blob: c9e98614dd4e6a4cd6d6811f6495a061e0a15dfb [file] [log] [blame]
Chad Rosier4b5e48d2012-08-17 21:19:40 +00001//===--- SemaStmtAsm.cpp - Semantic Analysis for Statements ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for inline asm statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCContext.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/MC/MCInstPrinter.h"
29#include "llvm/MC/MCInstrInfo.h"
30#include "llvm/MC/MCObjectFileInfo.h"
31#include "llvm/MC/MCRegisterInfo.h"
32#include "llvm/MC/MCStreamer.h"
33#include "llvm/MC/MCSubtargetInfo.h"
34#include "llvm/MC/MCTargetAsmParser.h"
35#include "llvm/MC/MCParser/MCAsmLexer.h"
36#include "llvm/MC/MCParser/MCAsmParser.h"
37#include "llvm/Support/SourceMgr.h"
38#include "llvm/Support/TargetRegistry.h"
39#include "llvm/Support/TargetSelect.h"
40using namespace clang;
41using namespace sema;
42
43/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
44/// ignore "noop" casts in places where an lvalue is required by an inline asm.
45/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
46/// provide a strong guidance to not use it.
47///
48/// This method checks to see if the argument is an acceptable l-value and
49/// returns false if it is a case we can handle.
50static bool CheckAsmLValue(const Expr *E, Sema &S) {
51 // Type dependent expressions will be checked during instantiation.
52 if (E->isTypeDependent())
53 return false;
54
55 if (E->isLValue())
56 return false; // Cool, this is an lvalue.
57
58 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
59 // are supposed to allow.
60 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
61 if (E != E2 && E2->isLValue()) {
62 if (!S.getLangOpts().HeinousExtensions)
63 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
64 << E->getSourceRange();
65 else
66 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
67 << E->getSourceRange();
68 // Accept, even if we emitted an error diagnostic.
69 return false;
70 }
71
72 // None of the above, just randomly invalid non-lvalue.
73 return true;
74}
75
76/// isOperandMentioned - Return true if the specified operand # is mentioned
77/// anywhere in the decomposed asm string.
78static bool isOperandMentioned(unsigned OpNo,
79 ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
80 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
81 const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
82 if (!Piece.isOperand()) continue;
83
84 // If this is a reference to the input and if the input was the smaller
85 // one, then we have to reject this asm.
86 if (Piece.getOperandNo() == OpNo)
87 return true;
88 }
89 return false;
90}
91
92StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
93 bool IsVolatile, unsigned NumOutputs,
94 unsigned NumInputs, IdentifierInfo **Names,
95 MultiExprArg constraints, MultiExprArg exprs,
96 Expr *asmString, MultiExprArg clobbers,
97 SourceLocation RParenLoc, bool MSAsm) {
98 unsigned NumClobbers = clobbers.size();
99 StringLiteral **Constraints =
100 reinterpret_cast<StringLiteral**>(constraints.get());
101 Expr **Exprs = exprs.get();
102 StringLiteral *AsmString = cast<StringLiteral>(asmString);
103 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
104
105 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
106
107 // The parser verifies that there is a string literal here.
108 if (!AsmString->isAscii())
109 return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
110 << AsmString->getSourceRange());
111
112 for (unsigned i = 0; i != NumOutputs; i++) {
113 StringLiteral *Literal = Constraints[i];
114 if (!Literal->isAscii())
115 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
116 << Literal->getSourceRange());
117
118 StringRef OutputName;
119 if (Names[i])
120 OutputName = Names[i]->getName();
121
122 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
123 if (!Context.getTargetInfo().validateOutputConstraint(Info))
124 return StmtError(Diag(Literal->getLocStart(),
125 diag::err_asm_invalid_output_constraint)
126 << Info.getConstraintStr());
127
128 // Check that the output exprs are valid lvalues.
129 Expr *OutputExpr = Exprs[i];
130 if (CheckAsmLValue(OutputExpr, *this)) {
131 return StmtError(Diag(OutputExpr->getLocStart(),
132 diag::err_asm_invalid_lvalue_in_output)
133 << OutputExpr->getSourceRange());
134 }
135
136 OutputConstraintInfos.push_back(Info);
137 }
138
139 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
140
141 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
142 StringLiteral *Literal = Constraints[i];
143 if (!Literal->isAscii())
144 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
145 << Literal->getSourceRange());
146
147 StringRef InputName;
148 if (Names[i])
149 InputName = Names[i]->getName();
150
151 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
152 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
153 NumOutputs, Info)) {
154 return StmtError(Diag(Literal->getLocStart(),
155 diag::err_asm_invalid_input_constraint)
156 << Info.getConstraintStr());
157 }
158
159 Expr *InputExpr = Exprs[i];
160
161 // Only allow void types for memory constraints.
162 if (Info.allowsMemory() && !Info.allowsRegister()) {
163 if (CheckAsmLValue(InputExpr, *this))
164 return StmtError(Diag(InputExpr->getLocStart(),
165 diag::err_asm_invalid_lvalue_in_input)
166 << Info.getConstraintStr()
167 << InputExpr->getSourceRange());
168 }
169
170 if (Info.allowsRegister()) {
171 if (InputExpr->getType()->isVoidType()) {
172 return StmtError(Diag(InputExpr->getLocStart(),
173 diag::err_asm_invalid_type_in_input)
174 << InputExpr->getType() << Info.getConstraintStr()
175 << InputExpr->getSourceRange());
176 }
177 }
178
179 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
180 if (Result.isInvalid())
181 return StmtError();
182
183 Exprs[i] = Result.take();
184 InputConstraintInfos.push_back(Info);
185 }
186
187 // Check that the clobbers are valid.
188 for (unsigned i = 0; i != NumClobbers; i++) {
189 StringLiteral *Literal = Clobbers[i];
190 if (!Literal->isAscii())
191 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
192 << Literal->getSourceRange());
193
194 StringRef Clobber = Literal->getString();
195
196 if (!Context.getTargetInfo().isValidClobber(Clobber))
197 return StmtError(Diag(Literal->getLocStart(),
198 diag::err_asm_unknown_register_name) << Clobber);
199 }
200
201 AsmStmt *NS =
202 new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
203 NumOutputs, NumInputs, Names, Constraints, Exprs,
204 AsmString, NumClobbers, Clobbers, RParenLoc);
205 // Validate the asm string, ensuring it makes sense given the operands we
206 // have.
207 SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
208 unsigned DiagOffs;
209 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
210 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
211 << AsmString->getSourceRange();
212 return StmtError();
213 }
214
215 // Validate tied input operands for type mismatches.
216 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
217 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
218
219 // If this is a tied constraint, verify that the output and input have
220 // either exactly the same type, or that they are int/ptr operands with the
221 // same size (int/long, int*/long, are ok etc).
222 if (!Info.hasTiedOperand()) continue;
223
224 unsigned TiedTo = Info.getTiedOperand();
225 unsigned InputOpNo = i+NumOutputs;
226 Expr *OutputExpr = Exprs[TiedTo];
227 Expr *InputExpr = Exprs[InputOpNo];
228
229 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
230 continue;
231
232 QualType InTy = InputExpr->getType();
233 QualType OutTy = OutputExpr->getType();
234 if (Context.hasSameType(InTy, OutTy))
235 continue; // All types can be tied to themselves.
236
237 // Decide if the input and output are in the same domain (integer/ptr or
238 // floating point.
239 enum AsmDomain {
240 AD_Int, AD_FP, AD_Other
241 } InputDomain, OutputDomain;
242
243 if (InTy->isIntegerType() || InTy->isPointerType())
244 InputDomain = AD_Int;
245 else if (InTy->isRealFloatingType())
246 InputDomain = AD_FP;
247 else
248 InputDomain = AD_Other;
249
250 if (OutTy->isIntegerType() || OutTy->isPointerType())
251 OutputDomain = AD_Int;
252 else if (OutTy->isRealFloatingType())
253 OutputDomain = AD_FP;
254 else
255 OutputDomain = AD_Other;
256
257 // They are ok if they are the same size and in the same domain. This
258 // allows tying things like:
259 // void* to int*
260 // void* to int if they are the same size.
261 // double to long double if they are the same size.
262 //
263 uint64_t OutSize = Context.getTypeSize(OutTy);
264 uint64_t InSize = Context.getTypeSize(InTy);
265 if (OutSize == InSize && InputDomain == OutputDomain &&
266 InputDomain != AD_Other)
267 continue;
268
269 // If the smaller input/output operand is not mentioned in the asm string,
270 // then we can promote the smaller one to a larger input and the asm string
271 // won't notice.
272 bool SmallerValueMentioned = false;
273
274 // If this is a reference to the input and if the input was the smaller
275 // one, then we have to reject this asm.
276 if (isOperandMentioned(InputOpNo, Pieces)) {
277 // This is a use in the asm string of the smaller operand. Since we
278 // codegen this by promoting to a wider value, the asm will get printed
279 // "wrong".
280 SmallerValueMentioned |= InSize < OutSize;
281 }
282 if (isOperandMentioned(TiedTo, Pieces)) {
283 // If this is a reference to the output, and if the output is the larger
284 // value, then it's ok because we'll promote the input to the larger type.
285 SmallerValueMentioned |= OutSize < InSize;
286 }
287
288 // If the smaller value wasn't mentioned in the asm string, and if the
289 // output was a register, just extend the shorter one to the size of the
290 // larger one.
291 if (!SmallerValueMentioned && InputDomain != AD_Other &&
292 OutputConstraintInfos[TiedTo].allowsRegister())
293 continue;
294
295 // Either both of the operands were mentioned or the smaller one was
296 // mentioned. One more special case that we'll allow: if the tied input is
297 // integer, unmentioned, and is a constant, then we'll allow truncating it
298 // down to the size of the destination.
299 if (InputDomain == AD_Int && OutputDomain == AD_Int &&
300 !isOperandMentioned(InputOpNo, Pieces) &&
301 InputExpr->isEvaluatable(Context)) {
302 CastKind castKind =
303 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
304 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
305 Exprs[InputOpNo] = InputExpr;
306 NS->setInputExpr(i, InputExpr);
307 continue;
308 }
309
310 Diag(InputExpr->getLocStart(),
311 diag::err_asm_tying_incompatible_types)
312 << InTy << OutTy << OutputExpr->getSourceRange()
313 << InputExpr->getSourceRange();
314 return StmtError();
315 }
316
317 return Owned(NS);
318}
319
320// isMSAsmKeyword - Return true if this is an MS-style inline asm keyword. These
321// require special handling.
322static bool isMSAsmKeyword(StringRef Name) {
323 bool Ret = llvm::StringSwitch<bool>(Name)
324 .Cases("EVEN", "ALIGN", true) // Alignment directives.
325 .Cases("LENGTH", "SIZE", "TYPE", true) // Type and variable sizes.
326 .Case("_emit", true) // _emit Pseudoinstruction.
327 .Default(false);
328 return Ret;
329}
330
331static StringRef getSpelling(Sema &SemaRef, Token AsmTok) {
332 StringRef Asm;
333 SmallString<512> TokenBuf;
334 TokenBuf.resize(512);
335 bool StringInvalid = false;
336 Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid);
337 assert (!StringInvalid && "Expected valid string!");
338 return Asm;
339}
340
341static void patchMSAsmStrings(Sema &SemaRef, bool &IsSimple,
342 SourceLocation AsmLoc,
343 ArrayRef<Token> AsmToks,
344 const TargetInfo &TI,
345 std::vector<llvm::BitVector> &AsmRegs,
346 std::vector<llvm::BitVector> &AsmNames,
347 std::vector<std::string> &AsmStrings) {
348 assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
349
350 // Assume simple asm stmt until we parse a non-register identifer (or we just
351 // need to bail gracefully).
352 IsSimple = true;
353
354 SmallString<512> Asm;
355 unsigned NumAsmStrings = 0;
356 for (unsigned i = 0, e = AsmToks.size(); i != e; ++i) {
357
358 // Determine if this should be considered a new asm.
359 bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
360 AsmToks[i].is(tok::kw_asm);
361
362 // Emit the previous asm string.
363 if (i && isNewAsm) {
364 AsmStrings[NumAsmStrings++] = Asm.c_str();
365 if (AsmToks[i].is(tok::kw_asm)) {
366 ++i; // Skip __asm
367 assert (i != e && "Expected another token.");
368 }
369 }
370
371 // Start a new asm string with the opcode.
372 if (isNewAsm) {
373 AsmRegs[NumAsmStrings].resize(AsmToks.size());
374 AsmNames[NumAsmStrings].resize(AsmToks.size());
375
376 StringRef Piece = AsmToks[i].getIdentifierInfo()->getName();
377 // MS-style inline asm keywords require special handling.
378 if (isMSAsmKeyword(Piece))
379 IsSimple = false;
380
381 // TODO: Verify this is a valid opcode.
382 Asm = Piece;
383 continue;
384 }
385
386 if (i && AsmToks[i].hasLeadingSpace())
387 Asm += ' ';
388
389 // Check the operand(s).
390 switch (AsmToks[i].getKind()) {
391 default:
392 IsSimple = false;
393 Asm += getSpelling(SemaRef, AsmToks[i]);
394 break;
395 case tok::comma: Asm += ","; break;
396 case tok::colon: Asm += ":"; break;
397 case tok::l_square: Asm += "["; break;
398 case tok::r_square: Asm += "]"; break;
399 case tok::l_brace: Asm += "{"; break;
400 case tok::r_brace: Asm += "}"; break;
401 case tok::numeric_constant:
402 Asm += getSpelling(SemaRef, AsmToks[i]);
403 break;
404 case tok::identifier: {
405 IdentifierInfo *II = AsmToks[i].getIdentifierInfo();
406 StringRef Name = II->getName();
407
408 // Valid register?
409 if (TI.isValidGCCRegisterName(Name)) {
410 AsmRegs[NumAsmStrings].set(i);
411 Asm += Name;
412 break;
413 }
414
415 IsSimple = false;
416
417 // MS-style inline asm keywords require special handling.
418 if (isMSAsmKeyword(Name)) {
419 IsSimple = false;
420 Asm += Name;
421 break;
422 }
423
424 // FIXME: Why are we missing this segment register?
425 if (Name == "fs") {
426 Asm += Name;
427 break;
428 }
429
430 // Lookup the identifier.
431 // TODO: Someone with more experience with clang should verify this the
432 // proper way of doing a symbol lookup.
433 DeclarationName DeclName(II);
434 Scope *CurScope = SemaRef.getCurScope();
435 LookupResult R(SemaRef, DeclName, AsmLoc, Sema::LookupOrdinaryName);
436 if (!SemaRef.LookupName(R, CurScope, false/*AllowBuiltinCreation*/))
437 break;
438
439 assert (R.isSingleResult() && "Expected a single result?!");
440 NamedDecl *Decl = R.getFoundDecl();
441 switch (Decl->getKind()) {
442 default:
443 assert(0 && "Unknown decl kind.");
444 break;
445 case Decl::Var: {
446 case Decl::ParmVar:
447 AsmNames[NumAsmStrings].set(i);
448
449 VarDecl *Var = cast<VarDecl>(Decl);
450 QualType Ty = Var->getType();
451 (void)Ty; // Avoid warning.
452 // TODO: Patch identifier with valid operand. One potential idea is to
453 // probe the backend with type information to guess the possible
454 // operand.
455 break;
456 }
457 }
458 break;
459 }
460 }
461 }
462
463 // Emit the final (and possibly only) asm string.
464 AsmStrings[NumAsmStrings] = Asm.c_str();
465}
466
467// Build the unmodified MSAsmString.
468static std::string buildMSAsmString(Sema &SemaRef,
469 ArrayRef<Token> AsmToks,
470 unsigned &NumAsmStrings) {
471 assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
472 NumAsmStrings = 0;
473
474 SmallString<512> Asm;
475 for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
476 bool isNewAsm = i == 0 || AsmToks[i].isAtStartOfLine() ||
477 AsmToks[i].is(tok::kw_asm);
478
479 if (isNewAsm) {
480 ++NumAsmStrings;
481 if (i)
482 Asm += '\n';
483 if (AsmToks[i].is(tok::kw_asm)) {
484 i++; // Skip __asm
485 assert (i != e && "Expected another token");
486 }
487 }
488
489 if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm)
490 Asm += ' ';
491
492 Asm += getSpelling(SemaRef, AsmToks[i]);
493 }
494 return Asm.c_str();
495}
496
497StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
498 SourceLocation LBraceLoc,
499 ArrayRef<Token> AsmToks,
500 SourceLocation EndLoc) {
501 // MS-style inline assembly is not fully supported, so emit a warning.
502 Diag(AsmLoc, diag::warn_unsupported_msasm);
503 SmallVector<StringRef,4> Clobbers;
504 std::set<std::string> ClobberRegs;
505 SmallVector<IdentifierInfo*, 4> Inputs;
506 SmallVector<IdentifierInfo*, 4> Outputs;
507
508 // Empty asm statements don't need to instantiate the AsmParser, etc.
509 if (AsmToks.empty()) {
510 StringRef AsmString;
511 MSAsmStmt *NS =
512 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
513 /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
514 AsmString, Clobbers, EndLoc);
515 return Owned(NS);
516 }
517
518 unsigned NumAsmStrings;
519 std::string AsmString = buildMSAsmString(*this, AsmToks, NumAsmStrings);
520
521 bool IsSimple;
522 std::vector<llvm::BitVector> Regs;
523 std::vector<llvm::BitVector> Names;
524 std::vector<std::string> PatchedAsmStrings;
525
526 Regs.resize(NumAsmStrings);
527 Names.resize(NumAsmStrings);
528 PatchedAsmStrings.resize(NumAsmStrings);
529
530 // Rewrite operands to appease the AsmParser.
531 patchMSAsmStrings(*this, IsSimple, AsmLoc, AsmToks,
532 Context.getTargetInfo(), Regs, Names, PatchedAsmStrings);
533
534 // patchMSAsmStrings doesn't correctly patch non-simple asm statements.
535 if (!IsSimple) {
536 MSAsmStmt *NS =
537 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
538 /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
539 AsmString, Clobbers, EndLoc);
540 return Owned(NS);
541 }
542
543 // Initialize targets and assembly printers/parsers.
544 llvm::InitializeAllTargetInfos();
545 llvm::InitializeAllTargetMCs();
546 llvm::InitializeAllAsmParsers();
547
548 // Get the target specific parser.
549 std::string Error;
550 const std::string &TT = Context.getTargetInfo().getTriple().getTriple();
551 const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error));
552
553 OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT));
554 OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
555 OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
556 OwningPtr<llvm::MCSubtargetInfo>
557 STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
558
559 for (unsigned i = 0, e = PatchedAsmStrings.size(); i != e; ++i) {
560 llvm::SourceMgr SrcMgr;
561 llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr);
562 llvm::MemoryBuffer *Buffer =
563 llvm::MemoryBuffer::getMemBuffer(PatchedAsmStrings[i], "<inline asm>");
564
565 // Tell SrcMgr about this buffer, which is what the parser will pick up.
566 SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
567
568 OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
569 OwningPtr<llvm::MCAsmParser>
570 Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI));
571 OwningPtr<llvm::MCTargetAsmParser>
572 TargetParser(TheTarget->createMCAsmParser(*STI, *Parser));
573 // Change to the Intel dialect.
574 Parser->setAssemblerDialect(1);
575 Parser->setTargetParser(*TargetParser.get());
576
577 // Prime the lexer.
578 Parser->Lex();
579
580 // Parse the opcode.
581 StringRef IDVal;
582 Parser->ParseIdentifier(IDVal);
583
584 // Canonicalize the opcode to lower case.
585 SmallString<128> Opcode;
586 for (unsigned i = 0, e = IDVal.size(); i != e; ++i)
587 Opcode.push_back(tolower(IDVal[i]));
588
589 // Parse the operands.
590 llvm::SMLoc IDLoc;
591 SmallVector<llvm::MCParsedAsmOperand*, 8> Operands;
592 bool HadError = TargetParser->ParseInstruction(Opcode.str(), IDLoc,
593 Operands);
594 assert (!HadError && "Unexpected error parsing instruction");
595
596 // Match the MCInstr.
597 SmallVector<llvm::MCInst, 2> Instrs;
598 HadError = TargetParser->MatchInstruction(IDLoc, Operands, Instrs);
599 assert (!HadError && "Unexpected error matching instruction");
600 assert ((Instrs.size() == 1) && "Expected only a single instruction.");
601
602 // Get the instruction descriptor.
603 llvm::MCInst Inst = Instrs[0];
604 const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
605 const llvm::MCInstrDesc &Desc = MII->get(Inst.getOpcode());
606 llvm::MCInstPrinter *IP =
607 TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
608
609 // Build the list of clobbers.
610 for (unsigned i = 0, e = Desc.getNumDefs(); i != e; ++i) {
611 const llvm::MCOperand &Op = Inst.getOperand(i);
612 if (!Op.isReg())
613 continue;
614
615 std::string Reg;
616 llvm::raw_string_ostream OS(Reg);
617 IP->printRegName(OS, Op.getReg());
618
619 StringRef Clobber(OS.str());
620 if (!Context.getTargetInfo().isValidClobber(Clobber))
621 return StmtError(Diag(AsmLoc, diag::err_asm_unknown_register_name) <<
622 Clobber);
623 ClobberRegs.insert(Reg);
624 }
625 }
626 for (std::set<std::string>::iterator I = ClobberRegs.begin(),
627 E = ClobberRegs.end(); I != E; ++I)
628 Clobbers.push_back(*I);
629
630 MSAsmStmt *NS =
631 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
632 /*IsVolatile*/ true, AsmToks, Inputs, Outputs,
633 AsmString, Clobbers, EndLoc);
634 return Owned(NS);
635}