| //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the C++ related Decl classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===// |
| // Decl Allocation/Deallocation Method Implementations |
| //===----------------------------------------------------------------------===// |
| |
| CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC, |
| SourceLocation L, IdentifierInfo *Id, |
| CXXRecordDecl *PrevDecl, |
| SourceLocation TKL) |
| : RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL), |
| UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false), |
| UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false), |
| Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), |
| Abstract(false), HasTrivialConstructor(true), |
| HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true), |
| HasTrivialDestructor(true), ComputedVisibleConversions(false), |
| Bases(0), NumBases(0), VBases(0), NumVBases(0), |
| Conversions(DC, DeclarationName()), |
| VisibleConversions(DC, DeclarationName()), |
| TemplateOrInstantiation() { } |
| |
| CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC, |
| SourceLocation L, IdentifierInfo *Id, |
| SourceLocation TKL, |
| CXXRecordDecl* PrevDecl, |
| bool DelayTypeCreation) { |
| CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id, |
| PrevDecl, TKL); |
| |
| // FIXME: DelayTypeCreation seems like such a hack |
| if (!DelayTypeCreation) |
| C.getTypeDeclType(R, PrevDecl); |
| return R; |
| } |
| |
| CXXRecordDecl::~CXXRecordDecl() { |
| } |
| |
| void CXXRecordDecl::Destroy(ASTContext &C) { |
| C.Deallocate(Bases); |
| C.Deallocate(VBases); |
| this->RecordDecl::Destroy(C); |
| } |
| |
| void |
| CXXRecordDecl::setBases(ASTContext &C, |
| CXXBaseSpecifier const * const *Bases, |
| unsigned NumBases) { |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is an array or a class (clause 9) with [...] |
| // no base classes [...]. |
| Aggregate = false; |
| |
| if (this->Bases) |
| C.Deallocate(this->Bases); |
| |
| int vbaseCount = 0; |
| llvm::SmallVector<const CXXBaseSpecifier*, 8> UniqueVbases; |
| bool hasDirectVirtualBase = false; |
| |
| this->Bases = new(C) CXXBaseSpecifier [NumBases]; |
| this->NumBases = NumBases; |
| for (unsigned i = 0; i < NumBases; ++i) { |
| this->Bases[i] = *Bases[i]; |
| // Keep track of inherited vbases for this base class. |
| const CXXBaseSpecifier *Base = Bases[i]; |
| QualType BaseType = Base->getType(); |
| // Skip template types. |
| // FIXME. This means that this list must be rebuilt during template |
| // instantiation. |
| if (BaseType->isDependentType()) |
| continue; |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); |
| if (Base->isVirtual()) |
| hasDirectVirtualBase = true; |
| for (CXXRecordDecl::base_class_iterator VBase = |
| BaseClassDecl->vbases_begin(), |
| E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) { |
| // Add this vbase to the array of vbases for current class if it is |
| // not already in the list. |
| // FIXME. Note that we do a linear search as number of such classes are |
| // very few. |
| int i; |
| for (i = 0; i < vbaseCount; ++i) |
| if (UniqueVbases[i]->getType() == VBase->getType()) |
| break; |
| if (i == vbaseCount) { |
| UniqueVbases.push_back(VBase); |
| ++vbaseCount; |
| } |
| } |
| } |
| if (hasDirectVirtualBase) { |
| // Iterate one more time through the direct bases and add the virtual |
| // base to the list of vritual bases for current class. |
| for (unsigned i = 0; i < NumBases; ++i) { |
| const CXXBaseSpecifier *VBase = Bases[i]; |
| if (!VBase->isVirtual()) |
| continue; |
| int j; |
| for (j = 0; j < vbaseCount; ++j) |
| if (UniqueVbases[j]->getType() == VBase->getType()) |
| break; |
| if (j == vbaseCount) { |
| UniqueVbases.push_back(VBase); |
| ++vbaseCount; |
| } |
| } |
| } |
| if (vbaseCount > 0) { |
| // build AST for inhireted, direct or indirect, virtual bases. |
| this->VBases = new (C) CXXBaseSpecifier [vbaseCount]; |
| this->NumVBases = vbaseCount; |
| for (int i = 0; i < vbaseCount; i++) { |
| QualType QT = UniqueVbases[i]->getType(); |
| CXXRecordDecl *VBaseClassDecl |
| = cast<CXXRecordDecl>(QT->getAs<RecordType>()->getDecl()); |
| this->VBases[i] = |
| CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true, |
| VBaseClassDecl->getTagKind() == RecordDecl::TK_class, |
| UniqueVbases[i]->getAccessSpecifier(), QT); |
| } |
| } |
| } |
| |
| bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const { |
| return getCopyConstructor(Context, Qualifiers::Const) != 0; |
| } |
| |
| CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context, |
| unsigned TypeQuals) const{ |
| QualType ClassType |
| = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this)); |
| DeclarationName ConstructorName |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ClassType)); |
| unsigned FoundTQs; |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName); |
| Con != ConEnd; ++Con) { |
| // C++ [class.copy]p2: |
| // A non-template constructor for class X is a copy constructor if [...] |
| if (isa<FunctionTemplateDecl>(*Con)) |
| continue; |
| |
| if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(Context, |
| FoundTQs)) { |
| if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) || |
| (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const))) |
| return cast<CXXConstructorDecl>(*Con); |
| |
| } |
| } |
| return 0; |
| } |
| |
| bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context, |
| const CXXMethodDecl *& MD) const { |
| QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType( |
| const_cast<CXXRecordDecl*>(this))); |
| DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
| |
| DeclContext::lookup_const_iterator Op, OpEnd; |
| for (llvm::tie(Op, OpEnd) = this->lookup(OpName); |
| Op != OpEnd; ++Op) { |
| // C++ [class.copy]p9: |
| // A user-declared copy assignment operator is a non-static non-template |
| // member function of class X with exactly one parameter of type X, X&, |
| // const X&, volatile X& or const volatile X&. |
| const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op); |
| if (!Method) |
| continue; |
| |
| if (Method->isStatic()) |
| continue; |
| if (Method->getPrimaryTemplate()) |
| continue; |
| const FunctionProtoType *FnType = |
| Method->getType()->getAs<FunctionProtoType>(); |
| assert(FnType && "Overloaded operator has no prototype."); |
| // Don't assert on this; an invalid decl might have been left in the AST. |
| if (FnType->getNumArgs() != 1 || FnType->isVariadic()) |
| continue; |
| bool AcceptsConst = true; |
| QualType ArgType = FnType->getArgType(0); |
| if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) { |
| ArgType = Ref->getPointeeType(); |
| // Is it a non-const lvalue reference? |
| if (!ArgType.isConstQualified()) |
| AcceptsConst = false; |
| } |
| if (Context.getCanonicalType(ArgType).getUnqualifiedType() != ClassType) |
| continue; |
| MD = Method; |
| // We have a single argument of type cv X or cv X&, i.e. we've found the |
| // copy assignment operator. Return whether it accepts const arguments. |
| return AcceptsConst; |
| } |
| assert(isInvalidDecl() && |
| "No copy assignment operator declared in valid code."); |
| return false; |
| } |
| |
| void |
| CXXRecordDecl::addedConstructor(ASTContext &Context, |
| CXXConstructorDecl *ConDecl) { |
| assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl"); |
| // Note that we have a user-declared constructor. |
| UserDeclaredConstructor = true; |
| |
| // C++ [dcl.init.aggr]p1: |
| // An aggregate is an array or a class (clause 9) with no |
| // user-declared constructors (12.1) [...]. |
| Aggregate = false; |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class [...] |
| PlainOldData = false; |
| |
| // C++ [class.ctor]p5: |
| // A constructor is trivial if it is an implicitly-declared default |
| // constructor. |
| // FIXME: C++0x: don't do this for "= default" default constructors. |
| HasTrivialConstructor = false; |
| |
| // Note when we have a user-declared copy constructor, which will |
| // suppress the implicit declaration of a copy constructor. |
| if (ConDecl->isCopyConstructor(Context)) { |
| UserDeclaredCopyConstructor = true; |
| |
| // C++ [class.copy]p6: |
| // A copy constructor is trivial if it is implicitly declared. |
| // FIXME: C++0x: don't do this for "= default" copy constructors. |
| HasTrivialCopyConstructor = false; |
| } |
| } |
| |
| void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context, |
| CXXMethodDecl *OpDecl) { |
| // We're interested specifically in copy assignment operators. |
| const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>(); |
| assert(FnType && "Overloaded operator has no proto function type."); |
| assert(FnType->getNumArgs() == 1 && !FnType->isVariadic()); |
| |
| // Copy assignment operators must be non-templates. |
| if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate()) |
| return; |
| |
| QualType ArgType = FnType->getArgType(0); |
| if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) |
| ArgType = Ref->getPointeeType(); |
| |
| ArgType = ArgType.getUnqualifiedType(); |
| QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType( |
| const_cast<CXXRecordDecl*>(this))); |
| |
| if (ClassType != Context.getCanonicalType(ArgType)) |
| return; |
| |
| // This is a copy assignment operator. |
| // Note on the decl that it is a copy assignment operator. |
| OpDecl->setCopyAssignment(true); |
| |
| // Suppress the implicit declaration of a copy constructor. |
| UserDeclaredCopyAssignment = true; |
| |
| // C++ [class.copy]p11: |
| // A copy assignment operator is trivial if it is implicitly declared. |
| // FIXME: C++0x: don't do this for "= default" copy operators. |
| HasTrivialCopyAssignment = false; |
| |
| // C++ [class]p4: |
| // A POD-struct is an aggregate class that [...] has no user-defined copy |
| // assignment operator [...]. |
| PlainOldData = false; |
| } |
| |
| void |
| CXXRecordDecl::collectConversionFunctions( |
| llvm::SmallPtrSet<CanQualType, 8>& ConversionsTypeSet) |
| { |
| OverloadedFunctionDecl *TopConversions = getConversionFunctions(); |
| for (OverloadedFunctionDecl::function_iterator |
| TFunc = TopConversions->function_begin(), |
| TFuncEnd = TopConversions->function_end(); |
| TFunc != TFuncEnd; ++TFunc) { |
| NamedDecl *TopConv = TFunc->get(); |
| CanQualType TConvType; |
| if (FunctionTemplateDecl *TConversionTemplate = |
| dyn_cast<FunctionTemplateDecl>(TopConv)) |
| TConvType = |
| getASTContext().getCanonicalType( |
| TConversionTemplate->getTemplatedDecl()->getResultType()); |
| else |
| TConvType = |
| getASTContext().getCanonicalType( |
| cast<CXXConversionDecl>(TopConv)->getConversionType()); |
| ConversionsTypeSet.insert(TConvType); |
| } |
| } |
| |
| /// getNestedVisibleConversionFunctions - imports unique conversion |
| /// functions from base classes into the visible conversion function |
| /// list of the class 'RD'. This is a private helper method. |
| /// TopConversionsTypeSet is the set of conversion functions of the class |
| /// we are interested in. HiddenConversionTypes is set of conversion functions |
| /// of the immediate derived class which hides the conversion functions found |
| /// in current class. |
| void |
| CXXRecordDecl::getNestedVisibleConversionFunctions(CXXRecordDecl *RD, |
| const llvm::SmallPtrSet<CanQualType, 8> &TopConversionsTypeSet, |
| const llvm::SmallPtrSet<CanQualType, 8> &HiddenConversionTypes) |
| { |
| bool inTopClass = (RD == this); |
| QualType ClassType = getASTContext().getTypeDeclType(this); |
| if (const RecordType *Record = ClassType->getAs<RecordType>()) { |
| OverloadedFunctionDecl *Conversions |
| = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); |
| |
| for (OverloadedFunctionDecl::function_iterator |
| Func = Conversions->function_begin(), |
| FuncEnd = Conversions->function_end(); |
| Func != FuncEnd; ++Func) { |
| NamedDecl *Conv = Func->get(); |
| // Only those conversions not exact match of conversions in current |
| // class are candidateconversion routines. |
| CanQualType ConvType; |
| if (FunctionTemplateDecl *ConversionTemplate = |
| dyn_cast<FunctionTemplateDecl>(Conv)) |
| ConvType = |
| getASTContext().getCanonicalType( |
| ConversionTemplate->getTemplatedDecl()->getResultType()); |
| else |
| ConvType = |
| getASTContext().getCanonicalType( |
| cast<CXXConversionDecl>(Conv)->getConversionType()); |
| // We only add conversion functions found in the base class if they |
| // are not hidden by those found in HiddenConversionTypes which are |
| // the conversion functions in its derived class. |
| if (inTopClass || |
| (!TopConversionsTypeSet.count(ConvType) && |
| !HiddenConversionTypes.count(ConvType)) ) { |
| if (FunctionTemplateDecl *ConversionTemplate = |
| dyn_cast<FunctionTemplateDecl>(Conv)) |
| RD->addVisibleConversionFunction(ConversionTemplate); |
| else |
| RD->addVisibleConversionFunction(cast<CXXConversionDecl>(Conv)); |
| } |
| } |
| } |
| |
| if (getNumBases() == 0 && getNumVBases() == 0) |
| return; |
| |
| llvm::SmallPtrSet<CanQualType, 8> ConversionFunctions; |
| if (!inTopClass) |
| collectConversionFunctions(ConversionFunctions); |
| |
| for (CXXRecordDecl::base_class_iterator VBase = vbases_begin(), |
| E = vbases_end(); VBase != E; ++VBase) { |
| if (const RecordType *RT = VBase->getType()->getAs<RecordType>()) { |
| CXXRecordDecl *VBaseClassDecl |
| = cast<CXXRecordDecl>(RT->getDecl()); |
| VBaseClassDecl->getNestedVisibleConversionFunctions(RD, |
| TopConversionsTypeSet, |
| (inTopClass ? TopConversionsTypeSet : ConversionFunctions)); |
| } |
| } |
| for (CXXRecordDecl::base_class_iterator Base = bases_begin(), |
| E = bases_end(); Base != E; ++Base) { |
| if (Base->isVirtual()) |
| continue; |
| if (const RecordType *RT = Base->getType()->getAs<RecordType>()) { |
| CXXRecordDecl *BaseClassDecl |
| = cast<CXXRecordDecl>(RT->getDecl()); |
| |
| BaseClassDecl->getNestedVisibleConversionFunctions(RD, |
| TopConversionsTypeSet, |
| (inTopClass ? TopConversionsTypeSet : ConversionFunctions)); |
| } |
| } |
| } |
| |
| /// getVisibleConversionFunctions - get all conversion functions visible |
| /// in current class; including conversion function templates. |
| OverloadedFunctionDecl * |
| CXXRecordDecl::getVisibleConversionFunctions() { |
| // If root class, all conversions are visible. |
| if (bases_begin() == bases_end()) |
| return &Conversions; |
| // If visible conversion list is already evaluated, return it. |
| if (ComputedVisibleConversions) |
| return &VisibleConversions; |
| llvm::SmallPtrSet<CanQualType, 8> TopConversionsTypeSet; |
| collectConversionFunctions(TopConversionsTypeSet); |
| getNestedVisibleConversionFunctions(this, TopConversionsTypeSet, |
| TopConversionsTypeSet); |
| ComputedVisibleConversions = true; |
| return &VisibleConversions; |
| } |
| |
| void CXXRecordDecl::addVisibleConversionFunction( |
| CXXConversionDecl *ConvDecl) { |
| assert(!ConvDecl->getDescribedFunctionTemplate() && |
| "Conversion function templates should cast to FunctionTemplateDecl."); |
| VisibleConversions.addOverload(ConvDecl); |
| } |
| |
| void CXXRecordDecl::addVisibleConversionFunction( |
| FunctionTemplateDecl *ConvDecl) { |
| assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) && |
| "Function template is not a conversion function template"); |
| VisibleConversions.addOverload(ConvDecl); |
| } |
| |
| void CXXRecordDecl::addConversionFunction(CXXConversionDecl *ConvDecl) { |
| assert(!ConvDecl->getDescribedFunctionTemplate() && |
| "Conversion function templates should cast to FunctionTemplateDecl."); |
| Conversions.addOverload(ConvDecl); |
| } |
| |
| void CXXRecordDecl::addConversionFunction(FunctionTemplateDecl *ConvDecl) { |
| assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) && |
| "Function template is not a conversion function template"); |
| Conversions.addOverload(ConvDecl); |
| } |
| |
| CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { |
| if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
| return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); |
| |
| return 0; |
| } |
| |
| MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { |
| return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); |
| } |
| |
| void |
| CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, |
| TemplateSpecializationKind TSK) { |
| assert(TemplateOrInstantiation.isNull() && |
| "Previous template or instantiation?"); |
| assert(!isa<ClassTemplateSpecializationDecl>(this)); |
| TemplateOrInstantiation |
| = new (getASTContext()) MemberSpecializationInfo(RD, TSK); |
| } |
| |
| TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(this)) |
| return Spec->getSpecializationKind(); |
| |
| if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) |
| return MSInfo->getTemplateSpecializationKind(); |
| |
| return TSK_Undeclared; |
| } |
| |
| void |
| CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(this)) { |
| Spec->setSpecializationKind(TSK); |
| return; |
| } |
| |
| if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { |
| MSInfo->setTemplateSpecializationKind(TSK); |
| return; |
| } |
| |
| assert(false && "Not a class template or member class specialization"); |
| } |
| |
| CXXConstructorDecl * |
| CXXRecordDecl::getDefaultConstructor(ASTContext &Context) { |
| QualType ClassType = Context.getTypeDeclType(this); |
| DeclarationName ConstructorName |
| = Context.DeclarationNames.getCXXConstructorName( |
| Context.getCanonicalType(ClassType.getUnqualifiedType())); |
| |
| DeclContext::lookup_const_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = lookup(ConstructorName); |
| Con != ConEnd; ++Con) { |
| // FIXME: In C++0x, a constructor template can be a default constructor. |
| if (isa<FunctionTemplateDecl>(*Con)) |
| continue; |
| |
| CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); |
| if (Constructor->isDefaultConstructor()) |
| return Constructor; |
| } |
| return 0; |
| } |
| |
| const CXXDestructorDecl * |
| CXXRecordDecl::getDestructor(ASTContext &Context) { |
| QualType ClassType = Context.getTypeDeclType(this); |
| |
| DeclarationName Name |
| = Context.DeclarationNames.getCXXDestructorName( |
| Context.getCanonicalType(ClassType)); |
| |
| DeclContext::lookup_iterator I, E; |
| llvm::tie(I, E) = lookup(Name); |
| assert(I != E && "Did not find a destructor!"); |
| |
| const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I); |
| assert(++I == E && "Found more than one destructor!"); |
| |
| return Dtor; |
| } |
| |
| CXXMethodDecl * |
| CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation L, DeclarationName N, |
| QualType T, DeclaratorInfo *DInfo, |
| bool isStatic, bool isInline) { |
| return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, DInfo, |
| isStatic, isInline); |
| } |
| |
| bool CXXMethodDecl::isUsualDeallocationFunction() const { |
| if (getOverloadedOperator() != OO_Delete && |
| getOverloadedOperator() != OO_Array_Delete) |
| return false; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // If a class T has a member deallocation function named operator delete |
| // with exactly one parameter, then that function is a usual (non-placement) |
| // deallocation function. [...] |
| if (getNumParams() == 1) |
| return true; |
| |
| // C++ [basic.stc.dynamic.deallocation]p2: |
| // [...] If class T does not declare such an operator delete but does |
| // declare a member deallocation function named operator delete with |
| // exactly two parameters, the second of which has type std::size_t (18.1), |
| // then this function is a usual deallocation function. |
| ASTContext &Context = getASTContext(); |
| if (getNumParams() != 2 || |
| !Context.hasSameType(getParamDecl(1)->getType(), Context.getSizeType())) |
| return false; |
| |
| // This function is a usual deallocation function if there are no |
| // single-parameter deallocation functions of the same kind. |
| for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName()); |
| R.first != R.second; ++R.first) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first)) |
| if (FD->getNumParams() == 1) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| typedef llvm::DenseMap<const CXXMethodDecl*, |
| std::vector<const CXXMethodDecl *> *> |
| OverriddenMethodsMapTy; |
| |
| // FIXME: We hate static data. This doesn't survive PCH saving/loading, and |
| // the vtable building code uses it at CG time. |
| static OverriddenMethodsMapTy *OverriddenMethods = 0; |
| |
| void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { |
| // FIXME: The CXXMethodDecl dtor needs to remove and free the entry. |
| |
| if (!OverriddenMethods) |
| OverriddenMethods = new OverriddenMethodsMapTy(); |
| |
| std::vector<const CXXMethodDecl *> *&Methods = (*OverriddenMethods)[this]; |
| if (!Methods) |
| Methods = new std::vector<const CXXMethodDecl *>; |
| |
| Methods->push_back(MD); |
| } |
| |
| CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { |
| if (!OverriddenMethods) |
| return 0; |
| |
| OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this); |
| if (it == OverriddenMethods->end() || it->second->empty()) |
| return 0; |
| |
| return &(*it->second)[0]; |
| } |
| |
| CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { |
| if (!OverriddenMethods) |
| return 0; |
| |
| OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this); |
| if (it == OverriddenMethods->end() || it->second->empty()) |
| return 0; |
| |
| return &(*it->second)[0] + it->second->size(); |
| } |
| |
| QualType CXXMethodDecl::getThisType(ASTContext &C) const { |
| // C++ 9.3.2p1: The type of this in a member function of a class X is X*. |
| // If the member function is declared const, the type of this is const X*, |
| // if the member function is declared volatile, the type of this is |
| // volatile X*, and if the member function is declared const volatile, |
| // the type of this is const volatile X*. |
| |
| assert(isInstance() && "No 'this' for static methods!"); |
| |
| QualType ClassTy; |
| if (ClassTemplateDecl *TD = getParent()->getDescribedClassTemplate()) |
| ClassTy = TD->getInjectedClassNameType(C); |
| else |
| ClassTy = C.getTagDeclType(getParent()); |
| ClassTy = C.getQualifiedType(ClassTy, |
| Qualifiers::fromCVRMask(getTypeQualifiers())); |
| return C.getPointerType(ClassTy); |
| } |
| |
| CXXBaseOrMemberInitializer:: |
| CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs, |
| CXXConstructorDecl *C, |
| SourceLocation L, SourceLocation R) |
| : Args(0), NumArgs(0), CtorOrAnonUnion(), IdLoc(L), RParenLoc(R) { |
| BaseOrMember = reinterpret_cast<uintptr_t>(BaseType.getTypePtr()); |
| assert((BaseOrMember & 0x01) == 0 && "Invalid base class type pointer"); |
| BaseOrMember |= 0x01; |
| |
| if (NumArgs > 0) { |
| this->NumArgs = NumArgs; |
| // FIXME. Allocation via Context |
| this->Args = new Stmt*[NumArgs]; |
| for (unsigned Idx = 0; Idx < NumArgs; ++Idx) |
| this->Args[Idx] = Args[Idx]; |
| } |
| CtorOrAnonUnion = C; |
| } |
| |
| CXXBaseOrMemberInitializer:: |
| CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs, |
| CXXConstructorDecl *C, |
| SourceLocation L, SourceLocation R) |
| : Args(0), NumArgs(0), CtorOrAnonUnion(), IdLoc(L), RParenLoc(R) { |
| BaseOrMember = reinterpret_cast<uintptr_t>(Member); |
| assert((BaseOrMember & 0x01) == 0 && "Invalid member pointer"); |
| |
| if (NumArgs > 0) { |
| this->NumArgs = NumArgs; |
| this->Args = new Stmt*[NumArgs]; |
| for (unsigned Idx = 0; Idx < NumArgs; ++Idx) |
| this->Args[Idx] = Args[Idx]; |
| } |
| CtorOrAnonUnion = C; |
| } |
| |
| CXXBaseOrMemberInitializer::~CXXBaseOrMemberInitializer() { |
| delete [] Args; |
| } |
| |
| CXXConstructorDecl * |
| CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation L, DeclarationName N, |
| QualType T, DeclaratorInfo *DInfo, |
| bool isExplicit, |
| bool isInline, bool isImplicitlyDeclared) { |
| assert(N.getNameKind() == DeclarationName::CXXConstructorName && |
| "Name must refer to a constructor"); |
| return new (C) CXXConstructorDecl(RD, L, N, T, DInfo, isExplicit, isInline, |
| isImplicitlyDeclared); |
| } |
| |
| bool CXXConstructorDecl::isDefaultConstructor() const { |
| // C++ [class.ctor]p5: |
| // A default constructor for a class X is a constructor of class |
| // X that can be called without an argument. |
| return (getNumParams() == 0) || |
| (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); |
| } |
| |
| bool |
| CXXConstructorDecl::isCopyConstructor(ASTContext &Context, |
| unsigned &TypeQuals) const { |
| // C++ [class.copy]p2: |
| // A non-template constructor for class X is a copy constructor |
| // if its first parameter is of type X&, const X&, volatile X& or |
| // const volatile X&, and either there are no other parameters |
| // or else all other parameters have default arguments (8.3.6). |
| if ((getNumParams() < 1) || |
| (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || |
| (getPrimaryTemplate() != 0) || |
| (getDescribedFunctionTemplate() != 0)) |
| return false; |
| |
| const ParmVarDecl *Param = getParamDecl(0); |
| |
| // Do we have a reference type? Rvalue references don't count. |
| const LValueReferenceType *ParamRefType = |
| Param->getType()->getAs<LValueReferenceType>(); |
| if (!ParamRefType) |
| return false; |
| |
| // Is it a reference to our class type? |
| CanQualType PointeeType |
| = Context.getCanonicalType(ParamRefType->getPointeeType()); |
| CanQualType ClassTy |
| = Context.getCanonicalType(Context.getTagDeclType(getParent())); |
| if (PointeeType.getUnqualifiedType() != ClassTy) |
| return false; |
| |
| // FIXME: other qualifiers? |
| |
| // We have a copy constructor. |
| TypeQuals = PointeeType.getCVRQualifiers(); |
| return true; |
| } |
| |
| bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { |
| // C++ [class.conv.ctor]p1: |
| // A constructor declared without the function-specifier explicit |
| // that can be called with a single parameter specifies a |
| // conversion from the type of its first parameter to the type of |
| // its class. Such a constructor is called a converting |
| // constructor. |
| if (isExplicit() && !AllowExplicit) |
| return false; |
| |
| return (getNumParams() == 0 && |
| getType()->getAs<FunctionProtoType>()->isVariadic()) || |
| (getNumParams() == 1) || |
| (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg()); |
| } |
| |
| CXXDestructorDecl * |
| CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation L, DeclarationName N, |
| QualType T, bool isInline, |
| bool isImplicitlyDeclared) { |
| assert(N.getNameKind() == DeclarationName::CXXDestructorName && |
| "Name must refer to a destructor"); |
| return new (C) CXXDestructorDecl(RD, L, N, T, isInline, |
| isImplicitlyDeclared); |
| } |
| |
| void |
| CXXDestructorDecl::Destroy(ASTContext& C) { |
| C.Deallocate(BaseOrMemberDestructions); |
| CXXMethodDecl::Destroy(C); |
| } |
| |
| void |
| CXXConstructorDecl::Destroy(ASTContext& C) { |
| C.Deallocate(BaseOrMemberInitializers); |
| CXXMethodDecl::Destroy(C); |
| } |
| |
| CXXConversionDecl * |
| CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD, |
| SourceLocation L, DeclarationName N, |
| QualType T, DeclaratorInfo *DInfo, |
| bool isInline, bool isExplicit) { |
| assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| "Name must refer to a conversion function"); |
| return new (C) CXXConversionDecl(RD, L, N, T, DInfo, isInline, isExplicit); |
| } |
| |
| OverloadedFunctionDecl * |
| OverloadedFunctionDecl::Create(ASTContext &C, DeclContext *DC, |
| DeclarationName N) { |
| return new (C) OverloadedFunctionDecl(DC, N); |
| } |
| |
| OverloadIterator::OverloadIterator(NamedDecl *ND) : D(0) { |
| if (!ND) |
| return; |
| |
| if (isa<FunctionDecl>(ND) || isa<FunctionTemplateDecl>(ND)) |
| D = ND; |
| else if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(ND)) { |
| if (Ovl->size() != 0) { |
| D = ND; |
| Iter = Ovl->function_begin(); |
| } |
| } |
| } |
| |
| void OverloadedFunctionDecl::addOverload(AnyFunctionDecl F) { |
| Functions.push_back(F); |
| this->setLocation(F.get()->getLocation()); |
| } |
| |
| OverloadIterator::reference OverloadIterator::operator*() const { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| return FD; |
| |
| if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) |
| return FTD; |
| |
| assert(isa<OverloadedFunctionDecl>(D)); |
| return *Iter; |
| } |
| |
| OverloadIterator &OverloadIterator::operator++() { |
| if (isa<FunctionDecl>(D) || isa<FunctionTemplateDecl>(D)) { |
| D = 0; |
| return *this; |
| } |
| |
| if (++Iter == cast<OverloadedFunctionDecl>(D)->function_end()) |
| D = 0; |
| |
| return *this; |
| } |
| |
| bool OverloadIterator::Equals(const OverloadIterator &Other) const { |
| if (!D || !Other.D) |
| return D == Other.D; |
| |
| if (D != Other.D) |
| return false; |
| |
| return !isa<OverloadedFunctionDecl>(D) || Iter == Other.Iter; |
| } |
| |
| FriendDecl *FriendDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation L, |
| FriendUnion Friend, |
| SourceLocation FriendL) { |
| #ifndef NDEBUG |
| if (Friend.is<NamedDecl*>()) { |
| NamedDecl *D = Friend.get<NamedDecl*>(); |
| assert(isa<FunctionDecl>(D) || |
| isa<CXXRecordDecl>(D) || |
| isa<FunctionTemplateDecl>(D) || |
| isa<ClassTemplateDecl>(D)); |
| assert(D->getFriendObjectKind()); |
| } |
| #endif |
| |
| return new (C) FriendDecl(DC, L, Friend, FriendL); |
| } |
| |
| LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, |
| DeclContext *DC, |
| SourceLocation L, |
| LanguageIDs Lang, bool Braces) { |
| return new (C) LinkageSpecDecl(DC, L, Lang, Braces); |
| } |
| |
| UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation L, |
| SourceLocation NamespaceLoc, |
| SourceRange QualifierRange, |
| NestedNameSpecifier *Qualifier, |
| SourceLocation IdentLoc, |
| NamespaceDecl *Used, |
| DeclContext *CommonAncestor) { |
| return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange, |
| Qualifier, IdentLoc, Used, CommonAncestor); |
| } |
| |
| NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation L, |
| SourceLocation AliasLoc, |
| IdentifierInfo *Alias, |
| SourceRange QualifierRange, |
| NestedNameSpecifier *Qualifier, |
| SourceLocation IdentLoc, |
| NamedDecl *Namespace) { |
| return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange, |
| Qualifier, IdentLoc, Namespace); |
| } |
| |
| UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation L, SourceRange NNR, SourceLocation TargetNL, |
| SourceLocation UL, NamedDecl* Target, |
| NestedNameSpecifier* TargetNNS, bool IsTypeNameArg) { |
| return new (C) UsingDecl(DC, L, NNR, TargetNL, UL, Target, |
| TargetNNS, IsTypeNameArg); |
| } |
| |
| UnresolvedUsingDecl *UnresolvedUsingDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation UsingLoc, |
| SourceRange TargetNNR, |
| NestedNameSpecifier *TargetNNS, |
| SourceLocation TargetNameLoc, |
| DeclarationName TargetName, |
| bool IsTypeNameArg) { |
| return new (C) UnresolvedUsingDecl(DC, UsingLoc, TargetNNR, TargetNNS, |
| TargetNameLoc, TargetName, IsTypeNameArg); |
| } |
| |
| StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, |
| SourceLocation L, Expr *AssertExpr, |
| StringLiteral *Message) { |
| return new (C) StaticAssertDecl(DC, L, AssertExpr, Message); |
| } |
| |
| void StaticAssertDecl::Destroy(ASTContext& C) { |
| AssertExpr->Destroy(C); |
| Message->Destroy(C); |
| this->~StaticAssertDecl(); |
| C.Deallocate((void *)this); |
| } |
| |
| StaticAssertDecl::~StaticAssertDecl() { |
| } |
| |
| static const char *getAccessName(AccessSpecifier AS) { |
| switch (AS) { |
| default: |
| case AS_none: |
| assert("Invalid access specifier!"); |
| return 0; |
| case AS_public: |
| return "public"; |
| case AS_private: |
| return "private"; |
| case AS_protected: |
| return "protected"; |
| } |
| } |
| |
| const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, |
| AccessSpecifier AS) { |
| return DB << getAccessName(AS); |
| } |
| |
| |