecl = FindGetterNameDeclFromProtocolList(*I, Member, Sel, Context);
if (GDecl)
return GDecl;
}
}
return GDecl;
}
/// FindMethodInNestedImplementations - Look up a method in current and
/// all base class implementations.
///
ObjCMethodDecl *Sema::FindMethodInNestedImplementations(
const ObjCInterfaceDecl *IFace,
const Selector &Sel) {
ObjCMethodDecl *Method = 0;
if (ObjCImplementationDecl *ImpDecl
= LookupObjCImplementation(IFace->getIdentifier()))
Method = ImpDecl->getInstanceMethod(Sel);
if (!Method && IFace->getSuperClass())
return FindMethodInNestedImplementations(IFace->getSuperClass(), Sel);
return Method;
}
Action::OwningExprResult
Sema::ActOnMemberReferenceExpr(Scope *S, ExprArg Base, SourceLocation OpLoc,
tok::TokenKind OpKind, SourceLocation MemberLoc,
IdentifierInfo &Member,
DeclPtrTy ObjCImpDecl) {
Expr *BaseExpr = Base.takeAs<Expr>();
assert(BaseExpr && "no record expression");
// Perform default conversions.
DefaultFunctionArrayConversion(BaseExpr);
QualType BaseType = BaseExpr->getType();
assert(!BaseType.isNull() && "no type for member expression");
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
// must have pointer type, and the accessed type is the pointee.
if (OpKind == tok::arrow) {
if (BaseType->isDependentType())
return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
BaseExpr, true,
OpLoc,
DeclarationName(&Member),
MemberLoc));
else if (const PointerType *PT = BaseType->getAsPointerType())
BaseType = PT->getPointeeType();
else if (BaseType->isObjCObjectPointerType())
;
else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
return Owned(BuildOverloadedArrowExpr(S, BaseExpr, OpLoc,
MemberLoc, Member));
else
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_arrow)
<< BaseType << BaseExpr->getSourceRange());
} else {
if (BaseType->isDependentType()) {
// Require that the base type isn't a pointer type
// (so we'll report an error for)
// T* t;
// t.f;
//
// In Obj-C++, however, the above expression is valid, since it could be
// accessing the 'f' property if T is an Obj-C interface. The extra check
// allows this, while still reporting an error if T is a struct pointer.
const PointerType *PT = BaseType->getAsPointerType();
if (!PT || (getLangOptions().ObjC1 &&
!PT->getPointeeType()->isRecordType()))
return Owned(new (Context) CXXUnresolvedMemberExpr(Context,
BaseExpr, false,
OpLoc,
DeclarationName(&Member),
MemberLoc));
}
}
// Handle field access to simple records. This also handles access to fields
// of the ObjC 'id' struct.
if (const RecordType *RTy = BaseType->getAsRecordType()) {
RecordDecl *RDecl = RTy->getDecl();
if (RequireCompleteType(OpLoc, BaseType,
diag::err_typecheck_incomplete_tag,
BaseExpr->getSourceRange()))
return ExprError();
// The record definition is complete, now make sure the member is valid.
// FIXME: Qualified name lookup for C++ is a bit more complicated than this.
LookupResult Result
= LookupQualifiedName(RDecl, DeclarationName(&Member),
LookupMemberName, false);
if (!Result)
return ExprError(Diag(MemberLoc, diag::err_typecheck_no_member)
<< &Member << BaseExpr->getSourceRange());
if (Result.isAmbiguous()) {
DiagnoseAmbiguousLookup(Result, DeclarationName(&Member),
MemberLoc, BaseExpr->getSourceRange());
return ExprError();
}
NamedDecl *MemberDecl = Result;
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
// error cases.
if (MemberDecl->isInvalidDecl())
return ExprError();
// Check the use of this field
if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
return ExprError();
if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl)) {
// We may have found a field within an anonymous union or struct
// (C++ [class.union]).
if (cast<RecordDecl>(FD->getDeclContext())->isAnonymousStructOrUnion())
return BuildAnonymousStructUnionMemberReference(MemberLoc, FD,
BaseExpr, OpLoc);
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
// FIXME: Handle address space modifiers
QualType MemberType = FD->getType();
if (const ReferenceType *Ref = MemberType->getAsReferenceType())
MemberType = Ref->getPointeeType();
else {
unsigned combinedQualifiers =
MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
if (FD->isMutable())
combinedQualifiers &= ~QualType::Const;
MemberType = MemberType.getQualifiedType(combinedQualifiers);
}
MarkDeclarationReferenced(MemberLoc, FD);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, FD,
MemberLoc, MemberType));
}
if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
Var, MemberLoc,
Var->getType().getNonReferenceType()));
}
if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
MemberFn, MemberLoc,
MemberFn->getType()));
}
if (OverloadedFunctionDecl *Ovl
= dyn_cast<OverloadedFunctionDecl>(MemberDecl))
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl,
MemberLoc, Context.OverloadTy));
if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
MarkDeclarationReferenced(MemberLoc, MemberDecl);
return Owned(new (Context) MemberExpr(BaseExpr, OpKind == tok::arrow,
Enum, MemberLoc, Enum->getType()));
}
if (isa<TypeDecl>(MemberDecl))
return ExprError(Diag(MemberLoc,diag::err_typecheck_member_reference_type)
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
// We found a declaration kind that we didn't expect. This is a
// generic error message that tells the user that she can't refer
// to this member with '.' or '->'.
return ExprError(Diag(MemberLoc,
diag::err_typecheck_member_reference_unknown)
<< DeclarationName(&Member) << int(OpKind == tok::arrow));
}
// Handle properties on ObjC 'Class' types.
if (OpKind == tok::period && BaseType->isObjCClassType()) {
// Also must look for a getter name which uses property syntax.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
if (ObjCMethodDecl *MD = getCurMethodDecl()) {
ObjCInterfaceDecl *IFace = MD->getClassInterface();
ObjCMethodDecl *Getter;
// FIXME: need to also look locally in the implementation.
if ((Getter = IFace->lookupClassMethod(Sel))) {
// Check the use of this method.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &Member);
ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = FindMethodInNestedImplementations(IFace, SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
Setter = ObjCCategoryImpls[i]->getClassMethod(SetterSel);
}
}
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
if (Getter)
PType = Getter->getResultType();
else {
for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
E = Setter->param_end(); PI != E; ++PI)
PType = (*PI)->getType();
}
// FIXME: we must check that the setter has property type.
return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
Setter, MemberLoc, BaseExpr));
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
}
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
// (*Obj).ivar.
if ((OpKind == tok::arrow && BaseType->isObjCObjectPointerType()) ||
(OpKind == tok::period && BaseType->isObjCInterfaceType())) {
const ObjCObjectPointerType *OPT = BaseType->getAsObjCObjectPointerType();
const ObjCInterfaceType *IFaceT =
OPT ? OPT->getInterfaceType() : BaseType->getAsObjCInterfaceType();
ObjCInterfaceDecl *IDecl = IFaceT->getDecl();
ObjCInterfaceDecl *ClassDeclared;
if (ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(&Member,
ClassDeclared)) {
// If the decl being referenced had an error, return an error for this
// sub-expr without emitting another error, in order to avoid cascading
// error cases.
if (IV->isInvalidDecl())
return ExprError();
// Check whether we can reference this field.
if (DiagnoseUseOfDecl(IV, MemberLoc))
return ExprError();
if (IV->getAccessControl() != ObjCIvarDecl::Public &&
IV->getAccessControl() != ObjCIvarDecl::Package) {
ObjCInterfaceDecl *ClassOfMethodDecl = 0;
if (ObjCMethodDecl *MD = getCurMethodDecl())
ClassOfMethodDecl = MD->getClassInterface();
else if (ObjCImpDecl && getCurFunctionDecl()) {
// Case of a c-function declared inside an objc implementation.
// FIXME: For a c-style function nested inside an objc implementation
// class, there is no implementation context available, so we pass
// down the context as argument to this routine. Ideally, this context
// need be passed down in the AST node and somehow calculated from the
// AST for a function decl.
Decl *ImplDecl = ObjCImpDecl.getAs<Decl>();
if (ObjCImplementationDecl *IMPD =
dyn_cast<ObjCImplementationDecl>(ImplDecl))
ClassOfMethodDecl = IMPD->getClassInterface();
else if (ObjCCategoryImplDecl* CatImplClass =
dyn_cast<ObjCCategoryImplDecl>(ImplDecl))
ClassOfMethodDecl = CatImplClass->getClassInterface();
}
if (IV->getAccessControl() == ObjCIvarDecl::Private) {
if (ClassDeclared != IDecl ||
ClassOfMethodDecl != ClassDeclared)
Diag(MemberLoc, diag::error_private_ivar_access) << IV->getDeclName();
}
// @protected
else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
Diag(MemberLoc, diag::error_protected_ivar_access) << IV->getDeclName();
}
return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
MemberLoc, BaseExpr,
OpKind == tok::arrow));
}
return ExprError(Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
<< IDecl->getDeclName() << &Member
<< BaseExpr->getSourceRange());
}
// Handle properties on qualified "id" protocols.
const ObjCObjectPointerType *QIdTy;
if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
// Check protocols on qualified interfaces.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
if (Decl *PMDecl = FindGetterNameDecl(QIdTy, Member, Sel, Context)) {
if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
// Check the use of this declaration
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
// Check the use of this method.
if (DiagnoseUseOfDecl(OMD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCMessageExpr(BaseExpr, Sel,
OMD->getResultType(),
OMD, OpLoc, MemberLoc,
NULL, 0));
}
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
// Handle Objective-C property access, which is "Obj.property" where Obj is a
// pointer to a (potentially qualified) interface type.
const ObjCObjectPointerType *OPT;
if (OpKind == tok::period &&
(OPT = BaseType->getAsObjCInterfacePointerType())) {
const ObjCInterfaceType *IFaceT = OPT->getInterfaceType();
ObjCInterfaceDecl *IFace = IFaceT->getDecl();
// Search for a declared property first.
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
QualType ResTy = PD->getType();
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
if (DiagnosePropertyAccessorMismatch(PD, Getter, MemberLoc))
ResTy = Getter->getResultType();
return Owned(new (Context) ObjCPropertyRefExpr(PD, ResTy,
MemberLoc, BaseExpr));
}
// Check protocols on qualified interfaces.
for (ObjCObjectPointerType::qual_iterator I = IFaceT->qual_begin(),
E = IFaceT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
E = OPT->qual_end(); I != E; ++I)
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member)) {
// Check whether we can reference this property.
if (DiagnoseUseOfDecl(PD, MemberLoc))
return ExprError();
return Owned(new (Context) ObjCPropertyRefExpr(PD, PD->getType(),
MemberLoc, BaseExpr));
}
// If that failed, look for an "implicit" property by seeing if the nullary
// selector is implemented.
// FIXME: The logic for looking up nullary and unary selectors should be
// shared with the code in ActOnInstanceMessage.
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
// If this reference is in an @implementation, check for 'private' methods.
if (!Getter)
Getter = FindMethodInNestedImplementations(IFace, Sel);
// Look through local category implementations associated with the class.
if (!Getter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
}
}
if (Getter) {
// Check if we can reference this property.
if (DiagnoseUseOfDecl(Getter, MemberLoc))
return ExprError();
}
// If we found a getter then this may be a valid dot-reference, we
// will look for the matching setter, in case it is needed.
Selector SetterSel =
SelectorTable::constructSetterName(PP.getIdentifierTable(),
PP.getSelectorTable(), &Member);
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
if (!Setter) {
// If this reference is in an @implementation, also check for 'private'
// methods.
Setter = FindMethodInNestedImplementations(IFace, SetterSel);
}
// Look through local category implementations associated with the class.
if (!Setter) {
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
}
}
if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
return ExprError();
if (Getter || Setter) {
QualType PType;
if (Getter)
PType = Getter->getResultType();
else {
for (ObjCMethodDecl::param_iterator PI = Setter->param_begin(),
E = Setter->param_end(); PI != E; ++PI)
PType = (*PI)->getType();
}
// FIXME: we must check that the setter has property type.
return Owned(new (Context) ObjCKVCRefExpr(Getter, PType,
Setter, MemberLoc, BaseExpr));
}
return ExprError(Diag(MemberLoc, diag::err_property_not_found)
<< &Member << BaseType);
}
// Handle 'field access' to vectors, such as 'V.xx'.
if (BaseType->isExtVectorType()) {
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
if (ret.isNull())
return ExprError();
return Owned(new (Context) ExtVectorElementExpr(ret, BaseExpr, Member,
MemberLoc));
}
Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
<< BaseType << BaseExpr->getSourceRange();
// If the user is trying to apply -> or . to a function or function
// pointer, it's probably because they forgot parentheses to call
// the function. Suggest the addition of those parentheses.
if (BaseType == Context.OverloadTy ||
BaseType->isFunctionType() ||
(BaseType->isPointerType() &&
BaseType->getAsPointerType()->isFunctionType())) {
SourceLocation Loc = PP.getLocForEndOfToken(BaseExpr->getLocEnd());
Diag(Loc, diag::note_member_reference_needs_call)
<< CodeModificationHint::CreateInsertion(Loc, "()");
}
return ExprError();
}
/// ConvertArgumentsForCall - Converts the arguments specified in
/// Args/NumArgs to the parameter types of the function FDecl with
/// function prototype Proto. Call is the call expression itself, and
/// Fn is the function expression. For a C++ member function, this
/// routine does not attempt to convert the object argument. Returns
/// true if the call is ill-formed.
bool
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
FunctionDecl *FDecl,
const FunctionProtoType *Proto,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
// assignment, to the types of the corresponding parameter, ...
unsigned NumArgsInProto = Proto->getNumArgs();
unsigned NumArgsToCheck = NumArgs;
bool Invalid = false;
// If too few arguments are available (and we don't have default
// arguments for the remaining parameters), don't make the call.
if (NumArgs < NumArgsInProto) {
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
// Use default arguments for missing arguments
NumArgsToCheck = NumArgsInProto;
Call->setNumArgs(Context, NumArgsInProto);
}
// If too many are passed and not variadic, error on the extras and drop
// them.
if (NumArgs > NumArgsInProto) {
if (!Proto->isVariadic()) {
Diag(Args[NumArgsInProto]->getLocStart(),
diag::err_typecheck_call_too_many_args)
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
Args[NumArgs-1]->getLocEnd());
// This deletes the extra arguments.
Call->setNumArgs(Context, NumArgsInProto);
Invalid = true;
}
NumArgsToCheck = NumArgsInProto;
}
// Continue to check argument types (even if we have too few/many args).
for (unsigned i = 0; i != NumArgsToCheck; i++) {
QualType ProtoArgType = Proto->getArgType(i);
Expr *Arg;
if (i < NumArgs) {
Arg = Args[i];
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
ProtoArgType,
diag::err_call_incomplete_argument,
Arg->getSourceRange()))
return true;
// Pass the argument.
if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
return true;
} else {
if (FDecl->getParamDecl(i)->hasUnparsedDefaultArg()) {
Diag (Call->getSourceRange().getBegin(),
diag::err_use_of_default_argument_to_function_declared_later) <<
FDecl << cast<CXXRecordDecl>(FDecl->getDeclContext())->getDeclName();
Diag(UnparsedDefaultArgLocs[FDecl->getParamDecl(i)],
diag::note_default_argument_declared_here);
} else {
Expr *DefaultExpr = FDecl->getParamDecl(i)->getDefaultArg();
// If the default expression creates temporaries, we need to
// push them to the current stack of expression temporaries so they'll
// be properly destroyed.
if (CXXExprWithTemporaries *E
= dyn_cast_or_null<CXXExprWithTemporaries>(DefaultExpr)) {
assert(!E->shouldDestroyTemporaries() &&
"Can't destroy temporaries in a default argument expr!");
for (unsigned I = 0, N = E->getNumTemporaries(); I != N; ++I)
ExprTemporaries.push_back(E->getTemporary(I));
}
}
// We already type-checked the argument, so we know it works.
Arg = new (Context) CXXDefaultArgExpr(FDecl->getParamDecl(i));
}
QualType ArgType = Arg->getType();
Call->setArg(i, Arg);
}
// If this is a variadic call, handle args passed through "...".
if (Proto->isVariadic()) {
VariadicCallType CallType = VariadicFunction;
if (Fn->getType()->isBlockPointerType())
CallType = VariadicBlock; // Block
else if (isa<MemberExpr>(Fn))
CallType = VariadicMethod;
// Promote the arguments (C99 6.5.2.2p7).
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
Expr *Arg = Args[i];
Invalid |= DefaultVariadicArgumentPromotion(Arg, CallType);
Call->setArg(i, Arg);
}
}
return Invalid;
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations.
Action::OwningExprResult
Sema::ActOnCallExpr(Scope *S, ExprArg fn, SourceLocation LParenLoc,
MultiExprArg args,
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
unsigned NumArgs = args.size();
Expr *Fn = fn.takeAs<Expr>();
Expr **Args = reinterpret_cast<Expr**>(args.release());
assert(Fn && "no function call expression");
FunctionDecl *FDecl = NULL;
NamedDecl *NDecl = NULL;
DeclarationName UnqualifiedName;
if (getLangOptions().CPlusPlus) {
// Determine whether this is a dependent call inside a C++ template,
// in which case we won't do any semantic analysis now.
// FIXME: Will need to cache the results of name lookup (including ADL) in
// Fn.
bool Dependent = false;
if (Fn->isTypeDependent())
Dependent = true;
else if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
Dependent = true;
if (Dependent)
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
Context.DependentTy, RParenLoc));
// Determine whether this is a call to an object (C++ [over.call.object]).
if (Fn->getType()->isRecordType())
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc));
// Determine whether this is a call to a member function.
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens())) {
NamedDecl *MemDecl = MemExpr->getMemberDecl();
if (isa<OverloadedFunctionDecl>(MemDecl) ||
isa<CXXMethodDecl>(MemDecl) ||
(isa<FunctionTemplateDecl>(MemDecl) &&
isa<CXXMethodDecl>(
cast<FunctionTemplateDecl>(MemDecl)->getTemplatedDecl())))
return Owned(BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
CommaLocs, RParenLoc));
}
}
// If we're directly calling a function, get the appropriate declaration.
// Also, in C++, keep track of whether we should perform argument-dependent
// lookup and whether there were any explicitly-specified template arguments.
Expr *FnExpr = Fn;
bool ADL = true;
bool HasExplicitTemplateArgs = 0;
const TemplateArgument *ExplicitTemplateArgs = 0;
unsigned NumExplicitTemplateArgs = 0;
while (true) {
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(FnExpr))
FnExpr = IcExpr->getSubExpr();
else if (ParenExpr *PExpr = dyn_cast<ParenExpr>(FnExpr)) {
// Parentheses around a function disable ADL
// (C++0x [basic.lookup.argdep]p1).
ADL = false;
FnExpr = PExpr->getSubExpr();
} else if (isa<UnaryOperator>(FnExpr) &&
cast<UnaryOperator>(FnExpr)->getOpcode()
== UnaryOperator::AddrOf) {
FnExpr = cast<UnaryOperator>(FnExpr)->getSubExpr();
} else if (DeclRefExpr *DRExpr = dyn_cast<DeclRefExpr>(FnExpr)) {
// Qualified names disable ADL (C++0x [basic.lookup.argdep]p1).
ADL &= !isa<QualifiedDeclRefExpr>(DRExpr);
NDecl = dyn_cast<NamedDecl>(DRExpr->getDecl());
break;
} else if (UnresolvedFunctionNameExpr *DepName
= dyn_cast<UnresolvedFunctionNameExpr>(FnExpr)) {
UnqualifiedName = DepName->getName();
break;
} else if (TemplateIdRefExpr *TemplateIdRef
= dyn_cast<TemplateIdRefExpr>(FnExpr)) {
NDecl = TemplateIdRef->getTemplateName().getAsTemplateDecl();
HasExplicitTemplateArgs = true;
ExplicitTemplateArgs = TemplateIdRef->getTemplateArgs();
NumExplicitTemplateArgs = TemplateIdRef->getNumTemplateArgs();
// C++ [temp.arg.explicit]p6:
// [Note: For simple function names, argument dependent lookup (3.4.2)
// applies even when the function name is not visible within the
// scope of the call. This is because the call still has the syntactic
// form of a function call (3.4.1). But when a function template with
// explicit template arguments is used, the call does not have the
// correct syntactic form unless there is a function template with
// that name visible at the point of the call. If no such name is
// visible, the call is not syntactically well-formed and
// argument-dependent lookup does not apply. If some such name is
// visible, argument dependent lookup applies and additional function
// templates may be found in other namespaces.
//
// The summary of this paragraph is that, if we get to this point and the
// template-id was not a qualified name, then argument-dependent lookup
// is still possible.
if (TemplateIdRef->getQualifier())
ADL = false;
break;
} else {
// Any kind of name that does not refer to a declaration (or
// set of declarations) disables ADL (C++0x [basic.lookup.argdep]p3).
ADL = false;
break;
}
}
OverloadedFunctionDecl *Ovl = 0;
FunctionTemplateDecl *FunctionTemplate = 0;
if (NDecl) {
FDecl = dyn_cast<FunctionDecl>(NDecl);
if ((FunctionTemplate = dyn_cast<FunctionTemplateDecl>(NDecl)))
FDecl = FunctionTemplate->getTemplatedDecl();
else
FDecl = dyn_cast<FunctionDecl>(NDecl);
Ovl = dyn_cast<OverloadedFunctionDecl>(NDecl);
}
if (Ovl || FunctionTemplate ||
(getLangOptions().CPlusPlus && (FDecl || UnqualifiedName))) {
// We don't perform ADL for implicit declarations of builtins.
if (FDecl && FDecl->getBuiltinID(Context) && FDecl->isImplicit())
ADL = false;
// We don't perform ADL in C.
if (!getLangOptions().CPlusPlus)
ADL = false;
if (Ovl || FunctionTemplate || ADL) {
FDecl = ResolveOverloadedCallFn(Fn, NDecl, UnqualifiedName,
HasExplicitTemplateArgs,
ExplicitTemplateArgs,
NumExplicitTemplateArgs,
LParenLoc, Args, NumArgs, CommaLocs,
RParenLoc, ADL);
if (!FDecl)
return ExprError();
// Update Fn to refer to the actual function selected.
Expr *NewFn = 0;
if (QualifiedDeclRefExpr *QDRExpr
= dyn_cast<QualifiedDeclRefExpr>(FnExpr))
NewFn = new (Context) QualifiedDeclRefExpr(FDecl, FDecl->getType(),
QDRExpr->getLocation(),
false, false,
QDRExpr->getQualifierRange(),
QDRExpr->getQualifier());
else
NewFn = new (Context) DeclRefExpr(FDecl, FDecl->getType(),
Fn->getSourceRange().getBegin());
Fn->Destroy(Context);
Fn = NewFn;
}
}
// Promote the function operand.
UsualUnaryConversions(Fn);
// Make the call expr early, before semantic checks. This guarantees cleanup
// of arguments and function on error.
ExprOwningPtr<CallExpr> TheCall(this, new (Context) CallExpr(Context, Fn,
Args, NumArgs,
Context.BoolTy,
RParenLoc));
const FunctionType *FuncT;
if (!Fn->getType()->isBlockPointerType()) {
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
// have type pointer to function".
const PointerType *PT = Fn->getType()->getAsPointerType();
if (PT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
FuncT = PT->getPointeeType()->getAsFunctionType();
} else { // This is a block call.
FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
getAsFunctionType();
}
if (FuncT == 0)
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
<< Fn->getType() << Fn->getSourceRange());
// Check for a valid return type
if (!FuncT->getResultType()->isVoidType() &&
RequireCompleteType(Fn->getSourceRange().getBegin(),
FuncT->getResultType(),
diag::err_call_incomplete_return,
TheCall->getSourceRange()))
return ExprError();
// We know the result type of the call, set it.
TheCall->setType(FuncT->getResultType().getNonReferenceType());
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
RParenLoc))
return ExprError();
} else {
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
if (FDecl) {
// Check if we have too few/too many template arguments, based
// on our knowledge of the function definition.
const FunctionDecl *Def = 0;
if (FDecl->getBody(Def) && NumArgs != Def->param_size()) {
const FunctionProtoType *Proto =
Def->getType()->getAsFunctionProtoType();
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size())) {
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
}
}
}
// Promote the arguments (C99 6.5.2.2p6).
for (unsigned i = 0; i != NumArgs; i++) {
Expr *Arg = Args[i];
DefaultArgumentPromotion(Arg);
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
Arg->getType(),
diag::err_call_incomplete_argument,
Arg->getSourceRange()))
return ExprError();
TheCall->setArg(i, Arg);
}
}
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
if (!Method->isStatic())
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
<< Fn->getSourceRange());
// Check for sentinels
if (NDecl)
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
// Do special checking on direct calls to functions.
if (FDecl)
return CheckFunctionCall(FDecl, TheCall.take());
if (NDecl)
return CheckBlockCall(NDecl, TheCall.take());
return Owned(TheCall.take());
}
Action::OwningExprResult
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprArg InitExpr) {
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
QualType literalType = QualType::getFromOpaquePtr(Ty);
// FIXME: put back this assert when initializers are worked out.
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
Expr *literalExpr = static_cast<Expr*>(InitExpr.get());
if (literalType->isArrayType()) {
if (literalType->isVariableArrayType())
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd()));
} else if (!literalType->isDependentType() &&
RequireCompleteType(LParenLoc, literalType,
diag::err_typecheck_decl_incomplete_type,
SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd())))
return ExprError();
if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
DeclarationName(), /*FIXME:DirectInit=*/false))
return ExprError();
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
if (isFileScope) { // 6.5.2.5p3
if (CheckForConstantInitializer(literalExpr, literalType))
return ExprError();
}
InitExpr.release();
return Owned(new (Context) CompoundLiteralExpr(LParenLoc, literalType,
literalExpr, isFileScope));
}
Action::OwningExprResult
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg initlist,
SourceLocation RBraceLoc) {
unsigned NumInit = initlist.size();
Expr **InitList = reinterpret_cast<Expr**>(initlist.release());
// Semantic analysis for initializers is done by ActOnDeclarator() and
// CheckInitializer() - it requires knowledge of the object being intialized.
InitListExpr *E = new (Context) InitListExpr(LBraceLoc, InitList, NumInit,
RBraceLoc);
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
return Owned(E);
}
/// CheckCastTypes - Check type constraints for casting between types.
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
UsualUnaryConversions(castExpr);
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
// type needs to be scalar.
if (castType->isVoidType()) {
// Cast to void allows any expr type.
} else if (castType->isDependentType() || castExpr->isTypeDependent()) {
// We can't check any more until template instantiation time.
} else if (!castType->isScalarType() && !castType->isVectorType()) {
if (Context.getCanonicalType(castType).getUnqualifiedType() ==
Context.getCanonicalType(castExpr->getType().getUnqualifiedType()) &&
(castType->isStructureType() || castType->isUnionType())) {
// GCC struct/union extension: allow cast to self.
// FIXME: Check that the cast destination type is complete.
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
<< castType << castExpr->getSourceRange();
} else if (castType->isUnionType()) {
// GCC cast to union extension
RecordDecl *RD = castType->getAsRecordType()->getDecl();
RecordDecl::field_iterator Field, FieldEnd;
for (Field = RD->field_begin(), FieldEnd = RD->field_end();
Field != FieldEnd; ++Field) {
if (Context.getCanonicalType(Field->getType()).getUnqualifiedType() ==
Context.getCanonicalType(castExpr->getType()).getUnqualifiedType()) {
Diag(TyR.getBegin(), diag::ext_typecheck_cast_to_union)
<< castExpr->getSourceRange();
break;
}
}
if (Field == FieldEnd)
return Diag(TyR.getBegin(), diag::err_typecheck_cast_to_union_no_type)
<< castExpr->getType() << castExpr->getSourceRange();
} else {
// Reject any other conversions to non-scalar types.
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
<< castType << castExpr->getSourceRange();
}
} else if (!castExpr->getType()->isScalarType() &&
!castExpr->getType()->isVectorType()) {
return Diag(castExpr->getLocStart(),
diag::err_typecheck_expect_scalar_operand)
<< castExpr->getType() << castExpr->getSourceRange();
} else if (castType->isExtVectorType()) {
if (CheckExtVectorCast(TyR, castType, castExpr->getType()))
return true;
} else if (castType->isVectorType()) {
if (CheckVectorCast(TyR, castType, castExpr->getType()))
return true;
} else if (castExpr->getType()->isVectorType()) {
if (CheckVectorCast(TyR, castExpr->getType(), castType))
return true;
} else if (getLangOptions().ObjC1 && isa<ObjCSuperExpr>(castExpr)) {
return Diag(castExpr->getLocStart(), diag::err_illegal_super_cast) << TyR;
} else if (!castType->isArithmeticType()) {
QualType castExprType = castExpr->getType();
if (!castExprType->isIntegralType() && castExprType->isArithmeticType())
return Diag(castExpr->getLocStart(),
diag::err_cast_pointer_from_non_pointer_int)
<< castExprType << castExpr->getSourceRange();
} else if (!castExpr->getType()->isArithmeticType()) {
if (!castType->isIntegralType() && castType->isArithmeticType())
return Diag(castExpr->getLocStart(),
diag::err_cast_pointer_to_non_pointer_int)
<< castType << castExpr->getSourceRange();
}
if (isa<ObjCSelectorExpr>(castExpr))
return Diag(castExpr->getLocStart(), diag::err_cast_selector_expr);
return false;
}
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
assert(VectorTy->isVectorType() && "Not a vector type!");
if (Ty->isVectorType() || Ty->isIntegerType()) {
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
return Diag(R.getBegin(),
Ty->isVectorType() ?
diag::err_invalid_conversion_between_vectors :
diag::err_invalid_conversion_between_vector_and_integer)
<< VectorTy << Ty << R;
} else
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< VectorTy << Ty << R;
return false;
}
bool Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, QualType SrcTy) {
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
// If SrcTy is a VectorType, the total size must match to explicitly cast to
// an ExtVectorType.
if (SrcTy->isVectorType()) {
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
return Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
<< DestTy << SrcTy << R;
return false;
}
// All non-pointer scalars can be cast to ExtVector type. The appropriate
// conversion will take place first from scalar to elt type, and then
// splat from elt type to vector.
if (SrcTy->isPointerType())
return Diag(R.getBegin(),
diag::err_invalid_conversion_between_vector_and_scalar)
<< DestTy << SrcTy << R;
return false;
}
Action::OwningExprResult
Sema::ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
SourceLocation RParenLoc, ExprArg Op) {
assert((Ty != 0) && (Op.get() != 0) &&
"ActOnCastExpr(): missing type or expr");
Expr *castExpr = Op.takeAs<Expr>();
QualType castType = QualType::getFromOpaquePtr(Ty);
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
return ExprError();
return Owned(new (Context) CStyleCastExpr(castType, castExpr, castType,
LParenLoc, RParenLoc));
}
/// Note that lhs is not null here, even if this is the gnu "x ?: y" extension.
/// In that case, lhs = cond.
/// C99 6.5.15
QualType Sema::CheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
SourceLocation QuestionLoc) {
// C++ is sufficiently different to merit its own checker.
if (getLangOptions().CPlusPlus)
return CXXCheckConditionalOperands(Cond, LHS, RHS, QuestionLoc);
UsualUnaryConversions(Cond);
UsualUnaryConversions(LHS);
UsualUnaryConversions(RHS);
QualType CondTy = Cond->getType();
QualType LHSTy = LHS->getType();
QualType RHSTy = RHS->getType();
// first, check the condition.
if (!CondTy->isScalarType()) { // C99 6.5.15p2
Diag(Cond->getLocStart(), diag::err_typecheck_cond_expect_scalar)
<< CondTy;
return QualType();
}
// Now check the two expressions.
// If both operands have arithmetic type, do the usual arithmetic conversions
// to find a common type: C99 6.5.15p3,5.
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
UsualArithmeticConversions(LHS, RHS);
return LHS->getType();
}
// If both operands are the same structure or union type, the result is that
// type.
if (const RecordType *LHSRT = LHSTy->getAsRecordType()) { // C99 6.5.15p3
if (const RecordType *RHSRT = RHSTy->getAsRecordType())
if (LHSRT->getDecl() == RHSRT->getDecl())
// "If both the operands have structure or union type, the result has
// that type." This implies that CV qualifiers are dropped.
return LHSTy.getUnqualifiedType();
// FIXME: Type of conditional expression must be complete in C mode.
}
// C99 6.5.15p5: "If both operands have void type, the result has void type."
// The following || allows only one side to be void (a GCC-ism).
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
if (!LHSTy->isVoidType())
Diag(RHS->getLocStart(), diag::ext_typecheck_cond_one_void)
<< RHS->getSourceRange();
if (!RHSTy->isVoidType())
Diag(LHS->getLocStart(), diag::ext_typecheck_cond_one_void)
<< LHS->getSourceRange();
ImpCastExprToType(LHS, Context.VoidTy);
ImpCastExprToType(RHS, Context.VoidTy);
return Context.VoidTy;
}
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
// the type of the other operand."
if ((LHSTy->isPointerType() || LHSTy->isBlockPointerType() ||
LHSTy->isObjCObjectPointerType()) &&
RHS->isNullPointerConstant(Context)) {
ImpCastExprToType(RHS, LHSTy); // promote the null to a pointer.
return LHSTy;
}
if ((RHSTy->isPointerType() || RHSTy->isBlockPointerType() ||
RHSTy->isObjCObjectPointerType()) &&
LHS->isNullPointerConstant(Context)) {
ImpCastExprToType(LHS, RHSTy); // promote the null to a pointer.
return RHSTy;
}
// Handle block pointer types.
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
QualType destType = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(LHS, destType);
ImpCastExprToType(RHS, destType);
return destType;
}
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
// We have 2 block pointer types.
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical block pointer types are always compatible.
return LHSTy;
}
// The block pointer types aren't identical, continue checking.
QualType lhptee = LHSTy->getAsBlockPointerType()->getPointeeType();
QualType rhptee = RHSTy->getAsBlockPointerType()->getPointeeType();
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(LHS, incompatTy);
ImpCastExprToType(RHS, incompatTy);
return incompatTy;
}
// The block pointer types are compatible.
ImpCastExprToType(LHS, LHSTy);
ImpCastExprToType(RHS, LHSTy);
return LHSTy;
}
// Check constraints for Objective-C object pointers types.
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical object pointer types are always compatible.
return LHSTy;
}
const ObjCObjectPointerType *LHSOPT = LHSTy->getAsObjCObjectPointerType();
const ObjCObjectPointerType *RHSOPT = RHSTy->getAsObjCObjectPointerType();
QualType compositeType = LHSTy;
// If both operands are interfaces and either operand can be
// assigned to the other, use that type as the composite
// type. This allows
// xxx ? (A*) a : (B*) b
// where B is a subclass of A.
//
// Additionally, as for assignment, if either type is 'id'
// allow silent coercion. Finally, if the types are
// incompatible then make sure to use 'id' as the composite
// type so the result is acceptable for sending messages to.
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
// It could return the composite type.
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
compositeType = LHSTy;
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
compositeType = RHSTy;
} else if ((LHSTy->isObjCQualifiedIdType() ||
RHSTy->isObjCQualifiedIdType()) &&
ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
// Need to handle "id<xx>" explicitly.
// GCC allows qualified id and any Objective-C type to devolve to
// id. Currently localizing to here until clear this should be
// part of ObjCQualifiedIdTypesAreCompatible.
compositeType = Context.getObjCIdType();
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
compositeType = Context.getObjCIdType();
} else {
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy
<< LHS->getSourceRange() << RHS->getSourceRange();
QualType incompatTy = Context.getObjCIdType();
ImpCastExprToType(LHS, incompatTy);
ImpCastExprToType(RHS, incompatTy);
return incompatTy;
}
// The object pointer types are compatible.
ImpCastExprToType(LHS, compositeType);
ImpCastExprToType(RHS, compositeType);
return compositeType;
}
// Check constraints for C object pointers types (C99 6.5.15p3,6).
if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
// get the "pointed to" types
QualType lhptee = LHSTy->getAsPointerType()->getPointeeType();
QualType rhptee = RHSTy->getAsPointerType()->getPointeeType();
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
// Figure out necessary qualifiers (C99 6.5.15p6)
QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(LHS, destType); // add qualifiers if necessary
ImpCastExprToType(RHS, destType); // promote to void*
return destType;
}
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
QualType destType = Context.getPointerType(destPointee);
ImpCastExprToType(LHS, destType); // add qualifiers if necessary
ImpCastExprToType(RHS, destType); // promote to void*
return destType;
}
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
// Two identical pointer types are always compatible.
return LHSTy;
}
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
rhptee.getUnqualifiedType())) {
Diag(QuestionLoc, diag::warn_typecheck_cond_incompatible_pointers)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
// In this situation, we assume void* type. No especially good
// reason, but this is what gcc does, and we do have to pick
// to get a consistent AST.
QualType incompatTy = Context.getPointerType(Context.VoidTy);
ImpCastExprToType(LHS, incompatTy);
ImpCastExprToType(RHS, incompatTy);
return incompatTy;
}
// The pointer types are compatible.
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
// differently qualified versions of compatible types, the result type is
// a pointer to an appropriately qualified version of the *composite*
// type.
// FIXME: Need to calculate the composite type.
// FIXME: Need to add qualifiers
ImpCastExprToType(LHS, LHSTy);
ImpCastExprToType(RHS, LHSTy);
return LHSTy;
}
// GCC compatibility: soften pointer/integer mismatch.
if (RHSTy->isPointerType() && LHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
ImpCastExprToType(LHS, RHSTy); // promote the integer to a pointer.
return RHSTy;
}
if (LHSTy->isPointerType() && RHSTy->isIntegerType()) {
Diag(QuestionLoc, diag::warn_typecheck_cond_pointer_integer_mismatch)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
ImpCastExprToType(RHS, LHSTy); // promote the integer to a pointer.
return LHSTy;
}
// Otherwise, the operands are not compatible.
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
<< LHSTy << RHSTy << LHS->getSourceRange() << RHS->getSourceRange();
return QualType();
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
Action::OwningExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprArg Cond, ExprArg LHS,
ExprArg RHS) {
Expr *CondExpr = (Expr *) Cond.get();
Expr *LHSExpr = (Expr *) LHS.get(), *RHSExpr = (Expr *) RHS.get();
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
// was the condition.
bool isLHSNull = LHSExpr == 0;
if (isLHSNull)
LHSExpr = CondExpr;
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
RHSExpr, QuestionLoc);
if (result.isNull())
return ExprError();
Cond.release();
LHS.release();
RHS.release();
return Owned(new (Context) ConditionalOperator(CondExpr,
isLHSNull ? 0 : LHSExpr,
RHSExpr, result));
}
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
// being closely modeled after the C99 spec:-). The odd characteristic of this
// routine is it effectively iqnores the qualifiers on the top level pointee.
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
// FIXME: add a couple examples in this comment.
Sema::AssignConvertType
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAsPointerType()->getPointeeType();
rhptee = rhsType->getAsPointerType()->getPointeeType();
return CheckPointeeTypesForAssignment(lhptee, rhptee);
}
Sema::AssignConvertType
Sema::CheckPointeeTypesForAssignment(QualType lhptee, QualType rhptee) {
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
AssignConvertType ConvTy = Compatible;
// C99 6.5.16.1p1: This following citation is common to constraints
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
// qualifiers of the type *pointed to* by the right;
// FIXME: Handle ExtQualType
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
ConvTy = CompatiblePointerDiscardsQualifiers;
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
// incomplete type and the other is a pointer to a qualified or unqualified
// version of void...
if (lhptee->isVoidType()) {
if (rhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(rhptee->isFunctionType());
return FunctionVoidPointer;
}
if (rhptee->isVoidType()) {
if (lhptee->isIncompleteOrObjectType())
return ConvTy;
// As an extension, we allow cast to/from void* to function pointer.
assert(lhptee->isFunctionType());
return FunctionVoidPointer;
}
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
// unqualified versions of compatible types, ...
lhptee = lhptee.getUnqualifiedType();
rhptee = rhptee.getUnqualifiedType();
if (!Context.typesAreCompatible(lhptee, rhptee)) {
// Check if the pointee types are compatible ignoring the sign.
// We explicitly check for char so that we catch "char" vs
// "unsigned char" on systems where "char" is unsigned.
if (lhptee->isCharType()) {
lhptee = Context.UnsignedCharTy;
} else if (lhptee->isSignedIntegerType()) {
lhptee = Context.getCorrespondingUnsignedType(lhptee);
}
if (rhptee->isCharType()) {
rhptee = Context.UnsignedCharTy;
} else if (rhptee->isSignedIntegerType()) {
rhptee = Context.getCorrespondingUnsignedType(rhptee);
}
if (lhptee == rhptee) {
// Types are compatible ignoring the sign. Qualifier incompatibility
// takes priority over sign incompatibility because the sign
// warning can be disabled.
if (ConvTy != Compatible)
return ConvTy;
return IncompatiblePointerSign;
}
// General pointer incompatibility takes priority over qualifiers.
return IncompatiblePointer;
}
return ConvTy;
}
/// CheckBlockPointerTypesForAssignment - This routine determines whether two
/// block pointer types are compatible or whether a block and normal pointer
/// are compatible. It is more restrict than comparing two function pointer
// types.
Sema::AssignConvertType
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
QualType rhsType) {
QualType lhptee, rhptee;
// get the "pointed to" type (ignoring qualifiers at the top level)
lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
// make sure we operate on the canonical type
lhptee = Context.getCanonicalType(lhptee);
rhptee = Context.getCanonicalType(rhptee);
AssignConvertType ConvTy = Compatible;
// For blocks we enforce that qualifiers are identical.
if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
ConvTy = CompatiblePointerDiscardsQualifiers;
if (!Context.typesAreCompatible(lhptee, rhptee))
return IncompatibleBlockPointer;
return ConvTy;
}
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
/// has code to accommodate several GCC extensions when type checking
/// pointers. Here are some objectionable examples that GCC considers warnings:
///
/// int a, *pint;
/// short *pshort;
/// struct foo *pfoo;
///
/// pint = pshort; // warning: assignment from incompatible pointer type
/// a = pint; // warning: assignment makes integer from pointer without a cast
/// pint = a; // warning: assignment makes pointer from integer without a cast
/// pint = pfoo; // warning: assignment from incompatible pointer type
///
/// As a result, the code for dealing with pointers is more complex than the
/// C99 spec dictates.
///
Sema::AssignConvertType
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
// Get canonical types. We're not formatting these types, just comparing
// them.
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
if (lhsType == rhsType)
return Compatible; // Common case: fast path an exact match.
// If the left-hand side is a reference type, then we are in a
// (rare!) case where we've allowed the use of references in C,
// e.g., as a parameter type in a built-in function. In this case,
// just make sure that the type referenced is compatible with the
// right-hand side type. The caller is responsible for adjusting
// lhsType so that the resulting expression does not have reference
// type.
if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
return Compatible;
return Incompatible;
}
// FIXME: Look into removing. With ObjCObjectPointerType, I don't see a need.
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
return Compatible;
// Relax integer conversions like we do for pointers below.
if (rhsType->isIntegerType())
return IntToPointer;
if (lhsType->isIntegerType())
return PointerToInt;
return IncompatibleObjCQualifiedId;
}
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
// to the same ExtVector type.
if (lhsType->isExtVectorType()) {
if (rhsType->isExtVectorType())
return lhsType == rhsType ? Compatible : Incompatible;
if (!rhsType->isVectorType() && rhsType->isArithmeticType())
return Compatible;
}
if (lhsType->isVectorType() || rhsType->isVectorType()) {
// If we are allowing lax vector conversions, and LHS and RHS are both
// vectors, the total size only needs to be the same. This is a bitcast;
// no bits are changed but the result type is different.
if (getLangOptions().LaxVectorConversions &&
lhsType->isVectorType() && rhsType->isVectorType()) {
if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
return IncompatibleVectors;
}
return Incompatible;
}
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
return Compatible;
if (isa<PointerType>(lhsType)) {
if (rhsType->isIntegerType())
return IntToPointer;
if (isa<PointerType>(rhsType))
return CheckPointerTypesForAssignment(lhsType, rhsType);
if (isa<ObjCObjectPointerType>(rhsType)) {
QualType rhptee = rhsType->getAsObjCObjectPointerType()->getPointeeType();
QualType lhptee = lhsType->getAsPointerType()->getPointeeType();
return CheckPointeeTypesForAssignment(lhptee, rhptee);
}
if (rhsType->getAsBlockPointerType()) {
if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
return Compatible;
// Treat block pointers as objects.
if (getLangOptions().ObjC1 && lhsType->isObjCIdType())
return Compatible;
}
return Incompatible;
}
if (isa<BlockPointerType>(lhsType)) {
if (rhsType->isIntegerType())
return IntToBlockPointer;
// Treat block pointers as objects.
if (getLangOptions().ObjC1 && rhsType->isObjCIdType())
return Compatible;
if (rhsType->isBlockPointerType())
return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
if (RHSPT->getPointeeType()->isVoidType())
return Compatible;
}
return Incompatible;
}
if (isa<ObjCObjectPointerType>(lhsType)) {
if (rhsType->isIntegerType())
return IntToPointer;
if (isa<PointerType>(rhsType)) {
QualType lhptee = lhsType->getAsObjCObjectPointerType()->getPointeeType();
QualType rhptee = rhsType->getAsPointerType()->getPointeeType();
return CheckPointeeTypesForAssignment(lhptee, rhptee);
}
if (rhsType->isObjCObjectPointerType()) {
QualType lhptee = lhsType->getAsObjCObjectPointerType()->getPointeeType();
QualType rhptee = rhsType->getAsObjCObjectPointerType()->getPointeeType();
return CheckPointeeTypesForAssignment(lhptee, rhptee);
}
if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
if (RHSPT->getPointeeType()->isVoidType())
return Compatible;
}
// Treat block pointers as objects.
if (rhsType->isBlockPointerType())
return Compatible;
return Incompatible;
}
if (isa<PointerType>(rhsType)) {
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
if (lhsType == Context.BoolTy)
return Compatible;
if (lhsType->isIntegerType())
return PointerToInt;
if (isa<PointerType>(lhsType))
return CheckPointerTypesForAssignment(lhsType, rhsType);
if (isa<BlockPointerType>(lhsType) &&
rhsType->getAsPointerType()->getPointeeType()->isVoidType())
return Compatible;
return Incompatible;
}
if (isa<ObjCObjectPointerType>(rhsType)) {
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
if (lhsType == Context.BoolTy)
return Compatible;
if (lhsType->isIntegerType())
return PointerToInt;
if (isa<PointerType>(lhsType)) {
QualType rhptee = lhsType->getAsObjCObjectPointerType()->getPointeeType();
QualType lhptee = rhsType->getAsPointerType()->getPointeeType();
return CheckPointeeTypesForAssignment(lhptee, rhptee);
}
if (isa<BlockPointerType>(lhsType) &&
rhsType->getAsPointerType()->getPointeeType()->isVoidType())
return Compatible;
return Incompatible;
}
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
if (Context.typesAreCompatible(lhsType, rhsType))
return Compatible;
}
return Incompatible;
}
/// \brief Constructs a transparent union from an expression that is
/// used to initialize the transparent union.
static void ConstructTransparentUnion(ASTContext &C, Expr *&E,
QualType UnionType, FieldDecl *Field) {
// Build an initializer list that designates the appropriate member
// of the transparent union.
InitListExpr *Initializer = new (C) InitListExpr(SourceLocation(),
&E, 1,
SourceLocation());
Initializer->setType(UnionType);
Initializer->setInitializedFieldInUnion(Field);
// Build a compound literal constructing a value of the transparent
// union type from this initializer list.
E = new (C) CompoundLiteralExpr(SourceLocation(), UnionType, Initializer,
false);
}
Sema::AssignConvertType
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, Expr *&rExpr) {
QualType FromType = rExpr->getType();
// If the ArgType is a Union type, we want to handle a potential
// transparent_union GCC extension.
const RecordType *UT = ArgType->getAsUnionType();
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
return Incompatible;
// The field to initialize within the transparent union.
RecordDecl *UD = UT->getDecl();
FieldDecl *InitField = 0;
// It's compatible if the expression matches any of the fields.
for (RecordDecl::field_iterator it = UD->field_begin(),
itend = UD->field_end();
it != itend; ++it) {
if (it->getType()->isPointerType()) {
// If the transparent union contains a pointer type, we allow:
// 1) void pointer
// 2) null pointer constant
if (FromType->isPointerType())
if (FromType->getAsPointerType()->getPointeeType()->isVoidType()) {
ImpCastExprToType(rExpr, it->getType());
InitField = *it;
break;
}
if (rExpr->isNullPointerConstant(Context)) {
ImpCastExprToType(rExpr, it->getType());
InitField = *it;
break;
}
}
if (CheckAssignmentConstraints(it->getType(), rExpr->getType())
== Compatible) {
InitField = *it;
break;
}
}
if (!InitField)
return Incompatible;
ConstructTransparentUnion(Context, rExpr, ArgType, InitField);
return Compatible;
}
Sema::AssignConvertType
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
if (getLangOptions().CPlusPlus) {
if (!lhsType->isRecordType()) {
// C++ 5.17p3: If the left operand is not of class type, the
// expression is implicitly converted (C++ 4) to the
// cv-unqualified type of the left operand.
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
"assigning"))
return Incompatible;
return Compatible;
}
// FIXME: Currently, we fall through and treat C++ classes like C
// structures.
}
// C99 6.5.16.1p1: the left operand is a pointer and the right is
// a null pointer constant.
if ((lhsType->isPointerType() ||
lhsType->isObjCObjectPointerType() ||
lhsType->isBlockPointerType())
&& rExpr->isNullPointerConstant(Context)) {
ImpCastExprToType(rExpr, lhsType);
return Compatible;
}
// This check seems unnatural, however it is necessary to ensure the proper
// conversion of functions/arrays. If the conversion were done for all
// DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
// expressions that surpress this implicit conversion (&, sizeof).
//
// Suppress this for references: C++ 8.5.3p5.
if (!lhsType->isReferenceType())
DefaultFunctionArrayConversion(rExpr);
Sema::AssignConvertType result =
CheckAssignmentConstraints(lhsType, rExpr->getType());
// C99 6.5.16.1p2: The value of the right operand is converted to the
// type of the assignment expression.
// CheckAssignmentConstraints allows the left-hand side to be a reference,
// so that we can use references in built-in functions even in C.
// The getNonReferenceType() call makes sure that the resulting expression
// does not have reference type.
if (result != Incompatible && rExpr->getType() != lhsType)
ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
return result;
}
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
Diag(Loc, diag::err_typecheck_invalid_operands)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
Expr *&rex) {
// For conversion purposes, we ignore any qualifiers.
// For example, "const float" and "float" are equivalent.
QualType lhsType =
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
QualType rhsType =
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
// If the vector types are identical, return.
if (lhsType == rhsType)
return lhsType;
// Handle the case of a vector & extvector type of the same size and element
// type. It would be nice if we only had one vector type someday.
if (getLangOptions().LaxVectorConversions) {
// FIXME: Should we warn here?
if (const VectorType *LV = lhsType->getAsVectorType()) {
if (const VectorType *RV = rhsType->getAsVectorType())
if (LV->getElementType() == RV->getElementType() &&
LV->getNumElements() == RV->getNumElements()) {
return lhsType->isExtVectorType() ? lhsType : rhsType;
}
}
}
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
// swap back (so that we don't reverse the inputs to a subtract, for instance.
bool swapped = false;
if (rhsType->isExtVectorType()) {
swapped = true;
std::swap(rex, lex);
std::swap(rhsType, lhsType);
}
// Handle the case of an ext vector and scalar.
if (const ExtVectorType *LV = lhsType->getAsExtVectorType()) {
QualType EltTy = LV->getElementType();
if (EltTy->isIntegralType() && rhsType->isIntegralType()) {
if (Context.getIntegerTypeOrder(EltTy, rhsType) >= 0) {
ImpCastExprToType(rex, lhsType);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
if (EltTy->isRealFloatingType() && rhsType->isScalarType() &&
rhsType->isRealFloatingType()) {
if (Context.getFloatingTypeOrder(EltTy, rhsType) >= 0) {
ImpCastExprToType(rex, lhsType);
if (swapped) std::swap(rex, lex);
return lhsType;
}
}
}
// Vectors of different size or scalar and non-ext-vector are errors.
Diag(Loc, diag::err_typecheck_vector_not_convertable)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
inline QualType Sema::CheckMultiplyDivideOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckRemainderOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return CheckVectorOperands(Loc, lex, rex);
return InvalidOperands(Loc, lex, rex);
}
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
Expr *&lex, Expr *&rex, SourceLocation Loc, QualType* CompLHSTy)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(Loc, lex, rex);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
// handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType() &&
rex->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Put any potential pointer into PExp
Expr* PExp = lex, *IExp = rex;
if (IExp->getType()->isPointerType() ||
IExp->getType()->isObjCObjectPointerType())
std::swap(PExp, IExp);
if (PExp->getType()->isPointerType() ||
PExp->getType()->isObjCObjectPointerType()) {
if (IExp->getType()->isIntegerType()) {
QualType PointeeTy;
const PointerType *PTy = NULL;
const ObjCObjectPointerType *OPT = NULL;
if ((PTy = PExp->getType()->getAsPointerType()))
PointeeTy = PTy->getPointeeType();
else if ((OPT = PExp->getType()->getAsObjCObjectPointerType()))
PointeeTy = OPT->getPointeeType();
// Check for arithmetic on pointers to incomplete types.
if (PointeeTy->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
// GNU extension: arithmetic on pointer to void
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
} else if (PointeeTy->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
<< lex->getType() << lex->getSourceRange();
return QualType();
}
// GNU extension: arithmetic on pointer to function
Diag(Loc, diag::ext_gnu_ptr_func_arith)
<< lex->getType() << lex->getSourceRange();
} else if (((PTy && !PTy->isDependentType()) || OPT) &&
RequireCompleteType(Loc, PointeeTy,
diag::err_typecheck_arithmetic_incomplete_type,
PExp->getSourceRange(), SourceRange(),
PExp->getType()))
return QualType();
// Diagnose bad cases where we step over interface counts.
if (PointeeTy->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
<< PointeeTy << PExp->getSourceRange();
return QualType();
}
if (CompLHSTy) {
QualType LHSTy = lex->getType();
if (LHSTy->isPromotableIntegerType())
LHSTy = Context.IntTy;
else {
QualType T = isPromotableBitField(lex, Context);
if (!T.isNull())
LHSTy = T;
}
*CompLHSTy = LHSTy;
}
return PExp->getType();
}
}
return InvalidOperands(Loc, lex, rex);
}
// C99 6.5.6
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
SourceLocation Loc, QualType* CompLHSTy) {
if (lex->getType()->isVectorType() || rex->getType()->isVectorType()) {
QualType compType = CheckVectorOperands(Loc, lex, rex);
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
QualType compType = UsualArithmeticConversions(lex, rex, CompLHSTy);
// Enforce type constraints: C99 6.5.6p3.
// Handle the common case first (both operands are arithmetic).
if (lex->getType()->isArithmeticType()
&& rex->getType()->isArithmeticType()) {
if (CompLHSTy) *CompLHSTy = compType;
return compType;
}
// Either ptr - int or ptr - ptr.
if (lex->getType()->isPointerType() ||
lex->getType()->isObjCObjectPointerType()) {
QualType lpointee = lex->getType()->getPointeeType();
// The LHS must be an completely-defined object type.
bool ComplainAboutVoid = false;
Expr *ComplainAboutFunc = 0;
if (lpointee->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
// GNU C extension: arithmetic on pointer to void
ComplainAboutVoid = true;
} else if (lpointee->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
<< lex->getType() << lex->getSourceRange();
return QualType();
}
// GNU C extension: arithmetic on pointer to function
ComplainAboutFunc = lex;
} else if (!lpointee->isDependentType() &&
RequireCompleteType(Loc, lpointee,
diag::err_typecheck_sub_ptr_object,
lex->getSourceRange(),
SourceRange(),
lex->getType()))
return QualType();
// Diagnose bad cases where we step over interface counts.
if (lpointee->isObjCInterfaceType() && LangOpts.ObjCNonFragileABI) {
Diag(Loc, diag::err_arithmetic_nonfragile_interface)
<< lpointee << lex->getSourceRange();
return QualType();
}
// The result type of a pointer-int computation is the pointer type.
if (rex->getType()->isIntegerType()) {
if (ComplainAboutVoid)
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
if (ComplainAboutFunc)
Diag(Loc, diag::ext_gnu_ptr_func_arith)
<< ComplainAboutFunc->getType()
<< ComplainAboutFunc->getSourceRange();
if (CompLHSTy) *CompLHSTy = lex->getType();
return lex->getType();
}
// Handle pointer-pointer subtractions.
if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
QualType rpointee = RHSPTy->getPointeeType();
// RHS must be a completely-type object type.
// Handle the GNU void* extension.
if (rpointee->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_void_type)
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
ComplainAboutVoid = true;
} else if (rpointee->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(Loc, diag::err_typecheck_pointer_arith_function_type)
<< rex->getType() << rex->getSourceRange();
return QualType();
}
// GNU extension: arithmetic on pointer to function
if (!ComplainAboutFunc)
ComplainAboutFunc = rex;
} else if (!rpointee->isDependentType() &&
RequireCompleteType(Loc, rpointee,
diag::err_typecheck_sub_ptr_object,
rex->getSourceRange(),
SourceRange(),
rex->getType()))
return QualType();
if (getLangOptions().CPlusPlus) {
// Pointee types must be the same: C++ [expr.add]
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
} else {
// Pointee types must be compatible C99 6.5.6p3
if (!Context.typesAreCompatible(
Context.getCanonicalType(lpointee).getUnqualifiedType(),
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
<< lex->getType() << rex->getType()
<< lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
}
if (ComplainAboutVoid)
Diag(Loc, diag::ext_gnu_void_ptr)
<< lex->getSourceRange() << rex->getSourceRange();
if (ComplainAboutFunc)
Diag(Loc, diag::ext_gnu_ptr_func_arith)
<< ComplainAboutFunc->getType()
<< ComplainAboutFunc->getSourceRange();
if (CompLHSTy) *CompLHSTy = lex->getType();
return Context.getPointerDiffType();
}
}
return InvalidOperands(Loc, lex, rex);
}
// C99 6.5.7
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
bool isCompAssign) {
// C99 6.5.7p2: Each of the operands shall have integer type.
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
return InvalidOperands(Loc, lex, rex);
// Shifts don't perform usual arithmetic conversions, they just do integer
// promotions on each operand. C99 6.5.7p3
QualType LHSTy;
if (lex->getType()->isPromotableIntegerType())
LHSTy = Context.IntTy;
else {
LHSTy = isPromotableBitField(lex, Context);
if (LHSTy.isNull())
LHSTy = lex->getType();
}
if (!isCompAssign)
ImpCastExprToType(lex, LHSTy);
UsualUnaryConversions(rex);
// "The type of the result is that of the promoted left operand."
return LHSTy;
}
// C99 6.5.8, C++ [expr.rel]
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
unsigned OpaqueOpc, bool isRelational) {
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)OpaqueOpc;
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
// C99 6.5.8p3 / C99 6.5.9p4
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
UsualArithmeticConversions(lex, rex);
else {
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
}
QualType lType = lex->getType();
QualType rType = rex->getType();
if (!lType->isFloatingType()
&& !(lType->isBlockPointerType() && isRelational)) {
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
// NOTE: Don't warn about comparisons of enum constants. These can arise
// from macro expansions, and are usually quite deliberate.
Expr *LHSStripped = lex->IgnoreParens();
Expr *RHSStripped = rex->IgnoreParens();
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped))
if (DRL->getDecl() == DRR->getDecl() &&
!isa<EnumConstantDecl>(DRL->getDecl()))
Diag(Loc, diag::warn_selfcomparison);
if (isa<CastExpr>(LHSStripped))
LHSStripped = LHSStripped->IgnoreParenCasts();
if (isa<CastExpr>(RHSStripped))
RHSStripped = RHSStripped->IgnoreParenCasts();
// Warn about comparisons against a string constant (unless the other
// operand is null), the user probably wants strcmp.
Expr *literalString = 0;
Expr *literalStringStripped = 0;
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
!RHSStripped->isNullPointerConstant(Context)) {
literalString = lex;
literalStringStripped = LHSStripped;
}
else if ((isa<StringLiteral>(RHSStripped) ||
isa<ObjCEncodeExpr>(RHSStripped)) &&
!LHSStripped->isNullPointerConstant(Context)) {
literalString = rex;
literalStringStripped = RHSStripped;
}
if (literalString) {
std::string resultComparison;
switch (Opc) {
case BinaryOperator::LT: resultComparison = ") < 0"; break;
case BinaryOperator::GT: resultComparison = ") > 0"; break;
case BinaryOperator::LE: resultComparison = ") <= 0"; break;
case BinaryOperator::GE: resultComparison = ") >= 0"; break;
case BinaryOperator::EQ: resultComparison = ") == 0"; break;
case BinaryOperator::NE: resultComparison = ") != 0"; break;
default: assert(false && "Invalid comparison operator");
}
Diag(Loc, diag::warn_stringcompare)
<< isa<ObjCEncodeExpr>(literalStringStripped)
<< literalString->getSourceRange()
<< CodeModificationHint::CreateReplacement(SourceRange(Loc), ", ")
<< CodeModificationHint::CreateInsertion(lex->getLocStart(),
"strcmp(")
<< CodeModificationHint::CreateInsertion(
PP.getLocForEndOfToken(rex->getLocEnd()),
resultComparison);
}
}
// The result of comparisons is 'bool' in C++, 'int' in C.
QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy :Context.IntTy;
if (isRelational) {
if (lType->isRealType() && rType->isRealType())
return ResultTy;
} else {
// Check for comparisons of floating point operands using != and ==.
if (lType->isFloatingType()) {
assert(rType->isFloatingType());
CheckFloatComparison(Loc,lex,rex);
}
if (lType->isArithmeticType() && rType->isArithmeticType())
return ResultTy;
}
bool LHSIsNull = lex->isNullPointerConstant(Context);
bool RHSIsNull = rex->isNullPointerConstant(Context);
// All of the following pointer related warnings are GCC extensions, except
// when handling null pointer constants. One day, we can consider making them
// errors (when -pedantic-errors is enabled).
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
QualType LCanPointeeTy =
Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
QualType RCanPointeeTy =
Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
if (isRelational) {
if (lType->isFunctionPointerType() || rType->isFunctionPointerType()) {
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
if (LCanPointeeTy->isVoidType() != RCanPointeeTy->isVoidType()) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
} else {
if (lType->isFunctionPointerType() != rType->isFunctionPointerType()) {
if (!LHSIsNull && !RHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
}
// Simple check: if the pointee types are identical, we're done.
if (LCanPointeeTy == RCanPointeeTy)
return ResultTy;
if (getLangOptions().CPlusPlus) {
// C++ [expr.rel]p2:
// [...] Pointer conversions (4.10) and qualification
// conversions (4.4) are performed on pointer operands (or on
// a pointer operand and a null pointer constant) to bring
// them to their composite pointer type. [...]
//
// C++ [expr.eq]p2 uses the same notion for (in)equality
// comparisons of pointers.
QualType T = FindCompositePointerType(lex, rex);
if (T.isNull()) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
return QualType();
}
ImpCastExprToType(lex, T);
ImpCastExprToType(rex, T);
return ResultTy;
}
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
!LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
!Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
RCanPointeeTy.getUnqualifiedType())) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return ResultTy;
}
// C++ allows comparison of pointers with null pointer constants.
if (getLangOptions().CPlusPlus) {
if (lType->isPointerType() && RHSIsNull) {
ImpCastExprToType(rex, lType);
return ResultTy;
}
if (rType->isPointerType() && LHSIsNull) {
ImpCastExprToType(lex, rType);
return ResultTy;
}
// And comparison of nullptr_t with itself.
if (lType->isNullPtrType() && rType->isNullPtrType())
return ResultTy;
}
// Handle block pointer types.
if (!isRelational && lType->isBlockPointerType() && rType->isBlockPointerType()) {
QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
if (!LHSIsNull && !RHSIsNull &&
!Context.typesAreCompatible(lpointee, rpointee)) {
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return ResultTy;
}
// Allow block pointers to be compared with null pointer constants.
if (!isRelational
&& ((lType->isBlockPointerType() && rType->isPointerType())
|| (lType->isPointerType() && rType->isBlockPointerType()))) {
if (!LHSIsNull && !RHSIsNull) {
if (!((rType->isPointerType() && rType->getAsPointerType()
->getPointeeType()->isVoidType())
|| (lType->isPointerType() && lType->getAsPointerType()
->getPointeeType()->isVoidType())))
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType); // promote the pointer to pointer
return ResultTy;
}
if ((lType->isObjCObjectPointerType() || rType->isObjCObjectPointerType())) {
if (lType->isPointerType() || rType->isPointerType()) {
const PointerType *LPT = lType->getAsPointerType();
const PointerType *RPT = rType->getAsPointerType();
bool LPtrToVoid = LPT ?
Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
bool RPtrToVoid = RPT ?
Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
if (!LPtrToVoid && !RPtrToVoid &&
!Context.typesAreCompatible(lType, rType)) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType);
return ResultTy;
}
if (lType->isObjCObjectPointerType() && rType->isObjCObjectPointerType()) {
if (!Context.areComparableObjCPointerTypes(lType, rType)) {
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
if (lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType()) {
if (!ObjCQualifiedIdTypesAreCompatible(lType, rType, true))
Diag(Loc, diag::warn_incompatible_qualified_id_operands)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
}
ImpCastExprToType(rex, lType);
return ResultTy;
}
}
if ((lType->isPointerType() || lType->isObjCObjectPointerType()) &&
rType->isIntegerType()) {
if (isRelational)
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
else if (!RHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(rex, lType); // promote the integer to pointer
return ResultTy;
}
if (lType->isIntegerType() &&
(rType->isPointerType() || rType->isObjCObjectPointerType())) {
if (isRelational)
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
else if (!LHSIsNull)
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
ImpCastExprToType(lex, rType); // promote the integer to pointer
return ResultTy;
}
// Handle block pointers.
if (!isRelational && RHSIsNull
&& lType->isBlockPointerType() && rType->isIntegerType()) {
ImpCastExprToType(rex, lType); // promote the integer to pointer
return ResultTy;
}
if (!isRelational && LHSIsNull
&& lType->isIntegerType() && rType->isBlockPointerType()) {
ImpCastExprToType(lex, rType); // promote the integer to pointer
return ResultTy;
}
return InvalidOperands(Loc, lex, rex);
}
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
/// operates on extended vector types. Instead of producing an IntTy result,
/// like a scalar comparison, a vector comparison produces a vector of integer
/// types.
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
SourceLocation Loc,
bool isRelational) {
// Check to make sure we're operating on vectors of the same type and width,
// Allowing one side to be a scalar of element type.
QualType vType = CheckVectorOperands(Loc, lex, rex);
if (vType.isNull())
return vType;
QualType lType = lex->getType();
QualType rType = rex->getType();
// For non-floating point types, check for self-comparisons of the form
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
// often indicate logic errors in the program.
if (!lType->isFloatingType()) {
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
if (DRL->getDecl() == DRR->getDecl())
Diag(Loc, diag::warn_selfcomparison);
}
// Check for comparisons of floating point operands using != and ==.
if (!isRelational && lType->isFloatingType()) {
assert (rType->isFloatingType());
CheckFloatComparison(Loc,lex,rex);
}
// Return the type for the comparison, which is the same as vector type for
// integer vectors, or an integer type of identical size and number of
// elements for floating point vectors.
if (lType->isIntegerType())
return lType;
const VectorType *VTy = lType->getAsVectorType();
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
if (TypeSize == Context.getTypeSize(Context.IntTy))
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
if (TypeSize == Context.getTypeSize(Context.LongTy))
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
"Unhandled vector element size in vector compare");
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
}
inline QualType Sema::CheckBitwiseOperands(
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
{
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
return CheckVectorOperands(Loc, lex, rex);
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
return compType;
return InvalidOperands(Loc, lex, rex);
}
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
Expr *&lex, Expr *&rex, SourceLocation Loc)
{
UsualUnaryConversions(lex);
UsualUnaryConversions(rex);
if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
return Context.IntTy;
return InvalidOperands(Loc, lex, rex);
}
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
/// is a read-only property; return true if so. A readonly property expression
/// depends on various declarations and thus must be treated specially.
///
static bool IsReadonlyProperty(Expr *E, Sema &S)
{
if (E->getStmtClass() == Expr::ObjCPropertyRefExprClass) {
const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(E);
if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
QualType BaseType = PropExpr->getBase()->getType();
if (const ObjCObjectPointerType *OPT =
BaseType->getAsObjCInterfacePointerType())
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
if (S.isPropertyReadonly(PDecl, IFace))
return true;
}
}
return false;
}
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
/// emit an error and return true. If so, return false.
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
SourceLocation OrigLoc = Loc;
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
&Loc);
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
IsLV = Expr::MLV_ReadonlyProperty;
if (IsLV == Expr::MLV_Valid)
return false;
unsigned Diag = 0;
bool NeedType = false;
switch (IsLV) { // C99 6.5.16p2
default: assert(0 && "Unknown result from isModifiableLvalue!");
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
case Expr::MLV_ArrayType:
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_NotObjectType:
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
NeedType = true;
break;
case Expr::MLV_LValueCast:
Diag = diag::err_typecheck_lvalue_casts_not_supported;
break;
case Expr::MLV_InvalidExpression:
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
break;
case Expr::MLV_IncompleteType:
case Expr::MLV_IncompleteVoidType:
return S.RequireCompleteType(Loc, E->getType(),
diag::err_typecheck_incomplete_type_not_modifiable_lvalue,
E->getSourceRange());
case Expr::MLV_DuplicateVectorComponents:
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
break;
case Expr::MLV_NotBlockQualified:
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
break;
case Expr::MLV_ReadonlyProperty:
Diag = diag::error_readonly_property_assignment;
break;
case Expr::MLV_NoSetterProperty:
Diag = diag::error_nosetter_property_assignment;
break;
}
SourceRange Assign;
if (Loc != OrigLoc)
Assign = SourceRange(OrigLoc, OrigLoc);
if (NeedType)
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
else
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
return true;
}
// C99 6.5.16.1
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
SourceLocation Loc,
QualType CompoundType) {
// Verify that LHS is a modifiable lvalue, and emit error if not.
if (CheckForModifiableLvalue(LHS, Loc, *this))
return QualType();
QualType LHSType = LHS->getType();
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
AssignConvertType ConvTy;
if (CompoundType.isNull()) {
// Simple assignment "x = y".
ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
// Special case of NSObject attributes on c-style pointer types.
if (ConvTy == IncompatiblePointer &&
((Context.isObjCNSObjectType(LHSType) &&
Context.isObjCObjectPointerType(RHSType)) ||
(Context.isObjCNSObjectType(RHSType) &&
Context.isObjCObjectPointerType(LHSType))))
ConvTy = Compatible;
// If the RHS is a unary plus or minus, check to see if they = and + are
// right next to each other. If so, the user may have typo'd "x =+ 4"
// instead of "x += 4".
Expr *RHSCheck = RHS;
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
RHSCheck = ICE->getSubExpr();
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
if ((UO->getOpcode() == UnaryOperator::Plus ||
UO->getOpcode() == UnaryOperator::Minus) &&
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
// Only if the two operators are exactly adjacent.
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc() &&
// And there is a space or other character before the subexpr of the
// unary +/-. We don't want to warn on "x=-1".
Loc.getFileLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
UO->getSubExpr()->getLocStart().isFileID()) {
Diag(Loc, diag::warn_not_compound_assign)
<< (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
}
}
} else {
// Compound assignment "x += y"
ConvTy = CheckAssignmentConstraints(LHSType, RHSType);
}
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
RHS, "assigning"))
return QualType();
// C99 6.5.16p3: The type of an assignment expression is the type of the
// left operand unless the left operand has qualified type, in which case
// it is the unqualified version of the type of the left operand.
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
// is converted to the type of the assignment expression (above).
// C++ 5.17p1: the type of the assignment expression is that of its left
// operand.
return LHSType.getUnqualifiedType();
}
// C99 6.5.17
QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
// Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
DefaultFunctionArrayConversion(RHS);
// FIXME: Check that RHS type is complete in C mode (it's legal for it to be
// incomplete in C++).
return RHS->getType();
}
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
bool isInc) {
if (Op->isTypeDependent())
return Context.DependentTy;
QualType ResType = Op->getType();
assert(!ResType.isNull() && "no type for increment/decrement expression");
if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
// Decrement of bool is not allowed.
if (!isInc) {
Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
return QualType();
}
// Increment of bool sets it to true, but is deprecated.
Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
} else if (ResType->isRealType()) {
// OK!
} else if (ResType->getAsPointerType() ||ResType->isObjCObjectPointerType()) {
QualType PointeeTy;
if (const PointerType *PTy = ResType->getAsPointerType())
PointeeTy = PTy->getPointeeType();
else if (const ObjCObjectPointerType *OPT =
ResType->getAsObjCObjectPointerType())
PointeeTy = OPT->getPointeeType();
// C99 6.5.2.4p2, 6.5.6p2
if (PointeeTy->isVoidType()) {
if (getLangOptions().CPlusPlus) {
Diag(OpLoc, diag::err_typecheck_pointer_arith_void_type)
<< Op->getSourceRange();
return QualType();
}
// Pointer to void is a GNU extension in C.
Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
} else if (PointeeTy->isFunctionType()) {
if (getLangOptions().CPlusPlus) {
Diag(OpLoc, diag::err_typecheck_pointer_arith_function_type)
<< Op->getType() << Op->getSourceRange();
return QualType();
}
Diag(OpLoc, diag::ext_gnu_ptr_func_arith)
<< ResType << Op->getSourceRange();
} else if (RequireCompleteType(OpLoc, PointeeTy,
diag::err_typecheck_arithmetic_incomplete_type,
Op->getSourceRange(), SourceRange(),
ResType))
return QualType();
} else if (ResType->isComplexType()) {
// C99 does not support ++/-- on complex types, we allow as an extension.
Diag(OpLoc, diag::ext_integer_increment_complex)
<< ResType << Op->getSourceRange();
} else {
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
<< ResType << Op->getSourceRange();
return QualType();
}
// At this point, we know we have a real, complex or pointer type.
// Now make sure the operand is a modifiable lvalue.
if (CheckForModifiableLvalue(Op, OpLoc, *this))
return QualType();
return ResType;
}
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
/// This routine allows us to typecheck complex/recursive expressions
/// where the declaration is needed for type checking. We only need to
/// handle cases when the expression references a function designator
/// or is an lvalue. Here are some examples:
/// - &(x) => x
/// - &*****f => f for f a function designator.
/// - &s.xx => s
/// - &s.zz[1].yy -> s, if zz is an array
/// - *(x + 1) -> x, if x is an array
/// - &"123"[2] -> 0
/// - & __real__ x -> x
static NamedDecl *getPrimaryDecl(Expr *E) {
switch (E->getStmtClass()) {
case Stmt::DeclRefExprClass:
case Stmt::QualifiedDeclRefExprClass:
return cast<DeclRefExpr>(E)->getDecl();
case Stmt::MemberExprClass:
// If this is an arrow operator, the address is an offset from
// the base's value, so the object the base refers to is
// irrelevant.
if (cast<MemberExpr>(E)->isArrow())
return 0;
// Otherwise, the expression refers to a part of the base
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
case Stmt::ArraySubscriptExprClass: {
// FIXME: This code shouldn't be necessary! We should catch the implicit
// promotion of register arrays earlier.
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
if (ICE->getSubExpr()->getType()->isArrayType())
return getPrimaryDecl(ICE->getSubExpr());
}
return 0;
}
case Stmt::UnaryOperatorClass: {
UnaryOperator *UO = cast<UnaryOperator>(E);
switch(UO->getOpcode()) {
case UnaryOperator::Real:
case UnaryOperator::Imag:
case UnaryOperator::Extension:
return getPrimaryDecl(UO->getSubExpr());
default:
return 0;
}
}
case Stmt::ParenExprClass:
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
case Stmt::ImplicitCastExprClass:
// If the result of an implicit cast is an l-value, we care about
// the sub-expression; otherwise, the result here doesn't matter.
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
default:
return 0;
}
}
/// CheckAddressOfOperand - The operand of & must be either a function
/// designator or an lvalue designating an object. If it is an lvalue, the
/// object cannot be declared with storage class register or be a bit field.
/// Note: The usual conversions are *not* applied to the operand of the &
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
/// In C++, the operand might be an overloaded function name, in which case
/// we allow the '&' but retain the overloaded-function type.
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
// Make sure to ignore parentheses in subsequent checks
op = op->IgnoreParens();
if (op->isTypeDependent())
return Context.DependentTy;
if (getLangOptions().C99) {
// Implement C99-only parts of addressof rules.
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
if (uOp->getOpcode() == UnaryOperator::Deref)
// Per C99 6.5.3.2, the address of a deref always returns a valid result
// (assuming the deref expression is valid).
return uOp->getSubExpr()->getType();
}
// Technically, there should be a check for array subscript
// expressions here, but the result of one is always an lvalue anyway.
}
NamedDecl *dcl = getPrimaryDecl(op);
Expr::isLvalueResult lval = op->isLvalue(Context);
if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
// C99 6.5.3.2p1
// The operand must be either an l-value or a function designator
if (!op->getType()->isFunctionType()) {
// FIXME: emit more specific diag...
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
<< op->getSourceRange();
return QualType();
}
} else if (op->getBitField()) { // C99 6.5.3.2p1
// The operand cannot be a bit-field
Diag(OpLoc, diag::err_typecheck_address_of)
<< "bit-field" << op->getSourceRange();
return QualType();
} else if (isa<ExtVectorElementExpr>(op) || (isa<ArraySubscriptExpr>(op) &&
cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType())){
// The operand cannot be an element of a vector
Diag(OpLoc, diag::err_typecheck_address_of)
<< "vector element" << op->getSourceRange();
return QualType();
} else if (isa<ObjCPropertyRefExpr>(op)) {
// cannot take address of a property expression.
Diag(OpLoc, diag::err_typecheck_address_of)
<< "property expression" << op->getSourceRange();
return QualType();
} else if (dcl) { // C99 6.5.3.2p1
// We have an lvalue with a decl. Make sure the decl is not declared
// with the register storage-class specifier.
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
if (vd->getStorageClass() == VarDecl::Register) {
Diag(OpLoc, diag::err_typecheck_address_of)
<< "register variable" << op->getSourceRange();
return QualType();
}
} else if (isa<OverloadedFunctionDecl>(dcl) ||
isa<FunctionTemplateDecl>(dcl)) {
return Context.OverloadTy;
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(dcl)) {
// Okay: we can take the address of a field.
// Could be a pointer to member, though, if there is an explicit
// scope qualifier for the class.
if (isa<QualifiedDeclRefExpr>(op)) {
DeclContext *Ctx = dcl->getDeclContext();
if (Ctx && Ctx->isRecord()) {
if (FD->getType()->isReferenceType()) {
Diag(OpLoc,
diag::err_cannot_form_pointer_to_member_of_reference_type)
<< FD->getDeclName() << FD->getType();
return QualType();
}
return Context.getMemberPointerType(op->getType(),
Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
}
}
} else if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(dcl)) {
// Okay: we can take the address of a function.
// As above.
if (isa<QualifiedDeclRefExpr>(op) && MD->isInstance())
return Context.getMemberPointerType(op->getType(),
Context.getTypeDeclType(MD->getParent()).getTypePtr());
} else if (!isa<FunctionDecl>(dcl))
assert(0 && "Unknown/unexpected decl type");
}
if (lval == Expr::LV_IncompleteVoidType) {
// Taking the address of a void variable is technically illegal, but we
// allow it in cases which are otherwise valid.
// Example: "extern void x; void* y = &x;".
Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
}
// If the operand has type "type", the result has type "pointer to type".
return Context.getPointerType(op->getType());
}
QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
if (Op->isTypeDependent())
return Context.DependentTy;
UsualUnaryConversions(Op);
QualType Ty = Op->getType();
// Note that per both C89 and C99, this is always legal, even if ptype is an
// incomplete type or void. It would be possible to warn about dereferencing
// a void pointer, but it's completely well-defined, and such a warning is
// unlikely to catch any mistakes.
if (const PointerType *PT = Ty->getAsPointerType())
return PT->getPointeeType();
if (const ObjCObjectPointerType *OPT = Ty->getAsObjCObjectPointerType())
return OPT->getPointeeType();
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
<< Ty << Op->getSourceRange();
return QualType();
}
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
tok::TokenKind Kind) {
BinaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown binop!");
case tok::periodstar: Opc = BinaryOperator::PtrMemD; break;
case tok::arrowstar: Opc = BinaryOperator::PtrMemI; break;
case tok::star: Opc = BinaryOperator::Mul; break;
case tok::slash: Opc = BinaryOperator::Div; break;
case tok::percent: Opc = BinaryOperator::Rem; break;
case tok::plus: Opc = BinaryOperator::Add; break;
case tok::minus: Opc = BinaryOperator::Sub; break;
case tok::lessless: Opc = BinaryOperator::Shl; break;
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
case tok::lessequal: Opc = BinaryOperator::LE; break;
case tok::less: Opc = BinaryOperator::LT; break;
case tok::greaterequal: Opc = BinaryOperator::GE; break;
case tok::greater: Opc = BinaryOperator::GT; break;
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
case tok::equalequal: Opc = BinaryOperator::EQ; break;
case tok::amp: Opc = BinaryOperator::And; break;
case tok::caret: Opc = BinaryOperator::Xor; break;
case tok::pipe: Opc = BinaryOperator::Or; break;
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
case tok::equal: Opc = BinaryOperator::Assign; break;
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
case tok::comma: Opc = BinaryOperator::Comma; break;
}
return Opc;
}
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
tok::TokenKind Kind) {
UnaryOperator::Opcode Opc;
switch (Kind) {
default: assert(0 && "Unknown unary op!");
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
case tok::amp: Opc = UnaryOperator::AddrOf; break;
case tok::star: Opc = UnaryOperator::Deref; break;
case tok::plus: Opc = UnaryOperator::Plus; break;
case tok::minus: Opc = UnaryOperator::Minus; break;
case tok::tilde: Opc = UnaryOperator::Not; break;
case tok::exclaim: Opc = UnaryOperator::LNot; break;
case tok::kw___real: Opc = UnaryOperator::Real; break;
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
}
return Opc;
}
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
/// operator @p Opc at location @c TokLoc. This routine only supports
/// built-in operations; ActOnBinOp handles overloaded operators.
Action::OwningExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
unsigned Op,
Expr *lhs, Expr *rhs) {
QualType ResultTy; // Result type of the binary operator.
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
// The following two variables are used for compound assignment operators
QualType CompLHSTy; // Type of LHS after promotions for computation
QualType CompResultTy; // Type of computation result
switch (Opc) {
case BinaryOperator::Assign:
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
break;
case BinaryOperator::PtrMemD:
case BinaryOperator::PtrMemI:
ResultTy = CheckPointerToMemberOperands(lhs, rhs, OpLoc,
Opc == BinaryOperator::PtrMemI);
break;
case BinaryOperator::Mul:
case BinaryOperator::Div:
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Rem:
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Add:
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Sub:
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::Shl:
case BinaryOperator::Shr:
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::LE:
case BinaryOperator::LT:
case BinaryOperator::GE:
case BinaryOperator::GT:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, true);
break;
case BinaryOperator::EQ:
case BinaryOperator::NE:
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, Opc, false);
break;
case BinaryOperator::And:
case BinaryOperator::Xor:
case BinaryOperator::Or:
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::LAnd:
case BinaryOperator::LOr:
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
break;
case BinaryOperator::MulAssign:
case BinaryOperator::DivAssign:
CompResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BinaryOperator::RemAssign:
CompResultTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BinaryOperator::AddAssign:
CompResultTy = CheckAdditionOperands(lhs, rhs, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BinaryOperator::SubAssign:
CompResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc, &CompLHSTy);
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BinaryOperator::ShlAssign:
case BinaryOperator::ShrAssign:
CompResultTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BinaryOperator::AndAssign:
case BinaryOperator::XorAssign:
case BinaryOperator::OrAssign:
CompResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
CompLHSTy = CompResultTy;
if (!CompResultTy.isNull())
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompResultTy);
break;
case BinaryOperator::Comma:
ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
break;
}
if (ResultTy.isNull())
return ExprError();
if (CompResultTy.isNull())
return Owned(new (Context) BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc));
else
return Owned(new (Context) CompoundAssignOperator(lhs, rhs, Opc, ResultTy,
CompLHSTy, CompResultTy,
OpLoc));
}
// Binary Operators. 'Tok' is the token for the operator.
Action::OwningExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
ExprArg LHS, ExprArg RHS) {
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
Expr *lhs = LHS.takeAs<Expr>(), *rhs = RHS.takeAs<Expr>();
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
if (getLangOptions().CPlusPlus &&
(lhs->getType()->isOverloadableType() ||
rhs->getType()->isOverloadableType())) {
// Find all of the overloaded operators visible from this
// point. We perform both an operator-name lookup from the local
// scope and an argument-dependent lookup based on the types of
// the arguments.
FunctionSet Functions;
OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
if (OverOp != OO_None) {
LookupOverloadedOperatorName(OverOp, S, lhs->getType(), rhs->getType(),
Functions);
Expr *Args[2] = { lhs, rhs };
DeclarationName OpName
= Context.DeclarationNames.getCXXOperatorName(OverOp);
ArgumentDependentLookup(OpName, Args, 2, Functions);
}
// Build the (potentially-overloaded, potentially-dependent)
// binary operation.
return CreateOverloadedBinOp(TokLoc, Opc, Functions, lhs, rhs);
}
// Build a built-in binary operation.
return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
}
Action::OwningExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
unsigned OpcIn,
ExprArg InputArg) {
UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
// FIXME: Input is modified below, but InputArg is not updated appropriately.
Expr *Input = (Expr *)InputArg.get();
QualType resultType;
switch (Opc) {
case UnaryOperator::PostInc:
case UnaryOperator::PostDec:
case UnaryOperator::OffsetOf:
assert(false && "Invalid unary operator");
break;
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
resultType = CheckIncrementDecrementOperand(Input, OpLoc,
Opc == UnaryOperator::PreInc);
break;
case UnaryOperator::AddrOf:
resultType = CheckAddressOfOperand(Input, OpLoc);
break;
case UnaryOperator::Deref:
DefaultFunctionArrayConversion(Input);
resultType = CheckIndirectionOperand(Input, OpLoc);
break;
case UnaryOperator::Plus:
case UnaryOperator::Minus:
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
resultType->isEnumeralType())
break;
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
Opc == UnaryOperator::Plus &&
resultType->isPointerType())
break;
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
case UnaryOperator::Not: // bitwise complement
UsualUnaryConversions(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
if (resultType->isComplexType() || resultType->isComplexIntegerType())
// C99 does not support '~' for complex conjugation.
Diag(OpLoc, diag::ext_integer_complement_complex)
<< resultType << Input->getSourceRange();
else if (!resultType->isIntegerType())
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
break;
case UnaryOperator::LNot: // logical negation
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
DefaultFunctionArrayConversion(Input);
resultType = Input->getType();
if (resultType->isDependentType())
break;
if (!resultType->isScalarType()) // C99 6.5.3.3p1
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
<< resultType << Input->getSourceRange());
// LNot always has type int. C99 6.5.3.3p5.
// In C++, it's bool. C++ 5.3.1p8
resultType = getLangOptions().CPlusPlus ? Context.BoolTy : Context.IntTy;
break;
case UnaryOperator::Real:
case UnaryOperator::Imag:
resultType = CheckRealImagOperand(Input, OpLoc, Opc == UnaryOperator::Real);
break;
case UnaryOperator::Extension:
resultType = Input->getType();
break;
}
if (resultType.isNull())
return ExprError();
InputArg.release();
return Owned(new (Context) UnaryOperator(Input, Opc, resultType, OpLoc));
}
// Unary Operators. 'Tok' is the token for the operator.
Action::OwningExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg input) {
Expr *Input = (Expr*)input.get();
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType()) {
// Find all of the overloaded operators visible from this
// point. We perform both an operator-name lookup from the local
// scope and an argument-dependent lookup based on the types of
// the arguments.
FunctionSet Functions;
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
if (OverOp != OO_None) {
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
Functions);
DeclarationName OpName
= Context.DeclarationNames.getCXXOperatorName(OverOp);
ArgumentDependentLookup(OpName, &Input, 1, Functions);
}
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, move(input));
}
return CreateBuiltinUnaryOp(OpLoc, Opc, move(input));
}
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
Sema::OwningExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
SourceLocation LabLoc,
IdentifierInfo *LabelII) {
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = getLabelMap()[LabelII];
// If we haven't seen this label yet, create a forward reference. It
// will be validated and/or cleaned up in ActOnFinishFunctionBody.
if (LabelDecl == 0)
LabelDecl = new (Context) LabelStmt(LabLoc, LabelII, 0);
// Create the AST node. The address of a label always has type 'void*'.
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
Context.getPointerType(Context.VoidTy)));
}
Sema::OwningExprResult
Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtArg substmt,
SourceLocation RPLoc) { // "({..})"
Stmt *SubStmt = static_cast<Stmt*>(substmt.get());
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
if (isFileScope)
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
// FIXME: there are a variety of strange constraints to enforce here, for
// example, it is not possible to goto into a stmt expression apparently.
// More semantic analysis is needed.
// If there are sub stmts in the compound stmt, take the type of the last one
// as the type of the stmtexpr.
QualType Ty = Context.VoidTy;
if (!Compound->body_empty()) {
Stmt *LastStmt = Compound->body_back();
// If LastStmt is a label, skip down through into the body.
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
LastStmt = Label->getSubStmt();
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
Ty = LastExpr->getType();
}
// FIXME: Check that expression type is complete/non-abstract; statement
// expressions are not lvalues.
substmt.release();
return Owned(new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc));
}
Sema::OwningExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
TypeTy *argty,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RPLoc) {
// FIXME: This function leaks all expressions in the offset components on
// error.
QualType ArgTy = QualType::getFromOpaquePtr(argty);
assert(!ArgTy.isNull() && "Missing type argument!");
bool Dependent = ArgTy->isDependentType();
// We must have at least one component that refers to the type, and the first
// one is known to be a field designator. Verify that the ArgTy represents
// a struct/union/class.
if (!Dependent && !ArgTy->isRecordType())
return ExprError(Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy);
// FIXME: Type must be complete per C99 7.17p3 because a declaring a variable
// with an incomplete type would be illegal.
// Otherwise, create a null pointer as the base, and iteratively process
// the offsetof designators.
QualType ArgTyPtr = Context.getPointerType(ArgTy);
Expr* Res = new (Context) ImplicitValueInitExpr(ArgTyPtr);
Res = new (Context) UnaryOperator(Res, UnaryOperator::Deref,
ArgTy, SourceLocation());
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
// GCC extension, diagnose them.
// FIXME: This diagnostic isn't actually visible because the location is in
// a system header!
if (NumComponents != 1)
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
if (!Dependent) {
bool DidWarnAboutNonPOD = false;
// FIXME: Dependent case loses a lot of information here. And probably
// leaks like a sieve.
for (unsigned i = 0; i != NumComponents; ++i) {
const OffsetOfComponent &OC = CompPtr[i];
if (OC.isBrackets) {
// Offset of an array sub-field. TODO: Should we allow vector elements?
const ArrayType *AT = Context.getAsArrayType(Res->getType());
if (!AT) {
Res->Destroy(Context);
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
<< Res->getType());
}
// FIXME: C++: Verify that operator[] isn't overloaded.
// Promote the array so it looks more like a normal array subscript
// expression.
DefaultFunctionArrayConversion(Res);
// C99 6.5.2.1p1
Expr *Idx = static_cast<Expr*>(OC.U.E);
// FIXME: Leaks Res
if (!Idx->isTypeDependent() && !Idx->getType()->isIntegerType())
return ExprError(Diag(Idx->getLocStart(),
diag::err_typecheck_subscript_not_integer)
<< Idx->getSourceRange());
Res = new (Context) ArraySubscriptExpr(Res, Idx, AT->getElementType(),
OC.LocEnd);
continue;
}
const RecordType *RC = Res->getType()->getAsRecordType();
if (!RC) {
Res->Destroy(Context);
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
<< Res->getType());
}
// Get the decl corresponding to this.
RecordDecl *RD = RC->getDecl();
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
if (!CRD->isPOD() && !DidWarnAboutNonPOD) {
ExprError(Diag(BuiltinLoc, diag::warn_offsetof_non_pod_type)
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
<< Res->getType());
DidWarnAboutNonPOD = true;
}
}
FieldDecl *MemberDecl
= dyn_cast_or_null<FieldDecl>(LookupQualifiedName(RD, OC.U.IdentInfo,
LookupMemberName)
.getAsDecl());
// FIXME: Leaks Res
if (!MemberDecl)
return ExprError(Diag(BuiltinLoc, diag::err_typecheck_no_member)
<< OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd));
// FIXME: C++: Verify that MemberDecl isn't a static field.
// FIXME: Verify that MemberDecl isn't a bitfield.
if (cast<RecordDecl>(MemberDecl->getDeclContext())->isAnonymousStructOrUnion()) {
Res = BuildAnonymousStructUnionMemberReference(
SourceLocation(), MemberDecl, Res, SourceLocation()).takeAs<Expr>();
} else {
// MemberDecl->getType() doesn't get the right qualifiers, but it
// doesn't matter here.
Res = new (Context) MemberExpr(Res, false, MemberDecl, OC.LocEnd,
MemberDecl->getType().getNonReferenceType());
}
}
}
return Owned(new (Context) UnaryOperator(Res, UnaryOperator::OffsetOf,
Context.getSizeType(), BuiltinLoc));
}
Sema::OwningExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1,TypeTy *arg2,
SourceLocation RPLoc) {
QualType argT1 = QualType::getFromOpaquePtr(arg1);
QualType argT2 = QualType::getFromOpaquePtr(arg2);
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
if (getLangOptions().CPlusPlus) {
Diag(BuiltinLoc, diag::err_types_compatible_p_in_cplusplus)
<< SourceRange(BuiltinLoc, RPLoc);
return ExprError();
}
return Owned(new (Context) TypesCompatibleExpr(Context.IntTy, BuiltinLoc,
argT1, argT2, RPLoc));
}
Sema::OwningExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
ExprArg cond,
ExprArg expr1, ExprArg expr2,
SourceLocation RPLoc) {
Expr *CondExpr = static_cast<Expr*>(cond.get());
Expr *LHSExpr = static_cast<Expr*>(expr1.get());
Expr *RHSExpr = static_cast<Expr*>(expr2.get());
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
QualType resType;
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
resType = Context.DependentTy;
} else {
// The conditional expression is required to be a constant expression.
llvm::APSInt condEval(32);
SourceLocation ExpLoc;
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
return ExprError(Diag(ExpLoc,
diag::err_typecheck_choose_expr_requires_constant)
<< CondExpr->getSourceRange());
// If the condition is > zero, then the AST type is the same as the LSHExpr.
resType = condEval.getZExtValue() ? LHSExpr->getType() : RHSExpr->getType();
}
cond.release(); expr1.release(); expr2.release();
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
resType, RPLoc));
}
//===----------------------------------------------------------------------===//
// Clang Extensions.
//===----------------------------------------------------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is started.
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
// Analyze block parameters.
BlockSemaInfo *BSI = new BlockSemaInfo();
// Add BSI to CurBlock.
BSI->PrevBlockInfo = CurBlock;
CurBlock = BSI;
BSI->ReturnType = QualType();
BSI->TheScope = BlockScope;
BSI->hasBlockDeclRefExprs = false;
BSI->SavedFunctionNeedsScopeChecking = CurFunctionNeedsScopeChecking;
CurFunctionNeedsScopeChecking = false;
BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
PushDeclContext(BlockScope, BSI->TheDecl);
}
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
if (ParamInfo.getNumTypeObjects() == 0
|| ParamInfo.getTypeObject(0).Kind != DeclaratorChunk::Function) {
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
if (T->isArrayType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_block_returns_array);
return;
}
// The parameter list is optional, if there was none, assume ().
if (!T->isFunctionType())
T = Context.getFunctionType(T, NULL, 0, 0, 0);
CurBlock->hasPrototype = true;
CurBlock->isVariadic = false;
// Check for a valid sentinel attribute on this block.
if (CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
QualType RetTy = T.getTypePtr()->getAsFunctionType()->getResultType();
// Do not allow returning a objc interface by-value.
if (RetTy->isObjCInterfaceType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
return;
}
return;
}
// Analyze arguments to block.
assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
CurBlock->hasPrototype = FTI.hasPrototype;
CurBlock->isVariadic = true;
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
// no arguments, not a function that takes a single void argument.
if (FTI.hasPrototype &&
FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
(!FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType().getCVRQualifiers()&&
FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType())) {
// empty arg list, don't push any params.
CurBlock->isVariadic = false;
} else if (FTI.hasPrototype) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
CurBlock->Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
CurBlock->isVariadic = FTI.isVariadic;
}
CurBlock->TheDecl->setParams(Context, CurBlock->Params.data(),
CurBlock->Params.size());
CurBlock->TheDecl->setIsVariadic(CurBlock->isVariadic);
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
// If this has an identifier, add it to the scope stack.
if ((*AI)->getIdentifier())
PushOnScopeChains(*AI, CurBlock->TheScope);
// Check for a valid sentinel attribute on this block.
if (!CurBlock->isVariadic &&
CurBlock->TheDecl->getAttr<SentinelAttr>()) {
Diag(ParamInfo.getAttributes()->getLoc(),
diag::warn_attribute_sentinel_not_variadic) << 1;
// FIXME: remove the attribute.
}
// Analyze the return type.
QualType T = GetTypeForDeclarator(ParamInfo, CurScope);
QualType RetTy = T->getAsFunctionType()->getResultType();
// Do not allow returning a objc interface by-value.
if (RetTy->isObjCInterfaceType()) {
Diag(ParamInfo.getSourceRange().getBegin(),
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
} else if (!RetTy->isDependentType())
CurBlock->ReturnType = RetTy;
}
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
// Ensure that CurBlock is deleted.
llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
CurFunctionNeedsScopeChecking = CurBlock->SavedFunctionNeedsScopeChecking;
// Pop off CurBlock, handle nested blocks.
PopDeclContext();
CurBlock = CurBlock->PrevBlockInfo;
// FIXME: Delete the ParmVarDecl objects as well???
}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
Sema::OwningExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
StmtArg body, Scope *CurScope) {
// If blocks are disabled, emit an error.
if (!LangOpts.Blocks)
Diag(CaretLoc, diag::err_blocks_disable);
// Ensure that CurBlock is deleted.
llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
PopDeclContext();
// Pop off CurBlock, handle nested blocks.
CurBlock = CurBlock->PrevBlockInfo;
QualType RetTy = Context.VoidTy;
if (!BSI->ReturnType.isNull())
RetTy = BSI->ReturnType;
llvm::SmallVector<QualType, 8> ArgTypes;
for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
ArgTypes.push_back(BSI->Params[i]->getType());
QualType BlockTy;
if (!BSI->hasPrototype)
BlockTy = Context.getFunctionType(RetTy, 0, 0, false, 0);
else
BlockTy = Context.getFunctionType(RetTy, ArgTypes.data(), ArgTypes.size(),
BSI->isVariadic, 0);
// FIXME: Check that return/parameter types are complete/non-abstract
DiagnoseUnusedParameters(BSI->Params.begin(), BSI->Params.end());
BlockTy = Context.getBlockPointerType(BlockTy);
// If needed, diagnose invalid gotos and switches in the block.
if (CurFunctionNeedsScopeChecking)
DiagnoseInvalidJumps(static_cast<CompoundStmt*>(body.get()));
CurFunctionNeedsScopeChecking = BSI->SavedFunctionNeedsScopeChecking;
BSI->TheDecl->setBody(body.takeAs<CompoundStmt>());
return Owned(new (Context) BlockExpr(BSI->TheDecl, BlockTy,
BSI->hasBlockDeclRefExprs));
}
Sema::OwningExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
ExprArg expr, TypeTy *type,
SourceLocation RPLoc) {
QualType T = QualType::getFromOpaquePtr(type);
Expr *E = static_cast<Expr*>(expr.get());
Expr *OrigExpr = E;
InitBuiltinVaListType();
// Get the va_list type
QualType VaListType = Context.getBuiltinVaListType();
if (VaListType->isArrayType()) {
// Deal with implicit array decay; for example, on x86-64,
// va_list is an array, but it's supposed to decay to
// a pointer for va_arg.
VaListType = Context.getArrayDecayedType(VaListType);
// Make sure the input expression also decays appropriately.
UsualUnaryConversions(E);
} else {
// Otherwise, the va_list argument must be an l-value because
// it is modified by va_arg.
if (!E->isTypeDependent() &&
CheckForModifiableLvalue(E, BuiltinLoc, *this))
return ExprError();
}
if (!E->isTypeDependent() &&
!Context.hasSameType(VaListType, E->getType())) {
return ExprError(Diag(E->getLocStart(),
diag::err_first_argument_to_va_arg_not_of_type_va_list)
<< OrigExpr->getType() << E->getSourceRange());
}
// FIXME: Check that type is complete/non-abstract
// FIXME: Warn if a non-POD type is passed in.
expr.release();
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(),
RPLoc));
}
Sema::OwningExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
// The type of __null will be int or long, depending on the size of
// pointers on the target.
QualType Ty;
if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
Ty = Context.IntTy;
else
Ty = Context.LongTy;
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
}
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
SourceLocation Loc,
QualType DstType, QualType SrcType,
Expr *SrcExpr, const char *Flavor) {
// Decode the result (notice that AST's are still created for extensions).
bool isInvalid = false;
unsigned DiagKind;
switch (ConvTy) {
default: assert(0 && "Unknown conversion type");
case Compatible: return false;
case PointerToInt:
DiagKind = diag::ext_typecheck_convert_pointer_int;
break;
case IntToPointer:
DiagKind = diag::ext_typecheck_convert_int_pointer;
break;
case IncompatiblePointer:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
break;
case IncompatiblePointerSign:
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
break;
case FunctionVoidPointer:
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
break;
case CompatiblePointerDiscardsQualifiers:
// If the qualifiers lost were because we were applying the
// (deprecated) C++ conversion from a string literal to a char*
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
// Ideally, this check would be performed in
// CheckPointerTypesForAssignment. However, that would require a
// bit of refactoring (so that the second argument is an
// expression, rather than a type), which should be done as part
// of a larger effort to fix CheckPointerTypesForAssignment for
// C++ semantics.
if (getLangOptions().CPlusPlus &&
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
return false;
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
break;
case IntToBlockPointer:
DiagKind = diag::err_int_to_block_pointer;
break;
case IncompatibleBlockPointer:
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
break;
case IncompatibleObjCQualifiedId:
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
// it can give a more specific diagnostic.
DiagKind = diag::warn_incompatible_qualified_id;
break;
case IncompatibleVectors:
DiagKind = diag::warn_incompatible_vectors;
break;
case Incompatible:
DiagKind = diag::err_typecheck_convert_incompatible;
isInvalid = true;
break;
}
Diag(Loc, DiagKind) << DstType << SrcType << Flavor
<< SrcExpr->getSourceRange();
return isInvalid;
}
bool Sema::VerifyIntegerConstantExpression(const Expr *E, llvm::APSInt *Result){
llvm::APSInt ICEResult;
if (E->isIntegerConstantExpr(ICEResult, Context)) {
if (Result)
*Result = ICEResult;
return false;
}
Expr::EvalResult EvalResult;
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
EvalResult.HasSideEffects) {
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
if (EvalResult.Diag) {
// We only show the note if it's not the usual "invalid subexpression"
// or if it's actually in a subexpression.
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
Diag(EvalResult.DiagLoc, EvalResult.Diag);
}
return true;
}
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
E->getSourceRange();
if (EvalResult.Diag &&
Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
Diag(EvalResult.DiagLoc, EvalResult.Diag);
if (Result)
*Result = EvalResult.Val.getInt();
return false;
}
Sema::ExpressionEvaluationContext
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) {
// Introduce a new set of potentially referenced declarations to the stack.
if (NewContext == PotentiallyPotentiallyEvaluated)
PotentiallyReferencedDeclStack.push_back(PotentiallyReferencedDecls());
std::swap(ExprEvalContext, NewContext);
return NewContext;
}
void
Sema::PopExpressionEvaluationContext(ExpressionEvaluationContext OldContext,
ExpressionEvaluationContext NewContext) {
ExprEvalContext = NewContext;
if (OldContext == PotentiallyPotentiallyEvaluated) {
// Mark any remaining declarations in the current position of the stack
// as "referenced". If they were not meant to be referenced, semantic
// analysis would have eliminated them (e.g., in ActOnCXXTypeId).
PotentiallyReferencedDecls RemainingDecls;
RemainingDecls.swap(PotentiallyReferencedDeclStack.back());
PotentiallyReferencedDeclStack.pop_back();
for (PotentiallyReferencedDecls::iterator I = RemainingDecls.begin(),
IEnd = RemainingDecls.end();
I != IEnd; ++I)
MarkDeclarationReferenced(I->first, I->second);
}
}
/// \brief Note that the given declaration was referenced in the source code.
///
/// This routine should be invoke whenever a given declaration is referenced
/// in the source code, and where that reference occurred. If this declaration
/// reference means that the the declaration is used (C++ [basic.def.odr]p2,
/// C99 6.9p3), then the declaration will be marked as used.
///
/// \param Loc the location where the declaration was referenced.
///
/// \param D the declaration that has been referenced by the source code.
void Sema::MarkDeclarationReferenced(SourceLocation Loc, Decl *D) {
assert(D && "No declaration?");
if (D->isUsed())
return;
// Mark a parameter declaration "used", regardless of whether we're in a
// template or not.
if (isa<ParmVarDecl>(D))
D->setUsed(true);
// Do not mark anything as "used" within a dependent context; wait for
// an instantiation.
if (CurContext->isDependentContext())
return;
switch (ExprEvalContext) {
case Unevaluated:
// We are in an expression that is not potentially evaluated; do nothing.
return;
case PotentiallyEvaluated:
// We are in a potentially-evaluated expression, so this declaration is
// "used"; handle this below.
break;
case PotentiallyPotentiallyEvaluated:
// We are in an expression that may be potentially evaluated; queue this
// declaration reference until we know whether the expression is
// potentially evaluated.
PotentiallyReferencedDeclStack.back().push_back(std::make_pair(Loc, D));
return;
}
// Note that this declaration has been used.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
unsigned TypeQuals;
if (Constructor->isImplicit() && Constructor->isDefaultConstructor()) {
if (!Constructor->isUsed())
DefineImplicitDefaultConstructor(Loc, Constructor);
}
else if (Constructor->isImplicit() &&
Constructor->isCopyConstructor(Context, TypeQuals)) {
if (!Constructor->isUsed())
DefineImplicitCopyConstructor(Loc, Constructor, TypeQuals);
}
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
if (Destructor->isImplicit() && !Destructor->isUsed())
DefineImplicitDestructor(Loc, Destructor);
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D)) {
if (MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
MethodDecl->getOverloadedOperator() == OO_Equal) {
if (!MethodDecl->isUsed())
DefineImplicitOverloadedAssign(Loc, MethodDecl);
}
}
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// Implicit instantiation of function templates and member functions of
// class templates.
if (!Function->getBody()) {
// FIXME: distinguish between implicit instantiations of function
// templates and explicit specializations (the latter don't get
// instantiated, naturally).
if (Function->getInstantiatedFromMemberFunction() ||
Function->getPrimaryTemplate())
PendingImplicitInstantiations.push_back(std::make_pair(Function, Loc));
}
// FIXME: keep track of references to static functions
Function->setUsed(true);
return;
}
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
(void)Var;
// FIXME: implicit template instantiation
// FIXME: keep track of references to static data?
D->setUsed(true);
}
}