blob: a23f28cb37958e7cfe3cac8c1a5de9d7dbb333bf [file] [log] [blame]
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/Support/ErrorHandling.h"
#include <vector>
using namespace clang;
void Attr::Destroy(ASTContext &C) {
if (Next) {
Next->Destroy(C);
Next = 0;
}
this->~Attr();
C.Deallocate((void*)this);
}
/// \brief Return the TypeLoc wrapper for the type source info.
TypeLoc TypeSourceInfo::getTypeLoc() const {
return TypeLoc(Ty, (void*)(this + 1));
}
//===----------------------------------------------------------------------===//
// NamedDecl Implementation
//===----------------------------------------------------------------------===//
/// \brief Get the most restrictive linkage for the types in the given
/// template parameter list.
static Linkage
getLinkageForTemplateParameterList(const TemplateParameterList *Params) {
Linkage L = ExternalLinkage;
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P))
if (!NTTP->getType()->isDependentType()) {
L = minLinkage(L, NTTP->getType()->getLinkage());
continue;
}
if (TemplateTemplateParmDecl *TTP
= dyn_cast<TemplateTemplateParmDecl>(*P)) {
L = minLinkage(L,
getLinkageForTemplateParameterList(TTP->getTemplateParameters()));
}
}
return L;
}
/// \brief Get the most restrictive linkage for the types and
/// declarations in the given template argument list.
static Linkage getLinkageForTemplateArgumentList(const TemplateArgument *Args,
unsigned NumArgs) {
Linkage L = ExternalLinkage;
for (unsigned I = 0; I != NumArgs; ++I) {
switch (Args[I].getKind()) {
case TemplateArgument::Null:
case TemplateArgument::Integral:
case TemplateArgument::Expression:
break;
case TemplateArgument::Type:
L = minLinkage(L, Args[I].getAsType()->getLinkage());
break;
case TemplateArgument::Declaration:
if (NamedDecl *ND = dyn_cast<NamedDecl>(Args[I].getAsDecl()))
L = minLinkage(L, ND->getLinkage());
if (ValueDecl *VD = dyn_cast<ValueDecl>(Args[I].getAsDecl()))
L = minLinkage(L, VD->getType()->getLinkage());
break;
case TemplateArgument::Template:
if (TemplateDecl *Template
= Args[I].getAsTemplate().getAsTemplateDecl())
L = minLinkage(L, Template->getLinkage());
break;
case TemplateArgument::Pack:
L = minLinkage(L,
getLinkageForTemplateArgumentList(Args[I].pack_begin(),
Args[I].pack_size()));
break;
}
}
return L;
}
static Linkage getLinkageForNamespaceScopeDecl(const NamedDecl *D) {
assert(D->getDeclContext()->getLookupContext()->isFileContext() &&
"Not a name having namespace scope");
ASTContext &Context = D->getASTContext();
// C++ [basic.link]p3:
// A name having namespace scope (3.3.6) has internal linkage if it
// is the name of
// - an object, reference, function or function template that is
// explicitly declared static; or,
// (This bullet corresponds to C99 6.2.2p3.)
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
// Explicitly declared static.
if (Var->getStorageClass() == VarDecl::Static)
return InternalLinkage;
// - an object or reference that is explicitly declared const
// and neither explicitly declared extern nor previously
// declared to have external linkage; or
// (there is no equivalent in C99)
if (Context.getLangOptions().CPlusPlus &&
Var->getType().isConstant(Context) &&
Var->getStorageClass() != VarDecl::Extern &&
Var->getStorageClass() != VarDecl::PrivateExtern) {
bool FoundExtern = false;
for (const VarDecl *PrevVar = Var->getPreviousDeclaration();
PrevVar && !FoundExtern;
PrevVar = PrevVar->getPreviousDeclaration())
if (isExternalLinkage(PrevVar->getLinkage()))
FoundExtern = true;
if (!FoundExtern)
return InternalLinkage;
}
} else if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) {
// C++ [temp]p4:
// A non-member function template can have internal linkage; any
// other template name shall have external linkage.
const FunctionDecl *Function = 0;
if (const FunctionTemplateDecl *FunTmpl
= dyn_cast<FunctionTemplateDecl>(D))
Function = FunTmpl->getTemplatedDecl();
else
Function = cast<FunctionDecl>(D);
// Explicitly declared static.
if (Function->getStorageClass() == FunctionDecl::Static)
return InternalLinkage;
} else if (const FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
// - a data member of an anonymous union.
if (cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
return InternalLinkage;
}
// C++ [basic.link]p4:
// A name having namespace scope has external linkage if it is the
// name of
//
// - an object or reference, unless it has internal linkage; or
if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
if (!Context.getLangOptions().CPlusPlus &&
(Var->getStorageClass() == VarDecl::Extern ||
Var->getStorageClass() == VarDecl::PrivateExtern)) {
// C99 6.2.2p4:
// For an identifier declared with the storage-class specifier
// extern in a scope in which a prior declaration of that
// identifier is visible, if the prior declaration specifies
// internal or external linkage, the linkage of the identifier
// at the later declaration is the same as the linkage
// specified at the prior declaration. If no prior declaration
// is visible, or if the prior declaration specifies no
// linkage, then the identifier has external linkage.
if (const VarDecl *PrevVar = Var->getPreviousDeclaration()) {
if (Linkage L = PrevVar->getLinkage())
return L;
}
}
// C99 6.2.2p5:
// If the declaration of an identifier for an object has file
// scope and no storage-class specifier, its linkage is
// external.
if (Var->isInAnonymousNamespace())
return UniqueExternalLinkage;
return ExternalLinkage;
}
// - a function, unless it has internal linkage; or
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
// C99 6.2.2p5:
// If the declaration of an identifier for a function has no
// storage-class specifier, its linkage is determined exactly
// as if it were declared with the storage-class specifier
// extern.
if (!Context.getLangOptions().CPlusPlus &&
(Function->getStorageClass() == FunctionDecl::Extern ||
Function->getStorageClass() == FunctionDecl::PrivateExtern ||
Function->getStorageClass() == FunctionDecl::None)) {
// C99 6.2.2p4:
// For an identifier declared with the storage-class specifier
// extern in a scope in which a prior declaration of that
// identifier is visible, if the prior declaration specifies
// internal or external linkage, the linkage of the identifier
// at the later declaration is the same as the linkage
// specified at the prior declaration. If no prior declaration
// is visible, or if the prior declaration specifies no
// linkage, then the identifier has external linkage.
if (const FunctionDecl *PrevFunc = Function->getPreviousDeclaration()) {
if (Linkage L = PrevFunc->getLinkage())
return L;
}
}
if (Function->isInAnonymousNamespace())
return UniqueExternalLinkage;
if (FunctionTemplateSpecializationInfo *SpecInfo
= Function->getTemplateSpecializationInfo()) {
Linkage L = SpecInfo->getTemplate()->getLinkage();
const TemplateArgumentList &TemplateArgs = *SpecInfo->TemplateArguments;
L = minLinkage(L,
getLinkageForTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size()));
return L;
}
return ExternalLinkage;
}
// - a named class (Clause 9), or an unnamed class defined in a
// typedef declaration in which the class has the typedef name
// for linkage purposes (7.1.3); or
// - a named enumeration (7.2), or an unnamed enumeration
// defined in a typedef declaration in which the enumeration
// has the typedef name for linkage purposes (7.1.3); or
if (const TagDecl *Tag = dyn_cast<TagDecl>(D))
if (Tag->getDeclName() || Tag->getTypedefForAnonDecl()) {
if (Tag->isInAnonymousNamespace())
return UniqueExternalLinkage;
// If this is a class template specialization, consider the
// linkage of the template and template arguments.
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
Linkage L = getLinkageForTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size());
return minLinkage(L, Spec->getSpecializedTemplate()->getLinkage());
}
return ExternalLinkage;
}
// - an enumerator belonging to an enumeration with external linkage;
if (isa<EnumConstantDecl>(D)) {
Linkage L = cast<NamedDecl>(D->getDeclContext())->getLinkage();
if (isExternalLinkage(L))
return L;
}
// - a template, unless it is a function template that has
// internal linkage (Clause 14);
if (const TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
if (D->isInAnonymousNamespace())
return UniqueExternalLinkage;
return getLinkageForTemplateParameterList(
Template->getTemplateParameters());
}
// - a namespace (7.3), unless it is declared within an unnamed
// namespace.
if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace())
return ExternalLinkage;
return NoLinkage;
}
Linkage NamedDecl::getLinkage() const {
// Handle linkage for namespace-scope names.
if (getDeclContext()->getLookupContext()->isFileContext())
if (Linkage L = getLinkageForNamespaceScopeDecl(this))
return L;
// C++ [basic.link]p5:
// In addition, a member function, static data member, a named
// class or enumeration of class scope, or an unnamed class or
// enumeration defined in a class-scope typedef declaration such
// that the class or enumeration has the typedef name for linkage
// purposes (7.1.3), has external linkage if the name of the class
// has external linkage.
if (getDeclContext()->isRecord() &&
(isa<CXXMethodDecl>(this) || isa<VarDecl>(this) ||
(isa<TagDecl>(this) &&
(getDeclName() || cast<TagDecl>(this)->getTypedefForAnonDecl())))) {
Linkage L = cast<RecordDecl>(getDeclContext())->getLinkage();
if (isExternalLinkage(L))
return L;
}
// C++ [basic.link]p6:
// The name of a function declared in block scope and the name of
// an object declared by a block scope extern declaration have
// linkage. If there is a visible declaration of an entity with
// linkage having the same name and type, ignoring entities
// declared outside the innermost enclosing namespace scope, the
// block scope declaration declares that same entity and receives
// the linkage of the previous declaration. If there is more than
// one such matching entity, the program is ill-formed. Otherwise,
// if no matching entity is found, the block scope entity receives
// external linkage.
if (getLexicalDeclContext()->isFunctionOrMethod()) {
if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(this)) {
if (Function->getPreviousDeclaration())
if (Linkage L = Function->getPreviousDeclaration()->getLinkage())
return L;
if (Function->isInAnonymousNamespace())
return UniqueExternalLinkage;
return ExternalLinkage;
}
if (const VarDecl *Var = dyn_cast<VarDecl>(this))
if (Var->getStorageClass() == VarDecl::Extern ||
Var->getStorageClass() == VarDecl::PrivateExtern) {
if (Var->getPreviousDeclaration())
if (Linkage L = Var->getPreviousDeclaration()->getLinkage())
return L;
if (Var->isInAnonymousNamespace())
return UniqueExternalLinkage;
return ExternalLinkage;
}
}
// C++ [basic.link]p6:
// Names not covered by these rules have no linkage.
return NoLinkage;
}
std::string NamedDecl::getQualifiedNameAsString() const {
return getQualifiedNameAsString(getASTContext().getLangOptions());
}
std::string NamedDecl::getQualifiedNameAsString(const PrintingPolicy &P) const {
// FIXME: Collect contexts, then accumulate names to avoid unnecessary
// std::string thrashing.
std::vector<std::string> Names;
std::string QualName;
const DeclContext *Ctx = getDeclContext();
if (Ctx->isFunctionOrMethod())
return getNameAsString();
while (Ctx) {
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size(),
P);
Names.push_back(Spec->getIdentifier()->getNameStart() + TemplateArgsStr);
} else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Ctx)) {
if (ND->isAnonymousNamespace())
Names.push_back("<anonymous namespace>");
else
Names.push_back(ND->getNameAsString());
} else if (const RecordDecl *RD = dyn_cast<RecordDecl>(Ctx)) {
if (!RD->getIdentifier()) {
std::string RecordString = "<anonymous ";
RecordString += RD->getKindName();
RecordString += ">";
Names.push_back(RecordString);
} else {
Names.push_back(RD->getNameAsString());
}
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Ctx)) {
std::string Proto = FD->getNameAsString();
const FunctionProtoType *FT = 0;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
Proto += "(";
if (FT) {
llvm::raw_string_ostream POut(Proto);
unsigned NumParams = FD->getNumParams();
for (unsigned i = 0; i < NumParams; ++i) {
if (i)
POut << ", ";
std::string Param;
FD->getParamDecl(i)->getType().getAsStringInternal(Param, P);
POut << Param;
}
if (FT->isVariadic()) {
if (NumParams > 0)
POut << ", ";
POut << "...";
}
}
Proto += ")";
Names.push_back(Proto);
} else if (const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx))
Names.push_back(ND->getNameAsString());
else
break;
Ctx = Ctx->getParent();
}
std::vector<std::string>::reverse_iterator
I = Names.rbegin(),
End = Names.rend();
for (; I!=End; ++I)
QualName += *I + "::";
QualName += getNameAsString();
return QualName;
}
bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
// UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
// We want to keep it, unless it nominates same namespace.
if (getKind() == Decl::UsingDirective) {
return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() ==
cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace();
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
// For function declarations, we keep track of redeclarations.
return FD->getPreviousDeclaration() == OldD;
// For function templates, the underlying function declarations are linked.
if (const FunctionTemplateDecl *FunctionTemplate
= dyn_cast<FunctionTemplateDecl>(this))
if (const FunctionTemplateDecl *OldFunctionTemplate
= dyn_cast<FunctionTemplateDecl>(OldD))
return FunctionTemplate->getTemplatedDecl()
->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
// For method declarations, we keep track of redeclarations.
if (isa<ObjCMethodDecl>(this))
return false;
if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
return true;
if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
return cast<UsingShadowDecl>(this)->getTargetDecl() ==
cast<UsingShadowDecl>(OldD)->getTargetDecl();
// For non-function declarations, if the declarations are of the
// same kind then this must be a redeclaration, or semantic analysis
// would not have given us the new declaration.
return this->getKind() == OldD->getKind();
}
bool NamedDecl::hasLinkage() const {
return getLinkage() != NoLinkage;
}
NamedDecl *NamedDecl::getUnderlyingDecl() {
NamedDecl *ND = this;
while (true) {
if (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
ND = UD->getTargetDecl();
else if (ObjCCompatibleAliasDecl *AD
= dyn_cast<ObjCCompatibleAliasDecl>(ND))
return AD->getClassInterface();
else
return ND;
}
}
//===----------------------------------------------------------------------===//
// DeclaratorDecl Implementation
//===----------------------------------------------------------------------===//
SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
if (DeclInfo) {
TypeLoc TL = DeclInfo->getTypeLoc();
while (true) {
TypeLoc NextTL = TL.getNextTypeLoc();
if (!NextTL)
return TL.getSourceRange().getBegin();
TL = NextTL;
}
}
return SourceLocation();
}
//===----------------------------------------------------------------------===//
// VarDecl Implementation
//===----------------------------------------------------------------------===//
const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
switch (SC) {
case VarDecl::None: break;
case VarDecl::Auto: return "auto"; break;
case VarDecl::Extern: return "extern"; break;
case VarDecl::PrivateExtern: return "__private_extern__"; break;
case VarDecl::Register: return "register"; break;
case VarDecl::Static: return "static"; break;
}
assert(0 && "Invalid storage class");
return 0;
}
VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
StorageClass S) {
return new (C) VarDecl(Var, DC, L, Id, T, TInfo, S);
}
void VarDecl::Destroy(ASTContext& C) {
Expr *Init = getInit();
if (Init) {
Init->Destroy(C);
if (EvaluatedStmt *Eval = this->Init.dyn_cast<EvaluatedStmt *>()) {
Eval->~EvaluatedStmt();
C.Deallocate(Eval);
}
}
this->~VarDecl();
C.Deallocate((void *)this);
}
VarDecl::~VarDecl() {
}
SourceRange VarDecl::getSourceRange() const {
SourceLocation Start = getTypeSpecStartLoc();
if (Start.isInvalid())
Start = getLocation();
if (getInit())
return SourceRange(Start, getInit()->getLocEnd());
return SourceRange(Start, getLocation());
}
bool VarDecl::isExternC() const {
ASTContext &Context = getASTContext();
if (!Context.getLangOptions().CPlusPlus)
return (getDeclContext()->isTranslationUnit() &&
getStorageClass() != Static) ||
(getDeclContext()->isFunctionOrMethod() && hasExternalStorage());
for (const DeclContext *DC = getDeclContext(); !DC->isTranslationUnit();
DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
return getStorageClass() != Static;
break;
}
if (DC->isFunctionOrMethod())
return false;
}
return false;
}
VarDecl *VarDecl::getCanonicalDecl() {
return getFirstDeclaration();
}
VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition() const {
// C++ [basic.def]p2:
// A declaration is a definition unless [...] it contains the 'extern'
// specifier or a linkage-specification and neither an initializer [...],
// it declares a static data member in a class declaration [...].
// C++ [temp.expl.spec]p15:
// An explicit specialization of a static data member of a template is a
// definition if the declaration includes an initializer; otherwise, it is
// a declaration.
if (isStaticDataMember()) {
if (isOutOfLine() && (hasInit() ||
getTemplateSpecializationKind() != TSK_ExplicitSpecialization))
return Definition;
else
return DeclarationOnly;
}
// C99 6.7p5:
// A definition of an identifier is a declaration for that identifier that
// [...] causes storage to be reserved for that object.
// Note: that applies for all non-file-scope objects.
// C99 6.9.2p1:
// If the declaration of an identifier for an object has file scope and an
// initializer, the declaration is an external definition for the identifier
if (hasInit())
return Definition;
// AST for 'extern "C" int foo;' is annotated with 'extern'.
if (hasExternalStorage())
return DeclarationOnly;
// C99 6.9.2p2:
// A declaration of an object that has file scope without an initializer,
// and without a storage class specifier or the scs 'static', constitutes
// a tentative definition.
// No such thing in C++.
if (!getASTContext().getLangOptions().CPlusPlus && isFileVarDecl())
return TentativeDefinition;
// What's left is (in C, block-scope) declarations without initializers or
// external storage. These are definitions.
return Definition;
}
VarDecl *VarDecl::getActingDefinition() {
DefinitionKind Kind = isThisDeclarationADefinition();
if (Kind != TentativeDefinition)
return 0;
VarDecl *LastTentative = false;
VarDecl *First = getFirstDeclaration();
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
I != E; ++I) {
Kind = (*I)->isThisDeclarationADefinition();
if (Kind == Definition)
return 0;
else if (Kind == TentativeDefinition)
LastTentative = *I;
}
return LastTentative;
}
bool VarDecl::isTentativeDefinitionNow() const {
DefinitionKind Kind = isThisDeclarationADefinition();
if (Kind != TentativeDefinition)
return false;
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
if ((*I)->isThisDeclarationADefinition() == Definition)
return false;
}
return true;
}
VarDecl *VarDecl::getDefinition() {
VarDecl *First = getFirstDeclaration();
for (redecl_iterator I = First->redecls_begin(), E = First->redecls_end();
I != E; ++I) {
if ((*I)->isThisDeclarationADefinition() == Definition)
return *I;
}
return 0;
}
const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
redecl_iterator I = redecls_begin(), E = redecls_end();
while (I != E && !I->getInit())
++I;
if (I != E) {
D = *I;
return I->getInit();
}
return 0;
}
bool VarDecl::isOutOfLine() const {
if (!isStaticDataMember())
return false;
if (Decl::isOutOfLine())
return true;
// If this static data member was instantiated from a static data member of
// a class template, check whether that static data member was defined
// out-of-line.
if (VarDecl *VD = getInstantiatedFromStaticDataMember())
return VD->isOutOfLine();
return false;
}
VarDecl *VarDecl::getOutOfLineDefinition() {
if (!isStaticDataMember())
return 0;
for (VarDecl::redecl_iterator RD = redecls_begin(), RDEnd = redecls_end();
RD != RDEnd; ++RD) {
if (RD->getLexicalDeclContext()->isFileContext())
return *RD;
}
return 0;
}
void VarDecl::setInit(ASTContext &C, Expr *I) {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
Eval->~EvaluatedStmt();
C.Deallocate(Eval);
}
Init = I;
}
VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return cast<VarDecl>(MSI->getInstantiatedFrom());
return 0;
}
TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
return MSI->getTemplateSpecializationKind();
return TSK_Undeclared;
}
MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
return getASTContext().getInstantiatedFromStaticDataMember(this);
}
void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
assert(MSI && "Not an instantiated static data member?");
MSI->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
MSI->getPointOfInstantiation().isInvalid())
MSI->setPointOfInstantiation(PointOfInstantiation);
}
//===----------------------------------------------------------------------===//
// ParmVarDecl Implementation
//===----------------------------------------------------------------------===//
ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, TypeSourceInfo *TInfo,
StorageClass S, Expr *DefArg) {
return new (C) ParmVarDecl(ParmVar, DC, L, Id, T, TInfo, S, DefArg);
}
Expr *ParmVarDecl::getDefaultArg() {
assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
assert(!hasUninstantiatedDefaultArg() &&
"Default argument is not yet instantiated!");
Expr *Arg = getInit();
if (CXXExprWithTemporaries *E = dyn_cast_or_null<CXXExprWithTemporaries>(Arg))
return E->getSubExpr();
return Arg;
}
unsigned ParmVarDecl::getNumDefaultArgTemporaries() const {
if (const CXXExprWithTemporaries *E =
dyn_cast<CXXExprWithTemporaries>(getInit()))
return E->getNumTemporaries();
return 0;
}
CXXTemporary *ParmVarDecl::getDefaultArgTemporary(unsigned i) {
assert(getNumDefaultArgTemporaries() &&
"Default arguments does not have any temporaries!");
CXXExprWithTemporaries *E = cast<CXXExprWithTemporaries>(getInit());
return E->getTemporary(i);
}
SourceRange ParmVarDecl::getDefaultArgRange() const {
if (const Expr *E = getInit())
return E->getSourceRange();
if (hasUninstantiatedDefaultArg())
return getUninstantiatedDefaultArg()->getSourceRange();
return SourceRange();
}
//===----------------------------------------------------------------------===//
// FunctionDecl Implementation
//===----------------------------------------------------------------------===//
void FunctionDecl::Destroy(ASTContext& C) {
if (Body && Body.isOffset())
Body.get(C.getExternalSource())->Destroy(C);
for (param_iterator I=param_begin(), E=param_end(); I!=E; ++I)
(*I)->Destroy(C);
FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (FTSInfo)
C.Deallocate(FTSInfo);
MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
if (MSInfo)
C.Deallocate(MSInfo);
C.Deallocate(ParamInfo);
Decl::Destroy(C);
}
void FunctionDecl::getNameForDiagnostic(std::string &S,
const PrintingPolicy &Policy,
bool Qualified) const {
NamedDecl::getNameForDiagnostic(S, Policy, Qualified);
const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
if (TemplateArgs)
S += TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs->getFlatArgumentList(),
TemplateArgs->flat_size(),
Policy);
}
Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
for (redecl_iterator I = redecls_begin(), E = redecls_end(); I != E; ++I) {
if (I->Body) {
Definition = *I;
return I->Body.get(getASTContext().getExternalSource());
}
}
return 0;
}
void FunctionDecl::setBody(Stmt *B) {
Body = B;
if (B)
EndRangeLoc = B->getLocEnd();
}
bool FunctionDecl::isMain() const {
ASTContext &Context = getASTContext();
return !Context.getLangOptions().Freestanding &&
getDeclContext()->getLookupContext()->isTranslationUnit() &&
getIdentifier() && getIdentifier()->isStr("main");
}
bool FunctionDecl::isExternC() const {
ASTContext &Context = getASTContext();
// In C, any non-static, non-overloadable function has external
// linkage.
if (!Context.getLangOptions().CPlusPlus)
return getStorageClass() != Static && !getAttr<OverloadableAttr>();
for (const DeclContext *DC = getDeclContext(); !DC->isTranslationUnit();
DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
return getStorageClass() != Static &&
!getAttr<OverloadableAttr>();
break;
}
}
return false;
}
bool FunctionDecl::isGlobal() const {
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
return Method->isStatic();
if (getStorageClass() == Static)
return false;
for (const DeclContext *DC = getDeclContext();
DC->isNamespace();
DC = DC->getParent()) {
if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
if (!Namespace->getDeclName())
return false;
break;
}
}
return true;
}
void
FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
redeclarable_base::setPreviousDeclaration(PrevDecl);
if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
FunctionTemplateDecl *PrevFunTmpl
= PrevDecl? PrevDecl->getDescribedFunctionTemplate() : 0;
assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
FunTmpl->setPreviousDeclaration(PrevFunTmpl);
}
}
const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
return getFirstDeclaration();
}
FunctionDecl *FunctionDecl::getCanonicalDecl() {
return getFirstDeclaration();
}
/// \brief Returns a value indicating whether this function
/// corresponds to a builtin function.
///
/// The function corresponds to a built-in function if it is
/// declared at translation scope or within an extern "C" block and
/// its name matches with the name of a builtin. The returned value
/// will be 0 for functions that do not correspond to a builtin, a
/// value of type \c Builtin::ID if in the target-independent range
/// \c [1,Builtin::First), or a target-specific builtin value.
unsigned FunctionDecl::getBuiltinID() const {
ASTContext &Context = getASTContext();
if (!getIdentifier() || !getIdentifier()->getBuiltinID())
return 0;
unsigned BuiltinID = getIdentifier()->getBuiltinID();
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return BuiltinID;
// This function has the name of a known C library
// function. Determine whether it actually refers to the C library
// function or whether it just has the same name.
// If this is a static function, it's not a builtin.
if (getStorageClass() == Static)
return 0;
// If this function is at translation-unit scope and we're not in
// C++, it refers to the C library function.
if (!Context.getLangOptions().CPlusPlus &&
getDeclContext()->isTranslationUnit())
return BuiltinID;
// If the function is in an extern "C" linkage specification and is
// not marked "overloadable", it's the real function.
if (isa<LinkageSpecDecl>(getDeclContext()) &&
cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
== LinkageSpecDecl::lang_c &&
!getAttr<OverloadableAttr>())
return BuiltinID;
// Not a builtin
return 0;
}
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the PararmInfo array
/// after it has been created.
unsigned FunctionDecl::getNumParams() const {
const FunctionType *FT = getType()->getAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT))
return 0;
return cast<FunctionProtoType>(FT)->getNumArgs();
}
void FunctionDecl::setParams(ASTContext& C, ParmVarDecl **NewParamInfo,
unsigned NumParams) {
assert(ParamInfo == 0 && "Already has param info!");
assert(NumParams == getNumParams() && "Parameter count mismatch!");
// Zero params -> null pointer.
if (NumParams) {
void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams);
ParamInfo = new (Mem) ParmVarDecl*[NumParams];
memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
// Update source range. The check below allows us to set EndRangeLoc before
// setting the parameters.
if (EndRangeLoc.isInvalid() || EndRangeLoc == getLocation())
EndRangeLoc = NewParamInfo[NumParams-1]->getLocEnd();
}
}
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++).
unsigned FunctionDecl::getMinRequiredArguments() const {
unsigned NumRequiredArgs = getNumParams();
while (NumRequiredArgs > 0
&& getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
--NumRequiredArgs;
return NumRequiredArgs;
}
bool FunctionDecl::isInlined() const {
// FIXME: This is not enough. Consider:
//
// inline void f();
// void f() { }
//
// f is inlined, but does not have inline specified.
// To fix this we should add an 'inline' flag to FunctionDecl.
if (isInlineSpecified())
return true;
if (isa<CXXMethodDecl>(this)) {
if (!isOutOfLine() || getCanonicalDecl()->isInlineSpecified())
return true;
}
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
return false;
case TSK_ImplicitInstantiation:
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
// Handle below.
break;
}
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
Stmt *Pattern = 0;
if (PatternDecl)
Pattern = PatternDecl->getBody(PatternDecl);
if (Pattern && PatternDecl)
return PatternDecl->isInlined();
return false;
}
/// \brief For an inline function definition in C or C++, determine whether the
/// definition will be externally visible.
///
/// Inline function definitions are always available for inlining optimizations.
/// However, depending on the language dialect, declaration specifiers, and
/// attributes, the definition of an inline function may or may not be
/// "externally" visible to other translation units in the program.
///
/// In C99, inline definitions are not externally visible by default. However,
/// if even one of the global-scope declarations is marked "extern inline", the
/// inline definition becomes externally visible (C99 6.7.4p6).
///
/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
/// definition, we use the GNU semantics for inline, which are nearly the
/// opposite of C99 semantics. In particular, "inline" by itself will create
/// an externally visible symbol, but "extern inline" will not create an
/// externally visible symbol.
bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
assert(isThisDeclarationADefinition() && "Must have the function definition");
assert(isInlined() && "Function must be inline");
ASTContext &Context = getASTContext();
if (!Context.getLangOptions().C99 || hasAttr<GNUInlineAttr>()) {
// GNU inline semantics. Based on a number of examples, we came up with the
// following heuristic: if the "inline" keyword is present on a
// declaration of the function but "extern" is not present on that
// declaration, then the symbol is externally visible. Otherwise, the GNU
// "extern inline" semantics applies and the symbol is not externally
// visible.
for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
Redecl != RedeclEnd;
++Redecl) {
if (Redecl->isInlineSpecified() && Redecl->getStorageClass() != Extern)
return true;
}
// GNU "extern inline" semantics; no externally visible symbol.
return false;
}
// C99 6.7.4p6:
// [...] If all of the file scope declarations for a function in a
// translation unit include the inline function specifier without extern,
// then the definition in that translation unit is an inline definition.
for (redecl_iterator Redecl = redecls_begin(), RedeclEnd = redecls_end();
Redecl != RedeclEnd;
++Redecl) {
// Only consider file-scope declarations in this test.
if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
continue;
if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == Extern)
return true; // Not an inline definition
}
// C99 6.7.4p6:
// An inline definition does not provide an external definition for the
// function, and does not forbid an external definition in another
// translation unit.
return false;
}
/// getOverloadedOperator - Which C++ overloaded operator this
/// function represents, if any.
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
return getDeclName().getCXXOverloadedOperator();
else
return OO_None;
}
/// getLiteralIdentifier - The literal suffix identifier this function
/// represents, if any.
const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
return getDeclName().getCXXLiteralIdentifier();
else
return 0;
}
FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
return cast<FunctionDecl>(Info->getInstantiatedFrom());
return 0;
}
MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
}
void
FunctionDecl::setInstantiationOfMemberFunction(FunctionDecl *FD,
TemplateSpecializationKind TSK) {
assert(TemplateOrSpecialization.isNull() &&
"Member function is already a specialization");
MemberSpecializationInfo *Info
= new (getASTContext()) MemberSpecializationInfo(FD, TSK);
TemplateOrSpecialization = Info;
}
bool FunctionDecl::isImplicitlyInstantiable() const {
// If this function already has a definition or is invalid, it can't be
// implicitly instantiated.
if (isInvalidDecl() || getBody())
return false;
switch (getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
case TSK_ExplicitInstantiationDefinition:
return false;
case TSK_ImplicitInstantiation:
return true;
case TSK_ExplicitInstantiationDeclaration:
// Handled below.
break;
}
// Find the actual template from which we will instantiate.
const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
Stmt *Pattern = 0;
if (PatternDecl)
Pattern = PatternDecl->getBody(PatternDecl);
// C++0x [temp.explicit]p9:
// Except for inline functions, other explicit instantiation declarations
// have the effect of suppressing the implicit instantiation of the entity
// to which they refer.
if (!Pattern || !PatternDecl)
return true;
return PatternDecl->isInlined();
}
FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
while (Primary->getInstantiatedFromMemberTemplate()) {
// If we have hit a point where the user provided a specialization of
// this template, we're done looking.
if (Primary->isMemberSpecialization())
break;
Primary = Primary->getInstantiatedFromMemberTemplate();
}
return Primary->getTemplatedDecl();
}
return getInstantiatedFromMemberFunction();
}
FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->Template.getPointer();
}
return 0;
}
const TemplateArgumentList *
FunctionDecl::getTemplateSpecializationArgs() const {
if (FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization
.dyn_cast<FunctionTemplateSpecializationInfo*>()) {
return Info->TemplateArguments;
}
return 0;
}
void
FunctionDecl::setFunctionTemplateSpecialization(ASTContext &Context,
FunctionTemplateDecl *Template,
const TemplateArgumentList *TemplateArgs,
void *InsertPos,
TemplateSpecializationKind TSK) {
assert(TSK != TSK_Undeclared &&
"Must specify the type of function template specialization");
FunctionTemplateSpecializationInfo *Info
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (!Info)
Info = new (Context) FunctionTemplateSpecializationInfo;
Info->Function = this;
Info->Template.setPointer(Template);
Info->Template.setInt(TSK - 1);
Info->TemplateArguments = TemplateArgs;
TemplateOrSpecialization = Info;
// Insert this function template specialization into the set of known
// function template specializations.
if (InsertPos)
Template->getSpecializations().InsertNode(Info, InsertPos);
else {
// Try to insert the new node. If there is an existing node, remove it
// first.
FunctionTemplateSpecializationInfo *Existing
= Template->getSpecializations().GetOrInsertNode(Info);
if (Existing) {
Template->getSpecializations().RemoveNode(Existing);
Template->getSpecializations().GetOrInsertNode(Info);
}
}
}
TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
// For a function template specialization, query the specialization
// information object.
FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
if (FTSInfo)
return FTSInfo->getTemplateSpecializationKind();
MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
if (MSInfo)
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
if (FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<
FunctionTemplateSpecializationInfo*>()) {
FTSInfo->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
FTSInfo->getPointOfInstantiation().isInvalid())
FTSInfo->setPointOfInstantiation(PointOfInstantiation);
} else if (MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
MSInfo->setTemplateSpecializationKind(TSK);
if (TSK != TSK_ExplicitSpecialization &&
PointOfInstantiation.isValid() &&
MSInfo->getPointOfInstantiation().isInvalid())
MSInfo->setPointOfInstantiation(PointOfInstantiation);
} else
assert(false && "Function cannot have a template specialization kind");
}
SourceLocation FunctionDecl::getPointOfInstantiation() const {
if (FunctionTemplateSpecializationInfo *FTSInfo
= TemplateOrSpecialization.dyn_cast<
FunctionTemplateSpecializationInfo*>())
return FTSInfo->getPointOfInstantiation();
else if (MemberSpecializationInfo *MSInfo
= TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
return MSInfo->getPointOfInstantiation();
return SourceLocation();
}
bool FunctionDecl::isOutOfLine() const {
if (Decl::isOutOfLine())
return true;
// If this function was instantiated from a member function of a
// class template, check whether that member function was defined out-of-line.
if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
const FunctionDecl *Definition;
if (FD->getBody(Definition))
return Definition->isOutOfLine();
}
// If this function was instantiated from a function template,
// check whether that function template was defined out-of-line.
if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
const FunctionDecl *Definition;
if (FunTmpl->getTemplatedDecl()->getBody(Definition))
return Definition->isOutOfLine();
}
return false;
}
//===----------------------------------------------------------------------===//
// FieldDecl Implementation
//===----------------------------------------------------------------------===//
FieldDecl *FieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T,
TypeSourceInfo *TInfo, Expr *BW, bool Mutable) {
return new (C) FieldDecl(Decl::Field, DC, L, Id, T, TInfo, BW, Mutable);
}
bool FieldDecl::isAnonymousStructOrUnion() const {
if (!isImplicit() || getDeclName())
return false;
if (const RecordType *Record = getType()->getAs<RecordType>())
return Record->getDecl()->isAnonymousStructOrUnion();
return false;
}
//===----------------------------------------------------------------------===//
// TagDecl Implementation
//===----------------------------------------------------------------------===//
SourceRange TagDecl::getSourceRange() const {
SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
return SourceRange(TagKeywordLoc, E);
}
TagDecl* TagDecl::getCanonicalDecl() {
return getFirstDeclaration();
}
void TagDecl::startDefinition() {
if (TagType *TagT = const_cast<TagType *>(TypeForDecl->getAs<TagType>())) {
TagT->decl.setPointer(this);
TagT->decl.setInt(1);
}
if (isa<CXXRecordDecl>(this)) {
CXXRecordDecl *D = cast<CXXRecordDecl>(this);
struct CXXRecordDecl::DefinitionData *Data =
new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
do {
D->DefinitionData = Data;
D = cast_or_null<CXXRecordDecl>(D->getPreviousDeclaration());
} while (D);
}
}
void TagDecl::completeDefinition() {
assert((!isa<CXXRecordDecl>(this) ||
cast<CXXRecordDecl>(this)->hasDefinition()) &&
"definition completed but not started");
IsDefinition = true;
if (TagType *TagT = const_cast<TagType *>(TypeForDecl->getAs<TagType>())) {
assert(TagT->decl.getPointer() == this &&
"Attempt to redefine a tag definition?");
TagT->decl.setInt(0);
}
}
TagDecl* TagDecl::getDefinition(ASTContext& C) const {
if (isDefinition())
return const_cast<TagDecl *>(this);
for (redecl_iterator R = redecls_begin(), REnd = redecls_end();
R != REnd; ++R)
if (R->isDefinition())
return *R;
return 0;
}
TagDecl::TagKind TagDecl::getTagKindForTypeSpec(unsigned TypeSpec) {
switch (TypeSpec) {
default: llvm_unreachable("unexpected type specifier");
case DeclSpec::TST_struct: return TK_struct;
case DeclSpec::TST_class: return TK_class;
case DeclSpec::TST_union: return TK_union;
case DeclSpec::TST_enum: return TK_enum;
}
}
//===----------------------------------------------------------------------===//
// EnumDecl Implementation
//===----------------------------------------------------------------------===//
EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, SourceLocation TKL,
EnumDecl *PrevDecl) {
EnumDecl *Enum = new (C) EnumDecl(DC, L, Id, PrevDecl, TKL);
C.getTypeDeclType(Enum, PrevDecl);
return Enum;
}
void EnumDecl::Destroy(ASTContext& C) {
Decl::Destroy(C);
}
void EnumDecl::completeDefinition(ASTContext &C,
QualType NewType,
QualType NewPromotionType) {
assert(!isDefinition() && "Cannot redefine enums!");
IntegerType = NewType;
PromotionType = NewPromotionType;
TagDecl::completeDefinition();
}
//===----------------------------------------------------------------------===//
// RecordDecl Implementation
//===----------------------------------------------------------------------===//
RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, RecordDecl *PrevDecl,
SourceLocation TKL)
: TagDecl(DK, TK, DC, L, Id, PrevDecl, TKL) {
HasFlexibleArrayMember = false;
AnonymousStructOrUnion = false;
HasObjectMember = false;
assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
}
RecordDecl *RecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
SourceLocation TKL, RecordDecl* PrevDecl) {
RecordDecl* R = new (C) RecordDecl(Record, TK, DC, L, Id, PrevDecl, TKL);
C.getTypeDeclType(R, PrevDecl);
return R;
}
RecordDecl::~RecordDecl() {
}
void RecordDecl::Destroy(ASTContext& C) {
TagDecl::Destroy(C);
}
bool RecordDecl::isInjectedClassName() const {
return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
}
/// completeDefinition - Notes that the definition of this type is now
/// complete.
void RecordDecl::completeDefinition(ASTContext& C) {
assert(!isDefinition() && "Cannot redefine record!");
TagDecl::completeDefinition();
}
//===----------------------------------------------------------------------===//
// BlockDecl Implementation
//===----------------------------------------------------------------------===//
BlockDecl::~BlockDecl() {
}
void BlockDecl::Destroy(ASTContext& C) {
if (Body)
Body->Destroy(C);
for (param_iterator I=param_begin(), E=param_end(); I!=E; ++I)
(*I)->Destroy(C);
C.Deallocate(ParamInfo);
Decl::Destroy(C);
}
void BlockDecl::setParams(ASTContext& C, ParmVarDecl **NewParamInfo,
unsigned NParms) {
assert(ParamInfo == 0 && "Already has param info!");
// Zero params -> null pointer.
if (NParms) {
NumParams = NParms;
void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams);
ParamInfo = new (Mem) ParmVarDecl*[NumParams];
memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
}
}
unsigned BlockDecl::getNumParams() const {
return NumParams;
}
//===----------------------------------------------------------------------===//
// Other Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
return new (C) TranslationUnitDecl(C);
}
NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id) {
return new (C) NamespaceDecl(DC, L, Id);
}
void NamespaceDecl::Destroy(ASTContext& C) {
// NamespaceDecl uses "NextDeclarator" to chain namespace declarations
// together. They are all top-level Decls.
this->~NamespaceDecl();
C.Deallocate((void *)this);
}
ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id, QualType T) {
return new (C) ImplicitParamDecl(ImplicitParam, DC, L, Id, T);
}
FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName N, QualType T,
TypeSourceInfo *TInfo,
StorageClass S, bool isInline,
bool hasWrittenPrototype) {
FunctionDecl *New
= new (C) FunctionDecl(Function, DC, L, N, T, TInfo, S, isInline);
New->HasWrittenPrototype = hasWrittenPrototype;
return New;
}
BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
return new (C) BlockDecl(DC, L);
}
EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
SourceLocation L,
IdentifierInfo *Id, QualType T,
Expr *E, const llvm::APSInt &V) {
return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
}
void EnumConstantDecl::Destroy(ASTContext& C) {
if (Init) Init->Destroy(C);
Decl::Destroy(C);
}
TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
TypeSourceInfo *TInfo) {
return new (C) TypedefDecl(DC, L, Id, TInfo);
}
// Anchor TypedefDecl's vtable here.
TypedefDecl::~TypedefDecl() {}
FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
StringLiteral *Str) {
return new (C) FileScopeAsmDecl(DC, L, Str);
}