| //===------ CXXInheritance.cpp - C++ Inheritance ----------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides routines that help analyzing C++ inheritance hierarchies. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclCXX.h" |
| #include <algorithm> |
| #include <set> |
| |
| using namespace clang; |
| |
| /// \brief Computes the set of declarations referenced by these base |
| /// paths. |
| void CXXBasePaths::ComputeDeclsFound() { |
| assert(NumDeclsFound == 0 && !DeclsFound && |
| "Already computed the set of declarations"); |
| |
| std::set<NamedDecl *> Decls; |
| for (CXXBasePaths::paths_iterator Path = begin(), PathEnd = end(); |
| Path != PathEnd; ++Path) |
| Decls.insert(*Path->Decls.first); |
| |
| NumDeclsFound = Decls.size(); |
| DeclsFound = new NamedDecl * [NumDeclsFound]; |
| std::copy(Decls.begin(), Decls.end(), DeclsFound); |
| } |
| |
| CXXBasePaths::decl_iterator CXXBasePaths::found_decls_begin() { |
| if (NumDeclsFound == 0) |
| ComputeDeclsFound(); |
| return DeclsFound; |
| } |
| |
| CXXBasePaths::decl_iterator CXXBasePaths::found_decls_end() { |
| if (NumDeclsFound == 0) |
| ComputeDeclsFound(); |
| return DeclsFound + NumDeclsFound; |
| } |
| |
| /// isAmbiguous - Determines whether the set of paths provided is |
| /// ambiguous, i.e., there are two or more paths that refer to |
| /// different base class subobjects of the same type. BaseType must be |
| /// an unqualified, canonical class type. |
| bool CXXBasePaths::isAmbiguous(QualType BaseType) { |
| assert(BaseType.isCanonical() && "Base type must be the canonical type"); |
| assert(BaseType.hasQualifiers() == 0 && "Base type must be unqualified"); |
| std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType]; |
| return Subobjects.second + (Subobjects.first? 1 : 0) > 1; |
| } |
| |
| /// clear - Clear out all prior path information. |
| void CXXBasePaths::clear() { |
| Paths.clear(); |
| ClassSubobjects.clear(); |
| ScratchPath.clear(); |
| DetectedVirtual = 0; |
| } |
| |
| /// @brief Swaps the contents of this CXXBasePaths structure with the |
| /// contents of Other. |
| void CXXBasePaths::swap(CXXBasePaths &Other) { |
| std::swap(Origin, Other.Origin); |
| Paths.swap(Other.Paths); |
| ClassSubobjects.swap(Other.ClassSubobjects); |
| std::swap(FindAmbiguities, Other.FindAmbiguities); |
| std::swap(RecordPaths, Other.RecordPaths); |
| std::swap(DetectVirtual, Other.DetectVirtual); |
| std::swap(DetectedVirtual, Other.DetectedVirtual); |
| } |
| |
| bool CXXRecordDecl::isDerivedFrom(CXXRecordDecl *Base) const { |
| CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, |
| /*DetectVirtual=*/false); |
| return isDerivedFrom(Base, Paths); |
| } |
| |
| bool CXXRecordDecl::isDerivedFrom(CXXRecordDecl *Base, CXXBasePaths &Paths) const { |
| if (getCanonicalDecl() == Base->getCanonicalDecl()) |
| return false; |
| |
| Paths.setOrigin(const_cast<CXXRecordDecl*>(this)); |
| return lookupInBases(&FindBaseClass, Base->getCanonicalDecl(), Paths); |
| } |
| |
| static bool BaseIsNot(const CXXRecordDecl *Base, void *OpaqueTarget) { |
| // OpaqueTarget is a CXXRecordDecl*. |
| return Base->getCanonicalDecl() != (const CXXRecordDecl*) OpaqueTarget; |
| } |
| |
| bool CXXRecordDecl::isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const { |
| return forallBases(BaseIsNot, (void*) Base->getCanonicalDecl()); |
| } |
| |
| bool CXXRecordDecl::forallBases(ForallBasesCallback *BaseMatches, |
| void *OpaqueData, |
| bool AllowShortCircuit) const { |
| ASTContext &Context = getASTContext(); |
| llvm::SmallVector<const CXXRecordDecl*, 8> Queue; |
| |
| const CXXRecordDecl *Record = this; |
| bool AllMatches = true; |
| while (true) { |
| for (CXXRecordDecl::base_class_const_iterator |
| I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) { |
| const RecordType *Ty = I->getType()->getAs<RecordType>(); |
| if (!Ty) { |
| if (AllowShortCircuit) return false; |
| AllMatches = false; |
| continue; |
| } |
| |
| CXXRecordDecl *Base = |
| cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition(Context)); |
| if (!Base) { |
| if (AllowShortCircuit) return false; |
| AllMatches = false; |
| continue; |
| } |
| |
| Queue.push_back(Base); |
| if (!BaseMatches(Base, OpaqueData)) { |
| if (AllowShortCircuit) return false; |
| AllMatches = false; |
| continue; |
| } |
| } |
| |
| if (Queue.empty()) break; |
| Record = Queue.back(); // not actually a queue. |
| Queue.pop_back(); |
| } |
| |
| return AllMatches; |
| } |
| |
| bool CXXRecordDecl::lookupInBases(BaseMatchesCallback *BaseMatches, |
| void *UserData, |
| CXXBasePaths &Paths) const { |
| bool FoundPath = false; |
| |
| // The access of the path down to this record. |
| AccessSpecifier AccessToHere = Paths.ScratchPath.Access; |
| bool IsFirstStep = Paths.ScratchPath.empty(); |
| |
| ASTContext &Context = getASTContext(); |
| for (base_class_const_iterator BaseSpec = bases_begin(), |
| BaseSpecEnd = bases_end(); BaseSpec != BaseSpecEnd; ++BaseSpec) { |
| // Find the record of the base class subobjects for this type. |
| QualType BaseType = Context.getCanonicalType(BaseSpec->getType()) |
| .getUnqualifiedType(); |
| |
| // C++ [temp.dep]p3: |
| // In the definition of a class template or a member of a class template, |
| // if a base class of the class template depends on a template-parameter, |
| // the base class scope is not examined during unqualified name lookup |
| // either at the point of definition of the class template or member or |
| // during an instantiation of the class tem- plate or member. |
| if (BaseType->isDependentType()) |
| continue; |
| |
| // Determine whether we need to visit this base class at all, |
| // updating the count of subobjects appropriately. |
| std::pair<bool, unsigned>& Subobjects = Paths.ClassSubobjects[BaseType]; |
| bool VisitBase = true; |
| bool SetVirtual = false; |
| if (BaseSpec->isVirtual()) { |
| VisitBase = !Subobjects.first; |
| Subobjects.first = true; |
| if (Paths.isDetectingVirtual() && Paths.DetectedVirtual == 0) { |
| // If this is the first virtual we find, remember it. If it turns out |
| // there is no base path here, we'll reset it later. |
| Paths.DetectedVirtual = BaseType->getAs<RecordType>(); |
| SetVirtual = true; |
| } |
| } else |
| ++Subobjects.second; |
| |
| if (Paths.isRecordingPaths()) { |
| // Add this base specifier to the current path. |
| CXXBasePathElement Element; |
| Element.Base = &*BaseSpec; |
| Element.Class = this; |
| if (BaseSpec->isVirtual()) |
| Element.SubobjectNumber = 0; |
| else |
| Element.SubobjectNumber = Subobjects.second; |
| Paths.ScratchPath.push_back(Element); |
| |
| // Calculate the "top-down" access to this base class. |
| // The spec actually describes this bottom-up, but top-down is |
| // equivalent because the definition works out as follows: |
| // 1. Write down the access along each step in the inheritance |
| // chain, followed by the access of the decl itself. |
| // For example, in |
| // class A { public: int foo; }; |
| // class B : protected A {}; |
| // class C : public B {}; |
| // class D : private C {}; |
| // we would write: |
| // private public protected public |
| // 2. If 'private' appears anywhere except far-left, access is denied. |
| // 3. Otherwise, overall access is determined by the most restrictive |
| // access in the sequence. |
| if (IsFirstStep) |
| Paths.ScratchPath.Access = BaseSpec->getAccessSpecifier(); |
| else |
| Paths.ScratchPath.Access |
| = MergeAccess(AccessToHere, BaseSpec->getAccessSpecifier()); |
| } |
| |
| // Track whether there's a path involving this specific base. |
| bool FoundPathThroughBase = false; |
| |
| if (BaseMatches(BaseSpec, Paths.ScratchPath, UserData)) { |
| // We've found a path that terminates at this base. |
| FoundPath = FoundPathThroughBase = true; |
| if (Paths.isRecordingPaths()) { |
| // We have a path. Make a copy of it before moving on. |
| Paths.Paths.push_back(Paths.ScratchPath); |
| } else if (!Paths.isFindingAmbiguities()) { |
| // We found a path and we don't care about ambiguities; |
| // return immediately. |
| return FoundPath; |
| } |
| } else if (VisitBase) { |
| CXXRecordDecl *BaseRecord |
| = cast<CXXRecordDecl>(BaseSpec->getType()->getAs<RecordType>() |
| ->getDecl()); |
| if (BaseRecord->lookupInBases(BaseMatches, UserData, Paths)) { |
| // C++ [class.member.lookup]p2: |
| // A member name f in one sub-object B hides a member name f in |
| // a sub-object A if A is a base class sub-object of B. Any |
| // declarations that are so hidden are eliminated from |
| // consideration. |
| |
| // There is a path to a base class that meets the criteria. If we're |
| // not collecting paths or finding ambiguities, we're done. |
| FoundPath = FoundPathThroughBase = true; |
| if (!Paths.isFindingAmbiguities()) |
| return FoundPath; |
| } |
| } |
| |
| // Pop this base specifier off the current path (if we're |
| // collecting paths). |
| if (Paths.isRecordingPaths()) { |
| Paths.ScratchPath.pop_back(); |
| } |
| |
| // If we set a virtual earlier, and this isn't a path, forget it again. |
| if (SetVirtual && !FoundPathThroughBase) { |
| Paths.DetectedVirtual = 0; |
| } |
| } |
| |
| // Reset the scratch path access. |
| Paths.ScratchPath.Access = AccessToHere; |
| |
| return FoundPath; |
| } |
| |
| bool CXXRecordDecl::FindBaseClass(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *BaseRecord) { |
| assert(((Decl *)BaseRecord)->getCanonicalDecl() == BaseRecord && |
| "User data for FindBaseClass is not canonical!"); |
| return Specifier->getType()->getAs<RecordType>()->getDecl() |
| ->getCanonicalDecl() == BaseRecord; |
| } |
| |
| bool CXXRecordDecl::FindTagMember(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *Name) { |
| RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| DeclarationName N = DeclarationName::getFromOpaquePtr(Name); |
| for (Path.Decls = BaseRecord->lookup(N); |
| Path.Decls.first != Path.Decls.second; |
| ++Path.Decls.first) { |
| if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CXXRecordDecl::FindOrdinaryMember(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *Name) { |
| RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| const unsigned IDNS = IDNS_Ordinary | IDNS_Tag | IDNS_Member; |
| DeclarationName N = DeclarationName::getFromOpaquePtr(Name); |
| for (Path.Decls = BaseRecord->lookup(N); |
| Path.Decls.first != Path.Decls.second; |
| ++Path.Decls.first) { |
| if ((*Path.Decls.first)->isInIdentifierNamespace(IDNS)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool CXXRecordDecl:: |
| FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, |
| CXXBasePath &Path, |
| void *Name) { |
| RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl(); |
| |
| DeclarationName N = DeclarationName::getFromOpaquePtr(Name); |
| for (Path.Decls = BaseRecord->lookup(N); |
| Path.Decls.first != Path.Decls.second; |
| ++Path.Decls.first) { |
| // FIXME: Refactor the "is it a nested-name-specifier?" check |
| if (isa<TypedefDecl>(*Path.Decls.first) || |
| (*Path.Decls.first)->isInIdentifierNamespace(IDNS_Tag)) |
| return true; |
| } |
| |
| return false; |
| } |