blob: f4386538d7ae3077311529021da3abbed5e9d432 [file] [log] [blame]
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// A intra-procedural analysis for thread safety (e.g. deadlocks and race
11// conditions), based off of an annotation system.
12//
Caitlin Sadowski19903462011-09-14 20:05:09 +000013// See http://clang.llvm.org/docs/LanguageExtensions.html#threadsafety for more
14// information.
Caitlin Sadowski402aa062011-09-09 16:11:56 +000015//
16//===----------------------------------------------------------------------===//
17
18#include "clang/Analysis/Analyses/ThreadSafety.h"
Ted Kremenek439ed162011-10-22 02:14:27 +000019#include "clang/Analysis/Analyses/PostOrderCFGView.h"
Caitlin Sadowskid5b16052011-09-09 23:00:59 +000020#include "clang/Analysis/AnalysisContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/Analysis/CFGStmtMap.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000023#include "clang/AST/DeclCXX.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtVisitor.h"
Caitlin Sadowskid5b16052011-09-09 23:00:59 +000027#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/SourceLocation.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000029#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/FoldingSet.h"
31#include "llvm/ADT/ImmutableMap.h"
32#include "llvm/ADT/PostOrderIterator.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/StringRef.h"
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +000035#include "llvm/Support/raw_ostream.h"
Caitlin Sadowski402aa062011-09-09 16:11:56 +000036#include <algorithm>
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +000037#include <utility>
Caitlin Sadowski402aa062011-09-09 16:11:56 +000038#include <vector>
39
40using namespace clang;
41using namespace thread_safety;
42
Caitlin Sadowski19903462011-09-14 20:05:09 +000043// Key method definition
44ThreadSafetyHandler::~ThreadSafetyHandler() {}
45
Caitlin Sadowski402aa062011-09-09 16:11:56 +000046namespace {
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +000047
Caitlin Sadowski402aa062011-09-09 16:11:56 +000048/// \brief A MutexID object uniquely identifies a particular mutex, and
49/// is built from an Expr* (i.e. calling a lock function).
50///
51/// Thread-safety analysis works by comparing lock expressions. Within the
52/// body of a function, an expression such as "x->foo->bar.mu" will resolve to
53/// a particular mutex object at run-time. Subsequent occurrences of the same
54/// expression (where "same" means syntactic equality) will refer to the same
55/// run-time object if three conditions hold:
56/// (1) Local variables in the expression, such as "x" have not changed.
57/// (2) Values on the heap that affect the expression have not changed.
58/// (3) The expression involves only pure function calls.
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +000059///
Caitlin Sadowski402aa062011-09-09 16:11:56 +000060/// The current implementation assumes, but does not verify, that multiple uses
61/// of the same lock expression satisfies these criteria.
62///
63/// Clang introduces an additional wrinkle, which is that it is difficult to
64/// derive canonical expressions, or compare expressions directly for equality.
65/// Thus, we identify a mutex not by an Expr, but by the set of named
66/// declarations that are referenced by the Expr. In other words,
67/// x->foo->bar.mu will be a four element vector with the Decls for
68/// mu, bar, and foo, and x. The vector will uniquely identify the expression
69/// for all practical purposes.
70///
71/// Note we will need to perform substitution on "this" and function parameter
72/// names when constructing a lock expression.
73///
74/// For example:
75/// class C { Mutex Mu; void lock() EXCLUSIVE_LOCK_FUNCTION(this->Mu); };
76/// void myFunc(C *X) { ... X->lock() ... }
77/// The original expression for the mutex acquired by myFunc is "this->Mu", but
78/// "X" is substituted for "this" so we get X->Mu();
79///
80/// For another example:
81/// foo(MyList *L) EXCLUSIVE_LOCKS_REQUIRED(L->Mu) { ... }
82/// MyList *MyL;
83/// foo(MyL); // requires lock MyL->Mu to be held
84class MutexID {
85 SmallVector<NamedDecl*, 2> DeclSeq;
86
87 /// Build a Decl sequence representing the lock from the given expression.
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +000088 /// Recursive function that terminates on DeclRefExpr.
89 /// Note: this function merely creates a MutexID; it does not check to
90 /// ensure that the original expression is a valid mutex expression.
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +000091 void buildMutexID(Expr *Exp, const NamedDecl *D, Expr *Parent,
92 unsigned NumArgs, Expr **FunArgs) {
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +000093 if (!Exp) {
94 DeclSeq.clear();
95 return;
96 }
97
Caitlin Sadowski402aa062011-09-09 16:11:56 +000098 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp)) {
99 NamedDecl *ND = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000100 ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(ND);
101 if (PV) {
102 FunctionDecl *FD =
103 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
104 unsigned i = PV->getFunctionScopeIndex();
105
106 if (FunArgs && FD == D->getCanonicalDecl()) {
107 // Substitute call arguments for references to function parameters
108 assert(i < NumArgs);
109 buildMutexID(FunArgs[i], D, 0, 0, 0);
110 return;
111 }
112 // Map the param back to the param of the original function declaration.
113 DeclSeq.push_back(FD->getParamDecl(i));
114 return;
115 }
116 // Not a function parameter -- just store the reference.
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000117 DeclSeq.push_back(ND);
118 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) {
119 NamedDecl *ND = ME->getMemberDecl();
120 DeclSeq.push_back(ND);
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000121 buildMutexID(ME->getBase(), D, Parent, NumArgs, FunArgs);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000122 } else if (isa<CXXThisExpr>(Exp)) {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000123 if (Parent)
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000124 buildMutexID(Parent, D, 0, 0, 0);
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000125 else
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000126 return; // mutexID is still valid in this case
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000127 } else if (UnaryOperator *UOE = dyn_cast<UnaryOperator>(Exp))
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000128 buildMutexID(UOE->getSubExpr(), D, Parent, NumArgs, FunArgs);
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000129 else if (CastExpr *CE = dyn_cast<CastExpr>(Exp))
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000130 buildMutexID(CE->getSubExpr(), D, Parent, NumArgs, FunArgs);
Caitlin Sadowski99107eb2011-09-09 16:21:55 +0000131 else
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000132 DeclSeq.clear(); // Mark as invalid lock expression.
133 }
134
135 /// \brief Construct a MutexID from an expression.
136 /// \param MutexExp The original mutex expression within an attribute
137 /// \param DeclExp An expression involving the Decl on which the attribute
138 /// occurs.
139 /// \param D The declaration to which the lock/unlock attribute is attached.
140 void buildMutexIDFromExp(Expr *MutexExp, Expr *DeclExp, const NamedDecl *D) {
141 Expr *Parent = 0;
DeLesley Hutchins81216392011-10-17 21:38:02 +0000142 unsigned NumArgs = 0;
143 Expr **FunArgs = 0;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000144
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000145 // If we are processing a raw attribute expression, with no substitutions.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000146 if (DeclExp == 0) {
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000147 buildMutexID(MutexExp, D, 0, 0, 0);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000148 return;
149 }
150
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000151 // Examine DeclExp to find Parent and FunArgs, which are used to substitute
152 // for formal parameters when we call buildMutexID later.
DeLesley Hutchins81216392011-10-17 21:38:02 +0000153 if (MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000154 Parent = ME->getBase();
DeLesley Hutchins81216392011-10-17 21:38:02 +0000155 } else if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000156 Parent = CE->getImplicitObjectArgument();
DeLesley Hutchins81216392011-10-17 21:38:02 +0000157 NumArgs = CE->getNumArgs();
158 FunArgs = CE->getArgs();
DeLesley Hutchinsdf497822011-12-29 00:56:48 +0000159 } else if (CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
160 NumArgs = CE->getNumArgs();
161 FunArgs = CE->getArgs();
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000162 } else if (CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
163 Parent = 0; // FIXME -- get the parent from DeclStmt
164 NumArgs = CE->getNumArgs();
165 FunArgs = CE->getArgs();
DeLesley Hutchins6db51f72011-10-21 20:51:27 +0000166 } else if (D && isa<CXXDestructorDecl>(D)) {
167 // There's no such thing as a "destructor call" in the AST.
168 Parent = DeclExp;
DeLesley Hutchins81216392011-10-17 21:38:02 +0000169 }
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000170
171 // If the attribute has no arguments, then assume the argument is "this".
172 if (MutexExp == 0) {
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000173 buildMutexID(Parent, D, 0, 0, 0);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000174 return;
175 }
DeLesley Hutchins81216392011-10-17 21:38:02 +0000176
DeLesley Hutchinse03b2b32012-01-20 23:24:41 +0000177 buildMutexID(MutexExp, D, Parent, NumArgs, FunArgs);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000178 }
179
180public:
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000181 explicit MutexID(clang::Decl::EmptyShell e) {
182 DeclSeq.clear();
183 }
184
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000185 /// \param MutexExp The original mutex expression within an attribute
186 /// \param DeclExp An expression involving the Decl on which the attribute
187 /// occurs.
188 /// \param D The declaration to which the lock/unlock attribute is attached.
189 /// Caller must check isValid() after construction.
190 MutexID(Expr* MutexExp, Expr *DeclExp, const NamedDecl* D) {
191 buildMutexIDFromExp(MutexExp, DeclExp, D);
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000192 }
193
DeLesley Hutchins9f80a972011-10-17 21:33:35 +0000194 /// Return true if this is a valid decl sequence.
195 /// Caller must call this by hand after construction to handle errors.
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000196 bool isValid() const {
197 return !DeclSeq.empty();
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000198 }
199
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000200 /// Issue a warning about an invalid lock expression
201 static void warnInvalidLock(ThreadSafetyHandler &Handler, Expr* MutexExp,
202 Expr *DeclExp, const NamedDecl* D) {
203 SourceLocation Loc;
204 if (DeclExp)
205 Loc = DeclExp->getExprLoc();
206
207 // FIXME: add a note about the attribute location in MutexExp or D
208 if (Loc.isValid())
209 Handler.handleInvalidLockExp(Loc);
210 }
211
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000212 bool operator==(const MutexID &other) const {
213 return DeclSeq == other.DeclSeq;
214 }
215
216 bool operator!=(const MutexID &other) const {
217 return !(*this == other);
218 }
219
220 // SmallVector overloads Operator< to do lexicographic ordering. Note that
221 // we use pointer equality (and <) to compare NamedDecls. This means the order
222 // of MutexIDs in a lockset is nondeterministic. In order to output
223 // diagnostics in a deterministic ordering, we must order all diagnostics to
224 // output by SourceLocation when iterating through this lockset.
225 bool operator<(const MutexID &other) const {
226 return DeclSeq < other.DeclSeq;
227 }
228
229 /// \brief Returns the name of the first Decl in the list for a given MutexID;
230 /// e.g. the lock expression foo.bar() has name "bar".
231 /// The caret will point unambiguously to the lock expression, so using this
232 /// name in diagnostics is a way to get simple, and consistent, mutex names.
233 /// We do not want to output the entire expression text for security reasons.
234 StringRef getName() const {
Caitlin Sadowski194418f2011-09-14 20:00:24 +0000235 assert(isValid());
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000236 return DeclSeq.front()->getName();
237 }
238
239 void Profile(llvm::FoldingSetNodeID &ID) const {
240 for (SmallVectorImpl<NamedDecl*>::const_iterator I = DeclSeq.begin(),
241 E = DeclSeq.end(); I != E; ++I) {
242 ID.AddPointer(*I);
243 }
244 }
245};
246
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000247
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000248/// \brief This is a helper class that stores info about the most recent
249/// accquire of a Lock.
250///
251/// The main body of the analysis maps MutexIDs to LockDatas.
252struct LockData {
253 SourceLocation AcquireLoc;
254
255 /// \brief LKind stores whether a lock is held shared or exclusively.
256 /// Note that this analysis does not currently support either re-entrant
257 /// locking or lock "upgrading" and "downgrading" between exclusive and
258 /// shared.
259 ///
260 /// FIXME: add support for re-entrant locking and lock up/downgrading
261 LockKind LKind;
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000262 MutexID UnderlyingMutex; // for ScopedLockable objects
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000263
264 LockData(SourceLocation AcquireLoc, LockKind LKind)
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000265 : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Decl::EmptyShell())
266 {}
267
268 LockData(SourceLocation AcquireLoc, LockKind LKind, const MutexID &Mu)
269 : AcquireLoc(AcquireLoc), LKind(LKind), UnderlyingMutex(Mu) {}
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000270
271 bool operator==(const LockData &other) const {
272 return AcquireLoc == other.AcquireLoc && LKind == other.LKind;
273 }
274
275 bool operator!=(const LockData &other) const {
276 return !(*this == other);
277 }
278
279 void Profile(llvm::FoldingSetNodeID &ID) const {
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000280 ID.AddInteger(AcquireLoc.getRawEncoding());
281 ID.AddInteger(LKind);
282 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000283};
284
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000285
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000286/// A Lockset maps each MutexID (defined above) to information about how it has
287/// been locked.
288typedef llvm::ImmutableMap<MutexID, LockData> Lockset;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000289typedef llvm::ImmutableMap<NamedDecl*, unsigned> LocalVarContext;
290
291class LocalVariableMap;
292
Richard Smith2e515622012-02-03 04:45:26 +0000293/// A side (entry or exit) of a CFG node.
294enum CFGBlockSide { CBS_Entry, CBS_Exit };
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000295
296/// CFGBlockInfo is a struct which contains all the information that is
297/// maintained for each block in the CFG. See LocalVariableMap for more
298/// information about the contexts.
299struct CFGBlockInfo {
300 Lockset EntrySet; // Lockset held at entry to block
301 Lockset ExitSet; // Lockset held at exit from block
302 LocalVarContext EntryContext; // Context held at entry to block
303 LocalVarContext ExitContext; // Context held at exit from block
Richard Smith2e515622012-02-03 04:45:26 +0000304 SourceLocation EntryLoc; // Location of first statement in block
305 SourceLocation ExitLoc; // Location of last statement in block.
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000306 unsigned EntryIndex; // Used to replay contexts later
307
Richard Smith2e515622012-02-03 04:45:26 +0000308 const Lockset &getSet(CFGBlockSide Side) const {
309 return Side == CBS_Entry ? EntrySet : ExitSet;
310 }
311 SourceLocation getLocation(CFGBlockSide Side) const {
312 return Side == CBS_Entry ? EntryLoc : ExitLoc;
313 }
314
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000315private:
316 CFGBlockInfo(Lockset EmptySet, LocalVarContext EmptyCtx)
317 : EntrySet(EmptySet), ExitSet(EmptySet),
318 EntryContext(EmptyCtx), ExitContext(EmptyCtx)
319 { }
320
321public:
322 static CFGBlockInfo getEmptyBlockInfo(Lockset::Factory &F,
323 LocalVariableMap &M);
324};
325
326
327
328// A LocalVariableMap maintains a map from local variables to their currently
329// valid definitions. It provides SSA-like functionality when traversing the
330// CFG. Like SSA, each definition or assignment to a variable is assigned a
331// unique name (an integer), which acts as the SSA name for that definition.
332// The total set of names is shared among all CFG basic blocks.
333// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
334// with their SSA-names. Instead, we compute a Context for each point in the
335// code, which maps local variables to the appropriate SSA-name. This map
336// changes with each assignment.
337//
338// The map is computed in a single pass over the CFG. Subsequent analyses can
339// then query the map to find the appropriate Context for a statement, and use
340// that Context to look up the definitions of variables.
341class LocalVariableMap {
342public:
343 typedef LocalVarContext Context;
344
345 /// A VarDefinition consists of an expression, representing the value of the
346 /// variable, along with the context in which that expression should be
347 /// interpreted. A reference VarDefinition does not itself contain this
348 /// information, but instead contains a pointer to a previous VarDefinition.
349 struct VarDefinition {
350 public:
351 friend class LocalVariableMap;
352
353 NamedDecl *Dec; // The original declaration for this variable.
354 Expr *Exp; // The expression for this variable, OR
355 unsigned Ref; // Reference to another VarDefinition
356 Context Ctx; // The map with which Exp should be interpreted.
357
358 bool isReference() { return !Exp; }
359
360 private:
361 // Create ordinary variable definition
362 VarDefinition(NamedDecl *D, Expr *E, Context C)
363 : Dec(D), Exp(E), Ref(0), Ctx(C)
364 { }
365
366 // Create reference to previous definition
367 VarDefinition(NamedDecl *D, unsigned R, Context C)
368 : Dec(D), Exp(0), Ref(R), Ctx(C)
369 { }
370 };
371
372private:
373 Context::Factory ContextFactory;
374 std::vector<VarDefinition> VarDefinitions;
375 std::vector<unsigned> CtxIndices;
376 std::vector<std::pair<Stmt*, Context> > SavedContexts;
377
378public:
379 LocalVariableMap() {
380 // index 0 is a placeholder for undefined variables (aka phi-nodes).
381 VarDefinitions.push_back(VarDefinition(0, 0u, getEmptyContext()));
382 }
383
384 /// Look up a definition, within the given context.
385 const VarDefinition* lookup(NamedDecl *D, Context Ctx) {
386 const unsigned *i = Ctx.lookup(D);
387 if (!i)
388 return 0;
389 assert(*i < VarDefinitions.size());
390 return &VarDefinitions[*i];
391 }
392
393 /// Look up the definition for D within the given context. Returns
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000394 /// NULL if the expression is not statically known. If successful, also
395 /// modifies Ctx to hold the context of the return Expr.
396 Expr* lookupExpr(NamedDecl *D, Context &Ctx) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000397 const unsigned *P = Ctx.lookup(D);
398 if (!P)
399 return 0;
400
401 unsigned i = *P;
402 while (i > 0) {
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000403 if (VarDefinitions[i].Exp) {
404 Ctx = VarDefinitions[i].Ctx;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000405 return VarDefinitions[i].Exp;
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000406 }
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000407 i = VarDefinitions[i].Ref;
408 }
409 return 0;
410 }
411
412 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
413
414 /// Return the next context after processing S. This function is used by
415 /// clients of the class to get the appropriate context when traversing the
416 /// CFG. It must be called for every assignment or DeclStmt.
417 Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
418 if (SavedContexts[CtxIndex+1].first == S) {
419 CtxIndex++;
420 Context Result = SavedContexts[CtxIndex].second;
421 return Result;
422 }
423 return C;
424 }
425
426 void dumpVarDefinitionName(unsigned i) {
427 if (i == 0) {
428 llvm::errs() << "Undefined";
429 return;
430 }
431 NamedDecl *Dec = VarDefinitions[i].Dec;
432 if (!Dec) {
433 llvm::errs() << "<<NULL>>";
434 return;
435 }
436 Dec->printName(llvm::errs());
437 llvm::errs() << "." << i << " " << ((void*) Dec);
438 }
439
440 /// Dumps an ASCII representation of the variable map to llvm::errs()
441 void dump() {
442 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
443 Expr *Exp = VarDefinitions[i].Exp;
444 unsigned Ref = VarDefinitions[i].Ref;
445
446 dumpVarDefinitionName(i);
447 llvm::errs() << " = ";
448 if (Exp) Exp->dump();
449 else {
450 dumpVarDefinitionName(Ref);
451 llvm::errs() << "\n";
452 }
453 }
454 }
455
456 /// Dumps an ASCII representation of a Context to llvm::errs()
457 void dumpContext(Context C) {
458 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
459 NamedDecl *D = I.getKey();
460 D->printName(llvm::errs());
461 const unsigned *i = C.lookup(D);
462 llvm::errs() << " -> ";
463 dumpVarDefinitionName(*i);
464 llvm::errs() << "\n";
465 }
466 }
467
468 /// Builds the variable map.
469 void traverseCFG(CFG *CFGraph, PostOrderCFGView *SortedGraph,
470 std::vector<CFGBlockInfo> &BlockInfo);
471
472protected:
473 // Get the current context index
474 unsigned getContextIndex() { return SavedContexts.size()-1; }
475
476 // Save the current context for later replay
477 void saveContext(Stmt *S, Context C) {
478 SavedContexts.push_back(std::make_pair(S,C));
479 }
480
481 // Adds a new definition to the given context, and returns a new context.
482 // This method should be called when declaring a new variable.
483 Context addDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
484 assert(!Ctx.contains(D));
485 unsigned newID = VarDefinitions.size();
486 Context NewCtx = ContextFactory.add(Ctx, D, newID);
487 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
488 return NewCtx;
489 }
490
491 // Add a new reference to an existing definition.
492 Context addReference(NamedDecl *D, unsigned i, Context Ctx) {
493 unsigned newID = VarDefinitions.size();
494 Context NewCtx = ContextFactory.add(Ctx, D, newID);
495 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
496 return NewCtx;
497 }
498
499 // Updates a definition only if that definition is already in the map.
500 // This method should be called when assigning to an existing variable.
501 Context updateDefinition(NamedDecl *D, Expr *Exp, Context Ctx) {
502 if (Ctx.contains(D)) {
503 unsigned newID = VarDefinitions.size();
504 Context NewCtx = ContextFactory.remove(Ctx, D);
505 NewCtx = ContextFactory.add(NewCtx, D, newID);
506 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
507 return NewCtx;
508 }
509 return Ctx;
510 }
511
512 // Removes a definition from the context, but keeps the variable name
513 // as a valid variable. The index 0 is a placeholder for cleared definitions.
514 Context clearDefinition(NamedDecl *D, Context Ctx) {
515 Context NewCtx = Ctx;
516 if (NewCtx.contains(D)) {
517 NewCtx = ContextFactory.remove(NewCtx, D);
518 NewCtx = ContextFactory.add(NewCtx, D, 0);
519 }
520 return NewCtx;
521 }
522
523 // Remove a definition entirely frmo the context.
524 Context removeDefinition(NamedDecl *D, Context Ctx) {
525 Context NewCtx = Ctx;
526 if (NewCtx.contains(D)) {
527 NewCtx = ContextFactory.remove(NewCtx, D);
528 }
529 return NewCtx;
530 }
531
532 Context intersectContexts(Context C1, Context C2);
533 Context createReferenceContext(Context C);
534 void intersectBackEdge(Context C1, Context C2);
535
536 friend class VarMapBuilder;
537};
538
539
540// This has to be defined after LocalVariableMap.
541CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(Lockset::Factory &F,
542 LocalVariableMap &M) {
543 return CFGBlockInfo(F.getEmptyMap(), M.getEmptyContext());
544}
545
546
547/// Visitor which builds a LocalVariableMap
548class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
549public:
550 LocalVariableMap* VMap;
551 LocalVariableMap::Context Ctx;
552
553 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
554 : VMap(VM), Ctx(C) {}
555
556 void VisitDeclStmt(DeclStmt *S);
557 void VisitBinaryOperator(BinaryOperator *BO);
558};
559
560
561// Add new local variables to the variable map
562void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
563 bool modifiedCtx = false;
564 DeclGroupRef DGrp = S->getDeclGroup();
565 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
566 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
567 Expr *E = VD->getInit();
568
569 // Add local variables with trivial type to the variable map
570 QualType T = VD->getType();
571 if (T.isTrivialType(VD->getASTContext())) {
572 Ctx = VMap->addDefinition(VD, E, Ctx);
573 modifiedCtx = true;
574 }
575 }
576 }
577 if (modifiedCtx)
578 VMap->saveContext(S, Ctx);
579}
580
581// Update local variable definitions in variable map
582void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
583 if (!BO->isAssignmentOp())
584 return;
585
586 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
587
588 // Update the variable map and current context.
589 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
590 ValueDecl *VDec = DRE->getDecl();
591 if (Ctx.lookup(VDec)) {
592 if (BO->getOpcode() == BO_Assign)
593 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
594 else
595 // FIXME -- handle compound assignment operators
596 Ctx = VMap->clearDefinition(VDec, Ctx);
597 VMap->saveContext(BO, Ctx);
598 }
599 }
600}
601
602
603// Computes the intersection of two contexts. The intersection is the
604// set of variables which have the same definition in both contexts;
605// variables with different definitions are discarded.
606LocalVariableMap::Context
607LocalVariableMap::intersectContexts(Context C1, Context C2) {
608 Context Result = C1;
609 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
610 NamedDecl *Dec = I.getKey();
611 unsigned i1 = I.getData();
612 const unsigned *i2 = C2.lookup(Dec);
613 if (!i2) // variable doesn't exist on second path
614 Result = removeDefinition(Dec, Result);
615 else if (*i2 != i1) // variable exists, but has different definition
616 Result = clearDefinition(Dec, Result);
617 }
618 return Result;
619}
620
621// For every variable in C, create a new variable that refers to the
622// definition in C. Return a new context that contains these new variables.
623// (We use this for a naive implementation of SSA on loop back-edges.)
624LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
625 Context Result = getEmptyContext();
626 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
627 NamedDecl *Dec = I.getKey();
628 unsigned i = I.getData();
629 Result = addReference(Dec, i, Result);
630 }
631 return Result;
632}
633
634// This routine also takes the intersection of C1 and C2, but it does so by
635// altering the VarDefinitions. C1 must be the result of an earlier call to
636// createReferenceContext.
637void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
638 for (Context::iterator I = C1.begin(), E = C1.end(); I != E; ++I) {
639 NamedDecl *Dec = I.getKey();
640 unsigned i1 = I.getData();
641 VarDefinition *VDef = &VarDefinitions[i1];
642 assert(VDef->isReference());
643
644 const unsigned *i2 = C2.lookup(Dec);
645 if (!i2 || (*i2 != i1))
646 VDef->Ref = 0; // Mark this variable as undefined
647 }
648}
649
650
651// Traverse the CFG in topological order, so all predecessors of a block
652// (excluding back-edges) are visited before the block itself. At
653// each point in the code, we calculate a Context, which holds the set of
654// variable definitions which are visible at that point in execution.
655// Visible variables are mapped to their definitions using an array that
656// contains all definitions.
657//
658// At join points in the CFG, the set is computed as the intersection of
659// the incoming sets along each edge, E.g.
660//
661// { Context | VarDefinitions }
662// int x = 0; { x -> x1 | x1 = 0 }
663// int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
664// if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
665// else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
666// ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
667//
668// This is essentially a simpler and more naive version of the standard SSA
669// algorithm. Those definitions that remain in the intersection are from blocks
670// that strictly dominate the current block. We do not bother to insert proper
671// phi nodes, because they are not used in our analysis; instead, wherever
672// a phi node would be required, we simply remove that definition from the
673// context (E.g. x above).
674//
675// The initial traversal does not capture back-edges, so those need to be
676// handled on a separate pass. Whenever the first pass encounters an
677// incoming back edge, it duplicates the context, creating new definitions
678// that refer back to the originals. (These correspond to places where SSA
679// might have to insert a phi node.) On the second pass, these definitions are
680// set to NULL if the the variable has changed on the back-edge (i.e. a phi
681// node was actually required.) E.g.
682//
683// { Context | VarDefinitions }
684// int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
685// while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
686// x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
687// ... { y -> y1 | x3 = 2, x2 = 1, ... }
688//
689void LocalVariableMap::traverseCFG(CFG *CFGraph,
690 PostOrderCFGView *SortedGraph,
691 std::vector<CFGBlockInfo> &BlockInfo) {
692 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
693
694 CtxIndices.resize(CFGraph->getNumBlockIDs());
695
696 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
697 E = SortedGraph->end(); I!= E; ++I) {
698 const CFGBlock *CurrBlock = *I;
699 int CurrBlockID = CurrBlock->getBlockID();
700 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
701
702 VisitedBlocks.insert(CurrBlock);
703
704 // Calculate the entry context for the current block
705 bool HasBackEdges = false;
706 bool CtxInit = true;
707 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
708 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
709 // if *PI -> CurrBlock is a back edge, so skip it
710 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI)) {
711 HasBackEdges = true;
712 continue;
713 }
714
715 int PrevBlockID = (*PI)->getBlockID();
716 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
717
718 if (CtxInit) {
719 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
720 CtxInit = false;
721 }
722 else {
723 CurrBlockInfo->EntryContext =
724 intersectContexts(CurrBlockInfo->EntryContext,
725 PrevBlockInfo->ExitContext);
726 }
727 }
728
729 // Duplicate the context if we have back-edges, so we can call
730 // intersectBackEdges later.
731 if (HasBackEdges)
732 CurrBlockInfo->EntryContext =
733 createReferenceContext(CurrBlockInfo->EntryContext);
734
735 // Create a starting context index for the current block
736 saveContext(0, CurrBlockInfo->EntryContext);
737 CurrBlockInfo->EntryIndex = getContextIndex();
738
739 // Visit all the statements in the basic block.
740 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
741 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
742 BE = CurrBlock->end(); BI != BE; ++BI) {
743 switch (BI->getKind()) {
744 case CFGElement::Statement: {
745 const CFGStmt *CS = cast<CFGStmt>(&*BI);
746 VMapBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
747 break;
748 }
749 default:
750 break;
751 }
752 }
753 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
754
755 // Mark variables on back edges as "unknown" if they've been changed.
756 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
757 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
758 // if CurrBlock -> *SI is *not* a back edge
759 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
760 continue;
761
762 CFGBlock *FirstLoopBlock = *SI;
763 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
764 Context LoopEnd = CurrBlockInfo->ExitContext;
765 intersectBackEdge(LoopBegin, LoopEnd);
766 }
767 }
768
769 // Put an extra entry at the end of the indexed context array
770 unsigned exitID = CFGraph->getExit().getBlockID();
771 saveContext(0, BlockInfo[exitID].ExitContext);
772}
773
Richard Smith2e515622012-02-03 04:45:26 +0000774/// Find the appropriate source locations to use when producing diagnostics for
775/// each block in the CFG.
776static void findBlockLocations(CFG *CFGraph,
777 PostOrderCFGView *SortedGraph,
778 std::vector<CFGBlockInfo> &BlockInfo) {
779 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
780 E = SortedGraph->end(); I!= E; ++I) {
781 const CFGBlock *CurrBlock = *I;
782 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
783
784 // Find the source location of the last statement in the block, if the
785 // block is not empty.
786 if (const Stmt *S = CurrBlock->getTerminator()) {
787 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
788 } else {
789 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
790 BE = CurrBlock->rend(); BI != BE; ++BI) {
791 // FIXME: Handle other CFGElement kinds.
792 if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
793 CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
794 break;
795 }
796 }
797 }
798
799 if (!CurrBlockInfo->ExitLoc.isInvalid()) {
800 // This block contains at least one statement. Find the source location
801 // of the first statement in the block.
802 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
803 BE = CurrBlock->end(); BI != BE; ++BI) {
804 // FIXME: Handle other CFGElement kinds.
805 if (const CFGStmt *CS = dyn_cast<CFGStmt>(&*BI)) {
806 CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
807 break;
808 }
809 }
810 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
811 CurrBlock != &CFGraph->getExit()) {
812 // The block is empty, and has a single predecessor. Use its exit
813 // location.
814 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
815 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
816 }
817 }
818}
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000819
820/// \brief Class which implements the core thread safety analysis routines.
821class ThreadSafetyAnalyzer {
822 friend class BuildLockset;
823
824 ThreadSafetyHandler &Handler;
825 Lockset::Factory LocksetFactory;
826 LocalVariableMap LocalVarMap;
827
828public:
829 ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {}
830
Richard Smith2e515622012-02-03 04:45:26 +0000831 Lockset intersectAndWarn(const CFGBlockInfo &Block1, CFGBlockSide Side1,
832 const CFGBlockInfo &Block2, CFGBlockSide Side2,
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000833 LockErrorKind LEK);
834
835 Lockset addLock(Lockset &LSet, Expr *MutexExp, const NamedDecl *D,
836 LockKind LK, SourceLocation Loc);
837
838 void runAnalysis(AnalysisDeclContext &AC);
839};
840
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000841
842/// \brief We use this class to visit different types of expressions in
843/// CFGBlocks, and build up the lockset.
844/// An expression may cause us to add or remove locks from the lockset, or else
845/// output error messages related to missing locks.
846/// FIXME: In future, we may be able to not inherit from a visitor.
847class BuildLockset : public StmtVisitor<BuildLockset> {
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000848 friend class ThreadSafetyAnalyzer;
849
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000850 ThreadSafetyHandler &Handler;
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000851 Lockset::Factory &LocksetFactory;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000852 LocalVariableMap &LocalVarMap;
853
854 Lockset LSet;
855 LocalVariableMap::Context LVarCtx;
856 unsigned CtxIndex;
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000857
858 // Helper functions
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000859 void addLock(const MutexID &Mutex, const LockData &LDat);
860 void removeLock(const MutexID &Mutex, SourceLocation UnlockLoc);
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000861
862 template <class AttrType>
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000863 void addLocksToSet(LockKind LK, AttrType *Attr,
864 Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000865 void removeLocksFromSet(UnlockFunctionAttr *Attr,
866 Expr *Exp, NamedDecl* FunDecl);
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000867
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000868 const ValueDecl *getValueDecl(Expr *Exp);
869 void warnIfMutexNotHeld (const NamedDecl *D, Expr *Exp, AccessKind AK,
870 Expr *MutexExp, ProtectedOperationKind POK);
871 void checkAccess(Expr *Exp, AccessKind AK);
872 void checkDereference(Expr *Exp, AccessKind AK);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000873 void handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD = 0);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000874
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +0000875 template <class AttrType>
876 void addTrylock(LockKind LK, AttrType *Attr, Expr *Exp, NamedDecl *FunDecl,
877 const CFGBlock* PredBlock, const CFGBlock *CurrBlock,
878 Expr *BrE, bool Neg);
879 CallExpr* getTrylockCallExpr(Stmt *Cond, LocalVariableMap::Context C,
880 bool &Negate);
881 void handleTrylock(Stmt *Cond, const CFGBlock* PredBlock,
882 const CFGBlock *CurrBlock);
883
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000884 /// \brief Returns true if the lockset contains a lock, regardless of whether
885 /// the lock is held exclusively or shared.
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000886 bool locksetContains(const MutexID &Lock) const {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000887 return LSet.lookup(Lock);
888 }
889
890 /// \brief Returns true if the lockset contains a lock with the passed in
891 /// locktype.
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000892 bool locksetContains(const MutexID &Lock, LockKind KindRequested) const {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000893 const LockData *LockHeld = LSet.lookup(Lock);
894 return (LockHeld && KindRequested == LockHeld->LKind);
895 }
896
897 /// \brief Returns true if the lockset contains a lock with at least the
898 /// passed in locktype. So for example, if we pass in LK_Shared, this function
899 /// returns true if the lock is held LK_Shared or LK_Exclusive. If we pass in
900 /// LK_Exclusive, this function returns true if the lock is held LK_Exclusive.
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000901 bool locksetContainsAtLeast(const MutexID &Lock,
902 LockKind KindRequested) const {
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000903 switch (KindRequested) {
904 case LK_Shared:
905 return locksetContains(Lock);
906 case LK_Exclusive:
907 return locksetContains(Lock, KindRequested);
908 }
Benjamin Kramerafc5b152011-09-10 21:52:04 +0000909 llvm_unreachable("Unknown LockKind");
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000910 }
911
912public:
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +0000913 BuildLockset(ThreadSafetyAnalyzer *analyzer, CFGBlockInfo &Info)
914 : StmtVisitor<BuildLockset>(),
915 Handler(analyzer->Handler),
916 LocksetFactory(analyzer->LocksetFactory),
917 LocalVarMap(analyzer->LocalVarMap),
918 LSet(Info.EntrySet),
919 LVarCtx(Info.EntryContext),
920 CtxIndex(Info.EntryIndex)
921 {}
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000922
923 void VisitUnaryOperator(UnaryOperator *UO);
924 void VisitBinaryOperator(BinaryOperator *BO);
925 void VisitCastExpr(CastExpr *CE);
DeLesley Hutchinsdf497822011-12-29 00:56:48 +0000926 void VisitCallExpr(CallExpr *Exp);
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +0000927 void VisitCXXConstructExpr(CXXConstructExpr *Exp);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000928 void VisitDeclStmt(DeclStmt *S);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000929};
930
931/// \brief Add a new lock to the lockset, warning if the lock is already there.
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000932/// \param Mutex -- the Mutex expression for the lock
933/// \param LDat -- the LockData for the lock
934void BuildLockset::addLock(const MutexID &Mutex, const LockData& LDat) {
935 // FIXME: deal with acquired before/after annotations.
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000936 // FIXME: Don't always warn when we have support for reentrant locks.
937 if (locksetContains(Mutex))
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000938 Handler.handleDoubleLock(Mutex.getName(), LDat.AcquireLoc);
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000939 else
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000940 LSet = LocksetFactory.add(LSet, Mutex, LDat);
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000941}
942
943/// \brief Remove a lock from the lockset, warning if the lock is not there.
944/// \param LockExp The lock expression corresponding to the lock to be removed
945/// \param UnlockLoc The source location of the unlock (only used in error msg)
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000946void BuildLockset::removeLock(const MutexID &Mutex, SourceLocation UnlockLoc) {
947 const LockData *LDat = LSet.lookup(Mutex);
948 if (!LDat)
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000949 Handler.handleUnmatchedUnlock(Mutex.getName(), UnlockLoc);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000950 else {
951 // For scoped-lockable vars, remove the mutex associated with this var.
952 if (LDat->UnderlyingMutex.isValid())
953 removeLock(LDat->UnderlyingMutex, UnlockLoc);
954 LSet = LocksetFactory.remove(LSet, Mutex);
955 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +0000956}
957
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000958/// \brief This function, parameterized by an attribute type, is used to add a
959/// set of locks specified as attribute arguments to the lockset.
960template <typename AttrType>
961void BuildLockset::addLocksToSet(LockKind LK, AttrType *Attr,
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000962 Expr *Exp, NamedDecl* FunDecl, VarDecl *VD) {
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000963 typedef typename AttrType::args_iterator iterator_type;
964
965 SourceLocation ExpLocation = Exp->getExprLoc();
966
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000967 // Figure out if we're calling the constructor of scoped lockable class
968 bool isScopedVar = false;
969 if (VD) {
970 if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FunDecl)) {
971 CXXRecordDecl* PD = CD->getParent();
972 if (PD && PD->getAttr<ScopedLockableAttr>())
973 isScopedVar = true;
974 }
975 }
976
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000977 if (Attr->args_size() == 0) {
978 // The mutex held is the "this" object.
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000979 MutexID Mutex(0, Exp, FunDecl);
980 if (!Mutex.isValid())
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000981 MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000982 else
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000983 addLock(Mutex, LockData(ExpLocation, LK));
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +0000984 return;
985 }
986
987 for (iterator_type I=Attr->args_begin(), E=Attr->args_end(); I != E; ++I) {
988 MutexID Mutex(*I, Exp, FunDecl);
989 if (!Mutex.isValid())
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +0000990 MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +0000991 else {
992 addLock(Mutex, LockData(ExpLocation, LK));
993 if (isScopedVar) {
994 // For scoped lockable vars, map this var to its underlying mutex.
995 DeclRefExpr DRE(VD, VD->getType(), VK_LValue, VD->getLocation());
996 MutexID SMutex(&DRE, 0, 0);
997 addLock(SMutex, LockData(VD->getLocation(), LK, Mutex));
998 }
999 }
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001000 }
1001}
1002
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001003/// \brief This function removes a set of locks specified as attribute
1004/// arguments from the lockset.
1005void BuildLockset::removeLocksFromSet(UnlockFunctionAttr *Attr,
1006 Expr *Exp, NamedDecl* FunDecl) {
1007 SourceLocation ExpLocation;
1008 if (Exp) ExpLocation = Exp->getExprLoc();
1009
1010 if (Attr->args_size() == 0) {
1011 // The mutex held is the "this" object.
1012 MutexID Mu(0, Exp, FunDecl);
1013 if (!Mu.isValid())
1014 MutexID::warnInvalidLock(Handler, 0, Exp, FunDecl);
1015 else
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001016 removeLock(Mu, ExpLocation);
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001017 return;
1018 }
1019
1020 for (UnlockFunctionAttr::args_iterator I = Attr->args_begin(),
1021 E = Attr->args_end(); I != E; ++I) {
1022 MutexID Mutex(*I, Exp, FunDecl);
1023 if (!Mutex.isValid())
1024 MutexID::warnInvalidLock(Handler, *I, Exp, FunDecl);
1025 else
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001026 removeLock(Mutex, ExpLocation);
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001027 }
1028}
1029
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001030/// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs
1031const ValueDecl *BuildLockset::getValueDecl(Expr *Exp) {
1032 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Exp))
1033 return DR->getDecl();
1034
1035 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp))
1036 return ME->getMemberDecl();
1037
1038 return 0;
1039}
1040
1041/// \brief Warn if the LSet does not contain a lock sufficient to protect access
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001042/// of at least the passed in AccessKind.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001043void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, Expr *Exp,
1044 AccessKind AK, Expr *MutexExp,
1045 ProtectedOperationKind POK) {
1046 LockKind LK = getLockKindFromAccessKind(AK);
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001047
1048 MutexID Mutex(MutexExp, Exp, D);
Caitlin Sadowski194418f2011-09-14 20:00:24 +00001049 if (!Mutex.isValid())
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001050 MutexID::warnInvalidLock(Handler, MutexExp, Exp, D);
Caitlin Sadowski194418f2011-09-14 20:00:24 +00001051 else if (!locksetContainsAtLeast(Mutex, LK))
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001052 Handler.handleMutexNotHeld(D, POK, Mutex.getName(), LK, Exp->getExprLoc());
1053}
1054
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001055/// \brief This method identifies variable dereferences and checks pt_guarded_by
1056/// and pt_guarded_var annotations. Note that we only check these annotations
1057/// at the time a pointer is dereferenced.
1058/// FIXME: We need to check for other types of pointer dereferences
1059/// (e.g. [], ->) and deal with them here.
1060/// \param Exp An expression that has been read or written.
1061void BuildLockset::checkDereference(Expr *Exp, AccessKind AK) {
1062 UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp);
1063 if (!UO || UO->getOpcode() != clang::UO_Deref)
1064 return;
1065 Exp = UO->getSubExpr()->IgnoreParenCasts();
1066
1067 const ValueDecl *D = getValueDecl(Exp);
1068 if(!D || !D->hasAttrs())
1069 return;
1070
1071 if (D->getAttr<PtGuardedVarAttr>() && LSet.isEmpty())
1072 Handler.handleNoMutexHeld(D, POK_VarDereference, AK, Exp->getExprLoc());
1073
1074 const AttrVec &ArgAttrs = D->getAttrs();
1075 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1076 if (PtGuardedByAttr *PGBAttr = dyn_cast<PtGuardedByAttr>(ArgAttrs[i]))
1077 warnIfMutexNotHeld(D, Exp, AK, PGBAttr->getArg(), POK_VarDereference);
1078}
1079
1080/// \brief Checks guarded_by and guarded_var attributes.
1081/// Whenever we identify an access (read or write) of a DeclRefExpr or
1082/// MemberExpr, we need to check whether there are any guarded_by or
1083/// guarded_var attributes, and make sure we hold the appropriate mutexes.
1084void BuildLockset::checkAccess(Expr *Exp, AccessKind AK) {
1085 const ValueDecl *D = getValueDecl(Exp);
1086 if(!D || !D->hasAttrs())
1087 return;
1088
1089 if (D->getAttr<GuardedVarAttr>() && LSet.isEmpty())
1090 Handler.handleNoMutexHeld(D, POK_VarAccess, AK, Exp->getExprLoc());
1091
1092 const AttrVec &ArgAttrs = D->getAttrs();
1093 for(unsigned i = 0, Size = ArgAttrs.size(); i < Size; ++i)
1094 if (GuardedByAttr *GBAttr = dyn_cast<GuardedByAttr>(ArgAttrs[i]))
1095 warnIfMutexNotHeld(D, Exp, AK, GBAttr->getArg(), POK_VarAccess);
1096}
1097
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001098/// \brief Process a function call, method call, constructor call,
1099/// or destructor call. This involves looking at the attributes on the
1100/// corresponding function/method/constructor/destructor, issuing warnings,
1101/// and updating the locksets accordingly.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001102///
1103/// FIXME: For classes annotated with one of the guarded annotations, we need
1104/// to treat const method calls as reads and non-const method calls as writes,
1105/// and check that the appropriate locks are held. Non-const method calls with
1106/// the same signature as const method calls can be also treated as reads.
1107///
1108/// FIXME: We need to also visit CallExprs to catch/check global functions.
Caitlin Sadowski1748b122011-09-16 00:35:54 +00001109///
1110/// FIXME: Do not flag an error for member variables accessed in constructors/
1111/// destructors
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001112void BuildLockset::handleCall(Expr *Exp, NamedDecl *D, VarDecl *VD) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001113 AttrVec &ArgAttrs = D->getAttrs();
1114 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1115 Attr *Attr = ArgAttrs[i];
1116 switch (Attr->getKind()) {
1117 // When we encounter an exclusive lock function, we need to add the lock
1118 // to our lockset with kind exclusive.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001119 case attr::ExclusiveLockFunction: {
1120 ExclusiveLockFunctionAttr *A = cast<ExclusiveLockFunctionAttr>(Attr);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001121 addLocksToSet(LK_Exclusive, A, Exp, D, VD);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001122 break;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001123 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001124
1125 // When we encounter a shared lock function, we need to add the lock
1126 // to our lockset with kind shared.
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001127 case attr::SharedLockFunction: {
1128 SharedLockFunctionAttr *A = cast<SharedLockFunctionAttr>(Attr);
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001129 addLocksToSet(LK_Shared, A, Exp, D, VD);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001130 break;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001131 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001132
1133 // When we encounter an unlock function, we need to remove unlocked
1134 // mutexes from the lockset, and flag a warning if they are not there.
1135 case attr::UnlockFunction: {
1136 UnlockFunctionAttr *UFAttr = cast<UnlockFunctionAttr>(Attr);
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001137 removeLocksFromSet(UFAttr, Exp, D);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001138 break;
1139 }
1140
1141 case attr::ExclusiveLocksRequired: {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001142 ExclusiveLocksRequiredAttr *ELRAttr =
1143 cast<ExclusiveLocksRequiredAttr>(Attr);
1144
1145 for (ExclusiveLocksRequiredAttr::args_iterator
1146 I = ELRAttr->args_begin(), E = ELRAttr->args_end(); I != E; ++I)
1147 warnIfMutexNotHeld(D, Exp, AK_Written, *I, POK_FunctionCall);
1148 break;
1149 }
1150
1151 case attr::SharedLocksRequired: {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001152 SharedLocksRequiredAttr *SLRAttr = cast<SharedLocksRequiredAttr>(Attr);
1153
1154 for (SharedLocksRequiredAttr::args_iterator I = SLRAttr->args_begin(),
1155 E = SLRAttr->args_end(); I != E; ++I)
1156 warnIfMutexNotHeld(D, Exp, AK_Read, *I, POK_FunctionCall);
1157 break;
1158 }
1159
1160 case attr::LocksExcluded: {
1161 LocksExcludedAttr *LEAttr = cast<LocksExcludedAttr>(Attr);
1162 for (LocksExcludedAttr::args_iterator I = LEAttr->args_begin(),
1163 E = LEAttr->args_end(); I != E; ++I) {
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001164 MutexID Mutex(*I, Exp, D);
Caitlin Sadowski194418f2011-09-14 20:00:24 +00001165 if (!Mutex.isValid())
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001166 MutexID::warnInvalidLock(Handler, *I, Exp, D);
Caitlin Sadowski194418f2011-09-14 20:00:24 +00001167 else if (locksetContains(Mutex))
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001168 Handler.handleFunExcludesLock(D->getName(), Mutex.getName(),
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001169 Exp->getExprLoc());
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001170 }
1171 break;
1172 }
1173
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001174 // Ignore other (non thread-safety) attributes
1175 default:
1176 break;
1177 }
1178 }
1179}
1180
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +00001181
1182/// \brief Add lock to set, if the current block is in the taken branch of a
1183/// trylock.
1184template <class AttrType>
1185void BuildLockset::addTrylock(LockKind LK, AttrType *Attr, Expr *Exp,
1186 NamedDecl *FunDecl, const CFGBlock *PredBlock,
1187 const CFGBlock *CurrBlock, Expr *BrE, bool Neg) {
1188 // Find out which branch has the lock
1189 bool branch = 0;
1190 if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) {
1191 branch = BLE->getValue();
1192 }
1193 else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) {
1194 branch = ILE->getValue().getBoolValue();
1195 }
1196 int branchnum = branch ? 0 : 1;
1197 if (Neg) branchnum = !branchnum;
1198
1199 // If we've taken the trylock branch, then add the lock
1200 int i = 0;
1201 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1202 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1203 if (*SI == CurrBlock && i == branchnum) {
1204 addLocksToSet(LK, Attr, Exp, FunDecl, 0);
1205 }
1206 }
1207}
1208
1209
1210// If Cond can be traced back to a function call, return the call expression.
1211// The negate variable should be called with false, and will be set to true
1212// if the function call is negated, e.g. if (!mu.tryLock(...))
1213CallExpr* BuildLockset::getTrylockCallExpr(Stmt *Cond,
1214 LocalVariableMap::Context C,
1215 bool &Negate) {
1216 if (!Cond)
1217 return 0;
1218
1219 if (CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) {
1220 return CallExp;
1221 }
1222 else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) {
1223 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1224 }
1225 else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1226 Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1227 return getTrylockCallExpr(E, C, Negate);
1228 }
1229 else if (UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) {
1230 if (UOP->getOpcode() == UO_LNot) {
1231 Negate = !Negate;
1232 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1233 }
1234 }
1235 // FIXME -- handle && and || as well.
1236 return NULL;
1237}
1238
1239
1240/// \brief Process a conditional branch from a previous block to the current
1241/// block, looking for trylock calls.
1242void BuildLockset::handleTrylock(Stmt *Cond, const CFGBlock *PredBlock,
1243 const CFGBlock *CurrBlock) {
1244 bool Negate = false;
1245 CallExpr *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1246 if (!Exp)
1247 return;
1248
1249 NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1250 if(!FunDecl || !FunDecl->hasAttrs())
1251 return;
1252
1253 // If the condition is a call to a Trylock function, then grab the attributes
1254 AttrVec &ArgAttrs = FunDecl->getAttrs();
1255 for (unsigned i = 0; i < ArgAttrs.size(); ++i) {
1256 Attr *Attr = ArgAttrs[i];
1257 switch (Attr->getKind()) {
1258 case attr::ExclusiveTrylockFunction: {
1259 ExclusiveTrylockFunctionAttr *A =
1260 cast<ExclusiveTrylockFunctionAttr>(Attr);
1261 addTrylock(LK_Exclusive, A, Exp, FunDecl, PredBlock, CurrBlock,
1262 A->getSuccessValue(), Negate);
1263 break;
1264 }
1265 case attr::SharedTrylockFunction: {
1266 SharedTrylockFunctionAttr *A =
1267 cast<SharedTrylockFunctionAttr>(Attr);
1268 addTrylock(LK_Shared, A, Exp, FunDecl, PredBlock, CurrBlock,
1269 A->getSuccessValue(), Negate);
1270 break;
1271 }
1272 default:
1273 break;
1274 }
1275 }
1276}
1277
1278
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001279/// \brief For unary operations which read and write a variable, we need to
1280/// check whether we hold any required mutexes. Reads are checked in
1281/// VisitCastExpr.
1282void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1283 switch (UO->getOpcode()) {
1284 case clang::UO_PostDec:
1285 case clang::UO_PostInc:
1286 case clang::UO_PreDec:
1287 case clang::UO_PreInc: {
1288 Expr *SubExp = UO->getSubExpr()->IgnoreParenCasts();
1289 checkAccess(SubExp, AK_Written);
1290 checkDereference(SubExp, AK_Written);
1291 break;
1292 }
1293 default:
1294 break;
1295 }
1296}
1297
1298/// For binary operations which assign to a variable (writes), we need to check
1299/// whether we hold any required mutexes.
1300/// FIXME: Deal with non-primitive types.
1301void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1302 if (!BO->isAssignmentOp())
1303 return;
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001304
1305 // adjust the context
1306 LVarCtx = LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1307
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001308 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
1309 checkAccess(LHSExp, AK_Written);
1310 checkDereference(LHSExp, AK_Written);
1311}
1312
1313/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1314/// need to ensure we hold any required mutexes.
1315/// FIXME: Deal with non-primitive types.
1316void BuildLockset::VisitCastExpr(CastExpr *CE) {
1317 if (CE->getCastKind() != CK_LValueToRValue)
1318 return;
1319 Expr *SubExp = CE->getSubExpr()->IgnoreParenCasts();
1320 checkAccess(SubExp, AK_Read);
1321 checkDereference(SubExp, AK_Read);
1322}
1323
1324
DeLesley Hutchinsdf497822011-12-29 00:56:48 +00001325void BuildLockset::VisitCallExpr(CallExpr *Exp) {
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001326 NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1327 if(!D || !D->hasAttrs())
1328 return;
1329 handleCall(Exp, D);
1330}
1331
1332void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001333 // FIXME -- only handles constructors in DeclStmt below.
1334}
1335
1336void BuildLockset::VisitDeclStmt(DeclStmt *S) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001337 // adjust the context
1338 LVarCtx = LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
1339
DeLesley Hutchins1fa3c062011-12-08 20:23:06 +00001340 DeclGroupRef DGrp = S->getDeclGroup();
1341 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
1342 Decl *D = *I;
1343 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) {
1344 Expr *E = VD->getInit();
1345 if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) {
1346 NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
1347 if (!CtorD || !CtorD->hasAttrs())
1348 return;
1349 handleCall(CE, CtorD, VD);
1350 }
1351 }
1352 }
DeLesley Hutchinse0eaa852011-10-21 18:06:53 +00001353}
1354
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001355
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +00001356/// \brief Compute the intersection of two locksets and issue warnings for any
1357/// locks in the symmetric difference.
1358///
1359/// This function is used at a merge point in the CFG when comparing the lockset
1360/// of each branch being merged. For example, given the following sequence:
1361/// A; if () then B; else C; D; we need to check that the lockset after B and C
1362/// are the same. In the event of a difference, we use the intersection of these
1363/// two locksets at the start of D.
Richard Smith2e515622012-02-03 04:45:26 +00001364Lockset ThreadSafetyAnalyzer::intersectAndWarn(const CFGBlockInfo &Block1,
1365 CFGBlockSide Side1,
1366 const CFGBlockInfo &Block2,
1367 CFGBlockSide Side2,
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001368 LockErrorKind LEK) {
Richard Smith2e515622012-02-03 04:45:26 +00001369 Lockset LSet1 = Block1.getSet(Side1);
1370 Lockset LSet2 = Block2.getSet(Side2);
1371
Caitlin Sadowski4e4bc752011-09-15 17:25:19 +00001372 Lockset Intersection = LSet1;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001373 for (Lockset::iterator I = LSet2.begin(), E = LSet2.end(); I != E; ++I) {
1374 const MutexID &LSet2Mutex = I.getKey();
1375 const LockData &LSet2LockData = I.getData();
1376 if (const LockData *LD = LSet1.lookup(LSet2Mutex)) {
1377 if (LD->LKind != LSet2LockData.LKind) {
1378 Handler.handleExclusiveAndShared(LSet2Mutex.getName(),
1379 LSet2LockData.AcquireLoc,
1380 LD->AcquireLoc);
1381 if (LD->LKind != LK_Exclusive)
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001382 Intersection = LocksetFactory.add(Intersection, LSet2Mutex,
1383 LSet2LockData);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001384 }
1385 } else {
1386 Handler.handleMutexHeldEndOfScope(LSet2Mutex.getName(),
Richard Smith2e515622012-02-03 04:45:26 +00001387 LSet2LockData.AcquireLoc,
1388 Block1.getLocation(Side1), LEK);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001389 }
1390 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001391
1392 for (Lockset::iterator I = LSet1.begin(), E = LSet1.end(); I != E; ++I) {
1393 if (!LSet2.contains(I.getKey())) {
1394 const MutexID &Mutex = I.getKey();
1395 const LockData &MissingLock = I.getData();
1396 Handler.handleMutexHeldEndOfScope(Mutex.getName(),
Richard Smith2e515622012-02-03 04:45:26 +00001397 MissingLock.AcquireLoc,
1398 Block2.getLocation(Side2), LEK);
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001399 Intersection = LocksetFactory.remove(Intersection, Mutex);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001400 }
1401 }
1402 return Intersection;
1403}
1404
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001405Lockset ThreadSafetyAnalyzer::addLock(Lockset &LSet, Expr *MutexExp,
1406 const NamedDecl *D,
1407 LockKind LK, SourceLocation Loc) {
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001408 MutexID Mutex(MutexExp, 0, D);
Caitlin Sadowskicb967512011-09-15 17:43:08 +00001409 if (!Mutex.isValid()) {
DeLesley Hutchinsf1ac6372011-10-21 18:10:14 +00001410 MutexID::warnInvalidLock(Handler, MutexExp, 0, D);
Caitlin Sadowskicb967512011-09-15 17:43:08 +00001411 return LSet;
1412 }
1413 LockData NewLock(Loc, LK);
1414 return LocksetFactory.add(LSet, Mutex, NewLock);
1415}
1416
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001417/// \brief Check a function's CFG for thread-safety violations.
1418///
1419/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1420/// at the end of each block, and issue warnings for thread safety violations.
1421/// Each block in the CFG is traversed exactly once.
Ted Kremenek1d26f482011-10-24 01:32:45 +00001422void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001423 CFG *CFGraph = AC.getCFG();
1424 if (!CFGraph) return;
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001425 const NamedDecl *D = dyn_cast_or_null<NamedDecl>(AC.getDecl());
1426
1427 if (!D)
1428 return; // Ignore anonymous functions for now.
1429 if (D->getAttr<NoThreadSafetyAnalysisAttr>())
1430 return;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001431
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001432 std::vector<CFGBlockInfo> BlockInfo(CFGraph->getNumBlockIDs(),
1433 CFGBlockInfo::getEmptyBlockInfo(LocksetFactory, LocalVarMap));
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001434
1435 // We need to explore the CFG via a "topological" ordering.
1436 // That way, we will be guaranteed to have information about required
1437 // predecessor locksets when exploring a new block.
Ted Kremenek439ed162011-10-22 02:14:27 +00001438 PostOrderCFGView *SortedGraph = AC.getAnalysis<PostOrderCFGView>();
1439 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001440
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001441 // Compute SSA names for local variables
1442 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
1443
Richard Smith2e515622012-02-03 04:45:26 +00001444 // Fill in source locations for all CFGBlocks.
1445 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
1446
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001447 // Add locks from exclusive_locks_required and shared_locks_required
1448 // to initial lockset.
Ted Kremenek439ed162011-10-22 02:14:27 +00001449 if (!SortedGraph->empty() && D->hasAttrs()) {
1450 const CFGBlock *FirstBlock = *SortedGraph->begin();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001451 Lockset &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
Caitlin Sadowskicb967512011-09-15 17:43:08 +00001452 const AttrVec &ArgAttrs = D->getAttrs();
1453 for(unsigned i = 0; i < ArgAttrs.size(); ++i) {
1454 Attr *Attr = ArgAttrs[i];
Caitlin Sadowski1748b122011-09-16 00:35:54 +00001455 SourceLocation AttrLoc = Attr->getLocation();
Caitlin Sadowskicb967512011-09-15 17:43:08 +00001456 if (SharedLocksRequiredAttr *SLRAttr
1457 = dyn_cast<SharedLocksRequiredAttr>(Attr)) {
1458 for (SharedLocksRequiredAttr::args_iterator
1459 SLRIter = SLRAttr->args_begin(),
1460 SLREnd = SLRAttr->args_end(); SLRIter != SLREnd; ++SLRIter)
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001461 InitialLockset = addLock(InitialLockset,
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001462 *SLRIter, D, LK_Shared,
Caitlin Sadowski1748b122011-09-16 00:35:54 +00001463 AttrLoc);
Caitlin Sadowskicb967512011-09-15 17:43:08 +00001464 } else if (ExclusiveLocksRequiredAttr *ELRAttr
1465 = dyn_cast<ExclusiveLocksRequiredAttr>(Attr)) {
1466 for (ExclusiveLocksRequiredAttr::args_iterator
1467 ELRIter = ELRAttr->args_begin(),
1468 ELREnd = ELRAttr->args_end(); ELRIter != ELREnd; ++ELRIter)
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001469 InitialLockset = addLock(InitialLockset,
DeLesley Hutchins9f80a972011-10-17 21:33:35 +00001470 *ELRIter, D, LK_Exclusive,
Caitlin Sadowski1748b122011-09-16 00:35:54 +00001471 AttrLoc);
Caitlin Sadowskicb967512011-09-15 17:43:08 +00001472 }
1473 }
1474 }
1475
Ted Kremenek439ed162011-10-22 02:14:27 +00001476 for (PostOrderCFGView::iterator I = SortedGraph->begin(),
1477 E = SortedGraph->end(); I!= E; ++I) {
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001478 const CFGBlock *CurrBlock = *I;
1479 int CurrBlockID = CurrBlock->getBlockID();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001480 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001481
1482 // Use the default initial lockset in case there are no predecessors.
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001483 VisitedBlocks.insert(CurrBlock);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001484
1485 // Iterate through the predecessor blocks and warn if the lockset for all
1486 // predecessors is not the same. We take the entry lockset of the current
1487 // block to be the intersection of all previous locksets.
1488 // FIXME: By keeping the intersection, we may output more errors in future
1489 // for a lock which is not in the intersection, but was in the union. We
1490 // may want to also keep the union in future. As an example, let's say
1491 // the intersection contains Mutex L, and the union contains L and M.
1492 // Later we unlock M. At this point, we would output an error because we
1493 // never locked M; although the real error is probably that we forgot to
1494 // lock M on all code paths. Conversely, let's say that later we lock M.
1495 // In this case, we should compare against the intersection instead of the
1496 // union because the real error is probably that we forgot to unlock M on
1497 // all code paths.
1498 bool LocksetInitialized = false;
Richard Smithaacde712012-02-03 03:30:07 +00001499 llvm::SmallVector<CFGBlock*, 8> SpecialBlocks;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001500 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1501 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
1502
1503 // if *PI -> CurrBlock is a back edge
1504 if (*PI == 0 || !VisitedBlocks.alreadySet(*PI))
1505 continue;
1506
Richard Smithaacde712012-02-03 03:30:07 +00001507 // If the previous block ended in a 'continue' or 'break' statement, then
1508 // a difference in locksets is probably due to a bug in that block, rather
1509 // than in some other predecessor. In that case, keep the other
1510 // predecessor's lockset.
1511 if (const Stmt *Terminator = (*PI)->getTerminator()) {
1512 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
1513 SpecialBlocks.push_back(*PI);
1514 continue;
1515 }
1516 }
1517
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001518 int PrevBlockID = (*PI)->getBlockID();
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001519 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1520
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001521 if (!LocksetInitialized) {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001522 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001523 LocksetInitialized = true;
1524 } else {
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001525 CurrBlockInfo->EntrySet =
Richard Smith2e515622012-02-03 04:45:26 +00001526 intersectAndWarn(*CurrBlockInfo, CBS_Entry,
1527 *PrevBlockInfo, CBS_Exit,
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001528 LEK_LockedSomePredecessors);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001529 }
1530 }
1531
Richard Smithaacde712012-02-03 03:30:07 +00001532 // Process continue and break blocks. Assume that the lockset for the
1533 // resulting block is unaffected by any discrepancies in them.
1534 for (unsigned SpecialI = 0, SpecialN = SpecialBlocks.size();
1535 SpecialI < SpecialN; ++SpecialI) {
1536 CFGBlock *PrevBlock = SpecialBlocks[SpecialI];
1537 int PrevBlockID = PrevBlock->getBlockID();
1538 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
1539
1540 if (!LocksetInitialized) {
1541 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
1542 LocksetInitialized = true;
1543 } else {
1544 // Determine whether this edge is a loop terminator for diagnostic
1545 // purposes. FIXME: A 'break' statement might be a loop terminator, but
1546 // it might also be part of a switch. Also, a subsequent destructor
1547 // might add to the lockset, in which case the real issue might be a
1548 // double lock on the other path.
1549 const Stmt *Terminator = PrevBlock->getTerminator();
1550 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
1551
1552 // Do not update EntrySet.
Richard Smith2e515622012-02-03 04:45:26 +00001553 intersectAndWarn(*CurrBlockInfo, CBS_Entry, *PrevBlockInfo, CBS_Exit,
Richard Smithaacde712012-02-03 03:30:07 +00001554 IsLoop ? LEK_LockedSomeLoopIterations
1555 : LEK_LockedSomePredecessors);
1556 }
1557 }
1558
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001559 BuildLockset LocksetBuilder(this, *CurrBlockInfo);
DeLesley Hutchinsb4fa4182012-01-06 19:16:50 +00001560 CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
1561 PE = CurrBlock->pred_end();
1562 if (PI != PE) {
1563 // If the predecessor ended in a branch, then process any trylocks.
1564 // FIXME -- check to make sure there's only one predecessor.
1565 if (Stmt *TCE = (*PI)->getTerminatorCondition()) {
1566 LocksetBuilder.handleTrylock(TCE, *PI, CurrBlock);
1567 }
1568 }
1569
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001570 // Visit all the statements in the basic block.
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001571 for (CFGBlock::const_iterator BI = CurrBlock->begin(),
1572 BE = CurrBlock->end(); BI != BE; ++BI) {
DeLesley Hutchins6db51f72011-10-21 20:51:27 +00001573 switch (BI->getKind()) {
1574 case CFGElement::Statement: {
1575 const CFGStmt *CS = cast<CFGStmt>(&*BI);
1576 LocksetBuilder.Visit(const_cast<Stmt*>(CS->getStmt()));
1577 break;
1578 }
1579 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
1580 case CFGElement::AutomaticObjectDtor: {
1581 const CFGAutomaticObjDtor *AD = cast<CFGAutomaticObjDtor>(&*BI);
1582 CXXDestructorDecl *DD = const_cast<CXXDestructorDecl*>(
1583 AD->getDestructorDecl(AC.getASTContext()));
1584 if (!DD->hasAttrs())
1585 break;
1586
1587 // Create a dummy expression,
1588 VarDecl *VD = const_cast<VarDecl*>(AD->getVarDecl());
1589 DeclRefExpr DRE(VD, VD->getType(), VK_LValue,
1590 AD->getTriggerStmt()->getLocEnd());
1591 LocksetBuilder.handleCall(&DRE, DD);
1592 break;
1593 }
1594 default:
1595 break;
1596 }
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001597 }
DeLesley Hutchinsb37d2b52012-01-06 18:36:09 +00001598 CurrBlockInfo->ExitSet = LocksetBuilder.LSet;
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001599
1600 // For every back edge from CurrBlock (the end of the loop) to another block
1601 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
1602 // the one held at the beginning of FirstLoopBlock. We can look up the
1603 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
1604 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
1605 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
1606
1607 // if CurrBlock -> *SI is *not* a back edge
1608 if (*SI == 0 || !VisitedBlocks.alreadySet(*SI))
1609 continue;
1610
1611 CFGBlock *FirstLoopBlock = *SI;
Richard Smith2e515622012-02-03 04:45:26 +00001612 CFGBlockInfo &PreLoop = BlockInfo[FirstLoopBlock->getBlockID()];
1613 CFGBlockInfo &LoopEnd = BlockInfo[CurrBlockID];
1614 intersectAndWarn(LoopEnd, CBS_Exit, PreLoop, CBS_Entry,
1615 LEK_LockedSomeLoopIterations);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001616 }
1617 }
1618
Richard Smith2e515622012-02-03 04:45:26 +00001619 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
1620 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
Caitlin Sadowski1748b122011-09-16 00:35:54 +00001621
1622 // FIXME: Should we call this function for all blocks which exit the function?
Richard Smith2e515622012-02-03 04:45:26 +00001623 intersectAndWarn(Initial, CBS_Entry, Final, CBS_Exit,
1624 LEK_LockedAtEndOfFunction);
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001625}
1626
1627} // end anonymous namespace
1628
1629
1630namespace clang {
1631namespace thread_safety {
1632
1633/// \brief Check a function's CFG for thread-safety violations.
1634///
1635/// We traverse the blocks in the CFG, compute the set of mutexes that are held
1636/// at the end of each block, and issue warnings for thread safety violations.
1637/// Each block in the CFG is traversed exactly once.
Ted Kremenek1d26f482011-10-24 01:32:45 +00001638void runThreadSafetyAnalysis(AnalysisDeclContext &AC,
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001639 ThreadSafetyHandler &Handler) {
1640 ThreadSafetyAnalyzer Analyzer(Handler);
1641 Analyzer.runAnalysis(AC);
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001642}
1643
1644/// \brief Helper function that returns a LockKind required for the given level
1645/// of access.
1646LockKind getLockKindFromAccessKind(AccessKind AK) {
1647 switch (AK) {
1648 case AK_Read :
1649 return LK_Shared;
1650 case AK_Written :
1651 return LK_Exclusive;
1652 }
Benjamin Kramerafc5b152011-09-10 21:52:04 +00001653 llvm_unreachable("Unknown AccessKind");
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001654}
DeLesley Hutchinsa60448d2011-10-21 16:14:33 +00001655
Caitlin Sadowski402aa062011-09-09 16:11:56 +00001656}} // end namespace clang::thread_safety