| //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements extra semantic analysis beyond what is enforced |
| // by the C type system. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "SemaUtil.h" |
| using namespace clang; |
| |
| /// CheckFunctionCall - Check a direct function call for various correctness |
| /// and safety properties not strictly enforced by the C type system. |
| bool |
| Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) { |
| |
| // Get the IdentifierInfo* for the called function. |
| IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
| |
| switch (FnInfo->getBuiltinID()) { |
| case Builtin::BI__builtin___CFStringMakeConstantString: |
| assert(TheCall->getNumArgs() == 1 && |
| "Wrong # arguments to builtin CFStringMakeConstantString"); |
| return CheckBuiltinCFStringArgument(TheCall->getArg(0)); |
| case Builtin::BI__builtin_va_start: |
| return SemaBuiltinVAStart(TheCall); |
| |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: |
| return SemaBuiltinUnorderedCompare(TheCall); |
| } |
| |
| // Search the KnownFunctionIDs for the identifier. |
| unsigned i = 0, e = id_num_known_functions; |
| for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; } |
| if (i == e) return false; |
| |
| // Printf checking. |
| if (i <= id_vprintf) { |
| // Retrieve the index of the format string parameter and determine |
| // if the function is passed a va_arg argument. |
| unsigned format_idx = 0; |
| bool HasVAListArg = false; |
| |
| switch (i) { |
| default: assert(false && "No format string argument index."); |
| case id_printf: format_idx = 0; break; |
| case id_fprintf: format_idx = 1; break; |
| case id_sprintf: format_idx = 1; break; |
| case id_snprintf: format_idx = 2; break; |
| case id_asprintf: format_idx = 1; break; |
| case id_vsnprintf: format_idx = 2; HasVAListArg = true; break; |
| case id_vasprintf: format_idx = 1; HasVAListArg = true; break; |
| case id_vfprintf: format_idx = 1; HasVAListArg = true; break; |
| case id_vsprintf: format_idx = 1; HasVAListArg = true; break; |
| case id_vprintf: format_idx = 0; HasVAListArg = true; break; |
| } |
| |
| CheckPrintfArguments(TheCall, HasVAListArg, format_idx); |
| } |
| |
| return false; |
| } |
| |
| /// CheckBuiltinCFStringArgument - Checks that the argument to the builtin |
| /// CFString constructor is correct |
| bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) { |
| Arg = IgnoreParenCasts(Arg); |
| |
| StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); |
| |
| if (!Literal || Literal->isWide()) { |
| Diag(Arg->getLocStart(), |
| diag::err_cfstring_literal_not_string_constant, |
| Arg->getSourceRange()); |
| return true; |
| } |
| |
| const char *Data = Literal->getStrData(); |
| unsigned Length = Literal->getByteLength(); |
| |
| for (unsigned i = 0; i < Length; ++i) { |
| if (!isascii(Data[i])) { |
| Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1), |
| diag::warn_cfstring_literal_contains_non_ascii_character, |
| Arg->getSourceRange()); |
| break; |
| } |
| |
| if (!Data[i]) { |
| Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1), |
| diag::warn_cfstring_literal_contains_nul_character, |
| Arg->getSourceRange()); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity. |
| /// Emit an error and return true on failure, return false on success. |
| bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) { |
| Expr *Fn = TheCall->getCallee(); |
| if (TheCall->getNumArgs() > 2) { |
| Diag(TheCall->getArg(2)->getLocStart(), |
| diag::err_typecheck_call_too_many_args, Fn->getSourceRange(), |
| SourceRange(TheCall->getArg(2)->getLocStart(), |
| (*(TheCall->arg_end()-1))->getLocEnd())); |
| return true; |
| } |
| |
| // Determine whether the current function is variadic or not. |
| bool isVariadic; |
| if (CurFunctionDecl) |
| isVariadic = |
| cast<FunctionTypeProto>(CurFunctionDecl->getType())->isVariadic(); |
| else |
| isVariadic = CurMethodDecl->isVariadic(); |
| |
| if (!isVariadic) { |
| Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function); |
| return true; |
| } |
| |
| // Verify that the second argument to the builtin is the last argument of the |
| // current function or method. |
| bool SecondArgIsLastNamedArgument = false; |
| const Expr *Arg = TheCall->getArg(1); |
| while (1) { |
| if (const ParenExpr *PE = dyn_cast<ParenExpr>(Arg)) |
| Arg = PE->getSubExpr(); |
| else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Arg)) |
| Arg = CE->getSubExpr(); |
| else |
| break; |
| } |
| |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { |
| if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { |
| // FIXME: This isn't correct for methods (results in bogus warning). |
| // Get the last formal in the current function. |
| const ParmVarDecl *LastArg; |
| if (CurFunctionDecl) |
| LastArg = *(CurFunctionDecl->param_end()-1); |
| else |
| LastArg = *(CurMethodDecl->param_end()-1); |
| SecondArgIsLastNamedArgument = PV == LastArg; |
| } |
| } |
| |
| if (!SecondArgIsLastNamedArgument) |
| Diag(TheCall->getArg(1)->getLocStart(), |
| diag::warn_second_parameter_of_va_start_not_last_named_argument); |
| return false; |
| } |
| |
| /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and |
| /// friends. This is declared to take (...), so we have to check everything. |
| bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { |
| if (TheCall->getNumArgs() < 2) |
| return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args); |
| if (TheCall->getNumArgs() > 2) |
| return Diag(TheCall->getArg(2)->getLocStart(), |
| diag::err_typecheck_call_too_many_args, |
| SourceRange(TheCall->getArg(2)->getLocStart(), |
| (*(TheCall->arg_end()-1))->getLocEnd())); |
| |
| Expr *OrigArg0 = TheCall->getArg(0); |
| Expr *OrigArg1 = TheCall->getArg(1); |
| |
| // Do standard promotions between the two arguments, returning their common |
| // type. |
| QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); |
| |
| // If the common type isn't a real floating type, then the arguments were |
| // invalid for this operation. |
| if (!Res->isRealFloatingType()) |
| return Diag(OrigArg0->getLocStart(), |
| diag::err_typecheck_call_invalid_ordered_compare, |
| OrigArg0->getType().getAsString(), |
| OrigArg1->getType().getAsString(), |
| SourceRange(OrigArg0->getLocStart(), OrigArg1->getLocEnd())); |
| |
| return false; |
| } |
| |
| |
| /// CheckPrintfArguments - Check calls to printf (and similar functions) for |
| /// correct use of format strings. |
| /// |
| /// HasVAListArg - A predicate indicating whether the printf-like |
| /// function is passed an explicit va_arg argument (e.g., vprintf) |
| /// |
| /// format_idx - The index into Args for the format string. |
| /// |
| /// Improper format strings to functions in the printf family can be |
| /// the source of bizarre bugs and very serious security holes. A |
| /// good source of information is available in the following paper |
| /// (which includes additional references): |
| /// |
| /// FormatGuard: Automatic Protection From printf Format String |
| /// Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001. |
| /// |
| /// Functionality implemented: |
| /// |
| /// We can statically check the following properties for string |
| /// literal format strings for non v.*printf functions (where the |
| /// arguments are passed directly): |
| // |
| /// (1) Are the number of format conversions equal to the number of |
| /// data arguments? |
| /// |
| /// (2) Does each format conversion correctly match the type of the |
| /// corresponding data argument? (TODO) |
| /// |
| /// Moreover, for all printf functions we can: |
| /// |
| /// (3) Check for a missing format string (when not caught by type checking). |
| /// |
| /// (4) Check for no-operation flags; e.g. using "#" with format |
| /// conversion 'c' (TODO) |
| /// |
| /// (5) Check the use of '%n', a major source of security holes. |
| /// |
| /// (6) Check for malformed format conversions that don't specify anything. |
| /// |
| /// (7) Check for empty format strings. e.g: printf(""); |
| /// |
| /// (8) Check that the format string is a wide literal. |
| /// |
| /// All of these checks can be done by parsing the format string. |
| /// |
| /// For now, we ONLY do (1), (3), (5), (6), (7), and (8). |
| void |
| Sema::CheckPrintfArguments(CallExpr *TheCall, bool HasVAListArg, |
| unsigned format_idx) { |
| Expr *Fn = TheCall->getCallee(); |
| |
| // CHECK: printf-like function is called with no format string. |
| if (format_idx >= TheCall->getNumArgs()) { |
| Diag(TheCall->getRParenLoc(), diag::warn_printf_missing_format_string, |
| Fn->getSourceRange()); |
| return; |
| } |
| |
| Expr *OrigFormatExpr = IgnoreParenCasts(TheCall->getArg(format_idx)); |
| |
| // CHECK: format string is not a string literal. |
| // |
| // Dynamically generated format strings are difficult to |
| // automatically vet at compile time. Requiring that format strings |
| // are string literals: (1) permits the checking of format strings by |
| // the compiler and thereby (2) can practically remove the source of |
| // many format string exploits. |
| StringLiteral *FExpr = dyn_cast<StringLiteral>(OrigFormatExpr); |
| if (FExpr == NULL) { |
| // For vprintf* functions (i.e., HasVAListArg==true), we add a |
| // special check to see if the format string is a function parameter |
| // of the function calling the printf function. If the function |
| // has an attribute indicating it is a printf-like function, then we |
| // should suppress warnings concerning non-literals being used in a call |
| // to a vprintf function. For example: |
| // |
| // void |
| // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...) { |
| // va_list ap; |
| // va_start(ap, fmt); |
| // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". |
| // ... |
| // |
| // |
| // FIXME: We don't have full attribute support yet, so just check to see |
| // if the argument is a DeclRefExpr that references a parameter. We'll |
| // add proper support for checking the attribute later. |
| if (HasVAListArg) |
| if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(OrigFormatExpr)) |
| if (isa<ParmVarDecl>(DR->getDecl())) |
| return; |
| |
| Diag(TheCall->getArg(format_idx)->getLocStart(), |
| diag::warn_printf_not_string_constant, Fn->getSourceRange()); |
| return; |
| } |
| |
| // CHECK: is the format string a wide literal? |
| if (FExpr->isWide()) { |
| Diag(FExpr->getLocStart(), |
| diag::warn_printf_format_string_is_wide_literal, Fn->getSourceRange()); |
| return; |
| } |
| |
| // Str - The format string. NOTE: this is NOT null-terminated! |
| const char * const Str = FExpr->getStrData(); |
| |
| // CHECK: empty format string? |
| const unsigned StrLen = FExpr->getByteLength(); |
| |
| if (StrLen == 0) { |
| Diag(FExpr->getLocStart(), diag::warn_printf_empty_format_string, |
| Fn->getSourceRange()); |
| return; |
| } |
| |
| // We process the format string using a binary state machine. The |
| // current state is stored in CurrentState. |
| enum { |
| state_OrdChr, |
| state_Conversion |
| } CurrentState = state_OrdChr; |
| |
| // numConversions - The number of conversions seen so far. This is |
| // incremented as we traverse the format string. |
| unsigned numConversions = 0; |
| |
| // numDataArgs - The number of data arguments after the format |
| // string. This can only be determined for non vprintf-like |
| // functions. For those functions, this value is 1 (the sole |
| // va_arg argument). |
| unsigned numDataArgs = TheCall->getNumArgs()-(format_idx+1); |
| |
| // Inspect the format string. |
| unsigned StrIdx = 0; |
| |
| // LastConversionIdx - Index within the format string where we last saw |
| // a '%' character that starts a new format conversion. |
| unsigned LastConversionIdx = 0; |
| |
| for (; StrIdx < StrLen; ++StrIdx) { |
| |
| // Is the number of detected conversion conversions greater than |
| // the number of matching data arguments? If so, stop. |
| if (!HasVAListArg && numConversions > numDataArgs) break; |
| |
| // Handle "\0" |
| if (Str[StrIdx] == '\0') { |
| // The string returned by getStrData() is not null-terminated, |
| // so the presence of a null character is likely an error. |
| Diag(PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1), |
| diag::warn_printf_format_string_contains_null_char, |
| Fn->getSourceRange()); |
| return; |
| } |
| |
| // Ordinary characters (not processing a format conversion). |
| if (CurrentState == state_OrdChr) { |
| if (Str[StrIdx] == '%') { |
| CurrentState = state_Conversion; |
| LastConversionIdx = StrIdx; |
| } |
| continue; |
| } |
| |
| // Seen '%'. Now processing a format conversion. |
| switch (Str[StrIdx]) { |
| // Handle dynamic precision or width specifier. |
| case '*': { |
| ++numConversions; |
| |
| if (!HasVAListArg && numConversions > numDataArgs) { |
| SourceLocation Loc = FExpr->getLocStart(); |
| Loc = PP.AdvanceToTokenCharacter(Loc, StrIdx+1); |
| |
| if (Str[StrIdx-1] == '.') |
| Diag(Loc, diag::warn_printf_asterisk_precision_missing_arg, |
| Fn->getSourceRange()); |
| else |
| Diag(Loc, diag::warn_printf_asterisk_width_missing_arg, |
| Fn->getSourceRange()); |
| |
| // Don't do any more checking. We'll just emit spurious errors. |
| return; |
| } |
| |
| // Perform type checking on width/precision specifier. |
| Expr *E = TheCall->getArg(format_idx+numConversions); |
| if (const BuiltinType *BT = E->getType()->getAsBuiltinType()) |
| if (BT->getKind() == BuiltinType::Int) |
| break; |
| |
| SourceLocation Loc = |
| PP.AdvanceToTokenCharacter(FExpr->getLocStart(), StrIdx+1); |
| |
| if (Str[StrIdx-1] == '.') |
| Diag(Loc, diag::warn_printf_asterisk_precision_wrong_type, |
| E->getType().getAsString(), E->getSourceRange()); |
| else |
| Diag(Loc, diag::warn_printf_asterisk_width_wrong_type, |
| E->getType().getAsString(), E->getSourceRange()); |
| |
| break; |
| } |
| |
| // Characters which can terminate a format conversion |
| // (e.g. "%d"). Characters that specify length modifiers or |
| // other flags are handled by the default case below. |
| // |
| // FIXME: additional checks will go into the following cases. |
| case 'i': |
| case 'd': |
| case 'o': |
| case 'u': |
| case 'x': |
| case 'X': |
| case 'D': |
| case 'O': |
| case 'U': |
| case 'e': |
| case 'E': |
| case 'f': |
| case 'F': |
| case 'g': |
| case 'G': |
| case 'a': |
| case 'A': |
| case 'c': |
| case 'C': |
| case 'S': |
| case 's': |
| case 'p': |
| ++numConversions; |
| CurrentState = state_OrdChr; |
| break; |
| |
| // CHECK: Are we using "%n"? Issue a warning. |
| case 'n': { |
| ++numConversions; |
| CurrentState = state_OrdChr; |
| SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(), |
| LastConversionIdx+1); |
| |
| Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange()); |
| break; |
| } |
| |
| // Handle "%%" |
| case '%': |
| // Sanity check: Was the first "%" character the previous one? |
| // If not, we will assume that we have a malformed format |
| // conversion, and that the current "%" character is the start |
| // of a new conversion. |
| if (StrIdx - LastConversionIdx == 1) |
| CurrentState = state_OrdChr; |
| else { |
| // Issue a warning: invalid format conversion. |
| SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(), |
| LastConversionIdx+1); |
| |
| Diag(Loc, diag::warn_printf_invalid_conversion, |
| std::string(Str+LastConversionIdx, Str+StrIdx), |
| Fn->getSourceRange()); |
| |
| // This conversion is broken. Advance to the next format |
| // conversion. |
| LastConversionIdx = StrIdx; |
| ++numConversions; |
| } |
| break; |
| |
| default: |
| // This case catches all other characters: flags, widths, etc. |
| // We should eventually process those as well. |
| break; |
| } |
| } |
| |
| if (CurrentState == state_Conversion) { |
| // Issue a warning: invalid format conversion. |
| SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(), |
| LastConversionIdx+1); |
| |
| Diag(Loc, diag::warn_printf_invalid_conversion, |
| std::string(Str+LastConversionIdx, |
| Str+std::min(LastConversionIdx+2, StrLen)), |
| Fn->getSourceRange()); |
| return; |
| } |
| |
| if (!HasVAListArg) { |
| // CHECK: Does the number of format conversions exceed the number |
| // of data arguments? |
| if (numConversions > numDataArgs) { |
| SourceLocation Loc = PP.AdvanceToTokenCharacter(FExpr->getLocStart(), |
| LastConversionIdx); |
| |
| Diag(Loc, diag::warn_printf_insufficient_data_args, |
| Fn->getSourceRange()); |
| } |
| // CHECK: Does the number of data arguments exceed the number of |
| // format conversions in the format string? |
| else if (numConversions < numDataArgs) |
| Diag(TheCall->getArg(format_idx+numConversions+1)->getLocStart(), |
| diag::warn_printf_too_many_data_args, Fn->getSourceRange()); |
| } |
| } |
| |
| //===--- CHECK: Return Address of Stack Variable --------------------------===// |
| |
| static DeclRefExpr* EvalVal(Expr *E); |
| static DeclRefExpr* EvalAddr(Expr* E); |
| |
| /// CheckReturnStackAddr - Check if a return statement returns the address |
| /// of a stack variable. |
| void |
| Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType, |
| SourceLocation ReturnLoc) { |
| |
| // Perform checking for returned stack addresses. |
| if (lhsType->isPointerType()) { |
| if (DeclRefExpr *DR = EvalAddr(RetValExp)) |
| Diag(DR->getLocStart(), diag::warn_ret_stack_addr, |
| DR->getDecl()->getIdentifier()->getName(), |
| RetValExp->getSourceRange()); |
| } |
| // Perform checking for stack values returned by reference. |
| else if (lhsType->isReferenceType()) { |
| // Check for an implicit cast to a reference. |
| if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp)) |
| if (DeclRefExpr *DR = EvalVal(I->getSubExpr())) |
| Diag(DR->getLocStart(), diag::warn_ret_stack_ref, |
| DR->getDecl()->getIdentifier()->getName(), |
| RetValExp->getSourceRange()); |
| } |
| } |
| |
| /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that |
| /// check if the expression in a return statement evaluates to an address |
| /// to a location on the stack. The recursion is used to traverse the |
| /// AST of the return expression, with recursion backtracking when we |
| /// encounter a subexpression that (1) clearly does not lead to the address |
| /// of a stack variable or (2) is something we cannot determine leads to |
| /// the address of a stack variable based on such local checking. |
| /// |
| /// EvalAddr processes expressions that are pointers that are used as |
| /// references (and not L-values). EvalVal handles all other values. |
| /// At the base case of the recursion is a check for a DeclRefExpr* in |
| /// the refers to a stack variable. |
| /// |
| /// This implementation handles: |
| /// |
| /// * pointer-to-pointer casts |
| /// * implicit conversions from array references to pointers |
| /// * taking the address of fields |
| /// * arbitrary interplay between "&" and "*" operators |
| /// * pointer arithmetic from an address of a stack variable |
| /// * taking the address of an array element where the array is on the stack |
| static DeclRefExpr* EvalAddr(Expr *E) { |
| // We should only be called for evaluating pointer expressions. |
| assert((E->getType()->isPointerType() || |
| E->getType()->isObjCQualifiedIdType()) && |
| "EvalAddr only works on pointers"); |
| |
| // Our "symbolic interpreter" is just a dispatch off the currently |
| // viewed AST node. We then recursively traverse the AST by calling |
| // EvalAddr and EvalVal appropriately. |
| switch (E->getStmtClass()) { |
| case Stmt::ParenExprClass: |
| // Ignore parentheses. |
| return EvalAddr(cast<ParenExpr>(E)->getSubExpr()); |
| |
| case Stmt::UnaryOperatorClass: { |
| // The only unary operator that make sense to handle here |
| // is AddrOf. All others don't make sense as pointers. |
| UnaryOperator *U = cast<UnaryOperator>(E); |
| |
| if (U->getOpcode() == UnaryOperator::AddrOf) |
| return EvalVal(U->getSubExpr()); |
| else |
| return NULL; |
| } |
| |
| case Stmt::BinaryOperatorClass: { |
| // Handle pointer arithmetic. All other binary operators are not valid |
| // in this context. |
| BinaryOperator *B = cast<BinaryOperator>(E); |
| BinaryOperator::Opcode op = B->getOpcode(); |
| |
| if (op != BinaryOperator::Add && op != BinaryOperator::Sub) |
| return NULL; |
| |
| Expr *Base = B->getLHS(); |
| |
| // Determine which argument is the real pointer base. It could be |
| // the RHS argument instead of the LHS. |
| if (!Base->getType()->isPointerType()) Base = B->getRHS(); |
| |
| assert (Base->getType()->isPointerType()); |
| return EvalAddr(Base); |
| } |
| |
| // For conditional operators we need to see if either the LHS or RHS are |
| // valid DeclRefExpr*s. If one of them is valid, we return it. |
| case Stmt::ConditionalOperatorClass: { |
| ConditionalOperator *C = cast<ConditionalOperator>(E); |
| |
| // Handle the GNU extension for missing LHS. |
| if (Expr *lhsExpr = C->getLHS()) |
| if (DeclRefExpr* LHS = EvalAddr(lhsExpr)) |
| return LHS; |
| |
| return EvalAddr(C->getRHS()); |
| } |
| |
| // For implicit casts, we need to handle conversions from arrays to |
| // pointer values, and implicit pointer-to-pointer conversions. |
| case Stmt::ImplicitCastExprClass: { |
| ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E); |
| Expr* SubExpr = IE->getSubExpr(); |
| |
| if (SubExpr->getType()->isPointerType() || |
| SubExpr->getType()->isObjCQualifiedIdType()) |
| return EvalAddr(SubExpr); |
| else |
| return EvalVal(SubExpr); |
| } |
| |
| // For casts, we handle pointer-to-pointer conversions (which |
| // is essentially a no-op from our mini-interpreter's standpoint). |
| // For other casts we abort. |
| case Stmt::CastExprClass: { |
| CastExpr *C = cast<CastExpr>(E); |
| Expr *SubExpr = C->getSubExpr(); |
| |
| if (SubExpr->getType()->isPointerType()) |
| return EvalAddr(SubExpr); |
| else |
| return NULL; |
| } |
| |
| // C++ casts. For dynamic casts, static casts, and const casts, we |
| // are always converting from a pointer-to-pointer, so we just blow |
| // through the cast. In the case the dynamic cast doesn't fail |
| // (and return NULL), we take the conservative route and report cases |
| // where we return the address of a stack variable. For Reinterpre |
| case Stmt::CXXCastExprClass: { |
| CXXCastExpr *C = cast<CXXCastExpr>(E); |
| |
| if (C->getOpcode() == CXXCastExpr::ReinterpretCast) { |
| Expr *S = C->getSubExpr(); |
| if (S->getType()->isPointerType()) |
| return EvalAddr(S); |
| else |
| return NULL; |
| } |
| else |
| return EvalAddr(C->getSubExpr()); |
| } |
| |
| // Everything else: we simply don't reason about them. |
| default: |
| return NULL; |
| } |
| } |
| |
| |
| /// EvalVal - This function is complements EvalAddr in the mutual recursion. |
| /// See the comments for EvalAddr for more details. |
| static DeclRefExpr* EvalVal(Expr *E) { |
| |
| // We should only be called for evaluating non-pointer expressions, or |
| // expressions with a pointer type that are not used as references but instead |
| // are l-values (e.g., DeclRefExpr with a pointer type). |
| |
| // Our "symbolic interpreter" is just a dispatch off the currently |
| // viewed AST node. We then recursively traverse the AST by calling |
| // EvalAddr and EvalVal appropriately. |
| switch (E->getStmtClass()) { |
| case Stmt::DeclRefExprClass: { |
| // DeclRefExpr: the base case. When we hit a DeclRefExpr we are looking |
| // at code that refers to a variable's name. We check if it has local |
| // storage within the function, and if so, return the expression. |
| DeclRefExpr *DR = cast<DeclRefExpr>(E); |
| |
| if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) |
| if(V->hasLocalStorage()) return DR; |
| |
| return NULL; |
| } |
| |
| case Stmt::ParenExprClass: |
| // Ignore parentheses. |
| return EvalVal(cast<ParenExpr>(E)->getSubExpr()); |
| |
| case Stmt::UnaryOperatorClass: { |
| // The only unary operator that make sense to handle here |
| // is Deref. All others don't resolve to a "name." This includes |
| // handling all sorts of rvalues passed to a unary operator. |
| UnaryOperator *U = cast<UnaryOperator>(E); |
| |
| if (U->getOpcode() == UnaryOperator::Deref) |
| return EvalAddr(U->getSubExpr()); |
| |
| return NULL; |
| } |
| |
| case Stmt::ArraySubscriptExprClass: { |
| // Array subscripts are potential references to data on the stack. We |
| // retrieve the DeclRefExpr* for the array variable if it indeed |
| // has local storage. |
| return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase()); |
| } |
| |
| case Stmt::ConditionalOperatorClass: { |
| // For conditional operators we need to see if either the LHS or RHS are |
| // non-NULL DeclRefExpr's. If one is non-NULL, we return it. |
| ConditionalOperator *C = cast<ConditionalOperator>(E); |
| |
| // Handle the GNU extension for missing LHS. |
| if (Expr *lhsExpr = C->getLHS()) |
| if (DeclRefExpr *LHS = EvalVal(lhsExpr)) |
| return LHS; |
| |
| return EvalVal(C->getRHS()); |
| } |
| |
| // Accesses to members are potential references to data on the stack. |
| case Stmt::MemberExprClass: { |
| MemberExpr *M = cast<MemberExpr>(E); |
| |
| // Check for indirect access. We only want direct field accesses. |
| if (!M->isArrow()) |
| return EvalVal(M->getBase()); |
| else |
| return NULL; |
| } |
| |
| // Everything else: we simply don't reason about them. |
| default: |
| return NULL; |
| } |
| } |
| |
| //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// |
| |
| /// Check for comparisons of floating point operands using != and ==. |
| /// Issue a warning if these are no self-comparisons, as they are not likely |
| /// to do what the programmer intended. |
| void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) { |
| bool EmitWarning = true; |
| |
| Expr* LeftExprSansParen = lex->IgnoreParens(); |
| Expr* RightExprSansParen = rex->IgnoreParens(); |
| |
| // Special case: check for x == x (which is OK). |
| // Do not emit warnings for such cases. |
| if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) |
| if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) |
| if (DRL->getDecl() == DRR->getDecl()) |
| EmitWarning = false; |
| |
| |
| // Special case: check for comparisons against literals that can be exactly |
| // represented by APFloat. In such cases, do not emit a warning. This |
| // is a heuristic: often comparison against such literals are used to |
| // detect if a value in a variable has not changed. This clearly can |
| // lead to false negatives. |
| if (EmitWarning) { |
| if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { |
| if (FLL->isExact()) |
| EmitWarning = false; |
| } |
| else |
| if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){ |
| if (FLR->isExact()) |
| EmitWarning = false; |
| } |
| } |
| |
| // Check for comparisons with builtin types. |
| if (EmitWarning) |
| if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) |
| if (isCallBuiltin(CL)) |
| EmitWarning = false; |
| |
| if (EmitWarning) |
| if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) |
| if (isCallBuiltin(CR)) |
| EmitWarning = false; |
| |
| // Emit the diagnostic. |
| if (EmitWarning) |
| Diag(loc, diag::warn_floatingpoint_eq, |
| lex->getSourceRange(),rex->getSourceRange()); |
| } |