blob: 6c20f8c9d3e925da66a7227172f66938f7783f62 [file] [log] [blame]
Pirama Arumuga Nainar4967a712016-09-19 22:19:55 -07001//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implementation of the abstract lowering for the Swift calling convention.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/CodeGen/SwiftCallingConv.h"
15#include "clang/Basic/TargetInfo.h"
16#include "CodeGenModule.h"
17#include "TargetInfo.h"
18
19using namespace clang;
20using namespace CodeGen;
21using namespace swiftcall;
22
23static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
24 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
25}
26
27static bool isPowerOf2(unsigned n) {
28 return n == (n & -n);
29}
30
31/// Given two types with the same size, try to find a common type.
32static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
33 assert(first != second);
34
35 // Allow pointers to merge with integers, but prefer the integer type.
36 if (first->isIntegerTy()) {
37 if (second->isPointerTy()) return first;
38 } else if (first->isPointerTy()) {
39 if (second->isIntegerTy()) return second;
40 if (second->isPointerTy()) return first;
41
42 // Allow two vectors to be merged (given that they have the same size).
43 // This assumes that we never have two different vector register sets.
44 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
45 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
46 if (auto commonTy = getCommonType(firstVecTy->getElementType(),
47 secondVecTy->getElementType())) {
48 return (commonTy == firstVecTy->getElementType() ? first : second);
49 }
50 }
51 }
52
53 return nullptr;
54}
55
56static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
57 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
58}
59
60void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
61 // Deal with various aggregate types as special cases:
62
63 // Record types.
64 if (auto recType = type->getAs<RecordType>()) {
65 addTypedData(recType->getDecl(), begin);
66
67 // Array types.
68 } else if (type->isArrayType()) {
69 // Incomplete array types (flexible array members?) don't provide
70 // data to lay out, and the other cases shouldn't be possible.
71 auto arrayType = CGM.getContext().getAsConstantArrayType(type);
72 if (!arrayType) return;
73
74 QualType eltType = arrayType->getElementType();
75 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
76 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
77 addTypedData(eltType, begin + i * eltSize);
78 }
79
80 // Complex types.
81 } else if (auto complexType = type->getAs<ComplexType>()) {
82 auto eltType = complexType->getElementType();
83 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
84 auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
85 addTypedData(eltLLVMType, begin, begin + eltSize);
86 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
87
88 // Member pointer types.
89 } else if (type->getAs<MemberPointerType>()) {
90 // Just add it all as opaque.
91 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
92
93 // Everything else is scalar and should not convert as an LLVM aggregate.
94 } else {
95 // We intentionally convert as !ForMem because we want to preserve
96 // that a type was an i1.
97 auto llvmType = CGM.getTypes().ConvertType(type);
98 addTypedData(llvmType, begin);
99 }
100}
101
102void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
103 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
104}
105
106void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
107 const ASTRecordLayout &layout) {
108 // Unions are a special case.
109 if (record->isUnion()) {
110 for (auto field : record->fields()) {
111 if (field->isBitField()) {
112 addBitFieldData(field, begin, 0);
113 } else {
114 addTypedData(field->getType(), begin);
115 }
116 }
117 return;
118 }
119
120 // Note that correctness does not rely on us adding things in
121 // their actual order of layout; it's just somewhat more efficient
122 // for the builder.
123
124 // With that in mind, add "early" C++ data.
125 auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
126 if (cxxRecord) {
127 // - a v-table pointer, if the class adds its own
128 if (layout.hasOwnVFPtr()) {
129 addTypedData(CGM.Int8PtrTy, begin);
130 }
131
132 // - non-virtual bases
133 for (auto &baseSpecifier : cxxRecord->bases()) {
134 if (baseSpecifier.isVirtual()) continue;
135
136 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
137 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
138 }
139
140 // - a vbptr if the class adds its own
141 if (layout.hasOwnVBPtr()) {
142 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
143 }
144 }
145
146 // Add fields.
147 for (auto field : record->fields()) {
148 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
149 if (field->isBitField()) {
150 addBitFieldData(field, begin, fieldOffsetInBits);
151 } else {
152 addTypedData(field->getType(),
153 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
154 }
155 }
156
157 // Add "late" C++ data:
158 if (cxxRecord) {
159 // - virtual bases
160 for (auto &vbaseSpecifier : cxxRecord->vbases()) {
161 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
162 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
163 }
164 }
165}
166
167void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
168 CharUnits recordBegin,
169 uint64_t bitfieldBitBegin) {
170 assert(bitfield->isBitField());
171 auto &ctx = CGM.getContext();
172 auto width = bitfield->getBitWidthValue(ctx);
173
174 // We can ignore zero-width bit-fields.
175 if (width == 0) return;
176
177 // toCharUnitsFromBits rounds down.
178 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
179
180 // Find the offset of the last byte that is partially occupied by the
181 // bit-field; since we otherwise expect exclusive ends, the end is the
182 // next byte.
183 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
184 CharUnits bitfieldByteEnd =
185 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
186 addOpaqueData(recordBegin + bitfieldByteBegin,
187 recordBegin + bitfieldByteEnd);
188}
189
190void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
191 assert(type && "didn't provide type for typed data");
192 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
193}
194
195void SwiftAggLowering::addTypedData(llvm::Type *type,
196 CharUnits begin, CharUnits end) {
197 assert(type && "didn't provide type for typed data");
198 assert(getTypeStoreSize(CGM, type) == end - begin);
199
200 // Legalize vector types.
201 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
202 SmallVector<llvm::Type*, 4> componentTys;
203 legalizeVectorType(CGM, end - begin, vecTy, componentTys);
204 assert(componentTys.size() >= 1);
205
206 // Walk the initial components.
207 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
208 llvm::Type *componentTy = componentTys[i];
209 auto componentSize = getTypeStoreSize(CGM, componentTy);
210 assert(componentSize < end - begin);
211 addLegalTypedData(componentTy, begin, begin + componentSize);
212 begin += componentSize;
213 }
214
215 return addLegalTypedData(componentTys.back(), begin, end);
216 }
217
218 // Legalize integer types.
219 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
220 if (!isLegalIntegerType(CGM, intTy))
221 return addOpaqueData(begin, end);
222 }
223
224 // All other types should be legal.
225 return addLegalTypedData(type, begin, end);
226}
227
228void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
229 CharUnits begin, CharUnits end) {
230 // Require the type to be naturally aligned.
231 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
232
233 // Try splitting vector types.
234 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
235 auto split = splitLegalVectorType(CGM, end - begin, vecTy);
236 auto eltTy = split.first;
237 auto numElts = split.second;
238
239 auto eltSize = (end - begin) / numElts;
240 assert(eltSize == getTypeStoreSize(CGM, eltTy));
241 for (size_t i = 0, e = numElts; i != e; ++i) {
242 addLegalTypedData(eltTy, begin, begin + eltSize);
243 begin += eltSize;
244 }
245 assert(begin == end);
246 return;
247 }
248
249 return addOpaqueData(begin, end);
250 }
251
252 addEntry(type, begin, end);
253}
254
255void SwiftAggLowering::addEntry(llvm::Type *type,
256 CharUnits begin, CharUnits end) {
257 assert((!type ||
258 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
259 "cannot add aggregate-typed data");
260 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
261
262 // Fast path: we can just add entries to the end.
263 if (Entries.empty() || Entries.back().End <= begin) {
264 Entries.push_back({begin, end, type});
265 return;
266 }
267
268 // Find the first existing entry that ends after the start of the new data.
269 // TODO: do a binary search if Entries is big enough for it to matter.
270 size_t index = Entries.size() - 1;
271 while (index != 0) {
272 if (Entries[index - 1].End <= begin) break;
273 --index;
274 }
275
276 // The entry ends after the start of the new data.
277 // If the entry starts after the end of the new data, there's no conflict.
278 if (Entries[index].Begin >= end) {
279 // This insertion is potentially O(n), but the way we generally build
280 // these layouts makes that unlikely to matter: we'd need a union of
281 // several very large types.
282 Entries.insert(Entries.begin() + index, {begin, end, type});
283 return;
284 }
285
286 // Otherwise, the ranges overlap. The new range might also overlap
287 // with later ranges.
288restartAfterSplit:
289
290 // Simplest case: an exact overlap.
291 if (Entries[index].Begin == begin && Entries[index].End == end) {
292 // If the types match exactly, great.
293 if (Entries[index].Type == type) return;
294
295 // If either type is opaque, make the entry opaque and return.
296 if (Entries[index].Type == nullptr) {
297 return;
298 } else if (type == nullptr) {
299 Entries[index].Type = nullptr;
300 return;
301 }
302
303 // If they disagree in an ABI-agnostic way, just resolve the conflict
304 // arbitrarily.
305 if (auto entryType = getCommonType(Entries[index].Type, type)) {
306 Entries[index].Type = entryType;
307 return;
308 }
309
310 // Otherwise, make the entry opaque.
311 Entries[index].Type = nullptr;
312 return;
313 }
314
315 // Okay, we have an overlapping conflict of some sort.
316
317 // If we have a vector type, split it.
318 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
319 auto eltTy = vecTy->getElementType();
320 CharUnits eltSize = (end - begin) / vecTy->getNumElements();
321 assert(eltSize == getTypeStoreSize(CGM, eltTy));
322 for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
323 addEntry(eltTy, begin, begin + eltSize);
324 begin += eltSize;
325 }
326 assert(begin == end);
327 return;
328 }
329
330 // If the entry is a vector type, split it and try again.
331 if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
332 splitVectorEntry(index);
333 goto restartAfterSplit;
334 }
335
336 // Okay, we have no choice but to make the existing entry opaque.
337
338 Entries[index].Type = nullptr;
339
340 // Stretch the start of the entry to the beginning of the range.
341 if (begin < Entries[index].Begin) {
342 Entries[index].Begin = begin;
343 assert(index == 0 || begin >= Entries[index - 1].End);
344 }
345
346 // Stretch the end of the entry to the end of the range; but if we run
347 // into the start of the next entry, just leave the range there and repeat.
348 while (end > Entries[index].End) {
349 assert(Entries[index].Type == nullptr);
350
351 // If the range doesn't overlap the next entry, we're done.
352 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
353 Entries[index].End = end;
354 break;
355 }
356
357 // Otherwise, stretch to the start of the next entry.
358 Entries[index].End = Entries[index + 1].Begin;
359
360 // Continue with the next entry.
361 index++;
362
363 // This entry needs to be made opaque if it is not already.
364 if (Entries[index].Type == nullptr)
365 continue;
366
367 // Split vector entries unless we completely subsume them.
368 if (Entries[index].Type->isVectorTy() &&
369 end < Entries[index].End) {
370 splitVectorEntry(index);
371 }
372
373 // Make the entry opaque.
374 Entries[index].Type = nullptr;
375 }
376}
377
378/// Replace the entry of vector type at offset 'index' with a sequence
379/// of its component vectors.
380void SwiftAggLowering::splitVectorEntry(unsigned index) {
381 auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
382 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
383
384 auto eltTy = split.first;
385 CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
386 auto numElts = split.second;
387 Entries.insert(&Entries[index + 1], numElts - 1, StorageEntry());
388
389 CharUnits begin = Entries[index].Begin;
390 for (unsigned i = 0; i != numElts; ++i) {
391 Entries[index].Type = eltTy;
392 Entries[index].Begin = begin;
393 Entries[index].End = begin + eltSize;
394 begin += eltSize;
395 }
396}
397
398/// Given a power-of-two unit size, return the offset of the aligned unit
399/// of that size which contains the given offset.
400///
401/// In other words, round down to the nearest multiple of the unit size.
402static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
403 assert(isPowerOf2(unitSize.getQuantity()));
404 auto unitMask = ~(unitSize.getQuantity() - 1);
405 return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
406}
407
408static bool areBytesInSameUnit(CharUnits first, CharUnits second,
409 CharUnits chunkSize) {
410 return getOffsetAtStartOfUnit(first, chunkSize)
411 == getOffsetAtStartOfUnit(second, chunkSize);
412}
413
414void SwiftAggLowering::finish() {
415 if (Entries.empty()) {
416 Finished = true;
417 return;
418 }
419
420 // We logically split the layout down into a series of chunks of this size,
421 // which is generally the size of a pointer.
422 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
423
424 // First pass: if two entries share a chunk, make them both opaque
425 // and stretch one to meet the next.
426 bool hasOpaqueEntries = (Entries[0].Type == nullptr);
427 for (size_t i = 1, e = Entries.size(); i != e; ++i) {
428 if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(),
429 Entries[i].Begin, chunkSize)) {
430 Entries[i - 1].Type = nullptr;
431 Entries[i].Type = nullptr;
432 Entries[i - 1].End = Entries[i].Begin;
433 hasOpaqueEntries = true;
434
435 } else if (Entries[i].Type == nullptr) {
436 hasOpaqueEntries = true;
437 }
438 }
439
440 // The rest of the algorithm leaves non-opaque entries alone, so if we
441 // have no opaque entries, we're done.
442 if (!hasOpaqueEntries) {
443 Finished = true;
444 return;
445 }
446
447 // Okay, move the entries to a temporary and rebuild Entries.
448 auto orig = std::move(Entries);
449 assert(Entries.empty());
450
451 for (size_t i = 0, e = orig.size(); i != e; ++i) {
452 // Just copy over non-opaque entries.
453 if (orig[i].Type != nullptr) {
454 Entries.push_back(orig[i]);
455 continue;
456 }
457
458 // Scan forward to determine the full extent of the next opaque range.
459 // We know from the first pass that only contiguous ranges will overlap
460 // the same aligned chunk.
461 auto begin = orig[i].Begin;
462 auto end = orig[i].End;
463 while (i + 1 != e &&
464 orig[i + 1].Type == nullptr &&
465 end == orig[i + 1].Begin) {
466 end = orig[i + 1].End;
467 i++;
468 }
469
470 // Add an entry per intersected chunk.
471 do {
472 // Find the smallest aligned storage unit in the maximal aligned
473 // storage unit containing 'begin' that contains all the bytes in
474 // the intersection between the range and this chunk.
475 CharUnits localBegin = begin;
476 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
477 CharUnits chunkEnd = chunkBegin + chunkSize;
478 CharUnits localEnd = std::min(end, chunkEnd);
479
480 // Just do a simple loop over ever-increasing unit sizes.
481 CharUnits unitSize = CharUnits::One();
482 CharUnits unitBegin, unitEnd;
483 for (; ; unitSize *= 2) {
484 assert(unitSize <= chunkSize);
485 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
486 unitEnd = unitBegin + unitSize;
487 if (unitEnd >= localEnd) break;
488 }
489
490 // Add an entry for this unit.
491 auto entryTy =
492 llvm::IntegerType::get(CGM.getLLVMContext(),
493 CGM.getContext().toBits(unitSize));
494 Entries.push_back({unitBegin, unitEnd, entryTy});
495
496 // The next chunk starts where this chunk left off.
497 begin = localEnd;
498 } while (begin != end);
499 }
500
501 // Okay, finally finished.
502 Finished = true;
503}
504
505void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
506 assert(Finished && "haven't yet finished lowering");
507
508 for (auto &entry : Entries) {
509 callback(entry.Begin, entry.Type);
510 }
511}
512
513std::pair<llvm::StructType*, llvm::Type*>
514SwiftAggLowering::getCoerceAndExpandTypes() const {
515 assert(Finished && "haven't yet finished lowering");
516
517 auto &ctx = CGM.getLLVMContext();
518
519 if (Entries.empty()) {
520 auto type = llvm::StructType::get(ctx);
521 return { type, type };
522 }
523
524 SmallVector<llvm::Type*, 8> elts;
525 CharUnits lastEnd = CharUnits::Zero();
526 bool hasPadding = false;
527 bool packed = false;
528 for (auto &entry : Entries) {
529 if (entry.Begin != lastEnd) {
530 auto paddingSize = entry.Begin - lastEnd;
531 assert(!paddingSize.isNegative());
532
533 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
534 paddingSize.getQuantity());
535 elts.push_back(padding);
536 hasPadding = true;
537 }
538
539 if (!packed && !entry.Begin.isMultipleOf(
540 CharUnits::fromQuantity(
541 CGM.getDataLayout().getABITypeAlignment(entry.Type))))
542 packed = true;
543
544 elts.push_back(entry.Type);
545 lastEnd = entry.End;
546 }
547
548 // We don't need to adjust 'packed' to deal with possible tail padding
549 // because we never do that kind of access through the coercion type.
550 auto coercionType = llvm::StructType::get(ctx, elts, packed);
551
552 llvm::Type *unpaddedType = coercionType;
553 if (hasPadding) {
554 elts.clear();
555 for (auto &entry : Entries) {
556 elts.push_back(entry.Type);
557 }
558 if (elts.size() == 1) {
559 unpaddedType = elts[0];
560 } else {
561 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
562 }
563 } else if (Entries.size() == 1) {
564 unpaddedType = Entries[0].Type;
565 }
566
567 return { coercionType, unpaddedType };
568}
569
570bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
571 assert(Finished && "haven't yet finished lowering");
572
573 // Empty types don't need to be passed indirectly.
574 if (Entries.empty()) return false;
575
576 CharUnits totalSize = Entries.back().End;
577
578 // Avoid copying the array of types when there's just a single element.
579 if (Entries.size() == 1) {
580 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
581 Entries.back().Type,
582 asReturnValue);
583 }
584
585 SmallVector<llvm::Type*, 8> componentTys;
586 componentTys.reserve(Entries.size());
587 for (auto &entry : Entries) {
588 componentTys.push_back(entry.Type);
589 }
590 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
591 componentTys,
592 asReturnValue);
593}
594
595CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
596 // Currently always the size of an ordinary pointer.
597 return CGM.getContext().toCharUnitsFromBits(
598 CGM.getContext().getTargetInfo().getPointerWidth(0));
599}
600
601CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
602 // For Swift's purposes, this is always just the store size of the type
603 // rounded up to a power of 2.
604 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
605 if (!isPowerOf2(size)) {
606 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
607 }
608 assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
609 return CharUnits::fromQuantity(size);
610}
611
612bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
613 llvm::IntegerType *intTy) {
614 auto size = intTy->getBitWidth();
615 switch (size) {
616 case 1:
617 case 8:
618 case 16:
619 case 32:
620 case 64:
621 // Just assume that the above are always legal.
622 return true;
623
624 case 128:
625 return CGM.getContext().getTargetInfo().hasInt128Type();
626
627 default:
628 return false;
629 }
630}
631
632bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
633 llvm::VectorType *vectorTy) {
634 return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
635 vectorTy->getNumElements());
636}
637
638bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
639 llvm::Type *eltTy, unsigned numElts) {
640 assert(numElts > 1 && "illegal vector length");
641 return getSwiftABIInfo(CGM)
642 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
643}
644
645std::pair<llvm::Type*, unsigned>
646swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
647 llvm::VectorType *vectorTy) {
648 auto numElts = vectorTy->getNumElements();
649 auto eltTy = vectorTy->getElementType();
650
651 // Try to split the vector type in half.
652 if (numElts >= 4 && isPowerOf2(numElts)) {
653 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
654 return {llvm::VectorType::get(eltTy, numElts / 2), 2};
655 }
656
657 return {eltTy, numElts};
658}
659
660void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
661 llvm::VectorType *origVectorTy,
662 llvm::SmallVectorImpl<llvm::Type*> &components) {
663 // If it's already a legal vector type, use it.
664 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
665 components.push_back(origVectorTy);
666 return;
667 }
668
669 // Try to split the vector into legal subvectors.
670 auto numElts = origVectorTy->getNumElements();
671 auto eltTy = origVectorTy->getElementType();
672 assert(numElts != 1);
673
674 // The largest size that we're still considering making subvectors of.
675 // Always a power of 2.
676 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
677 unsigned candidateNumElts = 1U << logCandidateNumElts;
678 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
679
680 // Minor optimization: don't check the legality of this exact size twice.
681 if (candidateNumElts == numElts) {
682 logCandidateNumElts--;
683 candidateNumElts >>= 1;
684 }
685
686 CharUnits eltSize = (origVectorSize / numElts);
687 CharUnits candidateSize = eltSize * candidateNumElts;
688
689 // The sensibility of this algorithm relies on the fact that we never
690 // have a legal non-power-of-2 vector size without having the power of 2
691 // also be legal.
692 while (logCandidateNumElts > 0) {
693 assert(candidateNumElts == 1U << logCandidateNumElts);
694 assert(candidateNumElts <= numElts);
695 assert(candidateSize == eltSize * candidateNumElts);
696
697 // Skip illegal vector sizes.
698 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
699 logCandidateNumElts--;
700 candidateNumElts /= 2;
701 candidateSize /= 2;
702 continue;
703 }
704
705 // Add the right number of vectors of this size.
706 auto numVecs = numElts >> logCandidateNumElts;
707 components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
708 numElts -= (numVecs << logCandidateNumElts);
709
710 if (numElts == 0) return;
711
712 // It's possible that the number of elements remaining will be legal.
713 // This can happen with e.g. <7 x float> when <3 x float> is legal.
714 // This only needs to be separately checked if it's not a power of 2.
715 if (numElts > 2 && !isPowerOf2(numElts) &&
716 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
717 components.push_back(llvm::VectorType::get(eltTy, numElts));
718 return;
719 }
720
721 // Bring vecSize down to something no larger than numElts.
722 do {
723 logCandidateNumElts--;
724 candidateNumElts /= 2;
725 candidateSize /= 2;
726 } while (candidateNumElts > numElts);
727 }
728
729 // Otherwise, just append a bunch of individual elements.
730 components.append(numElts, eltTy);
731}
732
733bool swiftcall::shouldPassCXXRecordIndirectly(CodeGenModule &CGM,
734 const CXXRecordDecl *record) {
735 // Following a recommendation from Richard Smith, pass a C++ type
736 // indirectly only if the destructor is non-trivial or *all* of the
737 // copy/move constructors are deleted or non-trivial.
738
739 if (record->hasNonTrivialDestructor())
740 return true;
741
742 // It would be nice if this were summarized on the CXXRecordDecl.
743 for (auto ctor : record->ctors()) {
744 if (ctor->isCopyOrMoveConstructor() && !ctor->isDeleted() &&
745 ctor->isTrivial()) {
746 return false;
747 }
748 }
749
750 return true;
751}
752
753static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
754 bool forReturn,
755 CharUnits alignmentForIndirect) {
756 if (lowering.empty()) {
757 return ABIArgInfo::getIgnore();
758 } else if (lowering.shouldPassIndirectly(forReturn)) {
759 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
760 } else {
761 auto types = lowering.getCoerceAndExpandTypes();
762 return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
763 }
764}
765
766static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
767 bool forReturn) {
768 if (auto recordType = dyn_cast<RecordType>(type)) {
769 auto record = recordType->getDecl();
770 auto &layout = CGM.getContext().getASTRecordLayout(record);
771
772 if (auto cxxRecord = dyn_cast<CXXRecordDecl>(record)) {
773 if (shouldPassCXXRecordIndirectly(CGM, cxxRecord))
774 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
775 }
776
777 SwiftAggLowering lowering(CGM);
778 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
779 lowering.finish();
780
781 return classifyExpandedType(lowering, forReturn, layout.getAlignment());
782 }
783
784 // Just assume that all of our target ABIs can support returning at least
785 // two integer or floating-point values.
786 if (isa<ComplexType>(type)) {
787 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
788 }
789
790 // Vector types may need to be legalized.
791 if (isa<VectorType>(type)) {
792 SwiftAggLowering lowering(CGM);
793 lowering.addTypedData(type, CharUnits::Zero());
794 lowering.finish();
795
796 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
797 return classifyExpandedType(lowering, forReturn, alignment);
798 }
799
800 // Member pointer types need to be expanded, but it's a simple form of
801 // expansion that 'Direct' can handle. Note that CanBeFlattened should be
802 // true for this to work.
803
804 // 'void' needs to be ignored.
805 if (type->isVoidType()) {
806 return ABIArgInfo::getIgnore();
807 }
808
809 // Everything else can be passed directly.
810 return ABIArgInfo::getDirect();
811}
812
813ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
814 return classifyType(CGM, type, /*forReturn*/ true);
815}
816
817ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
818 CanQualType type) {
819 return classifyType(CGM, type, /*forReturn*/ false);
820}
821
822void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
823 auto &retInfo = FI.getReturnInfo();
824 retInfo = classifyReturnType(CGM, FI.getReturnType());
825
826 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
827 auto &argInfo = FI.arg_begin()[i];
828 argInfo.info = classifyArgumentType(CGM, argInfo.type);
829 }
830}