blob: 5eb9635f06a1d1b771bf249354f5b4d0e2b725b2 [file] [log] [blame]
//===--- Ownership.h - Parser Ownership Helpers -----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains classes for managing ownership of Stmt and Expr nodes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_PARSE_OWNERSHIP_H
#define LLVM_CLANG_PARSE_OWNERSHIP_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/PointerIntPair.h"
//===----------------------------------------------------------------------===//
// OpaquePtr
//===----------------------------------------------------------------------===//
namespace clang {
class ActionBase;
/// OpaquePtr - This is a very simple POD type that wraps a pointer that the
/// Parser doesn't know about but that Sema or another client does. The UID
/// template argument is used to make sure that "Decl" pointers are not
/// compatible with "Type" pointers for example.
template<int UID>
class OpaquePtr {
void *Ptr;
public:
OpaquePtr() : Ptr(0) {}
template <typename T>
T* getAs() const {
return llvm::PointerLikeTypeTraits<T*>::getFromVoidPointer(Ptr);
}
template <typename T>
T getAsVal() const {
return llvm::PointerLikeTypeTraits<T>::getFromVoidPointer(Ptr);
}
void *get() const { return Ptr; }
template<typename T>
static OpaquePtr make(T P) {
OpaquePtr R; R.set(P); return R;
}
template<typename T>
void set(T P) {
Ptr = llvm::PointerLikeTypeTraits<T>::getAsVoidPointer(P);
}
operator bool() const { return Ptr != 0; }
};
}
namespace llvm {
template <int UID>
class PointerLikeTypeTraits<clang::OpaquePtr<UID> > {
public:
static inline void *getAsVoidPointer(clang::OpaquePtr<UID> P) {
// FIXME: Doesn't work? return P.getAs< void >();
return P.get();
}
static inline clang::OpaquePtr<UID> getFromVoidPointer(void *P) {
return clang::OpaquePtr<UID>::make(P);
}
enum { NumLowBitsAvailable = 3 };
};
}
// -------------------------- About Move Emulation -------------------------- //
// The smart pointer classes in this file attempt to emulate move semantics
// as they appear in C++0x with rvalue references. Since C++03 doesn't have
// rvalue references, some tricks are needed to get similar results.
// Move semantics in C++0x have the following properties:
// 1) "Moving" means transferring the value of an object to another object,
// similar to copying, but without caring what happens to the old object.
// In particular, this means that the new object can steal the old object's
// resources instead of creating a copy.
// 2) Since moving can modify the source object, it must either be explicitly
// requested by the user, or the modifications must be unnoticeable.
// 3) As such, C++0x moving is only allowed in three contexts:
// * By explicitly using std::move() to request it.
// * From a temporary object, since that object cannot be accessed
// afterwards anyway, thus making the state unobservable.
// * On function return, since the object is not observable afterwards.
//
// To sum up: moving from a named object should only be possible with an
// explicit std::move(), or on function return. Moving from a temporary should
// be implicitly done. Moving from a const object is forbidden.
//
// The emulation is not perfect, and has the following shortcomings:
// * move() is not in namespace std.
// * move() is required on function return.
// * There are difficulties with implicit conversions.
// * Microsoft's compiler must be given the /Za switch to successfully compile.
//
// -------------------------- Implementation -------------------------------- //
// The move emulation relies on the peculiar reference binding semantics of
// C++03: as a rule, a non-const reference may not bind to a temporary object,
// except for the implicit object parameter in a member function call, which
// can refer to a temporary even when not being const.
// The moveable object has five important functions to facilitate moving:
// * A private, unimplemented constructor taking a non-const reference to its
// own class. This constructor serves a two-fold purpose.
// - It prevents the creation of a copy constructor that takes a const
// reference. Temporaries would be able to bind to the argument of such a
// constructor, and that would be bad.
// - Named objects will bind to the non-const reference, but since it's
// private, this will fail to compile. This prevents implicit moving from
// named objects.
// There's also a copy assignment operator for the same purpose.
// * An implicit, non-const conversion operator to a special mover type. This
// type represents the rvalue reference of C++0x. Being a non-const member,
// its implicit this parameter can bind to temporaries.
// * A constructor that takes an object of this mover type. This constructor
// performs the actual move operation. There is an equivalent assignment
// operator.
// There is also a free move() function that takes a non-const reference to
// an object and returns a temporary. Internally, this function uses explicit
// constructor calls to move the value from the referenced object to the return
// value.
//
// There are now three possible scenarios of use.
// * Copying from a const object. Constructor overload resolution will find the
// non-const copy constructor, and the move constructor. The first is not
// viable because the const object cannot be bound to the non-const reference.
// The second fails because the conversion to the mover object is non-const.
// Moving from a const object fails as intended.
// * Copying from a named object. Constructor overload resolution will select
// the non-const copy constructor, but fail as intended, because this
// constructor is private.
// * Copying from a temporary. Constructor overload resolution cannot select
// the non-const copy constructor, because the temporary cannot be bound to
// the non-const reference. It thus selects the move constructor. The
// temporary can be bound to the implicit this parameter of the conversion
// operator, because of the special binding rule. Construction succeeds.
// Note that the Microsoft compiler, as an extension, allows binding
// temporaries against non-const references. The compiler thus selects the
// non-const copy constructor and fails, because the constructor is private.
// Passing /Za (disable extensions) disables this behaviour.
// The free move() function is used to move from a named object.
//
// Note that when passing an object of a different type (the classes below
// have OwningResult and OwningPtr, which should be mixable), you get a problem.
// Argument passing and function return use copy initialization rules. The
// effect of this is that, when the source object is not already of the target
// type, the compiler will first seek a way to convert the source object to the
// target type, and only then attempt to copy the resulting object. This means
// that when passing an OwningResult where an OwningPtr is expected, the
// compiler will first seek a conversion from OwningResult to OwningPtr, then
// copy the OwningPtr. The resulting conversion sequence is:
// OwningResult object -> ResultMover -> OwningResult argument to
// OwningPtr(OwningResult) -> OwningPtr -> PtrMover -> final OwningPtr
// This conversion sequence is too complex to be allowed. Thus the special
// move_* functions, which help the compiler out with some explicit
// conversions.
// Flip this switch to measure performance impact of the smart pointers.
//#define DISABLE_SMART_POINTERS
namespace llvm {
template<>
class PointerLikeTypeTraits<clang::ActionBase*> {
typedef clang::ActionBase* PT;
public:
static inline void *getAsVoidPointer(PT P) { return P; }
static inline PT getFromVoidPointer(void *P) {
return static_cast<PT>(P);
}
enum { NumLowBitsAvailable = 2 };
};
}
namespace clang {
// Basic
class DiagnosticBuilder;
// Determines whether the low bit of the result pointer for the
// given UID is always zero. If so, ActionResult will use that bit
// for it's "invalid" flag.
template<unsigned UID>
struct IsResultPtrLowBitFree {
static const bool value = false;
};
/// ActionBase - A small part split from Action because of the horrible
/// definition order dependencies between Action and the smart pointers.
class ActionBase {
public:
/// Out-of-line virtual destructor to provide home for this class.
virtual ~ActionBase();
// Types - Though these don't actually enforce strong typing, they document
// what types are required to be identical for the actions.
typedef OpaquePtr<0> DeclPtrTy;
typedef OpaquePtr<1> DeclGroupPtrTy;
typedef OpaquePtr<2> TemplateTy;
typedef void AttrTy;
typedef void BaseTy;
typedef void MemInitTy;
typedef void ExprTy;
typedef void StmtTy;
typedef void TemplateParamsTy;
typedef void CXXScopeTy;
typedef void TypeTy; // FIXME: Change TypeTy to use OpaquePtr<N>.
/// ActionResult - This structure is used while parsing/acting on
/// expressions, stmts, etc. It encapsulates both the object returned by
/// the action, plus a sense of whether or not it is valid.
/// When CompressInvalid is true, the "invalid" flag will be
/// stored in the low bit of the Val pointer.
template<unsigned UID,
typename PtrTy = void*,
bool CompressInvalid = IsResultPtrLowBitFree<UID>::value>
class ActionResult {
PtrTy Val;
bool Invalid;
public:
ActionResult(bool Invalid = false) : Val(PtrTy()), Invalid(Invalid) {}
template<typename ActualExprTy>
ActionResult(ActualExprTy val) : Val(val), Invalid(false) {}
ActionResult(const DiagnosticBuilder &) : Val(PtrTy()), Invalid(true) {}
PtrTy get() const { return Val; }
void set(PtrTy V) { Val = V; }
bool isInvalid() const { return Invalid; }
const ActionResult &operator=(PtrTy RHS) {
Val = RHS;
Invalid = false;
return *this;
}
};
// This ActionResult partial specialization places the "invalid"
// flag into the low bit of the pointer.
template<unsigned UID, typename PtrTy>
class ActionResult<UID, PtrTy, true> {
// A pointer whose low bit is 1 if this result is invalid, 0
// otherwise.
uintptr_t PtrWithInvalid;
typedef llvm::PointerLikeTypeTraits<PtrTy> PtrTraits;
public:
ActionResult(bool Invalid = false)
: PtrWithInvalid(static_cast<uintptr_t>(Invalid)) { }
template<typename ActualExprTy>
ActionResult(ActualExprTy *val) {
PtrTy V(val);
void *VP = PtrTraits::getAsVoidPointer(V);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
}
ActionResult(PtrTy V) {
void *VP = PtrTraits::getAsVoidPointer(V);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
}
ActionResult(const DiagnosticBuilder &) : PtrWithInvalid(0x01) { }
PtrTy get() const {
void *VP = reinterpret_cast<void *>(PtrWithInvalid & ~0x01);
return PtrTraits::getFromVoidPointer(VP);
}
void set(PtrTy V) {
void *VP = PtrTraits::getAsVoidPointer(V);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
}
bool isInvalid() const { return PtrWithInvalid & 0x01; }
const ActionResult &operator=(PtrTy RHS) {
void *VP = PtrTraits::getAsVoidPointer(RHS);
PtrWithInvalid = reinterpret_cast<uintptr_t>(VP);
assert((PtrWithInvalid & 0x01) == 0 && "Badly aligned pointer");
return *this;
}
};
/// Deletion callbacks - Since the parser doesn't know the concrete types of
/// the AST nodes being generated, it must do callbacks to delete objects
/// when recovering from errors. These are in ActionBase because the smart
/// pointers need access to them.
virtual void DeleteExpr(ExprTy *E) {}
virtual void DeleteStmt(StmtTy *S) {}
virtual void DeleteTemplateParams(TemplateParamsTy *P) {}
};
/// ASTDestroyer - The type of an AST node destruction function pointer.
typedef void (ActionBase::*ASTDestroyer)(void *);
/// For the transition phase: translate from an ASTDestroyer to its
/// ActionResult UID.
template <ASTDestroyer Destroyer> struct DestroyerToUID;
template <> struct DestroyerToUID<&ActionBase::DeleteExpr> {
static const unsigned UID = 0;
};
template <> struct DestroyerToUID<&ActionBase::DeleteStmt> {
static const unsigned UID = 1;
};
/// ASTOwningResult - A moveable smart pointer for AST nodes that also
/// has an extra flag to indicate an additional success status.
template <ASTDestroyer Destroyer> class ASTOwningResult;
/// ASTMultiPtr - A moveable smart pointer to multiple AST nodes. Only owns
/// the individual pointers, not the array holding them.
template <ASTDestroyer Destroyer> class ASTMultiPtr;
#if !defined(DISABLE_SMART_POINTERS)
namespace moving {
/// Move emulation helper for ASTOwningResult. NEVER EVER use this class
/// directly if you don't know what you're doing.
template <ASTDestroyer Destroyer>
class ASTResultMover {
ASTOwningResult<Destroyer> &Moved;
public:
ASTResultMover(ASTOwningResult<Destroyer> &moved) : Moved(moved) {}
ASTOwningResult<Destroyer> * operator ->() { return &Moved; }
};
/// Move emulation helper for ASTMultiPtr. NEVER EVER use this class
/// directly if you don't know what you're doing.
template <ASTDestroyer Destroyer>
class ASTMultiMover {
ASTMultiPtr<Destroyer> &Moved;
public:
ASTMultiMover(ASTMultiPtr<Destroyer> &moved) : Moved(moved) {}
ASTMultiPtr<Destroyer> * operator ->() { return &Moved; }
/// Reset the moved object's internal structures.
void release();
};
}
#else
/// Kept only as a type-safe wrapper for a void pointer, when smart pointers
/// are disabled. When they are enabled, ASTOwningResult takes over.
template <ASTDestroyer Destroyer>
class ASTOwningPtr {
void *Node;
public:
explicit ASTOwningPtr(ActionBase &) : Node(0) {}
ASTOwningPtr(ActionBase &, void *node) : Node(node) {}
// Normal copying operators are defined implicitly.
ASTOwningPtr(const ASTOwningResult<Destroyer> &o);
ASTOwningPtr & operator =(void *raw) {
Node = raw;
return *this;
}
/// Access to the raw pointer.
void * get() const { return Node; }
/// Release the raw pointer.
void * take() {
return Node;
}
/// Take outside ownership of the raw pointer and cast it down.
template<typename T>
T *takeAs() {
return static_cast<T*>(Node);
}
/// Alias for interface familiarity with unique_ptr.
void * release() {
return take();
}
};
#endif
// Important: There are two different implementations of
// ASTOwningResult below, depending on whether
// DISABLE_SMART_POINTERS is defined. If you make changes that
// affect the interface, be sure to compile and test both ways!
#if !defined(DISABLE_SMART_POINTERS)
template <ASTDestroyer Destroyer>
class ASTOwningResult {
llvm::PointerIntPair<ActionBase*, 1, bool> ActionInv;
void *Ptr;
friend class moving::ASTResultMover<Destroyer>;
ASTOwningResult(ASTOwningResult&); // DO NOT IMPLEMENT
ASTOwningResult& operator =(ASTOwningResult&); // DO NOT IMPLEMENT
void destroy() {
if (Ptr) {
assert(ActionInv.getPointer() &&
"Smart pointer has node but no action.");
(ActionInv.getPointer()->*Destroyer)(Ptr);
Ptr = 0;
}
}
public:
typedef ActionBase::ActionResult<DestroyerToUID<Destroyer>::UID> DumbResult;
explicit ASTOwningResult(ActionBase &actions, bool invalid = false)
: ActionInv(&actions, invalid), Ptr(0) {}
ASTOwningResult(ActionBase &actions, void *node)
: ActionInv(&actions, false), Ptr(node) {}
ASTOwningResult(ActionBase &actions, const DumbResult &res)
: ActionInv(&actions, res.isInvalid()), Ptr(res.get()) {}
/// Move from another owning result
ASTOwningResult(moving::ASTResultMover<Destroyer> mover)
: ActionInv(mover->ActionInv),
Ptr(mover->Ptr) {
mover->Ptr = 0;
}
~ASTOwningResult() {
destroy();
}
/// Move assignment from another owning result
ASTOwningResult &operator=(moving::ASTResultMover<Destroyer> mover) {
destroy();
ActionInv = mover->ActionInv;
Ptr = mover->Ptr;
mover->Ptr = 0;
return *this;
}
/// Assignment from a raw pointer. Takes ownership - beware!
ASTOwningResult &operator=(void *raw) {
destroy();
Ptr = raw;
ActionInv.setInt(false);
return *this;
}
/// Assignment from an ActionResult. Takes ownership - beware!
ASTOwningResult &operator=(const DumbResult &res) {
destroy();
Ptr = res.get();
ActionInv.setInt(res.isInvalid());
return *this;
}
/// Access to the raw pointer.
void *get() const { return Ptr; }
bool isInvalid() const { return ActionInv.getInt(); }
/// Does this point to a usable AST node? To be usable, the node must be
/// valid and non-null.
bool isUsable() const { return !isInvalid() && get(); }
/// Take outside ownership of the raw pointer.
void *take() {
if (isInvalid())
return 0;
void *tmp = Ptr;
Ptr = 0;
return tmp;
}
/// Take outside ownership of the raw pointer and cast it down.
template<typename T>
T *takeAs() {
return static_cast<T*>(take());
}
/// Alias for interface familiarity with unique_ptr.
void *release() { return take(); }
/// Pass ownership to a classical ActionResult.
DumbResult result() {
if (isInvalid())
return true;
return take();
}
/// Move hook
operator moving::ASTResultMover<Destroyer>() {
return moving::ASTResultMover<Destroyer>(*this);
}
};
#else
template <ASTDestroyer Destroyer>
class ASTOwningResult {
public:
typedef ActionBase::ActionResult<DestroyerToUID<Destroyer>::UID> DumbResult;
private:
DumbResult Result;
public:
explicit ASTOwningResult(ActionBase &actions, bool invalid = false)
: Result(invalid) { }
ASTOwningResult(ActionBase &actions, void *node) : Result(node) { }
ASTOwningResult(ActionBase &actions, const DumbResult &res) : Result(res) { }
// Normal copying semantics are defined implicitly.
ASTOwningResult(const ASTOwningPtr<Destroyer> &o) : Result(o.get()) { }
/// Assignment from a raw pointer. Takes ownership - beware!
ASTOwningResult & operator =(void *raw) {
Result = raw;
return *this;
}
/// Assignment from an ActionResult. Takes ownership - beware!
ASTOwningResult & operator =(const DumbResult &res) {
Result = res;
return *this;
}
/// Access to the raw pointer.
void * get() const { return Result.get(); }
bool isInvalid() const { return Result.isInvalid(); }
/// Does this point to a usable AST node? To be usable, the node must be
/// valid and non-null.
bool isUsable() const { return !Result.isInvalid() && get(); }
/// Take outside ownership of the raw pointer.
void * take() {
return Result.get();
}
/// Take outside ownership of the raw pointer and cast it down.
template<typename T>
T *takeAs() {
return static_cast<T*>(take());
}
/// Alias for interface familiarity with unique_ptr.
void * release() { return take(); }
/// Pass ownership to a classical ActionResult.
DumbResult result() { return Result; }
};
#endif
template <ASTDestroyer Destroyer>
class ASTMultiPtr {
#if !defined(DISABLE_SMART_POINTERS)
ActionBase &Actions;
#endif
void **Nodes;
unsigned Count;
#if !defined(DISABLE_SMART_POINTERS)
friend class moving::ASTMultiMover<Destroyer>;
#if defined(_MSC_VER)
// Last tested with Visual Studio 2008.
// Visual C++ appears to have a bug where it does not recognise
// the return value from ASTMultiMover<Destroyer>::opeator-> as
// being a pointer to ASTMultiPtr. However, the diagnostics
// suggest it has the right name, simply that the pointer type
// is not convertible to itself.
// Either way, a classic C-style hard cast resolves any issue.
static ASTMultiPtr* hack(moving::ASTMultiMover<Destroyer> & source) {
return (ASTMultiPtr*)source.operator->();
}
#endif
ASTMultiPtr(ASTMultiPtr&); // DO NOT IMPLEMENT
// Reference member prevents copy assignment.
void destroy() {
assert((Count == 0 || Nodes) && "No nodes when count is not zero.");
for (unsigned i = 0; i < Count; ++i) {
if (Nodes[i])
(Actions.*Destroyer)(Nodes[i]);
}
}
#endif
public:
#if !defined(DISABLE_SMART_POINTERS)
explicit ASTMultiPtr(ActionBase &actions)
: Actions(actions), Nodes(0), Count(0) {}
ASTMultiPtr(ActionBase &actions, void **nodes, unsigned count)
: Actions(actions), Nodes(nodes), Count(count) {}
/// Move constructor
ASTMultiPtr(moving::ASTMultiMover<Destroyer> mover)
#if defined(_MSC_VER)
// Apply the visual C++ hack supplied above.
// Last tested with Visual Studio 2008.
: Actions(hack(mover)->Actions), Nodes(hack(mover)->Nodes), Count(hack(mover)->Count) {
#else
: Actions(mover->Actions), Nodes(mover->Nodes), Count(mover->Count) {
#endif
mover.release();
}
#else
// Normal copying implicitly defined
explicit ASTMultiPtr(ActionBase &) : Nodes(0), Count(0) {}
ASTMultiPtr(ActionBase &, void **nodes, unsigned count)
: Nodes(nodes), Count(count) {}
// Fake mover in Parse/AstGuard.h needs this:
ASTMultiPtr(void **nodes, unsigned count) : Nodes(nodes), Count(count) {}
#endif
#if !defined(DISABLE_SMART_POINTERS)
/// Move assignment
ASTMultiPtr & operator =(moving::ASTMultiMover<Destroyer> mover) {
destroy();
Nodes = mover->Nodes;
Count = mover->Count;
mover.release();
return *this;
}
#endif
/// Access to the raw pointers.
void ** get() const { return Nodes; }
/// Access to the count.
unsigned size() const { return Count; }
void ** release() {
#if !defined(DISABLE_SMART_POINTERS)
void **tmp = Nodes;
Nodes = 0;
Count = 0;
return tmp;
#else
return Nodes;
#endif
}
#if !defined(DISABLE_SMART_POINTERS)
/// Move hook
operator moving::ASTMultiMover<Destroyer>() {
return moving::ASTMultiMover<Destroyer>(*this);
}
#endif
};
class ParsedTemplateArgument;
class ASTTemplateArgsPtr {
#if !defined(DISABLE_SMART_POINTERS)
ActionBase &Actions;
#endif
ParsedTemplateArgument *Args;
mutable unsigned Count;
#if !defined(DISABLE_SMART_POINTERS)
void destroy();
#endif
public:
ASTTemplateArgsPtr(ActionBase &actions, ParsedTemplateArgument *args,
unsigned count) :
#if !defined(DISABLE_SMART_POINTERS)
Actions(actions),
#endif
Args(args), Count(count) { }
// FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
ASTTemplateArgsPtr(ASTTemplateArgsPtr &Other) :
#if !defined(DISABLE_SMART_POINTERS)
Actions(Other.Actions),
#endif
Args(Other.Args), Count(Other.Count) {
#if !defined(DISABLE_SMART_POINTERS)
Other.Count = 0;
#endif
}
// FIXME: Lame, not-fully-type-safe emulation of 'move semantics'.
ASTTemplateArgsPtr& operator=(ASTTemplateArgsPtr &Other) {
#if !defined(DISABLE_SMART_POINTERS)
Actions = Other.Actions;
#endif
Args = Other.Args;
Count = Other.Count;
#if !defined(DISABLE_SMART_POINTERS)
Other.Count = 0;
#endif
return *this;
}
#if !defined(DISABLE_SMART_POINTERS)
~ASTTemplateArgsPtr() { destroy(); }
#endif
ParsedTemplateArgument *getArgs() const { return Args; }
unsigned size() const { return Count; }
void reset(ParsedTemplateArgument *args, unsigned count) {
#if !defined(DISABLE_SMART_POINTERS)
destroy();
#endif
Args = args;
Count = count;
}
const ParsedTemplateArgument &operator[](unsigned Arg) const;
ParsedTemplateArgument *release() const {
#if !defined(DISABLE_SMART_POINTERS)
Count = 0;
#endif
return Args;
}
};
/// \brief A small vector that owns a set of AST nodes.
template <ASTDestroyer Destroyer, unsigned N = 8>
class ASTOwningVector : public llvm::SmallVector<void *, N> {
#if !defined(DISABLE_SMART_POINTERS)
ActionBase &Actions;
bool Owned;
#endif
ASTOwningVector(ASTOwningVector &); // do not implement
ASTOwningVector &operator=(ASTOwningVector &); // do not implement
public:
explicit ASTOwningVector(ActionBase &Actions)
#if !defined(DISABLE_SMART_POINTERS)
: Actions(Actions), Owned(true)
#endif
{ }
#if !defined(DISABLE_SMART_POINTERS)
~ASTOwningVector() {
if (!Owned)
return;
for (unsigned I = 0, Last = this->size(); I != Last; ++I)
(Actions.*Destroyer)((*this)[I]);
}
#endif
void **take() {
#if !defined(DISABLE_SMART_POINTERS)
Owned = false;
#endif
return &this->front();
}
template<typename T> T **takeAs() { return (T**)take(); }
#if !defined(DISABLE_SMART_POINTERS)
ActionBase &getActions() const { return Actions; }
#endif
};
/// A SmallVector of statements, with stack size 32 (as that is the only one
/// used.)
typedef ASTOwningVector<&ActionBase::DeleteStmt, 32> StmtVector;
/// A SmallVector of expressions, with stack size 12 (the maximum used.)
typedef ASTOwningVector<&ActionBase::DeleteExpr, 12> ExprVector;
template <ASTDestroyer Destroyer, unsigned N> inline
ASTMultiPtr<Destroyer> move_arg(ASTOwningVector<Destroyer, N> &vec) {
#if !defined(DISABLE_SMART_POINTERS)
return ASTMultiPtr<Destroyer>(vec.getActions(), vec.take(), vec.size());
#else
return ASTMultiPtr<Destroyer>(vec.take(), vec.size());
#endif
}
#if !defined(DISABLE_SMART_POINTERS)
// Out-of-line implementations due to definition dependencies
template <ASTDestroyer Destroyer> inline
void moving::ASTMultiMover<Destroyer>::release() {
Moved.Nodes = 0;
Moved.Count = 0;
}
// Move overloads.
template <ASTDestroyer Destroyer> inline
ASTOwningResult<Destroyer> move(ASTOwningResult<Destroyer> &ptr) {
return ASTOwningResult<Destroyer>(moving::ASTResultMover<Destroyer>(ptr));
}
template <ASTDestroyer Destroyer> inline
ASTMultiPtr<Destroyer> move(ASTMultiPtr<Destroyer> &ptr) {
return ASTMultiPtr<Destroyer>(moving::ASTMultiMover<Destroyer>(ptr));
}
#else
template <ASTDestroyer Destroyer> inline
ASTOwningPtr<Destroyer>::ASTOwningPtr(const ASTOwningResult<Destroyer> &o)
: Node(o.get()) { }
// These versions are hopefully no-ops.
template <ASTDestroyer Destroyer> inline
ASTOwningResult<Destroyer>& move(ASTOwningResult<Destroyer> &ptr) {
return ptr;
}
template <ASTDestroyer Destroyer> inline
ASTOwningPtr<Destroyer>& move(ASTOwningPtr<Destroyer> &ptr) {
return ptr;
}
template <ASTDestroyer Destroyer> inline
ASTMultiPtr<Destroyer>& move(ASTMultiPtr<Destroyer> &ptr) {
return ptr;
}
#endif
}
#endif